~

[1"200nN TECHNION
219120 (19N u Israel Institute
TN of Technology

4 A

[1'1200 NIM90
The Technion Libraries

017" XIAI ['1NX "V D'D>NOoIN 'TIN'?77 1901 N'a
Irwin and Joan Jacobs Graduate School

\

©
All rights reserved to the author

This work, in whole or in part, may not be copied (in any media), printed,
translated, stored in a retrieval system, transmitted via the internet or
other electronic means, except for "fair use" of brief quotations for
academic instruction, criticism, or research purposes only.
Commercial use of this material is completely prohibited.

©
n/nann? nnme nrpTm 7

IX N7 112'N ,01702°X2 Y'ON7 ,UT'1 1AXNA [ONX7 ,01IN7 ,0'9TN7 ,('"NW7d N'TN1) 7'NYN7 |'X
IX N7 ,NXIN ,TIA'YZ NN0AY 112NN [N DIX7 D'WOZA "an win'w" oyn? ,11nn j77n 72
.07nNN2a 1IoX AT AN 71750 AN "Non wIN'Y 7NN

Real-time Simulation of Viscous
Thin-Films

Saar Raz

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

Real-time Simulation of Viscous
Thin-Films

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Saar Raz

Submitted to the Senate
of the Technion — Israel Institute of Technology
Sivan 5780 Haifa June 2020

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

This research was carried out under the supervision of Assoc. Prof. Mirela Ben-Chen,
in the Center for Graphics and Geometric Computing, in the Faculty of Computer

Science.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s doctoral

research period, the most up-to-date versions of which being;:

Orestis Vantzos, Saar Raz, and Mirela Ben-Chen. Real-time viscous thin films. ACM Trans.
Graph., 37(6), December 2018.

Acknowledgements

I would like to thank Miri Ben-Chen and Orestis Vantzos for their continued support

and collaboration throught the process.

I would like to deeply thank the Technion for the funding of this research, the publica-

tion and the accompanying trips.

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

Contents

List of Figures
Abstract

1 Introduction
1.1 Related Work e
1.2 Contributions

2 2D Method

2.1 Physicso e
2.2 Time Discretization with Gradient Flows
2.3 Discrete Local Fluxes
2.4 Fully Discrete Parallel Scheme
2.5 TImplementation L
2.6 WebGL Implementation,
2.7 Dynamic Time Stepping o
2.8 Driving the Flow via the External Potential
2.9 Other Parameters.
2.10 Rendering
2.11 Boundary Conditions
2.12 Limitations e
2.13 Results. e
2.14 Simulations
2.15 Performance
2.16 User Interaction
2.17 Conclusions and Future Work
3 3D Method

3.1 Application of the 2D method
3.2 Simplified thin-film formulation approach

3.2.1 Thin-film formulation for curved domains

3.2.2 Simplified formulation 0oL

3.2.3 Discretization

© oo 3

12
13
13
14
15
15
16
16
17
17
17
19
20
20

3.3 Implementation Lo 25

3.4 Stability adjustments L 25
341 Clampat 0 e 25
3.4.2 Mobility capping 26

3.5 Initial performance optimizations oL L. 26
3.5.1 Initial solver guess oL 26
3.5.2 Constant number of solver iterations 26
3.5.3 Matrix-free system oo 26
3.5.4 Vertexlocality 27
3.5.5 Results 27

3.6 Performance bottleneck o oL 27
3.6.1 Second-order diffusion oL 27
3.6.2 No-mobility diffusion o000 28
3.6.3 Results 28

4 Conclusions and Future Work 35

Hebrew Abstract i

List of Figures

1.1

21

2.2
2.3
2.4
2.5
2.6
2.7

2.8
2.9
2.10
2.11

3.1

3.2

3.3

3.4
3.5

Images captured during real-time simulation of viscous fluids. 3

Flux f,—4 between two adjacent cells p and ¢g. The flux depends on the
values in the (5-cell) neighborhood of the two cells. See also Fig. 2.3a. . 10

Mobility o 12
Partitioning of edges into passes 13
Passes per frame L 14
Stability 15
Etaand Epsilon. o 16

Images rendered with a realistic refraction shader, showcasing various

features of the interactive application (obstacles, interaction with the

surface geometry, small scale features of the flow). 17
Gaussian droplets 18
Merge o e 19
Isolated droplet 19
Waterfront 19

Comparison of simulation fidelity and performance with different diffu-
sion methods, run to a similar error threshold per frame (¢ = 1., g = 20,
38306 vertices). All error values are the relative residual error |Az—b|/|b|

for the corresponding linear system. 30
Examples of viscous thin-film flow on curved surfaces as generated in

real-time by our implementation 0L, 31

Comparison of simulation fidelity and performance with different BiCGStab
iteration count limits per frame (¢ = 1., g = 10, 38306 vertices). All error
values are the relative residual error |[Az — b|/|b| for the linear system in

equation 3.5. . . . L. 32
Plots of performance data as shown in Table 3.6.3 33

In the absence of gravity, surface tension balances the fluid on top of
every face, compare with [VAW'17] Fig. 10 33

3.6

3.7

With regular 4th order diffusion, the mobility function prevents most
fluid from flowing into dewetted areas, favoring areas already filled with
fluid; this allows for the creation of ’fingers’ as shown. When using
second order diffusion, only coarser fingers are able to form due to the
lower order of the diffusion equation. When using mobiliy-free diffusion,
the fingers are smeared out, as the diffusion of the fluid is not impeded
across the dewetted area. L L Lo
Visual comparison with Fig. 2 of [VAWT17]. The real-time result was
captured at 11FPS on a 38K vertex bunny mesh.

Abstract

The intricate behavior of viscous thin films has fascinated physicists, mathematicians
and engineers for many years; stable discrete schemes for simulation of the effect have
been proposed, yet with the advent of mobile devices and graphics hardware the ques-
tion of the feasibility of a real-time simulation of the effect arises. In our research we
explore novel formulations and discrete schemes and attempt to simulate this effect at
real-time rates while preserving physical fidelity; we propose a novel discrete scheme for
simulating the effect on planar 2D surfaces: our scheme is based on a new formulation
of the gradient flow approach, that leads to a discretization based on local stencils that
are easily computable on the GPU. Our 2D approach has physical fidelity, as the total
mass is guaranteed to be preserved, an appropriate discrete energy is controlled, and
the film height is guaranteed to be non-negative at all times. In addition, and unlike
all existing methods for thin films simulation, it is fast enough to allow realtime inter-
action with the flow, for designing initial conditions and controlling the forces during
the simulation. We also explore and show initial results using a discrete scheme de-
rived from a novel formulation of the effect on curved surfaces, which allows simulating

thin-films on curved 3D surfaces at real-time speeds with preserved visual fidelity.

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

Chapter 1

Introduction

The intricate behavior of viscous thin films has fascinated physicists, mathematicians
and engineers for many years [ODB97, CM09]. With the advent of mobile devices with
graphics hardware, it is a natural question whether such liquids can be simulated in
real time and controlled by the user, using the mobile display as the substrate layer on
top of which the liquid flows.

The physics driving the evolution of the thin film is governed by a fourth order
partial differential equation, whose existing numerical evolution schemes are not com-
putationally efficient enough to run at interactive rates [VAW'17]. Schemes that can
run at interactive rates [GSSP10], cannot simulate highly viscous fluids and their at-
tendant intricate behavior.

We propose a novel numerical scheme for simulating the thin film equation on a
planar domain, with gravity and other forces. Our scheme is based on a modification of
the lubrication approximation [ODB97], where the fluid is represented as a height func-
tion over a planar domain. Our modification adds a quadratic term to the governing
equation, that stabilizes the flow while preserving the visual fidelity of the simulation.
Our time and space discretization is based on the gradient flow approach [Ott01], and
guarantees exact conservation of mass, and non-negativity of the height function. Fi-
nally, the numerical scheme is local, and thus easily parallelizable on the GPU, without
requiring costly memory access. We implemented the approach using WebGL, and

demonstrate that it can run at interactive rates on mobile devices, allowing the user to

Figure 1.1: Images captured during real-time simulation of viscous fluids.

interact with the flow by adding liquid, obstacles, and control the direction of gravity.

1.1 Related Work

Fluid simulation is a massive topic and the recent book by Bridson [Bril5] can serve
as an excellent introduction. We are interested in a specific regime of fluids, namely
viscous thin films flowing due to gravity and other external forces. As such, generic fluid
solvers that are based on simulating the full Navier-Stokes equations are unnecessarily
complex for this task. We thus focus on the simulation of fluids in this regime, with

specialized tools.

Viscous thin films in Physics

The governing equations of viscous thin films have been researched for many years, both
experimentally and numerically. Oron et al. cover in detail the earlier work [ODB97],
and Craster et al. provide a more recent review [CM09]. The behavior of the con-
tact line between the fluid and the dewetted region has also generated much research
interest [SA13], as has the behavior of a thin layer on an inclined plane [KRQSV11].
From a numerical perspective, thin films are often simulated using the lubrication
approximation, which is a reduced Navier-Stokes model based on the assumption of
the small thickness of the film. This is a fourth order PDE, leading to time step size
difficulties for explicit schemes (see e.g. [ZB99, GRO00]). Alternatively, a variational
formulation can be derived, by considering the film evolution as a gradient flow, on an
abstract Riemannian manifold, where the Riemannian metric encodes the resistance of
the film to move due to its viscosity (see e.g. [Ott01]). Such schemes have a natural
time discretization that preserves the structure of the flow, such as its total mass, and
is stable and numerically robust. Our approach is based on a small modification of the
lubrication approximation, which is not meant to be physically accurate, yet has a sta-
bilizing effect on the flow while remaining visually plausible. Furthermore, we provide
a flux-based gradient flow formulation that, in contrast with existing approaches, leads

to a completely local numerical scheme.

