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Abstract

We propose a method for approximating the flowlines of a discrete tangent vector field on
a triangle mesh. Our method makes use of the recently proposed discrete representation of
a vector field as a derivation operator. This representation allows us to state the problem of
flowlines computation as the advection of the Euclidean coordinate functions by the vector field.
By representing the vector field as a linear derivation operator, and discretizing both the vector
field operator and the coordinate functions using Lagrange linear elements (or "hat functions™),
the spatial discretization of the flowline equations leads to three linear systems of ordinary
differential equations (ODEs), one system for each Euclidean coordinate function. These linear
ODEs have a closed form solution as a function of time, thus the system can be solved without
explicit time discretization, using an exponential integrator. Our approach requires only the
construction of the derivative operator that represents the vector field, and multiplying the
exponential of a sparse matrix by a vector, which can both be efficiently computed. For a
given equally spaced time vector, we compute the flowlines from all the vertices of the mesh
simultaneously. With this global definition of the problem, our method is characterized by
making use of mostly global solutions, as opposed to algorithms that analyse local geometric
details through the explicit generation of curves and intersecting line segments. We compare our
approach to analytical solutions in cases where these are known, and to an iterative simple tracing
algorithm. In addition we examine our solution from other aspects, such as invariance to global
transformations, the distance of the flowlines from the mesh, and other local characteristics.
Finally we use our method for the simple, robust and efficient visualization of discrete tangent

vector fields on triangle meshes.
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: R3 — R, The Euclidean norm of a 3D vector u.
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Chapter 1

Introduction

Tangent vector fields on surfaces play an important role in computer graphics and geometry
processing. They are designed [FSDHO7], visualized [ZHTO06] and have many applications
in areas such as physics modeling (e.g. fluid simulation [AWO™ 14]), and art (e.g. line-art
rendering [HZ00]).

In the smooth setting, a tangent vector field on a 2-manifold is a smooth assignment of
a tangent vector to each point of the manifold. In this context, a flowline is a curve with a
parameter ¢ such that at each point its velocity equals the vector field. Each point on the surface
is associated with a flowline passing through it at ¢ = 0. Flowlines calculation is useful for

applications such as vector field visualization, segmentation, and quad meshing.

Another point of view, coming from differential geometry, is the representation of vector
fields as operators. Specifically, the covariant derivative operator of a vector field associates
with any smooth scalar function on the surface another function which is its directional derivative
on the surface, by the vector field. This operator plays a role in the definition of flowlines
on a 2-manifold embedded in a 3D Euclidean space through the evolution of the manifold’s

Euclidean coordinates functions.

As is common in many applications, our setup consists of a triangle mesh, and a piecewise
constant tangent vector field as an input, that is an assignment of a Euclidean vector to each face
of the mesh. In this setting the vector field is not smooth, and even not defined on edges and
vertices. Thus, we cannot state the problem as finding a curves that equals the vector field at
every point on the mesh. We present a way for an approximate calculation of flowlines that
originate at each vertex of the mesh. We use a discrete representation of the covariant derivative
operator that was recently suggested by [ABCCO13], and state the problem as a system of
linear ODEs of order one, inspired by the definition of flowlines as the evolution of the mesh’s
Euclidean coordinates. This system has a closed form solution, given by the matrix exponential

of the covariant derivative operator multiplied by the time parameter.

Most of the algorithms dealing with tracing lines along a vector field, use iterative processes
that have to take care of local details such as intersections of lines with edges or vertices, and

local corrections. Our algorithm, on the other hand, uses a global operator point of view, which



only requires the building the sparse covariant derivative matrix, and the calculation of the

multiplication of a sparse matrix exponential operator with a vector.

1.1 Contributions

We present an algorithm that gets as input a vector field on a triangle mesh and a linearly sampled
time interval, and computes the flowlines of the vector field, starting from all the vertices of
the mesh, for the given time values. The algorithm requires only the construction of a discrete
covariant derivative operator and the computation of a sparse matrix exponential times a vector.
The flowlines are calculated directly from the mesh and vector field operator in closed form,
without requiring a local analysis of geometric details or explicit calculations of line segment
intersections. We demonstrate the applicability of our algorithm for visualizing vector fields on

a mesh.

1.2 Overview

In Chapter 2 we review other papers that deal with integration of curves on a surface. In chapter
3 we present the smooth and the discrete setups, the definition of flowlines in the smooth
setup, the definitions of the covariant derivative in both setups, and other useful definitions for
the discrete case. In chapter 4 we present our global operator-based approach for flowlines
calculation in the smooth case, and then we show how to apply this approach to the discrete
case. We end this chapter with a closed form solution for the discrete case. In chapter 5 we
explain how we set the free parameters of our method. In chapter 6 we evaluate the flowlines
calculation by comparing it to other methods, and by examining its local behavior. Finally, we
present a simple way to visualize vector field on a mesh using our method. In chapter 7 we

discuss the limitations of our method, our conclusions, and ideas for future work.



