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Abstract

We propose a method for approximating the flowlines of a discrete tangent vector field on

a triangle mesh. Our method makes use of the recently proposed discrete representation of

a vector field as a derivation operator. This representation allows us to state the problem of

flowlines computation as the advection of the Euclidean coordinate functions by the vector field.

By representing the vector field as a linear derivation operator, and discretizing both the vector

field operator and the coordinate functions using Lagrange linear elements (or ”hat functions”),

the spatial discretization of the flowline equations leads to three linear systems of ordinary

differential equations (ODEs), one system for each Euclidean coordinate function. These linear

ODEs have a closed form solution as a function of time, thus the system can be solved without

explicit time discretization, using an exponential integrator. Our approach requires only the

construction of the derivative operator that represents the vector field, and multiplying the

exponential of a sparse matrix by a vector, which can both be efficiently computed. For a

given equally spaced time vector, we compute the flowlines from all the vertices of the mesh

simultaneously. With this global definition of the problem, our method is characterized by

making use of mostly global solutions, as opposed to algorithms that analyse local geometric

details through the explicit generation of curves and intersecting line segments. We compare our

approach to analytical solutions in cases where these are known, and to an iterative simple tracing

algorithm. In addition we examine our solution from other aspects, such as invariance to global

transformations, the distance of the flowlines from the mesh, and other local characteristics.

Finally we use our method for the simple, robust and efficient visualization of discrete tangent

vector fields on triangle meshes.

1
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List of Key Symbols

Smooth Setup

M : A smooth, orientable and compact 2-Manifold embedded in R
3.

TM : The space of tangent vector fields on M.

XM : M → R
3, The Euclidean embedding of M.

v : M → TM, A smooth tangent vector field on M.

f : M → R, A smooth real function on M. That is f ∈ C∞(M).

∇ : C∞(M) → TM, The gradient operator on M.

∇· : TM → C∞(M), The divergence operator on M.

Δ : C∞(M) → C∞(M), The Laplace-Beltrami operator.

Dv : C∞(M) → C∞(M), The covariant derivative operator, of the vector field v.

p ∈ M, A point on M.

Φt
v(p) : A flowline of the vector field v from the point p ∈ M with time parameter t ∈ R.

Φt
v : M → M, The flowlines as a map for t ∈ R.

X t : M → R
3, The flow of the coordinate functions for t ∈ R.

Discrete Setup

M = (V,F ,N ). A triangle mesh, where V is the set of vertices, F is the set of triangular

faces, and N is the set of the normal vectors to the faces.

|V| The number of vertices.

|F| The number of faces.

AF ∈ R
|F|, The face areas.

v ∈ R
3|F|, A vector field, piecewise constant per face.

3
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XM ∈ R
|V|×3, The 3D Euclidean coordinates of the vertices.

grad ∈ R
3|F|×|V|, The discrete gradient operator.

div ∈ R
|V|×3|F|, The discrete divergence operator.

L ∈ R
|V|×|V|, The discrete Laplace-Beltrami operator.

{ϕi}|V|i=1 ∈ R
|V|, The eigenfunctions of L, sorted in ascending order by eigenvalue.

Dv ∈ R
|V|×|V|, The discrete covariant derivative operator of the vector field v.

IFV ∈ R
|V|×|F|, An interpolation matrix from faces to vertices.

Xt ∈ R
|V|×3, The evolution of the coordinate functions for time t ∈ R

n.

[v]• ∈ R
3|F|×|F|, A matrix that encodes the facewise multiplication of the vector field v with

a face-based function.

‖u‖ : R3 → R, The Euclidean norm of a 3D vector u.

J ∈ R
3|F|×3|F|, A matrix that encodes the face-wise counterclockwise rotation of a vector

field by π/2 around the faces normals.

n ∈ N, The number of samples of a flowline.

Xp ∈ R
np×3, samples of a flowline that originate at p and has np samples.

p ∈ V , A vertex of M .

E ∈ R
3|F|×|V|, A matrix that encodes the linear combination of the rotated edge vectors

using the opposite vertex coefficients

GF ∈ R
3|F|×3|F|, A diagonal matrix that contains the areas of the faces, repeated 3 times for

each face. Encodes the facewise multiplication of a vector field by the face areas.

rM ∈ R, The characteristic length that corresponds to M .

AM ∈ R, The area of M .
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Chapter 1

Introduction

Tangent vector fields on surfaces play an important role in computer graphics and geometry

processing. They are designed [FSDH07], visualized [ZHT06] and have many applications

in areas such as physics modeling (e.g. fluid simulation [AWO+14]), and art (e.g. line-art

rendering [HZ00]).

In the smooth setting, a tangent vector field on a 2-manifold is a smooth assignment of

a tangent vector to each point of the manifold. In this context, a flowline is a curve with a

parameter t such that at each point its velocity equals the vector field. Each point on the surface

is associated with a flowline passing through it at t = 0. Flowlines calculation is useful for

applications such as vector field visualization, segmentation, and quad meshing.

Another point of view, coming from differential geometry, is the representation of vector

fields as operators. Specifically, the covariant derivative operator of a vector field associates

with any smooth scalar function on the surface another function which is its directional derivative

on the surface, by the vector field. This operator plays a role in the definition of flowlines

on a 2-manifold embedded in a 3D Euclidean space through the evolution of the manifold’s

Euclidean coordinates functions.