Viscous thin films in Computer Graphics

In the Graphics community viscous fluids have been simulated as free surface flows,
from the pioneering work of Carlson et al. [CMVHIT02], to the most recent treatment
by Larionov et al. [LBB17], that also includes an excellent review of the topic. However,
these methods do a full scale three dimensional simulation, and do not take advantage
of the lower dimensional properties of thin films. Lagrangian methods that leverage the
reduced dimension of viscous threads [BAV'10] and sheets [BUAG12] and Lagrangian
co-dimensional methods that represent the fluid using a simplicial complex [ZQC™14,

ZLQF15] have better computational complexity, but still do not run at interactive rates.

4

Real time techniques for simulating the shallow water equations can generate intricate
wave effects (see [WMTO07] and references within), however they are not appropriate
for very high viscosity liquids, such as honey.

Closer to our approach, Eulerian gradient flow formulations for thin films on curved
surfaces have been proposed, using flux-based [RV13] and velocity-based [VAWT17]
approaches. These lead to a sparse linear solve per iteration, and are therefore not
amenable to real-time computation on highly resolved meshes. Furthermore, these
schemes cannot guarantee the non-negativity of the height field during the simulation,
leading to potential instabilities. An interactive simulation of the Hele-Shaw flow,
that can be seen as a special case of a thin film flow, was proposed by Segall and
co-authors [SVBC16]. That approach simulates the contact curve of the fluid using
complex-valued functions and conformal maps, does not incorporate gravity, and cannot

handle more than one connected component of fluid.

Interactive fluid simulation

Fluid simulation is traditionally a heavy computational task, leading to various chal-
lenges for controlling the initial conditions and the forces during the simulation, espe-
cially in Computer Graphics applications where the fluids should be easily directable
by an artist. In recent years, GPUs have become an important tool for more effi-
cient computations in many applications, including in fluid simulation [Har05, GSSP10,
NHRLAM18|. Furthermore, such interactive fluid simulations can now run on mobile
devices [HR18], enabling the user to control the simulation in real-time, for instance
via the touch interface, [CKIW15, SDHD17]. Nevertheless, and to the best of our
knowledge, there do not currently exist real time fluid simulators that are capable of
generating the viscous thin film effects that we demonstrate. Even more so, as our
approach is based on a variational model, and thus guarantees fluid mass preservation

and the reduction of a discrete energy.

1.2 Contributions

Our main contribution is a numerical scheme for viscous thin film simulation that

e is defined via local operations, and is thus highly efficient and easy to implement

as a shader,

e is derived using a local gradient flow formulation that guarantees important the-
oretical properties, namely mass preservation, non-negativity of the solution and

control of a suitable discrete energy,

e it can be implemented on mobile devices with responsive user interaction via
accelerometer (to change the direction of gravity) or a touch interface (to add

fluid or place obstacles).

We also provide a simplified numerical scheme for viscous thin film simulation on curved
domains, which shows significant performance benefits over previous methods while

preserving visual fidelity.

Chapter 2

2D Method

2.1 Physics

Consider the classic thin film equation [ODB97]

%: =div(M(u)Vw), M(u)= Ll w=W —eAu (2.1)

which describes the evolution of the mass-per-surface-area u(x,t) of a viscous liquid
thin film of typical thickness € (so that the local thickness of the film is ~ eu), driven
by variations in the potential w due to the influence of surface tension (the eAu term)
and external forces such as gravity (the external potential W(z,t)). The motion of
the fluid is also non-linearly dependent on the local mass concentration through the
mobility M (u), which reflects the retarding effect that viscous friction inside the fluid
has on the flow of the film. For the rest of the paper, it is useful to rewrite (a slightly

modified version of) equation (2.1) in terms of the fluz f:

ou o

E + lef = 0,

f=—M)V(W — eAu + nu), (2.2)
u>0

The extra term is a stabilising anisotropic second-order (as opposed to the 4th-order
diffusion eAw term) diffusion term, that is quite useful in practice. We have also made
explicit the, physically necessary, condition that the density u can not be negative.
The thin film equation (2.1) has the following properties: a) it preserves the total
mass [wdx and b) the Dirichlet energy 3 [|Vu|? dz (which is a measure of the smooth-
ness of the solution) is controlled; in particular, in the absence of external potential
W = 0 it is non-increasing. Regarding the non-negativity of the solutions of the thin
film equation, there has been a lot of theoretical [BGWO01] and numerical [GR00] work,
and it has indeed proven to be quite a challenge from the computational point of view.

It is important to preserve these properties in the discrete setting, as they play an

important role in both the numerical stability and physical fidelity of the simulation.

2.2 Time Discretization with Gradient Flows

One approach to deriving discrete schemes for a wide range of evolution equations, that
include the thin film equation (2.1), is to take advantage of their gradient flow structure
[Ott01], i.e. the fact that they can be seen in a certain sense as a steepest gradient
descent for a suitable energy functional. This point of view leads to variational discrete
schemes of the minimizing movement type [GA06], where a (constrained) minimization

problem of the (abstract) form

u"t = argmin {1 dist3 (u, u™) + 5(u)} (2.3)
uER(um)CX 27
needs to be solved at each time step. This equation is to be understood as follows: the
(approximate) solution u"*! € X at time t"*! = t" + 7, where X is a suitable space,
is the minimizer of a combination of the free energy £ : X — R and the distance (in
X) from u™, over a subset R(u") C X of states that are "reachable” from ™. For thin
film-type equations, the set of reachable states is associated with an evolution law of
the form % + Dy¢ = 0, where D, is a differential operator and ¢ € Y is an auxiliary
variable (in a separate space Y), so that u € R(u") iff there exists ¢ € Y so that
u — u" + 7 Dynp = 0. We can use this connection to rewrite the distance between u”
and any (reachable) u as a function of the ¢ that takes us from u" to u, leading to

schemes of the form:

.
@t = argmin {Zgn(6,0) + ()} (24)
ueX,$EY 2
u—u"+7 Dyn =0
In the language of differential geometry, one can think of X as a manifold and Y as
the tangent space around u", with the equation u — u"™ + 7Dyn¢ = 0 serving as the
exponential map that maps tangent vectors ¢ to nearby points u, so that the distance
distx (u, u™) is naturally connected to the metric g,» (¢, @) at u™. As stated before then,
this can indeed be seen as an attempt to flow in the direction of steepest descent of &,

but in a generalized manifold setting.

There are various ways to apply the abstract framework described above to the
problem (2.2); one can choose the flur f as the auxiliary variable, so that u — u™ +
rdivf = 0 and gun(f, f) = [M(u™)~Yf|>dz, or use a wvelocity v instead so that
u —u" 4+ 7div(uv) = 0 with a suitably modified metric. Both approaches have been
used, the flux-based in [RV13] and the velocity-based in [VAW*17] for instance. Our

scheme is based on the flux formulation of the gradient flow for a suitable energy &£(u):

(w1, T = argmin { /M 1|f]2dx+5(u)}

(u, f)ER(um)
E(u) = /§|vu\2 + W (x)u + 5’“‘2 dz (2.5)

Schemes that are based on direct discretizations of this type of constrained optimiza-
tion problem have important advantages, such as guaranteed mass conservation and
energy reduction, and consequently unconditional stability. On the other hand, espe-
cially in the context of real-time GPU-based simulation, they also suffer from certain
disadvantages, namely the need for inverting large sparse matrices at each time-step
and the question of how to represent vector based quantities, such as the flux and the
velocity, in a GPU-friendly format.

We work around these issues by combining the gradient-flow approach with the
fractional step method. We assume that the flux f is a linear combination of a number
of fixed locally-supported fluxes f;, i.e. f = Eszl A fr. According to the fractional
step method, the effect of applying the flux f to u for a time interval 7, which we can
denote in operator form as T’ ju, can be approximated by applying the partial fluxes

fr sequentially: Trp ~ Try, ¢, ... Trx, 5. A single time-step of the scheme can then be

written as
w® —
w® = 5D o @® Y) div fi (2.6)
unJrl — U(K)

The gradient flow scheme (2.5) can be used then to determine the magnitude of each

(predetermined) partial flux individually.

2.3 Discrete Local Fluxes

To derive a fully discrete scheme for the problem (2.2), we consider a uniform Cartesian
grid of Ng x Mg cells, with uniform size A in both dimensions, and periodic boundary
conditions. The discrete fluid density u;, € RN¥¢*Me ig represented by a rectangular
array with values u;;, and likewise for the discrete potential W},, whose entries are W;; =
W (x;j), x;; being the center of the (i, j) cell. In the spirit of the finite volumes method,
we discretize the fluxes over the edges p — ¢ between neighboring cells p = (i,)
and g = (i, '), representing flow in the i-direction J,j)=(i+1,5) or in the j-direction
Fip—tig+)-
Our scheme is designed to reduce the following discrete energy:

n
Enlun) 2h2 Z|Up q|2+ZWpup+§Z|up|2 (2.7)
P P

p—q

The first term is a discrete Dirichlet energy, and is a measure of how smooth the

solution is. Controlling it is therefore important for stability. The second term drives
the movement of the fluid to areas of low external potential W, for instance from high
altitude to low altitude for gravity. Finally, the last term penalizes high concentrations
of mass and also acts as a slope limiter; it provides extra stabilisation and improves the

visual effect, especially in the presence of very high gradients of W or large time-steps.