Chapter 2

Related Work

Tracing flowlines. Iterative algorithms for calculating flowlines (or streamlines) were sug-
gested in [CL93] (2D), [MKFI97] (3D) as a part of the Line Integral convolution (LIC) technique.
LIC is a way of visualizing vector field by convolving white noise with a one dimensional fiter

along streamlines of the vector field.

Geodesic curves over triangle meshes. [MVCO05] suggested an algorithm to compute the
shortest geodesic curve between two points, over triangulated surfaces. The algorithm uses
FMM (First Marching Method) for an initial curve, and then the applies an iterative correction
process in order to approach the true geodesic path. The correction process requires different
procedures for the correction of the polygonal line’s vertices. [PS06] Introduced straightest
geodesics on triangle meshes. They applied it to numerical integration methods for tangential
vector fields. The concept of straightest geodesics deals with crossing edges and vertices.
[SSKT05] presented methods for computing exact and approximate geodesics from a source
point to one or all other points. The method uses as a first step the MMP algorithm which
requires the partitioning of the mesh’s edges to "windows” and the propagation of those windows
across the faces of the mesh. It has to take special care of intersecting windows, intersections of

“rays” and edges, and treat differently boundary points and saddle points.

Streamlines in Euclidean space. [RT11] proposed a new technique for visual exploration of
streamlines of a 3D vector field. The setup is a vector field in a 2D or a 3D Euclidean space. The
technique constructs a map from the space of streamlines to points in R”, while preserving the
Hausdorff metric in streamline space, and cluster the points. Streamlines are integrated using

fourth order Runge Kutta with adaptive step size control.

Quad layouts. [RRP15] introduced an approach for automatically computing pure quadri-
lateral patch layouts (quad layouts) on manifold meshes. The method constructs a singularity
graph from the input, and calculates the quad layout by a constrained optimization. In the graph

generation part it traces isolines of a parametrization induced from a curl-free frame field.



[PPM*16] Presented a method, that given a triangle mesh with a cross field, it computes a

field aligned coarse quad layout. The method requires a construction of special graphs.

Polylines. [RS14] suggested an algorithm for tracing polylines that are oriented by a direction
field over a triangle mesh. The algorithm builds a special data structure in order to compute how

a line cross a triangle, and it requires a new direction field representation.



Chapter 3
Background

In this chapter, we first present the definition of flowlines and the definition of the covariant
derivative operator in the smooth case. We need it in order to define flowlines from a global
operator-based point of view. Then, we describe the discrete setup on a triangle mesh, and the
definitions of the matrices that we use in the rest of the thesis. Finally, we recall the definition
of the discrete covariant derivative operator in order to lay the groundwork for the discrete
definition of the problem that we state in Chapter 4. Most of the content in this chapter is also
available in [BCA19], and is repeated here for completeness. Note that we only describe the
main topics that are of use for this thesis. For a more thorough overview of the mathematical

aspects of derivations we refer the reader to [Mor01].

3.1 Smooth Setup

In the smooth setting we are given a comapct smooth Riemannian manifold M and a tangent
vector field ¢, that is a smooth assignment of a tangent vector ¢ () to each point z € M. We
work with functions in C*°(M).

3.1.1 Flowlines

A smooth tangent vector field « defines a one-parameter family of curves which is the solution
to the PDE [Mor0O1, Definition 1.43]

d‘I)tv(ﬂ) _ t
dt - U(@v(ﬂ)), (31)
. (n) = 2,

forall » € M, and fort € R.
The flowlines of the vector field are this family of curves. Intuitively, if ¢ describes the
velocity of a fluid at every point on M, then a single flowline ®, () is the trajectory of a

particle passing at z at ¢ = 0 and advected by the fluid (see Fig. 3.1).



Figure 3.1: Illustration of a flowline (the dashed line) of a tangent vector field v, here denoted
by ¢u.r(p) where 7 € [0, ¢]. The tangent vector field represents a velocity field, and the blue
point is a particle that started at p at ¢ = 0. Figure reproduced with permission from [BCA19].

3.1.2 The covariant derivative operator

Instead of the pointwise representation of vector fields our method makes use of the global
operator-based representation of a vector field as a derivation operator acting on functions,
specifically the one that was recently proposed in [ABCCO13]. As we show in Chapter 4 , this
representation allows us to state the problem from a global point of view, as the evolution of

functions in time. The covariant derivative is defined as follows.