As is common in many applications, our setup consists of a triangle mesh, and a piecewise

constant tangent vector field as an input, that is an assignment of a Euclidean vector to each face

of the mesh. In this setting the vector field is not smooth, and even not defined on edges and

vertices. Thus, we cannot state the problem as finding a curves that equals the vector field at

every point on the mesh. We present a way for an approximate calculation of flowlines that

originate at each vertex of the mesh. We use a discrete representation of the covariant derivative

operator that was recently suggested by [ABCCO13], and state the problem as a system of

linear ODEs of order one, inspired by the definition of flowlines as the evolution of the mesh’s

Euclidean coordinates. This system has a closed form solution, given by the matrix exponential

of the covariant derivative operator multiplied by the time parameter.

Most of the algorithms dealing with tracing lines along a vector field, use iterative processes

that have to take care of local details such as intersections of lines with edges or vertices, and

local corrections. Our algorithm, on the other hand, uses a global operator point of view, which

5
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only requires the building the sparse covariant derivative matrix, and the calculation of the

multiplication of a sparse matrix exponential operator with a vector.

1.1 Contributions

We present an algorithm that gets as input a vector field on a triangle mesh and a linearly sampled

time interval, and computes the flowlines of the vector field, starting from all the vertices of

the mesh, for the given time values. The algorithm requires only the construction of a discrete

covariant derivative operator and the computation of a sparse matrix exponential times a vector.

The flowlines are calculated directly from the mesh and vector field operator in closed form,

without requiring a local analysis of geometric details or explicit calculations of line segment

intersections. We demonstrate the applicability of our algorithm for visualizing vector fields on

a mesh.

1.2 Overview

In Chapter 2 we review other papers that deal with integration of curves on a surface. In chapter

3 we present the smooth and the discrete setups, the definition of flowlines in the smooth

setup, the definitions of the covariant derivative in both setups, and other useful definitions for

the discrete case. In chapter 4 we present our global operator-based approach for flowlines

calculation in the smooth case, and then we show how to apply this approach to the discrete

case. We end this chapter with a closed form solution for the discrete case. In chapter 5 we

explain how we set the free parameters of our method. In chapter 6 we evaluate the flowlines

calculation by comparing it to other methods, and by examining its local behavior. Finally, we

present a simple way to visualize vector field on a mesh using our method. In chapter 7 we

discuss the limitations of our method, our conclusions, and ideas for future work.

6
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Chapter 2

Related Work

Tracing flowlines. Iterative algorithms for calculating flowlines (or streamlines) were sug-

gested in [CL93] (2D), [MKFI97] (3D) as a part of the Line Integral convolution (LIC) technique.

LIC is a way of visualizing vector field by convolving white noise with a one dimensional fiter

along streamlines of the vector field.

Geodesic curves over triangle meshes. [MVC05] suggested an algorithm to compute the

shortest geodesic curve between two points, over triangulated surfaces. The algorithm uses

FMM (First Marching Method) for an initial curve, and then the applies an iterative correction

process in order to approach the true geodesic path. The correction process requires different

procedures for the correction of the polygonal line’s vertices. [PS06] Introduced straightest

geodesics on triangle meshes. They applied it to numerical integration methods for tangential

vector fields. The concept of straightest geodesics deals with crossing edges and vertices.

[SSK+05] presented methods for computing exact and approximate geodesics from a source

point to one or all other points. The method uses as a first step the MMP algorithm which

requires the partitioning of the mesh’s edges to ”windows” and the propagation of those windows

across the faces of the mesh. It has to take special care of intersecting windows, intersections of

”rays” and edges, and treat differently boundary points and saddle points.

Streamlines in Euclidean space. [RT11] proposed a new technique for visual exploration of

streamlines of a 3D vector field. The setup is a vector field in a 2D or a 3D Euclidean space. The

technique constructs a map from the space of streamlines to points in R
n, while preserving the

Hausdorff metric in streamline space, and cluster the points. Streamlines are integrated using

fourth order Runge Kutta with adaptive step size control.

Quad layouts. [RRP15] introduced an approach for automatically computing pure quadri-

lateral patch layouts (quad layouts) on manifold meshes. The method constructs a singularity

graph from the input, and calculates the quad layout by a constrained optimization. In the graph

generation part it traces isolines of a parametrization induced from a curl-free frame field.

7
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[PPM+16] Presented a method, that given a triangle mesh with a cross field, it computes a

field aligned coarse quad layout. The method requires a construction of special graphs.

Polylines. [RS14] suggested an algorithm for tracing polylines that are oriented by a direction

field over a triangle mesh. The algorithm builds a special data structure in order to compute how

a line cross a triangle, and it requires a new direction field representation.

8
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Chapter 3

Background

In this chapter, we first present the definition of flowlines and the definition of the covariant

derivative operator in the smooth case. We need it in order to define flowlines from a global

operator-based point of view. Then, we describe the discrete setup on a triangle mesh, and the

definitions of the matrices that we use in the rest of the thesis. Finally, we recall the definition

of the discrete covariant derivative operator in order to lay the groundwork for the discrete

definition of the problem that we state in Chapter 4. Most of the content in this chapter is also

available in [BCA19], and is repeated here for completeness. Note that we only describe the

main topics that are of use for this thesis. For a more thorough overview of the mathematical

aspects of derivations we refer the reader to [Mor01].

3.1 Smooth Setup

In the smooth setting we are given a comapct smooth Riemannian manifold M and a tangent

vector field v, that is a smooth assignment of a tangent vector v(p) to each point p ∈ M. We

work with functions in C∞(M).

3.1.1 Flowlines

A smooth tangent vector field v defines a one-parameter family of curves which is the solution

to the PDE [Mor01, Definition 1.43]

dΦt
v(p)

dt
= v(Φt

v(p)),

Φt=0
v (p) = p,

(3.1)

for all p ∈ M, and for t ∈ R.

The flowlines of the vector field are this family of curves. Intuitively, if v describes the

velocity of a fluid at every point on M, then a single flowline Φt
v(p) is the trajectory of a

particle passing at p at t = 0 and advected by the fluid (see Fig. 3.1).