Following the minimizing movements time discretization (2.5), we minimize the sum
of a suitable norm of the flux f and the discrete energy (2.7). As per the fractional
step scheme (2.6), instead of performing this minimization for the flux field over the
entire domain, we do it locally for each flux f = f,—, between two adjacent cells p and
q. Using @ to denote the updated densities after the flow, and writing only the relevant

terms of the energy in the immediate neighbourhood of the cells, we get the following:

T|f? € ~ =12
{ZM(up,uq) +op 2 oy~

p'—=q’

min
FER

- - n, -~ ~
= (Wt + Wytlg) + 3 ([l + |1]*) |

T -
up:up—ﬁf, Uy > 0

. T .
uq:uq—l—ﬁf, Ug >0

The sum in the middle term is over all the edges between p and ¢ and their neighbours
(and each other) (see Fig. 2.1).

Plugging the updated densities into the objective function, we eventually get a

constrained quadratic optimization problem of the form:

Figure 2.1: Flux f,—, between two adjacent cells p and ¢. The flux depends on the
values in the (5-cell) neighborhood of the two cells. See also Fig. 2.3a.

10

with
T 2(5¢ + nh?)r?
M (up, ugq) + h*
B = 5 {e((Anu)g — (Anw)y) + (Wy = Wy) + g — uy)}

(v is not needed)

a——ﬁu b—ﬁu
I R

o =

010
with the discrete 5-point Laplacian A, = h% [(1) —14 (1)] . The non-negativity of the discrete

mobility ensures that o > 0 and therefore the quadratic indeed has the unique minimum
f= g Finally, recall that when the global minimum of a (convex) quadratic function
is outside of the range [a,b], then the minimum over the range is simply whichever of
the bounds of the interval is closest.

This leads to the following numerical flux fp—q between two neighbouring cells:

f= _]\W{Wq — Wy —e((Apu)g — (Apu)p) +n (ug — ”p)}

fo—q = max(—%uq, min(f, %Up))

(2.8)

with the following action, over a time interval of duration 7, on the density of the cells:

Up — Up — T
p » — hfp—a (2.9)

T I T
Uq = Uq — 3 fgop = Uq + 7 fp—q

This is a rather straightforward discretization of (2.2), except for the clamping of the
27 M (up,uq) (5e+nh?)
h4

flux (to ensure non-negativity) and the regularizing parameter 6 := 14 ,

which is necessary for the proper energetic behaviour of the scheme.
The discrete mobility M (-, -) can be defined in many ways, as long as it is symmetric,

M (u1,uz) > 0 for any positive u; # ug, and M (u,u) = 13—3 There are good theoretical
2u?u?

= Slurtus)’

explored other options too, such as M (u1,uz) = 2(u;® +uy°) ! (see Fig. 2.2).

arguments [GROO0] in favour of the discrete mobility M (u1,u2) but we have

The local update (2.8)-(2.9) has the following important properties:

e Mass preservation: Since the same amount of fluid is removed from one cell and

added to the other, the total mass }_, u;, always remains constant.

o Non-negativity: Follows immediately from the min-maxing operation in (2.8). It
is important to note that, given u,,u, > 0 before the update, —%uq <0< %up

and fp_4 is well-defined.

o Energy reduction: By construction, the flux f,,, and the corresponding up-

2 ~
Wﬂuq) + &n(ap), over any other flux

e [—%uq, %up] and its associated density @}. The key observation is that

dated density #j; minimize the sum

11

a) Mobility mq, ¢t ~ 0.4 (b) Mobility mq, t ~ 1.2 (¢) Mobility my, t ~ 2.1

d) Mobility ma, ¢t ~ 0.3 (e) Mobility maq, t ~ 1.2 (f) Mobility mao, t = 2.1

Figure 2.2: Flow for different discrete mobilities, mq(u1,us) = %(ul_?’ + uy?)~" and

2,2
ma(uy, ug) = 3(111&32). Although both mobilities approximate the same continuous

mobility M (u) = %u‘g’, they result in different flow rates between empty and full cells,
and so produce advancing droplets with distinct shapes.

the null flux f = 0, which corresponds to the non-updated density u, is indeed

within that range, and so the update does not increase the energy:

TIfI?

S P — i) <
5 M(up, Uq) + 8h(uh) <0+ Sh(uh)

= gh(ﬁh) < Sh(uh).

2.4 Fully Discrete Parallel Scheme

To fully utilize the GPU’s parallel computing power, we apply the local updates to sets
of edges in parallel. To avoid race conditions we must first break the set of edges into
passes, where each pass contains edges whose updates do not depend on cells adjacent
to other edges in the pass. This induces a domino relaxation pattern at each pass, as
illustrated in Fig. 2.3a. The horizontal edges are divided into 4 sets, and likewise for
the vertical, for a total of 8 passes. Fig. 2.3b shows how the passes cover the entire set
of edges. See algorithm 1 for a pseudocode of this scheme.

To coordinate the threads that act on the various cells in parallel, each pass is
identified via a direction vector (d;,d;), which is (1,0) for horizontal and (0,1) for
vertical passes, and a parity indezx p € {0,1,2,3}. From these we calculate for each cell

(1,7) the parity
pij = ((dj + 1)i+ (d; + 1)j + p) mod 4 € {0,1,2,3},

which is illustrated in Fig. 2.3a. During a given pass, cells with parity 0 and 1 are
paired, and likewise for cells with parity 2 and 3; cells with even parity are paired with

cells in the direction (d;, d;), whereas cells with odd parity are paired with cells in the

12

opposite direction (—d;, —d;) (lines 4-9 in alg. 1). This ensures that both cells in a
pair calculate the same flux in magnitude, but with opposite signs (since ij and ;" are
effectively exchanged in line 14 of the alg.). Finally, only the cell pairs with parity 2 or 3
are allowed to update their values (see again Fig. 2.3a). As the parity index p goes from
0 to 3, the parity of each cell also changes, giving it the opportunity to exchange mass
with each of its neighbors (when its parity is 2 or 3). The process is then repeated in the
other direction by flipping the direction vector (d;,d;). The careful partitioning of the
local edge updates into passes ensures that the global scheme has the same properties
that we proved for the local scheme, i.e. it is also mass and non-negativity preserving

and energy reducing.

2.5 Implementation

2.6 WebGL Implementation

We based our implementation on WebGL [JG18], a browser-based version of the OpenGL
API; it allowed us to use the same code on various devices, from mobile phones to desk-
top computers with powerful dedicated GPUs. Moreover, this gave us native access to
the touch screen and orientation hardware on mobile devices via the built-in Javascript
APIL

Our numerical scheme is implemented as a fragment shader, and the fluid density
u is stored as a floating point texture. We maintain two such textures, using one as
input to the shader and rendering to the other, switching between the two for each
pass (double buffering). The external potential W is made available to the shader as
an additional texture, whereas the various parameters are passed as uniforms. After
the final simulation pass, the fluid density texture is passed through a visualisation

fragment shader and rendered to the screen.

3 0 1 2 3 0 1

(a) Cell parities. Updated cells in orange, (b) Red, blue, green and yellow
cells being read in blue. Note that two mark the 8 different passes (4 verti-
edges in the same pass may read (but not cal, 4 horizontal). Horizontal edges
write) the same cell. are marked with dotted lines.

Figure 2.3: Partitioning of edges into passes

13

2.7 Dynamic Time Stepping

Although from a theoretical point of view the speed of flow of the fluid is regulated
by the time step parameter 7, in the real-time setting the perceived speed of flow also
depends on the number of scheme iterations, i.e. performing more iterations per frame
makes the fluid appear to advance at a faster rate. It follows that the actual frame
rate also affects the apparent speed of the simulation, meaning devices with more GPU
power would display faster simulations. To compensate for these factors, we determine
the time step at each frame (denoted 7) dynamically.

The basic idea behind the dynamic time stepping is that each full (visiting edges of
all parities and directions) relaxation pass of the algorithm does a certain amount of
work towards propagating the fluid proportional to the time step, i.e. T ~ work/pass.

A uniform movement rate then corresponds to a fixed total amount of work per second:

T #passes/frame ’ #frames/sec ~ WOI‘k/SGC = const (210)

We generally strive to have an adequate number of passes/frame while maintaining a
high framerate, leaving 7 as the free parameter that is used to maintain a uniform
rate of motion. See Fig. 2.4 for an illustration of the effect that different time step
and pass/frame combinations have on the simulation. Due to hardware constraints,
one might end up affording only a small number of passes/frame while maintaining
a minimum framerate; one can then attempt to 'drive’ the fluid harder by increasing
the external potential W. It is in this case where increasing the diffusion (dampening)

parameter 7 is particularly helpful (Fig. 2.5).

(a) 3 passes/frame, 7 = (b) 10 passes/frame, 7 = (c) 100 passes/frame, 7 =
1071, t ~ 2.2 1072, t ~ 1.8 1073, t ~ 2.5

(d) 3 passes/frame, 7 = (e) 10 passes/frame, 7 = (f) 100 passes/frame, T =
107, t~3 1072, t ~ 2.6 1073, t ~ 3.7

Figure 2.4: Flow for different time steps and number of passes/frame. The three
columns illustrate the behaviour of the scheme (with comparable visual flow rate) for
different hardware capabilities; low-end mobile device (left), high-end mobile/typical
laptop (middle), and high-end desktop (right). Dewetting and droplet break-up is
visible with the low-end settings, but the scheme remains stable.