Definition 3.1.1. Given a vector field ¢ and a function £ € C°° (M) the covariant derivative
D, : C®(M) — C(M) of £ with respect to = is a function D, £ : M — R such that

i L @2 = f(7) _
(Duf)(72) = lim ; 7 (2u(2)) N (32

for any point z € M.

The covariant derivative operator can be expressed through the gradient operator, using a

classical identity in Riemannian geometry ([MorO1], p.148):

(Duf)p = (v(2),VE(2)) (3.3)

This operator has a myriad of nice properties (e.g. linearity in the functions, linearity in the
vector field ), which were leveraged in [ABCCO13] to represent discrete tangent vector fields

on triangle meshes.
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3.2 Discrete Setup

In the discrete setup we are given a triangle mesh M = (V, F, ') where V is a set of vertices,
F is a set of triangular faces, and A\ is a set of the normal vectors to the faces. The mesh
is endowed with a piece-wise constant tangent vector field v = {v, € R3|r € F,v, L A, }
(see Fig. 3.2). In practice we represent the vector field as a vector in R3I71. For the flowlines
calculation we work with piecewise linear vertex-based functions represented as a vector in
RV, For the representation of the vector field norm in Section 6.3, we use piecewise constant

face-based functions represented as a vector in R,

3.3 Useful Definitions

[v]e € R3IXIZI A matrix that encodes a point-wise multiplication of a vector field v with
a face-based function. Its transpose encodes an inner product of the vector field with

another vector field.

grad € R3VIXVI div € RIVI*3I71 The discrete gradient and divergence respectively, defined
in the standard way as in [BKPT 10, Chapter 3].

7 € R’V An interpolation matrix from face-based functions to vertex-based functions

defined as I%(i, j) = ;Ai(gi)), where Ay (i) = £ > o, Ax(r).

J € R3FISIFI A vector field rotation operator. On each triangle, rotates the vector by /2

around the normal.

E e R3ZIXIVI Encodes a weighted average of the rotated edges, with a vertex-based
function. Specifically, on each face the output vector is given by Zf’zl f (pi)eil, where
p1, P2, p3 are the vertices of the face and eiL is the edge opposite to the vertex p; rotated

around the face normal by 7 /2.

Gr e R3FPSIFI Encodes a face-wise multiplication of a vector field by the face areas.

Figure 3.2: Tangent vector fields on triangle meshes.
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3.4 The discrete covariant derivative operator

Given a discrete vector field v, we define the directional derivative operator D,, € RIVIX M, by
discretizing Eq. (3.3) using linear finite elements [ABCCO13]:

D, = I, [v]! grad. (3.4)

Intuitively, this operator first computes the gradient of a vertex based function using the
operator grad, yielding a vector field represented as a vector per face. The operator [v]] then
computes the facewise inner product between the gradient vector field and the given vector field
v. This yields a piecewise constant function per face, which is then interpolated back to the
vertices with the interpolation operator [ 1],'- . Note that in the discrete case, the interpolation is
required in order to obtain a square operator, whereas in the smooth case the functions live in

the same function space before and after applying the derivative operator (see Figure 3.3).

(@)

(b)
(d)

Figure 3.3: Illustration of the operation of D, = If [v]] grad on a function f. (a) A vertex
based function f and a vector field v are given. (b) grad f (red). (c) [v]! grad f. (d) D, f =
I‘];[v]? grad f.

(©)
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Chapter 4

Flowlines Calculation

In this chapter we present our approach to flowlines computation. Definition 3.1 defines flowlines
from a local point of view. That is, it gives the local connection between a curve and the vector
field at a given point on the manifold. If we consider M as embedded in R?, we can assign
each point on M with its 3D Euclidean coordinates by the embedding function Xy : M — R3.
Then, using the covariant derivative operator, we can define flowlines from a global point of

view as the evolution of Xy, in time.

4.1 Approach

4.1.1 Evolution of a function in time

For a given time ¢, we can think about the flowlines as a map ®!, : M — M. Given a real
function £ € C°°(M) , we define the function £ : M — R as

fl=fod!, (4.1)

where /0 = /.

We want to understand how the function £* = £ o ®! evolves in time. The following result
can be derived from Lemma 5 in Ref. [BCA19], using the connection £! = g(—t), where ¢(t)
is the function £(t) used there:

d
=/ (7) = (Duf)(2). (4.2)
The last equality holds for all the points on the manifold, thus

d
%/t = Dv/t
fo=7.