9
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Figure 3.1: Illustration of a flowline (the dashed line) of a tangent vector field v, here denoted

by ϕv,τ (p) where τ ∈ [0, t]. The tangent vector field represents a velocity field, and the blue

point is a particle that started at p at t = 0. Figure reproduced with permission from [BCA19].

3.1.2 The covariant derivative operator

Instead of the pointwise representation of vector fields our method makes use of the global

operator-based representation of a vector field as a derivation operator acting on functions,

specifically the one that was recently proposed in [ABCCO13]. As we show in Chapter 4 , this

representation allows us to state the problem from a global point of view, as the evolution of

functions in time. The covariant derivative is defined as follows.

Definition 3.1.1. Given a vector field v and a function f ∈ C∞(M) the covariant derivative

Dv : C∞(M) → C∞(M) of f with respect to v is a function Dvf : M → R such that

(Dvf)(p) = lim
t→0

f(Φt
v(p))− f(p)

t
=

d

dt
f(Φt

v(p))

∣∣∣∣
t=0

, (3.2)

for any point p ∈ M.

The covariant derivative operator can be expressed through the gradient operator, using a

classical identity in Riemannian geometry ([Mor01], p.148):

(Dvf)p = 〈v(p),∇f(p)〉p. (3.3)

This operator has a myriad of nice properties (e.g. linearity in the functions, linearity in the

vector field ), which were leveraged in [ABCCO13] to represent discrete tangent vector fields

on triangle meshes.
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3.2 Discrete Setup

In the discrete setup we are given a triangle mesh M = (V,F ,N ) where V is a set of vertices,

F is a set of triangular faces, and N is a set of the normal vectors to the faces. The mesh

is endowed with a piece-wise constant tangent vector field v = {vr ∈ R
3|r ∈ F , vr ⊥ Nr}

(see Fig. 3.2). In practice we represent the vector field as a vector in R
3|F|. For the flowlines

calculation we work with piecewise linear vertex-based functions represented as a vector in

R
|V|. For the representation of the vector field norm in Section 6.3, we use piecewise constant

face-based functions represented as a vector in R
|F|.

3.3 Useful Definitions

[v]• ∈ R
3|F|×|F|, A matrix that encodes a point-wise multiplication of a vector field v with

a face-based function. Its transpose encodes an inner product of the vector field with

another vector field.

grad ∈ R
3|F|×|V|, div ∈ R

|V|×3|F|, The discrete gradient and divergence respectively, defined

in the standard way as in [BKP+10, Chapter 3].

IFV ∈ R
|F|×|V|, An interpolation matrix from face-based functions to vertex-based functions

defined as IVF (i, j) =
AF (j)
3AV (i)

, where AV(i) = 1
3

∑
r�iAF (r).

J ∈ R
3|F|×3|F|, A vector field rotation operator. On each triangle, rotates the vector by π/2

around the normal.

E ∈ R
3|F|×|V|, Encodes a weighted average of the rotated edges, with a vertex-based

function. Specifically, on each face the output vector is given by
∑3

i=1 f(pi)e
⊥
i , where

p1, p2, p3 are the vertices of the face and e⊥i is the edge opposite to the vertex pi rotated

around the face normal by π/2.

GF ∈ R
3|F|×3|F|, Encodes a face-wise multiplication of a vector field by the face areas.

Figure 3.2: Tangent vector fields on triangle meshes.
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3.4 The discrete covariant derivative operator

Given a discrete vector field v, we define the directional derivative operator Dv ∈ R
|V|×|V|, by

discretizing Eq. (3.3) using linear finite elements [ABCCO13]:

Dv = IFV [v]T• grad . (3.4)

Intuitively, this operator first computes the gradient of a vertex based function using the

operator grad, yielding a vector field represented as a vector per face. The operator [v]T• then

computes the facewise inner product between the gradient vector field and the given vector field

v. This yields a piecewise constant function per face, which is then interpolated back to the

vertices with the interpolation operator IFV . Note that in the discrete case, the interpolation is

required in order to obtain a square operator, whereas in the smooth case the functions live in

the same function space before and after applying the derivative operator (see Figure 3.3).

Figure 3.3: Illustration of the operation of Dv = IFV [v]T• grad on a function f . (a) A vertex

based function f and a vector field v are given. (b) grad f (red). (c) [v]T• grad f . (d) Dvf =
IFV [v]T• grad f .
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Chapter 4

Flowlines Calculation

In this chapter we present our approach to flowlines computation. Definition 3.1 defines flowlines

from a local point of view. That is, it gives the local connection between a curve and the vector

field at a given point on the manifold. If we consider M as embedded in R
3, we can assign

each point on M with its 3D Euclidean coordinates by the embedding function XM : M → R
3.

Then, using the covariant derivative operator, we can define flowlines from a global point of

view as the evolution of XM in time.

4.1 Approach

4.1.1 Evolution of a function in time

For a given time t, we can think about the flowlines as a map Φt
v : M → M. Given a real

function f ∈ C∞(M) , we define the function ft : M → R as

ft = f ◦ Φt
v, (4.1)

where f0 = f.

We want to understand how the function ft = f ◦ Φt
v evolves in time. The following result

can be derived from Lemma 5 in Ref. [BCA19], using the connection ft = g(−t), where g(t)

is the function f(t) used there:

d

dt
ft(p) = (Dvf

t)(p). (4.2)

The last equality holds for all the points on the manifold, thus

d

dt
ft = Dvf

t

ft=0 = f.