14

(d) n=20,t~0.3 (e) n=120,t~1.2 (f) n=20,t~23

Figure 2.5: Stabilising effect of the parameter 7. Flow under strong gravity gradient
G = 100. For very low n (top row), we observe dewetting and propagation of single-pixel
droplets ("matrix effect”); due to its non-negativity and mass preservation properties
the scheme remains stable regardless. Increasing n (bottom row) leads to a smoother
flow even for a strong gravity gradient G.

2.8 Driving the Flow via the External Potential

As the fluid tends to flow against the gradient of the external potential, i.e. from areas
of high W to areas of low W, the external potential can be used to drive the fluid
around the domain. The basic setting is a simple linear gradient, which corresponds
to constant gravity. Its effect can be seen in all the figures in the paper, and the
accompanying video. On mobile phones we can even dynamically align the direction
and strength of the gradient based on the orientation of the device.

Another factor that can be added to W is the geometry of the underlying surface.
The physically proper way to do this is by subtracting the mean curvature H of the
underlying surface from W, as surface tension causes the fluid to concentrate in areas
of positive mean curvature such as grooves or holes. The full interaction between
the thin film and the geometry is quite complicated [VAWT17], but this first-order
approximation is adequate in this context. In fact, if the relief of the underlying surface
is available as a height-map R, one can get visually convincing results by simply taking
W + W + AR, so that the fluid tends to accumulate in areas of low relief (such as
cracks). See Fig. 2.7b for an example of this.

2.9 Other Parameters

Apart from the time step 7, the behaviour of the scheme is also influenced by the
other parameters. Stronger gradients in the external potential W (such as a very
steep gravity gradient) make for a faster motion of the fluid, but they also act in a
(physically) destabilising manner, so that oscillations can appear. This is particularly

true when the time step is large and/or the number of iterations per frame is low. The

15

parameters € and 71 are both stabilising, and can therefore be increased to counter the
aforementioned instability. The parameter € serves as a typical length scale for the
various features of the viscous flow, such as droplets or fronts. The diffusion parameter
n on the other hand stabilises the flow (Fig. 2.5) by penalising large concentrations
of fluid. Intuitively, both parameters make the fluid appear more viscous (”thick”),
although they are not equivalent; Fig. 2.6 illustrates the effect of these parameters.

(d)n=>5e=5

Figure 2.6: Flow under different values of the parameters € and 7. Images captured at
comparable times. Fixing n and varying e (bottom row) leads to different typical size
of local features (droplets, fronts), whereas fixing € and varying 7 (top row) leads to an
overall smoothening effect as n increases.

2.10 Rendering

Our algorithm outputs a height map representing the fluid mass at each pixel. In
our demonstration application we implemented a basic refraction shader with normals
calculated from the height map, along with illumination based on caustics using the
algorithm presented by [YKO09].

2.11 Boundary Conditions

By using OpenGL we get automatic support for periodic boundary conditions by using
textures with ’repeat’ configurations. Neumann boundary conditions, which are also
useful in many applications, can be implemented by enforcing zero flux across the
boundary edges. Note that for the discrete mobility functions that we use, u; =
0 or ug = 0 = M (uy,u2) = 0, meaning that no mass can flow in/out of pixels where
u = 0 (dewetting). We use this fact to implement the desired boundary conditions
by simply setting the values of u of pixels on the boundary to 0 explicitly. We also
take advantage of the dewetting effect to let the user draw obstacles interactively (see
sec. 2.16).

16

(c¢) Rain on a window. Low
(a) Honey on a honeycomb. (b) Wine flowing on bricks. viscosity and strong gravity
The fluid flows around the The fluid concentrates in the liquids tend to form small
hexagonal dewetted areas. spaces between the bricks. droplets.

Figure 2.7: Images rendered with a realistic refraction shader, showcasing various fea-
tures of the interactive application (obstacles, interaction with the surface geometry,
small scale features of the flow).

2.12 Limitations

One limitation intrinsic to the local nature of the updates of the scheme, is that infor-
mation can only travel a limited number of cells per iteration. Methods that involve
a non-local step, such as inverting a matrix for instance, do not suffer from this as
every cell is potentially coupled to every other cell within a single time-step. At low
iteration-per-frame counts this can artificially limit the effective flow rate of the fluid.
In practice most visually interesting features of the flow, such as droplets, are local in
nature and the scheme allows for adequate iterations per frame even on low powered
devices such as mobile phones.

A second limitation is that, although underlying surface features can be included by
embedding their curvature into the external potential W (see Fig. 2.7b for an example),
the scheme can not be applied as is on truly curved three-dimensional surfaces, as
they can not be parametrised by a Cartesian grid. Furthermore, despite the three-
dimensional appearance of the viscous fluid, especially when our scheme is coupled
with a realistic rendering shader, it is fundamentally just a height-field attached to the
surface. One could not use it to simulate fluid dripping off the surface for instance;
some form of coupling with a particle system or a full-blown Navier-Stokes solver might

be necessary for that.

2.13 Results

2.14 Simulations

The results in Fig. 2.8 - 2.11 present typical flow cases. The simulations were run in real

time (at 10 iterations/frame, see sec. 2.15) on a 512x512 resolution, with the following

17

parameters: 7 = 2-1072, ¢ = 10, G = 10 and 1 = 2, the gravity external potential

W (x,y) = Gy (for (z,y) € [0,1]?) and the mobility M (uy,us) = 32(1;11?522), and periodic

boundary conditions. We rendered the fluid density with a colormap for clarity.

In Fig. 2.8, Gaussian concentrations of liquid of different sizes are placed in various
positions and allowed to flow under the influence of gravity. There is residual fluid
spread along the path of each Gaussian. This subsequently affects other Gaussians in
its wake, as it is easier to flow along the path of higher concentration. In particular, the
path of each Gaussian becomes biased in the direction of the preceding one. Note also
the breaking up of the advancing concentrations by gravity into smaller waves - this
effect becomes more prominent with stronger gravity and less so with higher values of
e and/or n (higher "viscosity”). This type of droplet interaction can lead to droplets
merging, as can be seen in Fig. 2.9. The larger drop descends faster due to increased
mobility of the fluid in the presence of more fluid. Eventually it catches up to the
second drop and flows into it.

Another important feature of the model is that the fluid can not flow through
dewetted areas, where the cells have zero density, which act as obstacles. As can be
seen in Fig. 2.10, this leads to a concentration of the fluid at the top of the obstacles,
until a way around them can be found. A sequence of obstacles, as in Fig. 2.11, can
lead to a cascade of waterfall-like flows.

The images in Fig. 2.7 are representative of what a user might see while using the
scheme in an interactive manner, with the output rendered with the refraction/caustics
shader described in sec. 2.10. In the left-most image (Fig. 2.7a), the fluid has to flow
around a set of hexagonal obstacles. Relatively high values of € = 10, compared to the
gravity G = 10, assisted by high refractive indices in the refraction shader, give the
appearance of a viscous fluid, such as honey. In the middle image (Fig. 2.7b), we have
incorporated the effect that the shape of the underlying surface has on the fluid (see
sec. 2.8). In this case, the fluid tends to accumulate and flow through the gaps between
the bricks. Moreover, the fluid appears less viscous compared to Fig. 2.7a, since the
ratio between € and G is smaller (e = 5 and G = 20). In the final image (Fig. 2.7¢c),
the viscosity is even weaker compared to the gravity (¢ = 5 and G = 50) which leads

to the formation of very fine droplets.

(a) t =0s (b) t =0.28s

Figure 2.8: A collection of Gaussians of various sizes. As they flow, they interact with
each other’s trail.

18

(a) t =0s

Figure 2.9: Two droplets merging. As the larger droplet descends faster, it catches up
to the lighter one and flows into it.

(b) t =2.52s (c) t =3.76s (d) t =4.64s

(a) t =0s (b) t =0.28s (c)t=1.13s (d) t =2.45s

Figure 2.10: A droplet is blocked by obstacles. The fluid accumulates, until it finds a
way to flow around them.

(b) t =1.02s (c) t=2.33s (d) t =4.63s

Figure 2.11: Bands of fluid flow around and between obstacles. A cascade of waterfalls
form, that are unstable and break up into drops.

2.15 Performance

Our demo implementation using WebGL has demonstrated 60-120 fps performance with
simulation resolutions of up to 512x512 (with Full HD rendering resolution) running
around 10-20 iterations of the algorithm per time step on a PC with a dedicated Nvidia
1050 GTX graphics card. On various contemporary phones, none particularly high-
end, we have seen 30 fps performance running around 10 iterations per time step with
simulation and rendering resolutions of 256x256 pixels. It should be noted that one

can improve performance, while maintaining reasonable visual effects, by simulating at

19

a lower resolution than the rendering one. For reference, all the results shown in our

paper and in the accompanying video do not exceed 512x512 simulation resolution.

2.16 User Interaction

Our demo application presents an interactive webpage, which implements our algo-
rithm using WebGL. The webpage allows interactive 'spraying’ of additional fluid using
click/touch controls, and, on phones and tablets, control of the strength and direction
of the gravity exerted on the fluid using the accelerometer. The application dynami-
cally adjusts the number of iterations per frame to allow for a solid frame-rate on the
device it is running on.

As mentioned in 2.11, fluid can not flow into regions where u = 0, meaning we
can implement obstacles with no modifications to the algorithm. Our demo application
allows the user to interactively dewet regions of the image, which the fluid then has to

flow around (see Fig. 2.7a for example).

2.17 Conclusions and Future Work

We described a scheme for the real-time simulation of viscous thin films on planar
domains, that is efficient without compromising important theoretical properties. We
also presented its implementation on parallel architectures, which allows for responsive
user interaction together with realistic rendering, even on mobile devices.