4.3)

13



4.1.2 Evolution the coordinate functions in time

Our surface is embedded in R3, so that we can describe a point 7z € M by its 3D embedding:

XM(ﬂ) - (5[,?,2’)(7_7)7 (4.4)

where X, %, Z : M — R? are the Euclidean coordinate functions. By the flow of each of the

coordinate functions to the time ¢ we will get a map X’ : M — R3 such that
Xt = Xp0 L. 4.5)

By the definition of X', X'!(2) are the coordinates of the point ®! ().

Applying the last connection to each of the coordinate functions we get

d

—xt=p,xt

dt (4.6)
X0 = Ay,

where D, Xt = (D, &, D, %!, D, Z1).

4.2 The discrete case

In the discrete case the flow of the coordinates at time ¢ is represented a matrix X* € RVIX3,

In the discrete case, Eq. (4.6) is given by:

ixf = D, X!
dt 4.7)

X=0 = Xy,

Eq. (4.7) is a system of first order linear ODE:s. It has a closed form solution, given by [HO10]:

o0
X' =exp(tDy) Xy = Y
0

tD) X 0
%, (4.8)
where exp(-) is the matrix exponent.

In practice we used the implementation in “https://github.com/higham/expmv” that is based
on [AMHI1], which given a sparse matrix A € RF**, a discrete span with uniform spacing
T € R, and a vector u € R” calculates

u' = exp(tA)u (4.9

for every ¢ € T, without the costly operation of building the full matrix exp(tA).

We presented the method given a mesh, a vector field, and a time vector. In the next chapter

we will explore the different parameters of our approach. We will give a way to set them in order

14



to achieve aesthetic visual results, and to achieve a uniform setting that allows us to compare

between results on different meshes.

15



4.3 Invariance to Transformations

The smooth equation that characterizes the flowlines is intrinsic, i.e. independent of the
mesh embedding. However, our definition of the flowlines makes use of the embedding,
and is thus extrinsic. In this section we examine the effect of the embedding of A on the
flowlines calculations. We show analytically the invariance of the flowlines calculation to global
translation, rotation and scaling of the 3D Euclidean coordinates of the mesh, when the vector
field is transformed correspondingly. These transformations do not change the ratios between
any pair of edges lengths of the mesh. By invariance we refer to the commutativity of the

flowlines calculation and these transformations.

Theorem 4.1. Given a mesh M = (V, F) with embedding Xy € RIVI*3 and a tangent vector
field v, consider a global similarity transformation, given by a matrix A = aR and a translation
vector d € R3, where o € R+ is the global scale and R € R3*3 is an orthogonal rotation
matrix. Now, let M 4 = (Va, F) be the mesh with embedding X 4 4(p) = Xn(p)AT + d7,
for any vertex p € V, and let v 4 be the vector field given by Av(r) for any face r € F. Then,

we have that:
(exp(tDy,)Xa.4)(p) = ((exp(tDy)Xar) (p)) A" +d" Wp eV,

foranyt e R.

Proof. By definition we have that X 4 4(p) = Xa(p)AT + dT, thus Xa 4 = Xy AT + dy,

where dy, € RIVI*3 repeats d” on |V| rows. Hence, we need to show:
exp(tDy ) (X AT + dy) = exp(tDy) Xar AT + dy.

Let f € RVI*1 be a constant function on the vertices of M. Since grad f = 0 we have
that D,,f = 0 and thus also D¥f = 0, for any & > 0. Further, by definition we have that
exp(tDy) f = Iy f + 302, %Df f = f for any constant function f. Since dy has constant

columns we have:
exp(tDvA)(XMAT +dy) = exp(tDvA)XMAT +dy.

Hence, we need to show that D,,, = D,,, namely that D,, does not change under a global
similarity transformation of the mesh, as long as the vector field v is modified accordingly. This

invariance can be derived by extending Lemma 4.2 of [ABCCO13], as follows. ]
Lemma 4.3.1. Let M, v, A,v4 be as in the previous Theorem. Then D,, = D, ,.

Proof. From Equation (3.4) we have that D, = I5,[v]] grad and D,,, = IffA [va]] grad,.
Since for a global similarity transformation the areas only change by a global scale, the inter-
polation from faces to vertices does not change and we have I3, = I]]/:A. From Lemma 4.2
in [ABCCO13] we get that [v]] grad = [v4]? grad 4, and thus D, = D,, .
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Chapter 5

Implementation Details

5.1 Choosing the parameters

Given a vector field v on a triangle mesh, our method has free parameters which are the time of
the coordinates evolution ¢, and the number of samples on each flowline n. The length of the
flowline depends on the vector field and on ¢, and the distribution of the lengths of the flowlines
from all the vertices that is required in order to achieve clear visual results differs from one mesh
to another. We wish to validate our approach by running our flowline computation algorithm
on random meshes and random vector fields, thus need a method to automatically define the

lengths by setting v and ¢.