(4.3)
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4.1.2 Evolution the coordinate functions in time

Our surface is embedded in R
3, so that we can describe a point p ∈ M by its 3D embedding:

XM(p) = (X,Y,Z)(p), (4.4)

where X,Y,Z : M → R
3 are the Euclidean coordinate functions. By the flow of each of the

coordinate functions to the time t we will get a map X t : M → R
3 such that

X t = XM ◦ Φt
v. (4.5)

By the definition of X , X t(p) are the coordinates of the point Φt
v(p).

Applying the last connection to each of the coordinate functions we get

d

dt
X t = DvX t

X t=0 = XM,

(4.6)

where DvX t = (DvX
t,DvY

t,DvZ
t).

4.2 The discrete case

In the discrete case the flow of the coordinates at time t is represented a matrix Xt ∈ R
|V|×3.

In the discrete case, Eq. (4.6) is given by:

d

dt
Xt = DvX

t

Xt=0 = XM .

(4.7)

Eq. (4.7) is a system of first order linear ODEs. It has a closed form solution, given by [HO10]:

Xt = exp(tDv)XM =

∞∑
k=0

(tDv)
kXM

k!
, (4.8)

where exp(·) is the matrix exponent.

In practice we used the implementation in ”https://github.com/higham/expmv” that is based

on [AMH11], which given a sparse matrix A ∈ R
k×k, a discrete span with uniform spacing

T ∈ R
l, and a vector u ∈ R

k calculates

ut ≡ exp(tA)u (4.9)

for every t ∈ T , without the costly operation of building the full matrix exp(tA).

We presented the method given a mesh, a vector field, and a time vector. In the next chapter

we will explore the different parameters of our approach. We will give a way to set them in order
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to achieve aesthetic visual results, and to achieve a uniform setting that allows us to compare

between results on different meshes.
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4.3 Invariance to Transformations

The smooth equation that characterizes the flowlines is intrinsic, i.e. independent of the

mesh embedding. However, our definition of the flowlines makes use of the embedding,

and is thus extrinsic. In this section we examine the effect of the embedding of M on the

flowlines calculations. We show analytically the invariance of the flowlines calculation to global

translation, rotation and scaling of the 3D Euclidean coordinates of the mesh, when the vector

field is transformed correspondingly. These transformations do not change the ratios between

any pair of edges lengths of the mesh. By invariance we refer to the commutativity of the

flowlines calculation and these transformations.

Theorem 4.1. Given a mesh M = (V,F) with embedding XM ∈ R
|V|×3 and a tangent vector

field v, consider a global similarity transformation, given by a matrix A = αR and a translation

vector d ∈ R
3, where α ∈ R>0 is the global scale and R ∈ R

3×3 is an orthogonal rotation

matrix. Now, let MA,d = (VA,F) be the mesh with embedding XA,d(p) = XM (p)AT + dT ,

for any vertex p ∈ V , and let vA be the vector field given by Av(r) for any face r ∈ F . Then,

we have that:

(
exp(tDvA)XA,d

)
(p) =

(
(exp(tDv)XM ) (p)

)
AT + dT ∀p ∈ V,

for any t ∈ R.

Proof. By definition we have that XA,d(p) = XM (p)AT + dT , thus XA,d = XMAT + dV ,

where dV ∈ R
|V|×3 repeats dT on |V| rows. Hence, we need to show:

exp(tDvA)(XMAT + dV) = exp(tDv)XMAT + dV .

Let f ∈ R
|V|×1 be a constant function on the vertices of M . Since grad f = 0 we have

that Dvf = 0 and thus also Dk
vf = 0, for any k > 0. Further, by definition we have that

exp(tDv)f = I|V|f +
∑∞

k=1
1
k!D

k
vf = f for any constant function f . Since dV has constant

columns we have:

exp(tDvA)(XMAT + dV) = exp(tDvA)XMAT + dV .

Hence, we need to show that DvA = Dv, namely that Dv does not change under a global

similarity transformation of the mesh, as long as the vector field v is modified accordingly. This

invariance can be derived by extending Lemma 4.2 of [ABCCO13], as follows.

Lemma 4.3.1. Let M, v,A, vA be as in the previous Theorem. Then Dv = DvA .

Proof. From Equation (3.4) we have that Dv = IFV [v]T• grad and DvA = IFVA
[vA]

T• gradA.

Since for a global similarity transformation the areas only change by a global scale, the inter-

polation from faces to vertices does not change and we have IFV = IFVA
. From Lemma 4.2

in [ABCCO13] we get that [v]T• grad = [vA]
T• gradA, and thus Dv = DvA .
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Chapter 5

Implementation Details

5.1 Choosing the parameters

Given a vector field v on a triangle mesh, our method has free parameters which are the time of

the coordinates evolution t, and the number of samples on each flowline n. The length of the

flowline depends on the vector field and on t, and the distribution of the lengths of the flowlines

from all the vertices that is required in order to achieve clear visual results differs from one mesh

to another. We wish to validate our approach by running our flowline computation algorithm

on random meshes and random vector fields, thus need a method to automatically define the

lengths by setting v and t.

Lemma 5.1.1. Multiplying v by a scalar is equivalent to multiplying t by the same scalar.

Proof. Given a scalar α, from the linearity of Dv in the vector field we get

Dαv = αDv. (5.1)

Thus,

exp(tDαv) = exp((αt)Dv). (5.2)

Based on the last Lemma, instead of explaining how to set t we can give a clearer explanation

of how to set t and β, where β ∈ R is a normalization factor for v.

5.1.1 Normalization factor

Here we denote by v the given vector field nultiplied by the normalization factor β. Usually

we normalize the vector field v such that the average norm over M is 1. That is, such that the

following equality holds

1

AM

∫
M

‖v‖ds = 1

AM

∑
r∈F

‖v(r)‖AF (r) = 1, (5.3)

where AM =
∑

r∈F AF (r) is the area of the mesh, and AF (r) is the area of a single triangle

r ∈ F .
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The intuition comes from the fact that for a unit velocity field length the of each particle

path is proportional to t.