Concerning potential future work, we would like to apply a similar scheme on non-
Cartesian meshes. This would potentially allow us to simulate thin films on three-
dimensional surface models with higher polygon count than possible with previous
methods which require solving linear systems. Another possible extension is to include
other physical effects in the simulation, such as evaporation or the inclusion of solubles,
or other kinds of visual effects in the rendering, such as iridescence due to thin film
interference. Finally, given the favorable practical and theoretical properties of the
scheme, it would be interesting to see whether the same disciplined approach could

work on other problems of interest to the simulation community.

20

ALGORITHM 1: Parallel update scheme

input : Current fluid density u,

parameters (h, T, €,7), external potential W

output: Updated u with u > 0.

1 foreach edge direction (d;,d;) € (1,0),(0,1) do

2 foreach parity p € {0,1,2,3} do
3 parallel foreach thread assigned to pizel (i,j) do
5 if p;; € {0,2} then
6 | (7, 5) « (i+ di, j + dy)
7 else
8 | (@5« (i—di,j —dj)
9 end
10 Ay (—Auij + wignj + wim1j + i1+ uijo1)/h?
11 Az"j’ — (—4ui/jr + Uir 41,5/ + Ui —1,5/ + Ui 541 + uir,j/_l)/h2
12 m < M (uij, uyjr)
13 9+1+27m(5e+nh)/h*
14 fe =g (Wijr = Wig) — e(Dpyr — Aij) + iy — ugg))
15 ou max(Uit mln(%)
16 if Pij € {2 3} then
17 Ujj < Uij — du
18 end
19 end
20 end
21 end

21

22

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

Chapter 3

3D Method

We continued to investigate achieving real-time simulations of thin-films on non-planar

3D surfaces.

3.1 Application of the 2D method

The method presented in previous sections operates on regular rectangular grids of cells;
this yields a natural partitioning of the cells into independent passes, and furthermore
provides a natural mapping to GPU hardware, which naturally handles rectangular
arrays. The same method is not easily applicable to the more general case of general

meshes, as stated in 2.12 - as those may not be parameterizable by a Cartesian grid.

3.2 Simplified thin-film formulation approach

Instead of adjusting the 2D method for 3D, we instead set out to reformulate a simpli-
fied version of the general flux-based thin-film equation on surfaces [RV13], attempting
to simplify the equations in a manner that preserves visual fidelity, while gaining per-

formance benefits.

3.2.1 Thin-film formulation for curved domains

The derivation for the lubrication model of thin films on curved domains as derived in

[RV13] gives the following equations

B iy (M (u) V)

dt (3.1)
w=—H—gz—¢elu—cAu

1
M(u) = gu?’id + %u4(Hid)

23

(3.1) contains a few additional terms compared to the classical thin-films equa-
tions (2.1). Namely, the definition of w now incorporates the surface curvature (mean
curvature H, gaussian curvature K, T = H? — 2K and the shape operator S): the
external potential w incorporates the mean curvature H as well as the external gravity
(represented by gz where g governs the strength of gravity and z is the 'up’ facing
coordinate of the vertices). The term £7T'u is a destabilizing term which serves as a
higher order correction. The mobility M (u) is also expanded to account for curvature

with the second term.

3.2.2 Simplified formulation

The full form of this model has been given a full, stable discretization and optimization
scheme in [VAW™17], but the resulting simulation did not manage to operate at real-
time performance. In our attempt to create a real-time simulation of the effect, we
would derive a discrete scheme for a simplified version of the above equations, by first
dropping several high-order correction terms. Namely, we drop the destabilizing —eTu
term and the higher order corrections applied to the mobility. The resulting equations

obtained are as follows:

d
& div(M (u) V)
dt (3.2)
w=—H —gz—¢cAu
1
M(u) = gu?’

The resulting equation is identical to the classical thin-film equation (2.1) with the

external potential W incorporating the surface curvature and gravity.

3.2.3 Discretization

In order to discretize the simplified formulation over a discrete triangle mesh M =
(V, F,E), we would need a discretization of the mobility, and a suitable set of discrete
operators div, V and A. We use the set of discrete operators derived in [VAW*17],
defined as follows:

div = -Gy, grad” GrA = —div V. (3.3)

Gy € diag(RM) contains the areas of the vertices along the diagonal, and Gr €
diag(RI1) contains the areas of the faces along the diagonal. grad € R3V1xIVI is the
gradient operator, where the resulting gradients are represented as follows: the first | F]|
values along the diagonal are the X coordinates of the gradient vectors, the next |F]|
values are the Y coordinates of the gradient vectors, followed by the |F| Z coordinate
values. Please see [BKPT10] for the explicit formulae for Gy, Gx, grad. The resulting

discrete equation for a general triangular mesh with |V| vertices and |F| triangle faces

24

is as follows:
u — Uk k
=div M (uv")V(—H — gz — eAu) (3.4)

-
Where u,u® € RV are the fluid density at each vertex at the current and previous
timestep respectively, T represents the timestep size, div € RVISK v e R3IFIXIVI A €
RV H e diag(R'V‘) is the mean curvature at each vertex, z € RIVI*1 contains the
z coordinate of each vertex, and M (u¥) € diag(R?”) is a diagonal matrix representing
the mobility across each face of the mesh. We opted for a piecewise-constant mobility
function across each face, equal to the average mobility of the 3 vertices

T1,

VfeF: M(uk)f,f = M(uk)gfgf = M(uk)3f73f = 3 Z g(uv)
vef

3

The mobility values are listed 3 times across the diagonal to match our discrete opera-

tors. Rearranging the terms we get the |V| x |V| linear system:

(I + 7ediv M (u*)VA)u = uf + 7div M (u*)V(—H — g2) (3.5)

3.3 Implementation

We implemented a solver for (3.5) in C++, using the Eigen library ([GJT14]) for
linear algebra operations, libigl ([JP*18]) for triangle mesh visualization and I/0, and
[EKS07] for calculating the mean curvature. The solution is presented in an interactive
environment and allows for dynamic introduction of fluid by clicking on the mesh. We
used the BiCGStab solver ([VAV92]) implemented in Eigen, which proved effective in
achieving relatively low error in a small number of iterations. Fig. 3.2 shows example

outputs from the implementation.

3.4 Stability adjustments

Our initial implementation of the scheme was not stable, and needed a few post and

pre-processing adjustments in order to preserve stability.

3.4.1 Clamp at 0

The implicit scheme we derived does not enjoy the strong non-negativity guarantees of
our 2D method, so we have to implicitly cap the values at 0 to avoid negative values from
emerging. This needed adjustment also eliminates our guarantee of mass-preservation,

for capping negative values at 0 would increase the total mass.

25

3.4.2 Mobility capping

Running the simulation for a while would eventually have the fluid concentrate at points
of low pressure, namely points of highly negative curvature (creases and holes), and
places of low gravity potential, i.e. the "bottom’ of the mesh. At those points, the film’s
thickness would start to accumulate. The rising fluid level is theoretically problematic
as the lubrication approximation no longer holds, and so the simulation’s perceived
effect will diverge from physics. Numerically, the mobility around points of high fluid
density will begin accumulating, quickly ’sucking’ its surroundings and causing large
negative values to accumulate. This will lead to the mass climbing due to the clamp at 0,
and eventually destabilize the simulation with the mass rising exponentially, eventually
causing NaNs to appear, breaking down the simulation. This phenomenon also causes
the simulation to appear to slow down when larger values start to accumulate. This is
most likely caused because the higher mobility values begin to dominate the equation,
effectively causing cells with lower mobility to progress slower as the higher mobility
ones have a larger effect on the energy. In order to fix this, we artificially clamp the
maximum mobility at any given point at some fixed value (1 in our experiments). This
has no physical justification but will also not take effect until large concentrations of
fluid are formed, at which point the lubrication approximation does not hold in any

case.

3.5 Initial performance optimizations

3.5.1 Initial solver guess

Starting with the fluid density at the previous timestep as an initial guess for the solver

proved effective in lowering the error achieved by iterations.

3.5.2 Constant number of solver iterations

Solving with a constant, small number of iterations allows us to achieve a stable fram-
erate and a built-in way to balance fidelity vs performance. A comparison of results

given different iteration limits can be seen in Fig. 3.3.

3.5.3 Matrix-free system

Since our bi-conjugate solver’s only use of the system matrix is multiplying by a col-
umn vector, we can multiply the vector by the matrix components separately without
having to store the entire system matrix in memory. This gives a 10X performance

improvement.

26

3.5.4 Vertex locality

Sorting the mesh’s vertices in a way that increases locality would increase the mem-
ory locality of our matrix operations and might positively affect performance. After
attempting to sort the vertices by locality over our set of test meshes, we’ve discovered
an 8% improvement between randomly sorted vertices and vertices sorted by local-
ity. The results shown henceforth do not rely upon vertex locality reorderings, as the
meshes used have adequate vertex locality as provided, and further improving it proved

ineffective performance-wise.

3.5.5 Results

In Fig. 3.3 we show the average frames per second and average iterative solver error
per frame for 1, 3, 10 and unbounded solver iterations for a variety of meshes with
this method. We use the relative residual error |Ax — b|/|b| to convey how far we
are from the exact solution of the equation on average, giving a sense of the accuracy
being sacrificed per frame. It can be noted that running the simulation with a low solver
iteration maximum resulted in a ’slower’ progression of the fluid; Similar to the problem
we observed in the 2D method, when running a smaller number of iterations, each frame
contributes to the reduction of energy but does not truly converge therefore "'weakening’
the timestep 7. To compensate for this, we adjust simulations with lower iteration
counts with an increased timestep, to achieve a uniform apparent rate of progression,
and allowing us to better qualitatively compare the different settings. With the adjusted
time-steps, it can be seen that the higher iteration count simulations show increased

formation of droplets and waveforms compared to the low iteration simulations.