Lemma 5.1.1. Multiplying v by a scalar is equivalent to multiplying t by the same scalar.
Proof. Given a scalar «, from the linearity of D,, in the vector field we get
Doy = aD,. 5.1
Thus,
exp(tDqay) = exp((at)Dy). (5.2)
Based on the last Lemma, instead of explaining how to set ¢ we can give a clearer explanation
of how to set t and 3, where 5 € R is a normalization factor for v.
5.1.1 Normalization factor

Here we denote by v the given vector field nultiplied by the normalization factor 5. Usually
we normalize the vector field v such that the average norm over M is 1. That is, such that the

following equality holds

1 1
[ ollas = - 2 Iv14() 53)

where Ayy = > o Ar(r) is the area of the mesh, and Ax(r) is the area of a single triangle
reF.
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The intuition comes from the fact that for a unit velocity field length the of each particle

path is proportional to ¢.

5.1.2 The time of flow

Keeping in mind that ¢ is the time we flow the coordinates for, we understand that the larger the
value of ¢ the longer the flowlines. When ¢ is too small we will get flowlines that are hard to
notice, and when ¢ is too large it will be hard for us to distinguish between flowlines and it will
increase calculation errors as illustrated in Fig. 5.1.
Following the logic of our vector field’s normalization, we set 0.1ry; < ¢ < 0.5, where
rs depends on the specific mesh and equals the radius of a 3D sphere with the same area:
Am

rar = (5.4)

[lustration of 7, on several meshes is shown in figure 5.2.

5.2 The number of samples

We set n to be dense enough such the the flowlines look smooth to an observer. From our

experience, setting n such that nry;/t ~ 300 is more than enough.

VF 2-norm

t=0.01 t = 0.055 . t=0.145

Figure 5.1: flowlines on a cat for different time values given in the characteristic length units.
See the definition of the characteristic length 5, of a mesh in Section 5.1.2.
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Figure 5.2: Illustration of rj; on several meshes. The lines on each mesh M are of length ;.
For the lines generation we used [Vax19].
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Chapter 6

Results

This chapter includes measurements of our flowlines calculation. We examine the flowlines
calculation from several different aspects. In order to simplify the measurements, we treat each
flowline as a series of points. Comparing points is straightforward by using the Euclidean norm
in 3D.

In section 6.1 we first explain in general how we compare between our method and alternative
approaches to flowlines calculation. Afterwards we show results of comparisons to analytical
solutions, to a tracing algorithm, and to the projection of our flowlines on the mesh. In Section
6.2 we measure the locality of our flowlines calculation, and show the behaviour near singularity
points of the vector field. In section 6.3 we visualize vector fields on triangle meshes using our
method.

6.1 Comparison to Other Solutions

In this section we compare our method to other approaches of flowlines calculation. First we
explain in general how we compare our method to another given method.

For a set of origins on the mesh, we calculate the flowlines of our method and the flowlines
of the other method such that for each origin p we calculate two flowlines X,, € R"*3 and
Xp € R™*3, calculated by our method and the other method respectively. Each flowline has
n, samples, and each row of it contains the 3D Euclidean coordinates of the sample. The error
of a single flowline calculated by our method is discussed in the following.

For a given flowline originating at p, we define the corresponding error vector e, € R"? by

b
. P P
ep(i) = ———1, 6.1)

M

where X;; (X ;,) is the i-th row of X, (f(p), that is the ¢-th sample. Now that we have the error of

a single flowline we define E'(ey,) for a given error threshold e, as

2pev L(e(ep) < ern)
VI

E(ey,) = - 100, 6.2)
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where I(-) equals 1 when the condition inside the parenthesis is satisfied and 0 otherwise, and
€(ep) is a scalar that depends on the specific experiment. Finally, we present the results as a plot
of E/ vs. ey,

In this manner we compare our flowlines to three different ways of calculating flowlines:

the analytical solution on the sphere, tracing and projected flowlines.

6.1.1 Analytical solutions

In cases where an analytical solution is known, we can compare the points of our flowlines to
the points calculated analytically. We examine our method on two cases for which we know the
analytical solution: the vector fields SVZ, and 5JV Z on the unit sphere, where Z is the z
coordinate of the 3D embedding of the unit sphere, .J is the rotation of a tangent vector field by

/2 around the normal at a point, and 5 € R (see Fig. 6.1).

v=VZ

Figure 6.1: Two cases for which the analytical solution for the vector field flow is known: the
vector fields SVZ (left) and SJVZ (right) on the unit sphere, where 8 € R.