5.1.2 The time of flow

Keeping in mind that t is the time we flow the coordinates for, we understand that the larger the

value of t the longer the flowlines. When t is too small we will get flowlines that are hard to

notice, and when t is too large it will be hard for us to distinguish between flowlines and it will

increase calculation errors as illustrated in Fig. 5.1.

Following the logic of our vector field’s normalization, we set 0.1rM ≤ t ≤ 0.5rM , where

rM depends on the specific mesh and equals the radius of a 3D sphere with the same area:

rM =

√
AM

4π
. (5.4)

Illustration of rM on several meshes is shown in figure 5.2.

5.2 The number of samples

We set n to be dense enough such the the flowlines look smooth to an observer. From our

experience, setting n such that nrM/t ≈ 300 is more than enough.

= 1t01.= 0t 055.= 0t 1.= 0t 145.= 0t

Figure 5.1: flowlines on a cat for different time values given in the characteristic length units.

See the definition of the characteristic length rM of a mesh in Section 5.1.2.
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Figure 5.2: Illustration of rM on several meshes. The lines on each mesh M are of length rM .

For the lines generation we used [Vax19].
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Chapter 6

Results

This chapter includes measurements of our flowlines calculation. We examine the flowlines

calculation from several different aspects. In order to simplify the measurements, we treat each

flowline as a series of points. Comparing points is straightforward by using the Euclidean norm

in 3D.

In section 6.1 we first explain in general how we compare between our method and alternative

approaches to flowlines calculation. Afterwards we show results of comparisons to analytical

solutions, to a tracing algorithm, and to the projection of our flowlines on the mesh. In Section

6.2 we measure the locality of our flowlines calculation, and show the behaviour near singularity

points of the vector field. In section 6.3 we visualize vector fields on triangle meshes using our

method.

6.1 Comparison to Other Solutions

In this section we compare our method to other approaches of flowlines calculation. First we

explain in general how we compare our method to another given method.

For a set of origins on the mesh, we calculate the flowlines of our method and the flowlines

of the other method such that for each origin p we calculate two flowlines Xp ∈ R
np×3 and

X̃p ∈ R
np×3, calculated by our method and the other method respectively. Each flowline has

np samples, and each row of it contains the 3D Euclidean coordinates of the sample. The error

of a single flowline calculated by our method is discussed in the following.

For a given flowline originating at p, we define the corresponding error vector ep ∈ R
np by

ep(i) =

∥∥∥Xi
p − X̃i

p

∥∥∥
rM

, (6.1)

where Xi
p (X̃i

p) is the i-th row of Xp (X̃p), that is the i-th sample. Now that we have the error of

a single flowline we define E(eth) for a given error threshold eth as

E(eth) =

∑
p∈V I(ε(ep) < eth)

|V| · 100, (6.2)
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where I(·) equals 1 when the condition inside the parenthesis is satisfied and 0 otherwise, and

ε(ep) is a scalar that depends on the specific experiment. Finally, we present the results as a plot

of E vs. eth.

In this manner we compare our flowlines to three different ways of calculating flowlines:

the analytical solution on the sphere, tracing and projected flowlines.

6.1.1 Analytical solutions

In cases where an analytical solution is known, we can compare the points of our flowlines to

the points calculated analytically. We examine our method on two cases for which we know the

analytical solution: the vector fields β∇Z, and βJ∇Z on the unit sphere, where Z is the z

coordinate of the 3D embedding of the unit sphere, J is the rotation of a tangent vector field by

π/2 around the normal at a point, and β ∈ R (see Fig. 6.1).

Figure 6.1: Two cases for which the analytical solution for the vector field flow is known: the

vector fields β∇Z (left) and βJ∇Z (right) on the unit sphere, where β ∈ R.

When the sphere is centered at the origin, the two vector fields are given by the polar

coordinates

β∇Z(p(θ, φ)) = β sin θ(− cos θ cosφx̂− cos θ sinφŷ + sin θẑ),

βJ∇Z(p(θ, φ)) = β sin θ(sinφx̂− cosφŷ),

where we denote by p(θ, φ) the point on the sphere that corresponds to the spherical coordinates

θ ∈ [0, π], φ ∈ [0, 2π). . The solutions of Eq. (3.1) in this case are

Φt
β∇Z(p(θ, φ)) = p(2 cot−1(cot(

θ

2
) exp(βt)), φ)

Φt
βJ∇Z(p(θ, φ)) = p(θ, φ− βt).

22

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



For each case we set β such that the vector field satisfies Eq. (5.3), and calculate a flowline

for each vertex p of the mesh, with t = 0.2rM (here rM = 1 by definition) and np = 30.

The samples of each flowline were taken at equally spaced intervals of time. We repeat the

experiment for several refinements of the sphere and the results are shown in Fig. 6.2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10-3

0

20

40

60

80

100

|V| = 642
|V| = 2562
|V| = 10242
|V| = 40962
|V| = 163842

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10-3

0

20

40

60

80

100

|V| = 642
|V| = 2562
|V| = 10242
|V| = 40962
|V| = 163842

Figure 6.2: Comparing to analytic: The results for the vector fields β gradZ (top) and

βJ gradZ (bottom) for several refinements, where β is the usual normalization, and t = 0.2rM .

The flowline error was measured by the maximum sample error.