3.6 Performance bottleneck

With the above optimizations in place, we identified that the performance bottleneck
still resides in the multiplication of the system matrix by the column vector during
solving. The system matrix originates from the fourth-order diffusion term that gov-
erns surface tension in the fluid. Being a fourth-order term, it is relatively dense and
therefore more expensive to handle. Its reliance upon the fluid density of the previous
iteration prevents us from pre-calculating the inverse, which would allow us to greatly

speed up the process.

3.6.1 Second-order diffusion

One way to improve performance would be to replace the fourth order diffusion term
with a second order diffusion term - the latter should be more sparse and therefore be

cheaper to multiply. The resulting system would be:
(I + redivdiv M (uF)V)u = u* + 7 div M(u*)V(—=H — gz) (3.6)

27

3.6.2 No-mobility diffusion

The fourth order diffusion term is the only term in the system matrix which de-
pends upon the previous timestep, forcing us to recalculate the system matrix at each
timestep. Were that term not to depend on the mobility, we would be able to invert the
system matrix in preprocessing, and gain a vast speedup. We chose to simply drop the
mobility term from the fourth-order diffusion term, effectively running the simulation

as if all mobility values are 1, resulting in the following formulation:
(I +7edivVA)u = u* + 7div M (u*)V(—H — g2) (3.7)

3.6.3 Results

Fig. 3.1 shows the original (fourth order with mobility) diffusion method derived from
the original formulations alongside the two proposed simplifications, all run to a similar
error threshold. The no-mobility diffusion method demonstrates a more blurry result,
with some noise in the form of blurred dry areas; the result, however, is roughly similar
in structure, and is achieved at a much faster frame-rate. The second-order diffusion
alternative converges the quickest (most likely due to the lower order of the resulting
equation), but displays results rather different from the other two methods, with larger
droplets unable to form; it showcases a quicker frame-rate than the fourth-order method
as expected, yet the performance gain is less significant than the one gained from the
no-mobility diffusion method. Fig 3.6 shows how the 'finger’ effect is weakened when
using either of the simplified diffusion alternatives. Table. 3.6.3 compares performance
and solver error (relative residual error, as before) of the fourth-order method with and
without mobility, and also to the results presented in [VAW17], where available. It can
be seen that the no-mobility method achieves similar error results at a much higher
framerate and at fewer iterations compared to the regular method at 10 iterations.
In fig. 3.7 we compare the output of our real-time method with a result presented in
[VAWT17], to better illustrate the qualitative difference between the methods’ outputs.

28

Mesh 4 Vertices 3 iterations | 10 iterations (ﬁolielf;t)ii?;) [VAWT17]
FPS Error | FPS Error | FPS Error | FPS
rounded_cube_ 10k 9.1K 70.1 3.E-02 | 29.7 3.E-03 | 209.6 7.E-03
sphere_ s3 10.2K 57.7 6.E-03 | 25.3 4.E-04 | 179.7 6.E-04
torus_ s3 10K 46.7 1.E-02 | 26.2 8.E-04 | 187.2 3.E-03
ellipsoid__s3 10.2K 56.4 4.E-02|29.3 3.E-02| 1789 1.E-02
moomoo__s3 16.7K 29.5 4.E-06 | 14.1 4.E-11 | 103.0 1.E-14 | 12.5
bunny 16.6K 23.0 8.E-02 | 11.3 2.E-02 | 90.3 1.E-02
vase 21.8K 22.5 2.E-04|11.6 2.E-05| 71.2 5.E-06
bumpy_ sphere_s3 21.1K 189 9.E-06 | 9.6 7.E-10 | 63.3 2.E-09
pensatore_ s4 27.7K 13,5 1.E-01 | 6.6 3.E-02]39.2 4.E-02] 1.21
moai_ s3 21.8K 19.7 9.E-02 | 94 3.E-02 | 33.7 4.E-02
bunny_ s4 38.3K 9.0 9.E-03 | 4.4 3.E-04 | 27.3 4.E-04 | 2.06
torus_ s4 40K 12.7 4.E-02 | 64 1.E-02 | 37.6 1.E-02 | 0.926
sphere_ s4 41K 10.9 4.E-02 | 5.5 4.E-02 | 36.1 3.E-02 | 0.607
bumpy_ plane_ s4 40.4K 12.1 2.E-01 | 6.5 1.E-01 | 376 1.E-01 | 1.464
scherk surface s3 404K 15.6 6.E-02 | 6.4 4.E-02 | 35.1 5.E-02 | 1.59
moomoo__s4d 37K 9.4 3.E-06 | 4.6 3.E-10 | 34.0 1.E-11
pensatore_ sb 50K 7.8 1.E-01 | 3.7 4.E-02 | 26.1 6.E-02
fat_ torus_s4 39.2K 10.3 3.E-02 | 5.1 2.E-02 | 33.7 1.E-02
bumpy_ sphere_sb 49.1K 6.2 6.E-05] 3.2 1.E-07 | 26.1 1.E-06
moai_ 87 89.1K 2.8 1.E-01 | 1.5 5.E-02 | 13.1 1.E-01 | 0.321
sphere_ sb 163.8K 2.1 4.E-02 | 0.8 3.E-01 | 8.3 2.E-01

Table 3.1: Measurements of FPS and error with 3 different configurations. Measure-
ments were made on an Intel Core-i7 7700HQ CPU. See Fig. 3.4 for scatter plot.

29

Fourth order diffusion: 10 iterations, 3.38 frames/s, error=0.0003

2926

Frame 1 Frame 50 Frame 100

No-mobility diffusion: 6 iterations, 25.96 frames/s, error=0.0002

@ %%

Frame 1 Frame 50 Frame 100

Second-order diffusion: 4 iterations, 11.49 frames/s, error=0.003

%%

Frame 1 Frame 50 Frame 100

Figure 3.1: Comparison of simulation fidelity and performance with different diffusion
methods, run to a similar error threshold per frame (¢ = 1., = 20, 38306 vertices).
All error values are the relative residual error |Az — b|/|b| for the corresponding linear
System.

30

0

Bumpy Sphere (33.6K vertices), 4 iterations, Moomoo (37K vertices), 3 iterations, g = 20,
g=17.24, ¢ = 2.6, 7-—10211FPS e = 3.4, 7-—1()211FPS

B

Pensatore (27K vertices), 3 iterations, g = 310, Pensatore (50K vertices), 3 iterations, g = 120,
e=>5.4,7=10"2 14FPS e =4.9, 7-—1()29FPS

Figure 3.2: Examples of viscous thin-film flow on curved surfaces as generated in real-
time by our implementation

31

1 iteration per frame - frames/s: 23.1, error: 0.299 (

ﬁ@@

Frame 1 Frame 50 Frame 100
3 iterations per frame - frames/s: 12.4, error: 0.183 (0.1)
Frame 1 Frame 50 Frame 100

10 iterations per frame - frames/s: 4.76, error: 0.003 (7 = 0.0333..)

2926

Frame 1 Frame 50 Frame 100
Convergence (avg. 112 iterations)- frames/s: 0.5, errorcc 10716 (7 = 0.03)
Frame 1 Frame 50 Frame 100

Figure 3.3: Comparison of simulation fidelity and performance with different BiCGStab
iteration count limits per frame (¢ = 1.,¢g = 10, 38306 vertices). All error values are

the relative residual error |Az — b|/|b| for the linear system in equation 3.5.

32

Average FPS per frame. Right plot is a zoomed-in version of the left.

200 | e 31

. terations || 40 ° e 3 iters
° e 10 iterations ... e 10 iters
e no mobility ° ® ® |e no mob.
150 o [VAWH17] || 30| o [VAW*17]
® [1]
a &
= 100 1 &= 20] e
X - .
50 | ® | 10 [@ ° .. b
® & .
s3 e ¢ % ®
'] ®e °
... ® ¢ ° [] ' ®
0 | | . | | | | 0 | | | (] | |
0 20 40 60 80 100 120 140 160 20 25 30 35 40 45 50
K Vertices K Vertices
0.3+ o
0.2 ° ° |
—
o
=
&3
0.1+ .o oo) |
[]
e o
® 00 O o []
[] .. [’
0 3¢ 2o \ \
0 50 100 150
K Vertices

e 3 iterationse 10 iterationseno mobility

Average iterative solver error per frame

Figure 3.4: Plots of performance data as shown in Table 3.6.3

LA A A

Figure 3.5: In the absence of gravity, surface tension balances the fluid on top of every
face, compare with [VAW'17] Fig. 10

33

4th order diffusion ond order diffusion Mobility-free diffusion

Figure 3.6: With regular 4th order diffusion, the mobility function prevents most fluid
from flowing into dewetted areas, favoring areas already filled with fluid; this allows
for the creation of ’fingers’ as shown. When using second order diffusion, only coarser
fingers are able to form due to the lower order of the diffusion equation. When using
mobiliy-free diffusion, the fingers are smeared out, as the diffusion of the fluid is not
impeded across the dewetted area.

Figure 3.7: Visual comparison with Fig. 2 of [VAWT17]. The real-time result was
captured at 11FPS on a 38K vertex bunny mesh.

34

Chapter 4

Conclusions and Future Work

We described a scheme for the real-time simulation of viscous thin films on planar
domains, that is efficient without compromising important theoretical properties. We
also presented its implementation on parallel architectures, which allows for responsive
user interaction together with realistic rendering, even on mobile devices. We presented
directions for achieving a real-time simulation of viscous thin films on curved domains
as well, with a scheme that allows natural control of the fidelity-performance tradeoff,
and can achieve visually pleasing results at real-time framerates.