When the sphere is centered at the origin, the two vector fields are given by the polar

coordinates

BVZ(7(0,¢)) = Bsinf(— cos b cos ¢pi — cos O sin ¢f + sin62),
BIVZ(12(6,6)) = Bsin(sin ¢ — cos ),

where we denote by (6, ¢) the point on the sphere that corresponds to the spherical coordinates
6 € [0, 7], ¢ € [0,27). . The solutions of Eq. (3.1) in this case are

@l (2(6.9)) = (2 cot ™ (cot(3) expl(61). 0)
@52((0.0)) = (0.6~ B1).
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For each case we set 3 such that the vector field satisfies Eq. (5.3), and calculate a flowline

for each vertex p of the mesh, with ¢ = 0.2r,; (here r); = 1 by definition) and n, = 30.

The samples of each flowline were taken at equally spaced intervals of time. We repeat the

experiment for several refinements of the sphere and the results are shown in Fig. 6.2.

% of flowlines with error under the threshold

% of flowlines with error under the threshold
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(7
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| ——— V| = 10242
V| = 40962
——|V| = 163842
| | . | | | | | |
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——— V| = 10242
[V| = 40962
——|V| = 163842
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Figure 6.2: Comparing to analytic: The results for the vector fields S grad Z (top) and
BJ grad Z (bottom) for several refinements, where 3 is the usual normalization, and ¢ = 0.2r,.
The flowline error was measured by the maximum sample error.

6.1.2 Tracing

Tracing the flowlines is the calculation of flowlines by “walking” in the vector field’s direction

from each flowline origin. We want to measure how much our solution deviates from a simple

tracing. This measurement aims to check whether a tracing solution can be replaced by our

solution in particular cases. Qualitative results of the given tracing algorithm, alongside our
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Tracing

Tracing + Ours

Figure 6.3: Qualitative comparison of our method with field tracing. While the results are
visually similar, our approach leads to flowlines which might not lie on the input shape.

method’s results are shown in Fig. 6.3. The following paragraph discusses the quantitative
comparison.

For a given vector field, we calculate for each vertex p a flowline with ¢ = 0.2r,; and
n, = 30, and remove its first sample. We do it because the tracing algorithm requires origins
in the interior of the mesh’s faces. We denote the result as X;’o' We calculate the closest point
on the mesh p to the first sample of X]’J. If p is on edge or a vertex we remove the flowline.
Otherwise, We calculate a flowline from p by the running the tracing algorithm (as implemented
in [Vax19] ) for 500 iterations in order to get a very long flowline, and we denote the result by
X 1,7‘ Finally, we cut the two polylines calculated from X; and Xz’, to the length of the shorter
one, and resample it 29 times at equally spaced intervals of length. We denote the resulting
flowlines by X, and X p. For these flowlines we calculate the error as explained in the beginning
of this chapter, where €(e,,) is the maximum value of e,,. Results for several refinements of a
Teddy 3D model are shown in Fig. 6.4. For all the refinements, we used the vector field vy 5 as

defined in Eq. (6.5), with the same coefficients.

6.1.3 Projected flowlines

)

The calculated points of the flowlines should lie on the surface, or at least “close to the surface’
if we consider the triangle mesh as an approximation of a smooth surface. Therefore we compare
our flowlines to their projection on the mesh. This is a measurement of one characteristic of
ideal flowlines. Of course it is not enough as a single quality criterion because it does not take
into account the correspondence to the vector field. Factors for the deviation are a coarse mesh

discretization and numerical errors in the matrix exponential calculation.
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Figure 6.4: Comparison to tracing, for different levels of refinement of a Teddy mesh, with
t =0.2rp.

In order to check how the distance from the surface depends on the refinement, we compute
flowlines on a capped cylinder with a symmetry axis as the 2 axis, a radius 0.5, and with caps at
z = 0 and z = 2. We compute the flowlines for the vector field J grad Z, for different levels
of mesh refinement. We calculate the error only for the flowlines between z = 0.5 to z = 1.5,
to avoid the artifacts that the caps might introduce. The error is computed as explained in the
beginning of this chapter, where €(e,) is the last value of e,,. The results are shown in Fig. 6.6.
Note that as the resolution of the cylinders increases, and the discrete mesh better approximates

a smooth cylinder, the distance of the computed flowline from the surface decreases.
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Figure 6.5: Distance from the surface for 6 cylinders with a symmetry as the z axis. The vector
field is v = J grad Z for all refinements, and ¢ = 1r); where rj; = 0.5 is the radius of the
cylinders. The flowline error was measured by the distance from the end point to the mesh.
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We repeat the experiment with a Teddy 3D model and three levels of refinement. We use
the vector field v = S(grad Z + J grad Y) where (3 is the same for all refinements, and set
such that the vector field of the finest refinement satisfies Eq. (5.3). The results are shown in
Figure 6.6. Note that while the error is larger than for the cylinders, as the discrete model is

refined, the projection error is reduced.