6.1.2 Tracing

Tracing the flowlines is the calculation of flowlines by ”walking” in the vector field’s direction

from each flowline origin. We want to measure how much our solution deviates from a simple

tracing. This measurement aims to check whether a tracing solution can be replaced by our

solution in particular cases. Qualitative results of the given tracing algorithm, alongside our
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Figure 6.3: Qualitative comparison of our method with field tracing. While the results are

visually similar, our approach leads to flowlines which might not lie on the input shape.

method’s results are shown in Fig. 6.3. The following paragraph discusses the quantitative

comparison.

For a given vector field, we calculate for each vertex p a flowline with t = 0.2rM and

np = 30, and remove its first sample. We do it because the tracing algorithm requires origins

in the interior of the mesh’s faces. We denote the result as X ′
p. We calculate the closest point

on the mesh p̃ to the first sample of X ′
p. If p̃ is on edge or a vertex we remove the flowline.

Otherwise, We calculate a flowline from p̃ by the running the tracing algorithm (as implemented

in [Vax19] ) for 500 iterations in order to get a very long flowline, and we denote the result by

X̃ ′
p. Finally, we cut the two polylines calculated from X ′

p and X̃ ′
p to the length of the shorter

one, and resample it 29 times at equally spaced intervals of length. We denote the resulting

flowlines by Xp and X̃p. For these flowlines we calculate the error as explained in the beginning

of this chapter, where ε(ep) is the maximum value of ep. Results for several refinements of a

Teddy 3D model are shown in Fig. 6.4. For all the refinements, we used the vector field vLB as

defined in Eq. (6.5), with the same coefficients.

6.1.3 Projected flowlines

The calculated points of the flowlines should lie on the surface, or at least ”close to the surface”

if we consider the triangle mesh as an approximation of a smooth surface. Therefore we compare

our flowlines to their projection on the mesh. This is a measurement of one characteristic of

ideal flowlines. Of course it is not enough as a single quality criterion because it does not take

into account the correspondence to the vector field. Factors for the deviation are a coarse mesh

discretization and numerical errors in the matrix exponential calculation.

24

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry
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Figure 6.4: Comparison to tracing, for different levels of refinement of a Teddy mesh, with

t = 0.2rM .

In order to check how the distance from the surface depends on the refinement, we compute

flowlines on a capped cylinder with a symmetry axis as the z axis, a radius 0.5, and with caps at

z = 0 and z = 2. We compute the flowlines for the vector field J gradZ, for different levels

of mesh refinement. We calculate the error only for the flowlines between z = 0.5 to z = 1.5,

to avoid the artifacts that the caps might introduce. The error is computed as explained in the

beginning of this chapter, where ε(ep) is the last value of ep. The results are shown in Fig. 6.6.

Note that as the resolution of the cylinders increases, and the discrete mesh better approximates

a smooth cylinder, the distance of the computed flowline from the surface decreases.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10-3

0

20

40

60

80
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|V| = 5000
|V| = 10000
|V| = 15000
|V| = 20000
|V| = 24997
|V| = 29998

Figure 6.5: Distance from the surface for 6 cylinders with a symmetry as the z axis. The vector

field is v = J gradZ for all refinements, and t = 1rM where rM = 0.5 is the radius of the

cylinders. The flowline error was measured by the distance from the end point to the mesh.
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We repeat the experiment with a Teddy 3D model and three levels of refinement. We use

the vector field v = β(gradZ + J gradY ) where β is the same for all refinements, and set

such that the vector field of the finest refinement satisfies Eq. (5.3). The results are shown in

Figure 6.6. Note that while the error is larger than for the cylinders, as the discrete model is

refined, the projection error is reduced.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

20
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100
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|V| = 2500
|V| = 5000

Figure 6.6: Distance from the surface for three levels of refinement of a teddy. The vector field

v = β(gradZ + J gradY ) where β is the same for all refinements, and set such that the vector

field of the finest refinement satisfies Eq. (5.3). t = 0.5rM and The flowline error was measured

by the maximum sample error.

6.2 Local Behaviour

In this section we examine the local behaviour of the computed flowlines from two aspects.

Namely, we examine the dependence of the calculation on the vector field values outside an area

which contains the flowline, and the behaviour of the flowlines near singularities.

6.2.1 Locality

We say that a flowline calculation is local if it is not affected by the vector field outside an area

that contains the flowline. Intuitively, we expect that the trajectory of a particle floating in a fluid

will not be influenced by the velocity of the fluid outside the region containing the trajectory.

Locality can also help us to analyze the flowlines behavior in local settings.
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To investigate the locality property for a given vertex psrc ∈ V , we generate k flowlines

from this vertex as follows. We first set a vector field vin in an area around psrc, consisting

of all faces Fin(psrc, d) = {r ∈ F | ∃p ∈ r : dgeo(p, psrc) < d}, where d ∈ R>0, and

dgeo(·, ·) : V × V → R is the geodesic distance between two vertices, calculated based

on [CWW13]. We normalize vin such that

1∑
r∈Fin(psrc,d)

AF (r)

∑
r∈Fin(psrc,d)

‖vin(r)‖AF (r) = 1. (6.3)

We then repeat the following process k times: In the area Fout(psrc, d) = F \ Fin(psrc, d) we

generate a vector field vout, and normalize it such that

1∑
r∈Fout(psrc,d)

AF (r)

∑
r∈Fout(psrc,d)

‖vout(r)‖AF (r) = 1. (6.4)

Then, we calculate a flowline from psrc by the vector field v which equals vin in Fin(psrc, d)

and vout in Fout(psrc, d). After this process we have k flowlines from the vertex psrc, and we

can measure the similarity between them.