Concerning potential future work, we would like to further enhance performance
by using a multigrid approach. Another possible extension is to include other physical
effects in the simulation, such as evaporation or the inclusion of solubles, or other kinds
of visual effects in the rendering, such as iridescence due to thin film interference. Fi-
nally, given the favorable practical and theoretical properties of the scheme, it would be
interesting to see whether the same disciplined approach could work on other problems

of interest to the simulation community.

35

36

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

Bibliography

[BAV*10]

[BGWO1]

[BKP*10]

[Bril5]

[BUAG12]

[CKIW15]

[CMO09]

[CMVHITO2]

[EKS07]

[GAO6]

Miklés Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Fi-
tan Grinspun. Discrete viscous threads. ACM Transactions on Graphics
(TOG), 29(4):116, 2010.

A.L. Bertozzi, G. Grin, and T.P. Witelski. Dewetting films: bifurcations
and concentrations. Nonlinearity, 14(6):1569, 2001.

Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy.
Polygon mesh processing. CRC press, 2010.

Robert Bridson. Fluid simulation for computer graphics, 2ND EDI-
TION. A K Peters, Ltd., 2015.

Christopher Batty, Andres Uribe, Basile Audoly, and FEitan Grin-
spun. Discrete viscous sheets. ACM Transactions on Graphics (TOG),
31(4):113, 2012.

Zhili Chen, Byungmoon Kim, Daichi Ito, and Huamin Wang. Wetbrush:
Gpu-based 3d painting simulation at the bristle level. ACM Transactions
on Graphics (TOG), 34(6):200, 2015.

RV Craster and OK Matar. Dynamics and stability of thin liquid films.
Reviews of modern physics, 81(3):1131, 2009.

Mark Carlson, Peter J Mucha, R Brooks Van Horn III, and Greg
Turk. Melting and flowing. In Proceedings of the 2002 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 167—
174. ACM, 2002.

Derek Nowrouzezahrai Evangelos Kalogerakis, Patricio Simari and
Karan Singh. Robust statistical estimation of curvature on discretized
surfaces. Proceedings of the Eurographics/ACM Siggraph Symposium on
Geometry Processing (SGP 07), pp. 13-22, 2007.

E. De Giorgi and L. Ambrosio. New problems on minimizing movements.

In Ennio De Giorgi selected papers, pages 699-714. Springer, 2006.

37

(Gt 14]

[GROO]

[GSSP10]

[Har05]

[HR18]

JG18]

[JP+18]

[KRQSV11]

[LBBL7]

[INHRLAM1S]

[ODBY7]

[Ott01]

Gael Guennebaud, Benoit Jacob, et al. Eigen: a c++4 linear algebra
library. URL http://eigen. tuzfamily. org, Accessed, 22, 2014.

Giinther Griin and Martin Rumpf. Nonnegativity preserving convergent
schemes for the thin film equation. Numerische Mathematik, 87(1):113—
152, 2000.

Prashant Goswami, Philipp Schlegel, Barbara Solenthaler, and Renato
Pajarola. Interactive sph simulation and rendering on the gpu. In Pro-
ceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 55—64. Eurographics Association, 2010.

Mark J Harris. Fast fluid dynamics simulation on the gpu. In SIG-
GRAPH Courses, page 220, 2005.

Adrian RG Harwood and Alistair J Revell. Interactive flow simulation
using tegra-powered mobile devices. Advances in Engineering Software,
115:363-373, 2018.

D Jackson and J Gilbert. Webgl 2.0 specifi-
cation. Technical report, Khronos Group, 2018.
https://www.khronos.org/registry /webgl /specs/latest/2.0/.

Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++ geometry
processing library, 2018. https://libigl.github.io/.

Serafim Kalliadasis, Christian Ruyer-Quil, Benoit Scheid, and
Manuel Garcia Velarde. Falling liquid films, volume 176. Springer Sci-
ence & Business Media, 2011.

Egor Larionov, Christopher Batty, and Robert Bridson. Variational
stokes: a unified pressure-viscosity solver for accurate viscous liquids.
ACM Transactions on Graphics (TOG), 36(4):101, 2017.

Octavio Navarro-Hinojosa, Sergio Ruiz-Loza, and Moisés Alencastre-
Miranda. Physically based visual simulation of the lattice boltzmann
method on the gpu: a survey. The Journal of Supercomputing, pages
1-27, 2018.

Alexander Oron, Stephen H Davis, and S George Bankoff. Long-scale
evolution of thin liquid films. Reviews of modern physics, 69(3):931,
1997.

F. Otto. The geometry of dissipative evolution equations: the porous
medium equation. Comm. in Partial Differential Equations, 26(1-
2):101-174, 2001.

38

[RV13]

[SA13]

[SDHD17]

[SVBC16]

[VAW17]

[VdV92]

[WMTO7]

[YKO09]

[ZB99)

[ZLQF15]

[ZQC*14]

M. Rumpf and O. Vantzos. Numerical gradient flow discretization of
viscous thin films on curved geometries. Math. Models and Methods in
Applied Sciences, 23(05):917-947, 2013.

Jacco H Snoeijer and Bruno Andreotti. Moving contact lines: scales,
regimes, and dynamical transitions. Annual review of fluid mechanics,
45, 2013.

Tuur Stuyck, Fang Da, Sunil Hadap, and Philip Dutré. Real-time oil
painting on mobile hardware. In Computer Graphics Forum, volume 36,
pages 69-79. Wiley Online Library, 2017.

Aviv Segall, Orestis Vantzos, and Mirela Ben-Chen. Hele-shaw flow sim-
ulation with interactive control using complex barycentric coordinates.

In Symposium on Computer Animation, pages 85-95, 2016.

Orestis Vantzos, Omri Azencot, Max Wardeztky, Martin Rumpf, and
Mirela Ben-Chen. Functional thin films on surfaces. IEEFE transactions

on visualization and computer graphics, 23(3):1179-1192, 2017.

Henk A Van der Vorst. Bi-cgstab: A fast and smoothly converging
variant of bi-cg for the solution of nonsymmetric linear systems. SIAM
Journal on scientific and Statistical Computing, 13(2):631-644, 1992.

Huamin Wang, Gavin Miller, and Greg Turk. Solving general shallow
wave equations on surfaces. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 229—
238. Eurographics Association, 2007.

C. Yuksel and J. Keyser. Fast real-time caustics from height fields. The
Visual Computer, 25(5-7):559-564, 2009.

Liya Zhornitskaya and Andrea L Bertozzi. Positivity-preserving numeri-
cal schemes for lubrication-type equations. STAM Journal on Numerical
Analysis, 37(2):523-555, 1999.

Bo Zhu, Minjae Lee, Ed Quigley, and Ronald Fedkiw. Codimen-
sional non-newtonian fluids. ACM Transactions on Graphics (TOG),
34(4):115, 2015.

Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald Fed-
kiw. Codimensional surface tension flow on simplicial complexes. ACM
Transactions on Graphics (TOG), 33(4):111, 2014.

39

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

SY TYN D02 MAINYD MNNIYN NOIYHN NNAD NIVND NN IRPY 7PXDVIPDTN O MYNRVN
792 ,NYANN NPXIVIN MNID NOYON AVIRY PDVIVN IMOD NYNNYN IO OV NN
APNPNID TPONI MONY NNIY NMIND N TIN 0T TYN DD yap N 1ot Dy Mnvd
077120 NNR-JIT ONINAY WIND DD IWAN §29D1) DN YNY NN OY DY YINN MDD
NOIYNN 1IWND PRV PMYNIYN PIAPA-INNK T PITY TN, TPNP 400005 *oya 00T Dy
NV 1PDI2 PIAPAN INNY PINAD NPIVANR MVIY 110D DXWNN DN TYN D3 NINN NINYON

JDPNPNN INNIYND MOVISNT MINNIYNN NN Sy

iii

2VNY 10 29 DY R LN PYNN TIT DVND NNN PO TPNDI0N DY DIDYI YNNYND DIIVIND)
DTN NN MNIY PPNY DM HY DPT DVID DY NNR-IT NYNTH 0P NHYP RO IPNYT

D725 MO 21D°w1a , DMLY DNVYN DY PTN VIDN NXNYND NPNTAD NI NNID DN DN
TPNPNND INPNY DTN 12 NVWD 317 VWPA DP NPV DY NODIAN NHY NNODN 029D DHNN MM
TN AONWD DR APNHN ORIV WD DR PO IOV PV ONYWHNN 0INNN Syn NI
NY) DY NDDIAN ANIND) JPA2 VOV PIVVIPDTN .IPNDNPDN DV IPORI NN DY NPNY
VNPT PP AP Y NOOWI AT PN 29 DY SMIN OV MNTPNNN Na ,0INTDN NN
TMNPNG HY NPDOY-NY ,NO9DN DN NN DY TN NDY NNV ,ITIN DNIVPNPNS DY
MY TN XOO ,GPUN YY D1apn HY NOpn 199 ,10Mipn XN OV mN»OIRD TN)oY .Nann
JSDOPRIVIN AP Y10 N9 NN IINXTM ,WebGLA 130V DOV NN NN DYPH NI map»
PHM NPO2 NVOYY ODIVON QDN DN DY NODIN Y DTN N 2YNND YHNNWYND VIR