100 -

80 -

60 -

40

20 - ——|V| = 500
—— V]| = 2500
———1V]| = 5000
0 | | | | | | | | | |

% of flowlines with error under the threshold

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Error threshold in characteristic radius units

500 vertices 2500 vertices 5000 vertices

Figure 6.6: Distance from the surface for three levels of refinement of a teddy. The vector field
v = f(grad Z + J grad Y') where 3 is the same for all refinements, and set such that the vector
field of the finest refinement satisfies Eq. (5.3). ¢ = 0.57; and The flowline error was measured
by the maximum sample error.

6.2 Local Behaviour

In this section we examine the local behaviour of the computed flowlines from two aspects.
Namely, we examine the dependence of the calculation on the vector field values outside an area

which contains the flowline, and the behaviour of the flowlines near singularities.

6.2.1 Locality

We say that a flowline calculation is local if it is not affected by the vector field outside an area
that contains the flowline. Intuitively, we expect that the trajectory of a particle floating in a fluid
will not be influenced by the velocity of the fluid outside the region containing the trajectory.

Locality can also help us to analyze the flowlines behavior in local settings.
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To investigate the locality property for a given vertex ps.. € V, we generate k flowlines
from this vertex as follows. We first set a vector field v;,, in an area around pg,., consisting
of all faces Fip(psre,d) = {r € F|3p € v : dgeo(p, psre) < d}, where d € Ry, and
dgeo('; )+ V xV — Ris the geodesic distance between two vertices, calculated based
on [CWW13]. We normalize v;,, such that

! S Jum) ARG = 1. ©.3)

ZTE]:M(IMV'C@) A]:(T) Tefin(psrmd)

We then repeat the following process & times: In the area Foui(psre, d) = F \ Fin(Dsre, d) we

generate a vector field vy, and normalize it such that

! S o) [Ar(r) = 1. 6.4)

Zrefout(ﬁsrmd) A]:(T) r€Fout (Psre,d)

Then, we calculate a flowline from pg,.. by the vector field v which equals vj, in Fiy, (psre, d)
and Voyy in Foui(Psre, d). After this process we have k flowlines from the vertex ps,., and we
can measure the similarity between them.

In Fig. 6.7 we show the results for several meshes. For a given mesh we choose randomly 200
vertices, and for each vertex calculate £ = 2 flowlines as explained above. We set d = 0.4r),
and vy, is set randomly as in Eq. (6.5), with the additional normalization that we described.
Vout 18 set randomly for each flowline in the same way as v;, and is normalized as explained
above. Finallly, the flowlines are calculated for ¢ = 0.2r); and n = 60. We measure the error at
a vertex as the maximal distance between two corresponding samples of the flowlines. We get a
sense of the area F,, and its relation to the flowline from the examples in Fig. 6.8. In this figure
we show the results for several vertices on different meshes, where for each vertex we calculate
k = 100 flowlines as explained above, with d, v;,, Vot and ¢ as in the previous experiment,
and n = 30. Both results support our conclusion that under these circumstances, the difference
between different flowlines from the same vertex is small compared to the characteristic length,

and thus the computation is indeed local as expected.

6.2.2 Singularities

Behaviour around singular points can be seen in Fig. 6.9. We see that our method is able to
produce reasonable results around different kinds of singularities for ¢ = 0.2r),, and that at the

singular point itself the flowline is very short or barely detectable.
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Figure 6.7: For each mesh, we measure the locality error for 200 vertices. Max. error is the
maximal error observed at a vertex. Note that the difference between the two flowlines at each
vertex is small compared to the characteristic length.

6.3 Application: Vector Field Visualization

In this chapter we show how to apply our flowlines calculation in order to visualize a vector
field on a mesh, and also examine robustness qualitatively by showing visual results for irregular
meshes. Here we take advantage of the fact that our computation is global, by computing the
flowlines from all the vertices simultaneously.

We define a family of vector fields vy, g that we use to demonstrate the vector field visualti-

zation:
100

vip =B oy grad ¢p, + BiJ grad ¢y, (6.5)
k=1

where {} are the eigenvectors of the Laplace Beltrami operator sorted in ascending order by

eigenvalue, {ay } and {5} are scalars in the segment (—0.5,0.5), and § > 0 is a normalization
factor set as in Eq. (5.3).