In Fig. 6.7 we show the results for several meshes. For a given mesh we choose randomly 200

vertices, and for each vertex calculate k = 2 flowlines as explained above. We set d = 0.4rM

and vin is set randomly as in Eq. (6.5), with the additional normalization that we described.

vout is set randomly for each flowline in the same way as vin and is normalized as explained

above. Finallly, the flowlines are calculated for t = 0.2rM and n = 60. We measure the error at

a vertex as the maximal distance between two corresponding samples of the flowlines. We get a

sense of the area Fin and its relation to the flowline from the examples in Fig. 6.8. In this figure

we show the results for several vertices on different meshes, where for each vertex we calculate

k = 100 flowlines as explained above, with d, vin, vout and t as in the previous experiment,

and n = 30. Both results support our conclusion that under these circumstances, the difference

between different flowlines from the same vertex is small compared to the characteristic length,

and thus the computation is indeed local as expected.

6.2.2 Singularities

Behaviour around singular points can be seen in Fig. 6.9. We see that our method is able to

produce reasonable results around different kinds of singularities for t = 0.2rM , and that at the

singular point itself the flowline is very short or barely detectable.
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phands, |V| = 3978, Max. error = 0.006802
bunny, |V| = 6358, Max. error = 0.001054
cat, |V| = 9447, Max. error = 0.000782
frog, |V| = 11966, Max. error = 0.003220
teddy, |V| = 12647, Max. error = 0.000575

Figure 6.7: For each mesh, we measure the locality error for 200 vertices. Max. error is the

maximal error observed at a vertex. Note that the difference between the two flowlines at each

vertex is small compared to the characteristic length.

6.3 Application: Vector Field Visualization

In this chapter we show how to apply our flowlines calculation in order to visualize a vector

field on a mesh, and also examine robustness qualitatively by showing visual results for irregular

meshes. Here we take advantage of the fact that our computation is global, by computing the

flowlines from all the vertices simultaneously.

We define a family of vector fields vLB that we use to demonstrate the vector field visualti-

zation:

vLB = β

100∑
k=1

αk gradϕk + βkJ gradϕk, (6.5)

where {ϕk} are the eigenvectors of the Laplace Beltrami operator sorted in ascending order by

eigenvalue, {αk} and {βk} are scalars in the segment (−0.5, 0.5), and β > 0 is a normalization

factor set as in Eq. (5.3).

The visualization of a vector field is generated by drawing a flowline from each vertex with

t = 0.1rM , and showing the vector norm underneath it as a face-based function. Results on a

variety of meshes are shown in Fig. 6.10.

Results on non-regular meshes are shown in Fig. 6.11. It seems that our method produces

more aesthetic results in regions which are more densely triangulated.

A case of problematic result is presented in Fig. 6.12. The problem appears in a small

number of vertices, in a coarse region of the mesh.

6.3.1 Timings

The calculation time is a few seconds even for very fine meshes, as shown in Fig. 6.13.
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Figure 6.8: Measuring the locality of a flowline calculation in single vertices.

Figure 6.9: Behaviour around different kinds of singular points.
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Figure 6.10: Visualisation of a vector field. The direction represented as flowlines, and the norm

represented as a color on the faces.
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Figure 6.11: A vector field visualization on a non-regular mesh. It seems that our method

produces more aesthetic results in regions which are more densely triangulated.

31

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Figure 6.12: We see that the solution explodes in a small area of the mesh, due to a problematic

triangulation in that region.

0 0.5 1 1.5 2 2.5
# Vertices 104

0

0.5

1

1.5

2

2.5

Figure 6.13: The calculation time as a function of the number of vertices for the shapes in

SHREC07 with genus 0 and with no boundary for t = 0.1rM .

32

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Chapter 7

Summary

7.1 Limitations

Our method works only with piecewise constant vector fields on a triangle mesh. We note that

this is due to the specific representation of the discrete covariant derivative operator, and the

functions in our setup. For another setup, once we have corresponding discrete represenations

of the covariant derivative operator as a square matrix, we can try applying our main part of

our method - the matrix exponential times the coordinate functions, to this setup. A problem

concerning our method is that the flowlines are not guaranteed to lie on the surface, and the error

grows for a large t and coarse surfaces. Another limitation of our approach is that flowlines

can originate only at vertices. We note that generating a flowline from a vertex can also be

an advantage, because the vector field is not defined on vertices, a fact that challenges tracing

algorithms.

7.2 Conclusions

We present a simple method for calculating flowlines of a vector field on a triangle mesh. The

method makes sense from several aspects such as comparing to an analytical solution in a

known case, qualitatively comparing to tracing, locality, behavior around singularities and on

non-regular meshes. We can also use it to visualize vector field on meshes.

7.3 Future Work

Ideas for future work are applying of our method to geodesics computation given a geodesic

vector field, generalization of our method to multi-vectors (i.e. cross fields), or incorporating

this approach in other applications that require flowlines (e.g. quad meshing).
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הווקטורי, השדה את שמייצג גזירה אופרטור של הבניה את רק דורשת שלנו הגישה

לחשב שניתן פעולות שתי ואלה בווקטור, דלילה מטריצה של האקספוננט של והכפלה

מכל הזרימה קווי את מחשבים אנו שווה, באופן מחולק זמן ווקטור עבור ביעילות.

מאופיינת שלנו השיטה הבעיה, של זו גלובלית הגדרה ידי על זמנית. בו המש של הצמתים

את שמנתחים אחרים לאלגוריתמים בניגוד גלובליים, בפתרונות בעיקר שימוש ידי על

חיתוך חישוב כדי ותוך העקומים של מפורש חישוב כדי תוך לוקלי באופן הגאומטריה

מסובכות. ובניות קווים קטעי בין

שהאלגוריתם אנליטי באופן מראים אנו שונות. בחינות ממספר נעשית שלנו השיטה מדידת

הווקטורי. השדה ושל המשטח של גלובלית אפינית טרנספורמציה עם מתחלף שלנו

ביצוע בסדר תלויה לא הזרימה קווי וחישוב הטרנספורמציה ביצוע תוצאת כלומר,

ידועים. במקרים אנליטיים לפתרונות הזרימה קווי חישוב את משווים אנו הפעולות.