.NTaoN M>

NID NP 522 TIyN N2 0NN DY N NWA 2) DY TPWY) 1OV NNODN DY PNDLIPDITN
SV NNDAVN MAN YV NPYONPIDN DY 212°wa ,NYIN DY 29010 NIAND .NXNN NN DTN M9
D229YN DY HYAV J9IND TN 297N TIAYND HY20 19N NNODN NN MY 1D DIVANND ,INODN
D219 NIYA ONIN NPYNNAN NN NOTHN 1OV NNODN DY PNDVIPDTN .02y DY 025N
N2 LPOR 1OVUN XND NYIAA TAR XNND O DY 0T - MK MNON NINYNN NNR 7D 02
DOV NIVANDY NODIDN MINRN NN NT ,OORNN 5952 MONN D0I1DD NXR NIATINT NINYN 1N
NN 5D SV 1POYOY MIND YNND 1O NN RN 952 DN MY SV NYOvn-N DY nop
T2 NNO NN P2 72m0 9N NYAIN Y (NPOIHHIIN MLV 21D TPNPY NYNN D010
NND DNYa NOOON NTIND DY TPPON NN DY 9730 TPMILRA N2YON DD D) AN NOY
o2 gradient descent DXY2 NMNMNN 1OYY TAX XN SN OV NTTIA NIAYN)00 .0MDN 5
SV 21 INNN NIYN NN NNX IOND MDY DY MY T90 WY .Nmon 1vpon Nt
DI2YNY NNPYN Y PRTIN DR DTPD N NIYOND | NTIY PTH 1910 NIAY VINTI NP
PON) T .93YN IMNA DINNRD RN OMON DYNRY DIXN P2 M) aY) 1ayN Y53V ,00T779)
970 TaYN3A shader NOYAN Y 52PN 72YN 91 HY NITYNN DR Y¥IN DONIN 2I2YN 9O NN
NN YN timestep Y52 .IVTN NNNND IRIND NN TTITN DORN N DD PA DO NN PAYNN
1T DNVYN DY NONWN NN .ONPIN D32 MAYD SN0 IWANRD T YN NN TN OI1aYNN 9D
NN AN DOV DTN Oy DWNNYN DY iPSPIVPNRD NN TPSPDON MY VDD O TN
12 102 ,029TIN 02”973 DXTAYN OY D7HINDY DXAYNNI NN YO 2ASP MIYNA NPDVPON NNNY
212 YNNWNN DDV DY VI (INY NI NYNTH NPNONIA 2D ON) DTN OOV D)
MIXINN NV .(TOMITOPNRI VIY 2"yY) PNV TR NPV Y NTADN NNV PP DY VIdYD
SV NP NPIDN AVANNN 92T ,7PAD1N N7)ADN NYA DY NONS D1 1T DIMOLY DNHLYY NaY
NO NOWN DTN 0797 DXTIYN NIDINYD 2Ya0 N9 NN Y9I OON YN DIAYND OIRNN
NYID 9NN XD 1D NONY DN TN NHNA 0»HDD DPMINPY DXNVYND Y 19N NONNN
MDY NINA, TN NOND DY 1T DMLY DNVYNY 1OV NVVN NN DNNND DIPN .NNaYN
LYAY NIVN LYOYN NDDIAN DNVYN DY PTN VIDN NNNYN DY NOVIN RO YTNND NDID
LDPMYNYN DN I NDY NIVAND TN TPONIIN NDPINN NN NINDYNN 1NN MNNIYHD NN
J9IND NI RY PNTIN DY INYOYNY ,ARNYNI M) T 'DY2 OIN NN DY NINN D DVO

ii

9891

;TN 1T NONA NN DT OPNN D) DY DPT D00 DY PNDINIDN NN DIPID X IPNNa
INODN DY TM-T DN DNVYN DY VPIND NPNTND NYTN NOIPOYT NNOD DIINN DN
M7V NODIAN PNDVIPDTY N>amvy gradient flow N nwy DY wIN MY Yy Nnooian
PO NN NIIVHN NOY NOWN 9N TAYNN DY PO OP 2IWND NMINDN HIPVDIPY
51 NAN NPV PNRNND IDN NMOEPNT INVOYI 1HDON NONN NN NINYN NIV o2
TPNPNIVIN IYAND D¥a¥2 290N NPNN N ,Q0NA .71PNIDN TIND NNV NINY IDOY-IN
DIVAND NN T ;VPOND YIDDO MN»PN MOWN INYD T2 NN RN Oy NNNX N2
PNDINION NN T TIN DTN MO2AXI) NMINIDA VIDYDY XNONNNN ANNN NN MINYI ANYD WNINYND
VPOND DY VTN MDD DAY DPOIPDT NNO0N NPNIYRI MINNIN NN DIPID 1IN 002
IYIN DY NPHNY N NNX YA PIOND NIVONRNDD ,070NPY 07T NYN DHLVYH DY

JPONIN

TPPIAN , M OOV TYN 1IPN) DY HY DPT DVID DY DN NN NDNOHNN MNNIVNON
-2 DTN DY VIV VWD 31VY NNYA D OMTN OPT ©VID ,PINN NPNIAND IO
TPPON TPONININST INNVYNL TN .P2auN JOP NXIN VIDN PPV NININN DY DDIANN DPIVD
JPVIDIVIDPN MNODO TIND DOVP YO XTYND TNSN DYIAND DPYPY D2mv NN 2ywa7 1701
NNDNN DTN NYNN N2 NOWY ORI DM OND VIADN DY PNNIAND ONPNND 1N ,P)OND
NPYI0NN NI TIWND ,NNNDN DPPIVN TINA NNYID NN NPEPNY DRNN VINTIY NTPD
TPYA0 AT PXPVIPDIT NYND MNIODY INPPNNA NYIAND ANHND SHIN MTHINN IR NTHPNR
NPY DY NDDIAN DOV NN 1AM NN NN ,NPODON NONN D NP RN 1IN IX NINDYHDN
MYNNX DY NPRY TIN NN MDD 0NN O D01 PR Tyay) IDvn PP HY Jop
1N50Y 222110 MN»PN MOYWY TINMEAY QOY DDIAN MDY PN NDR G0N VY9N SV WONIN

JPOVND P

N MNTAN ,NPYAIN NVY M DY NNONNI I2Y2 NN OPPNY OO NPPan N»npa
NPYRTN .DPTN DD SY NN NPTIMNIN NN MONIN N 7o) NI 100 NYNN DTN
DPN TN , D257 093 221 MNTNY MIYAND 0P MNPPY MINN NNN I ONTI OM

V2T N0 ,NMAY NYXPNY YYD OOHMI NPNTND DIPNNND

NINA NVOYA DY DNVNNY NV NN PN YR VN NN NN 0ON) NYNTH
MOV SMNNY NN NI ,NIAVMND NP9 TN ,NTNN I ©ONaN MMDT NYNNNN
,0227 DMWY ANY DY 2IND 2IWN 1D P 0297) DXTIAYN ,MNINKRD 0OV JIN "y mpa
L0 T) D90V DY D) DY MY NYNOY NPDVPRIVIN NPRTH 90N .00 N»YNTH 0’3

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

NOYIPHL ,PIVDINY WM NPPAMNY 1I2 ,NYPH JN-12 N/NID DY INPNINA YN AIPNNN
.avnNnn oyTnd

NY-'2N52) ©X0ID APNND POMYI T2NNN NNY DINNNDD 1NN N NN MNIND D PON
PN NP2 NPIDTYN OIPNINDI YN ,I2NNN DY ONOVPITH IPHN NAPN ToNNa

Orestis Vantzos, Saar Raz, and Mirela Ben-Chen. Real-time viscous thin films. ACM Trans.
Graph., 37(6), December 2018.

AR AR

LOP1I9N TINRD NAMYNN NTIAYM DNNY DY ,DIN DOVDNND JN-12 2 PHD MTIND NI N

JON MDD MYDIN DIDIN ,IPNND P DY 1MIDVS 25 29PN MTIND NI

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

NN TN DY DT DYV DY NINDIMNID
NNN A2

PPN DY NN

ANINN NOAPOS MWATN DV *PON N DYH
aVYNNN PYTNI DYTNY T0DIN

™ Y0

INAWD MONIV NIN — PIDVN VIDD YN
2020 o naN 2"vnn Yo

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

NN I HY DIPT DIVID Y ININD
NN P32

™ Y0

	List of Figures
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 2D Method
	2.1 Physics
	2.2 Time Discretization with Gradient Flows
	2.3 Discrete Local Fluxes
	2.4 Fully Discrete Parallel Scheme
	2.5 Implementation
	2.6 WebGL Implementation
	2.7 Dynamic Time Stepping
	2.8 Driving the Flow via the External Potential
	2.9 Other Parameters
	2.10 Rendering
	2.11 Boundary Conditions
	2.12 Limitations
	2.13 Results
	2.14 Simulations
	2.15 Performance
	2.16 User Interaction
	2.17 Conclusions and Future Work

	3 3D Method
	3.1 Application of the 2D method
	3.2 Simplified thin-film formulation approach
	3.2.1 Thin-film formulation for curved domains
	3.2.2 Simplified formulation
	3.2.3 Discretization

	3.3 Implementation
	3.4 Stability adjustments
	3.4.1 Clamp at 0
	3.4.2 Mobility capping

	3.5 Initial performance optimizations
	3.5.1 Initial solver guess
	3.5.2 Constant number of solver iterations
	3.5.3 Matrix-free system
	3.5.4 Vertex locality
	3.5.5 Results

	3.6 Performance bottleneck
	3.6.1 Second-order diffusion
	3.6.2 No-mobility diffusion
	3.6.3 Results

	4 Conclusions and Future Work
	Bibliography
	Hebrew Abstract