The visualization of a vector field is generated by drawing a flowline from each vertex with
t = 0.1rys, and showing the vector norm underneath it as a face-based function. Results on a
variety of meshes are shown in Fig. 6.10.

Results on non-regular meshes are shown in Fig. 6.11. It seems that our method produces
more aesthetic results in regions which are more densely triangulated.

A case of problematic result is presented in Fig. 6.12. The problem appears in a small

number of vertices, in a coarse region of the mesh.

6.3.1 Timings

The calculation time is a few seconds even for very fine meshes, as shown in Fig. 6.13.
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Figure 6.9: Behaviour around different kinds of singular points.
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Figure 6.12: We see that the solution explodes in a small area of the mesh, due to a problematic
triangulation in that region.
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Chapter 7

Summary

7.1 Limitations

Our method works only with piecewise constant vector fields on a triangle mesh. We note that
this is due to the specific representation of the discrete covariant derivative operator, and the
functions in our setup. For another setup, once we have corresponding discrete represenations
of the covariant derivative operator as a square matrix, we can try applying our main part of
our method - the matrix exponential times the coordinate functions, to this setup. A problem
concerning our method is that the flowlines are not guaranteed to lie on the surface, and the error
grows for a large ¢ and coarse surfaces. Another limitation of our approach is that flowlines
can originate only at vertices. We note that generating a flowline from a vertex can also be
an advantage, because the vector field is not defined on vertices, a fact that challenges tracing

algorithms.

7.2 Conclusions

We present a simple method for calculating flowlines of a vector field on a triangle mesh. The
method makes sense from several aspects such as comparing to an analytical solution in a
known case, qualitatively comparing to tracing, locality, behavior around singularities and on

non-regular meshes. We can also use it to visualize vector field on meshes.

7.3 Future Work

Ideas for future work are applying of our method to geodesics computation given a geodesic
vector field, generalization of our method to multi-vectors (i.e. cross fields), or incorporating

this approach in other applications that require flowlines (e.g. quad meshing).
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DOYDN DN PNN MNP AN ,NOYNN DY NTIPI 932 51 HY MPNN AN I NOPIN
YN OMOPN DTV DY RN NP N NN T DY DYOMY oppon v
P2 DVAYN NN .DIAVAINND NP VNN TIYD NXID MDY NN NVWYNIY

JMY NN NOPN NTY DY 7PNDHRIN ,DNOVWN DV 7PSLIMD I INYD

NOINN ,INTD PR MOINND M NVPNN NTYN DY XD YW NV MOV NN
TINPNAN NN NONY  NOYNN DY TPSPND PN NLYNN DY TPNPNS DY Hav
NO WANND MNOPNN NTYN DY M N’ .ATPI D2 PPYnn NTYN YOI INPHN

NOWNN 22) DY NPSPND SV NYDND IPRD MNP YN DV PYan NN INND

NTPI 95 O INND 1) 195 XTHN NN AN 1IN NLYHIN NP VNN 9N
oY O NOPTNNIP TMIPN  .IMOIP MOPTINIP VDY NRY2 NOWHN DY
MP PN NOWYNN DY NTIPI D30 MTOIPN NV TNNIPN DV NIRNNN NN NOYHIN
SV NYONN YT DY ,MN PVMON 19N NOMY 29D, AND I NVYNN DY PR
JOND TPNPNS DY NYDN PAND Y NLYNN DY TVIPN MO TNNIPN NPIPND
MY NTY 223 DY TPNPNON 15Ty NN DRYNN DPPPoN HY NI PDOVNIVIPN
JPRD NP 2N DY 5L MOONDN MR PPWNN INOPNN DTYN XT DY INPHN
5y DAYIN NN RN DY NOVYNRN DY NYIY TN PPPONY D1DDN Sy 2IWN> OPNa

NOYNN 22 DY NPEPND SV Pt MNNANIN

;20T TN NNIVN T DY ASPHN DN VYOV DVIY DX I NPHN MOINN
YT O NP NOINND PNOVPNN NTYN DY MHSN OT DY ANINND YyHNY 19N
SV TMPTIP 92 MY TIW - SIPN PN MOPTNINRIPN NPIPNY DY 7PNDVIPOT
NOWN ,MI2X NPIONKIDT MNXNYN DY NPINYD MOIYN YDV OYaAPNn NN ,wNn
TPNPNAD MO PN ¥ NON MOIWND . IOIP NOPTNNIP NXPNI 55 NIAY NNN
OV PR DY NUNN TPNDVIPDT Y2 INPND NN NOIWNN 1PN RN SV
JOt2 5901 NPHN NOINN NIV NPDT NPIVN HY VINIDPNRI VDY 1T DY NUY)
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