של הפעולה עיקרון פשוט. איטרטיבי עקיבה לאלגוריתם שלנו השיטה את משווים אנו

נקודה שהיא זרימה, קו כל של ההתחלה מנקודת ״הליכה״ הוא העקיבה, אלגוריתם

משם משולש. של גבול פוגש שהמסלול עד השדה, בכיוון ישר בקו משולש, של פנימית

אנו נתון. איטרציות מספר תהליך אותו על וחוזר הבא המשולש את מחשב האלגוריתם

דיפרנציאלית, בגאומטריה מוגדרים שהם שכפי מהמש, הזרימה קווי מרחק את בוחנים

קווי של לוקליים מאפיינים שני בוחנים אנו בנוסף, המשטח. גבי על להיות אמורים

כמה כלומר החישוב, של הלוקליות הוא אחד לוקלי מאפיין מחשבים. שאנו הזרימה

אחר לוקלי ומאפיין לאזור, מחוץ הווקטורי בשדה תלוי המשטח על מסוים באזור החישוב

אנו לבסוף הווקטורי. השדה של סינגולריות נקודות בסביבת הזרימה קווי התנהגות הוא

באופן משולשי מש על משיק ווקטורי שדה של וויזואליזציה עבור שלנו בשיטה משתמשים

ויעיל. רובסטי, פשוט,
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תקציר

למשטח המשיק דיסקרטי ווקטורי שדה של הזרימה קווי לחישוב שיטה מציעים אנו

צלעות ידי על ביניהם המחוברים ממשולשים המורכב כלומר משולשי, כמש המיוצג

ושדה משטח על מדברים אנו כאשר תיאורטי, באופן משותפים. קודקודים או משותפות

שבכל המשטח על פרמטריים עקומים הם השדה של הזרימה קווי ״חלקים״, ווקטורי

השדה אם אינטואיטיבי, באופן בנקודה. הווקטורי לשדה שווה שלהם המהירות נקודה

מסלולים הם הזרימה קווי אזי המשטח, על נקודה בכל נוזל של מהירות מייצג הווקטורי

משיק ווקטורי שדה של הזרימה קווי חישוב הנוזל. ידי על שמוסעים חלקיקים של

בין משמשת היא ממוחשבת. ובגרפיקה גיאומטרי בעיבוד נפוצה פעולה היא למשטח

שונות. בצורות ווקטורי שדה של וויזואליזציה משטחים, של סגמנטציה לביצוע השאר

אופרטור כלומר, גזירה. כאופרטור הווקטורי השדה של בייצוג שימוש עושה שלנו השיטה

הפונקציה נגזרת שהיא המשטח, על פונקציה ומחזיר המשטח על פונקציה על שפועל

לנו מאפשר הווקטורי השדה של זה ייצוג נקודה. בכל המשיק השדה בכיוון המקורית

המשטח. גבי על פונקציות של כהסעה הזרימה קווי חישוב של הבעיה את לתאר

נקודה כל מיקום לתאר ניתן ולכן תלת־ממדי במרחב משוכן המשטח יותר, מפורט באופן

על קרטזית קואורדינטה פונקציית קרטזיות. קואורדינטות שלוש בעזרת המשטח על

קווי חישוב המשטח. על נקודה לכל הקרטזית הקואורדינטה של ההתאמה היא המשטח

של ההסעה ידי על בתזה, תיאורטי באופן שמוכח כפי לחישוב, ניתן המשטח על הזרימה

באופן פונקציה של הסעה להבין ניתן המשטח. על הקרטזיות הקואורדינטות פונקציות

מהירות שדה גבי על הפונקציה ערכי את הנושאים חלקיקים של כנסיעה אינטואיטיבי,

הזרימה. קווי חישוב על גלובלית הסתכלות זוהי המשיק. הווקטורי השדה ידי על המיוצג

על חושבים אנו הזמן, עם המשטח על עושה בודד שחלקיק מסלול על לחשוב במקום

המשטח. גבי על פונקציות של בזמן ההתפתחות

דלילה, ריבועית מטריצה ידי על מיוצג בפועל שימוש עושים אנו בו הגזירה אופרטור

ידי ועל גזירה, כאופרטור הווקטורי השדה של הצגה ידי על לאחרונה. שהוצע באופן

של קודקוד כל עבור ערך – מקובל באופן הקואורדינטות פונקציות של דיסקרטיזציה

מערכת רגילות, דיפרנציאליות משוואות של לינאריות מערכות שלוש מקבלים אנו המש,

כפונקציה סגור פיתרון יש אלה למערכות קרטזית. קואורדינטה פונקציית כל עבור אחת

זה בפועל הזמן. של מפורשת דיסקרטיזציה בלי להיפתר יכולה המערכת ולכן הזמן, של

בזמן. מוכפל הגזירה אופרטור שהיא דלילה מטריצה של באקספוננט שימוש ידי על נעשה
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המחשב. למדעי בפקולטה בן־חן, מירלה פרופסור של בהנחייתה בוצע המחקר

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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ווקטוריים שדות של פונקציונלי מעקב
משטח על דיסקרטיים

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

ריעאני יאיר

לישראל טכנולוגי מכון ־־־ הטכניון לסנט הוגש

2020 פברואר חיפה התש״פ שבט
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ווקטוריים שדות של פונקציונלי מעקב
משטח על דיסקרטיים

ריעאני יאיר
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