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IVu,U;|| and flow lines. Note that the norm is zero on the geodesics
(marked red), and that the flow lines are orthogonal to Uj, since they are

constant norm. . . . . . . . L. L e e e e e e e

Comparison of our discretization ViV with the analytic solution for
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a geodesic vector field (top left). The Oloid model has zero Gaussian
curvature everywhere except on the creases, hence when it is flattened
the flow lines should yield straight lines (bottom left). Compare with the
result of [PHD"10](right). Our results are comparable, while our setup
is considerably simpler, and allows for combination of constraints.

Trade-off between as-gradient-as-possible vector field constraints and sym-
metric vector field constraints, with the symmetry constraints weighted
higher in the image on the right. . . . . ... ... ... ... ......
Designing smooth vector fields by finding vector fields which minimize
the energy |[VV|2. . . . . . .
Our smooth vector field (left), compared to the one obtained by the
method of [KCPS13] (right). . . . . . . ... ... ... .. .. ..
(top) A few frames from a periodic solution of the Euler equations on
the sphere. Note that the vorticity (color coded) is globally rotated, as
expected. See the text for details. (bottom, left) The relative kinetic
energy [, U@/ [, 1U(0)] during the simulation. Note that it is
periodic, and remains within 98% of the original energy. (bottom, right)
A histogram of the vorticity, for the first (blue) and last (red) frames.
Note, that the histogram is preserved as expected. . . . .. ... . ...
A few frames from a solution of the Euler equations on the torus for a
co-rotating vortex pair. . . . .. ..o Lo
Three frames from a fluid flow simulation showing a positive/negative

vortex pair on a surface. . . . . . . . ... Lo Lo

43

45

46

49



3.16 A few frames from a solution of the Euler equations on the teddy for two

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

colliding pairs of counter-rotating vortices. . . . . . . . . .. ... .. ..

Our method computes guiding fields on triangle meshes which respect
either the underlying symmetry of a single surface (left) or the related
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Optimizing for smooth cross fields which are not aligned (left) or aligned
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the right field better respects the underlying geometry. . . . . . . . . ..
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different singularity structures. For comparison, we show the quad mesh
computed from the smoothest cross field (left and middle left), and from
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Curvature information can sometimes lead to quasi-consistent results even
without consistency a. = 0 (top row). However, we show that facilitating
our compatibility condition o, = .01 with the precise mapping from
BIM represented using a functional map of size k = 50, produces more

consistent quad meshes (bottom row). . . . ... ...

The approach of Panozzo et al. [PLPZ12] constrains the field to be
aligned with the stationary line (yellow). Thus, the space of possible
minimizers is significantly smaller, yielding sub-optimal results on the
chest and nose of the shape (zoomed-in areas). In contrast, our method
allows for general cross fields which exhibit intricate behavior along the
symmetry line (blue). Consequently, our output better respects the
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Robustness to triangulation. (left) We extensively decimated %85 of
the vertices in the left part of Max Planck’s model, leading to non-
symmetric curvature alignment constraints (middle) due to the difference
in triangle areas. Nevertheless, our method produces a symmetric cross
field whose associated quad mesh is highly consistent (right). Notice that
this example is particularly challenging for methods which employ the
map differential. . . . . ... oL L
We compare our consistent quadrangulation of a pair of meshes with
AAQ [MPP"13] using code supplied by the authors. We computed a
quad mesh on each mesh using it as the base mesh (yellow), which
should then be transported to the second mesh to yield exactly consistent
quadrangulations. For our approach (blue), we used the point-to-point
correspondence also given to AAQ. Note that our results are both smooth
and consistent, where as while the AAQ results are exactly consistent,
they are dependent on the base mesh, and considerably less smooth. See
the text for more details. . . . . . . . . ... L oL oL
Alignment vs. symmetry on a 3D bar shape. (x,) The directional
constraints are placed on the bottom face and and on one of the sides as
marked by the arrows. (1) Due to the misaligned constraints, requiring
solid-to-dashed line consistency as well as directional alignment yields a
rather complex quad structure. (2) Relaxing the alignment constraint
leads to a highly symmetric quadrangulation. Notice that the resulting
cross field in this case is in fact the minimizer of the Dirichlet’s energy.
(3) Conversely, low values for consistency with high values for alignment
produces mildly symmetric field which is better aligned in a least squares
SEIISE.  + v v e e e e e e e e e e e e e
Effect of changing the functional basis’ size. (left) When using only 10
eigenfunctions in B, we show that the resulting quadrangulation is hardly
consistent with respect to the existing bilateral symmetry. (middle)
Increasing the basis to include 100 elements significantly improves the

result. (right) Finally, using the whole spectrum yields nearly perfect

In this example, we demonstrate the robustness of our method in the
presence of imperfect correspondences. We compared the quad meshes we
obtain when using maps with deteriorating quality (left to right) in the
full basis (top row) and reduced basis (bottom row). While we achieve
very good results with the exact mapping (top left), the quad meshes
produced with the noisy maps display only quasi-symmetry (top middle
and top right). For comparison, employing a small functional map of size
k = 100, yields consistent quadrangulations in all cases (bottom row).
See the text for additional details. . . . .. ... .. ... ... .....
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We design consistent cross fields x1 and x2, on pairs of shapes from the
SCAPE dataset (a. = .1,a; = 0), and we measure the pointwise L? error
of the computed xy compared to d¢(z1) which is the pushforward of x;
using the ground-truth map differential. In the above plot, we show the
distribution of the error for all of the pairs. Notice that in most of the

cases, 80% of the points have an error of at most 107°. . . . . . . .. ..

We generated a precise mapping using sparse landmark correspondences
given as input to the seamless method [APL15]. With the resulting map,
we compute consistent cross fields on both meshes with the full (left) and

reduced (right) basis. . . . . . . ... ... o o

Unfortunately, methods for mapping surfaces with different genus are
scarce. Nevertheless, the robustness of our machinery to different mapping
methods allows us to compute consistent quadrangulations even in the

difficult case of genus 0 and genus 1 surfaces. . . . .. ... ... ....

Our method takes a source function (blue frame) and a target function
(red frame) and finds a single vector field (gray frame) whose associated
flow map advects the source function to a function which matches the
target function at the end time (black frame). In addition, our method
yields a smooth interpolation of functions by advecting the source function

for different times (5 frames from the right). . . . . . .. ... ... ...

The flow map of a vector field (left, shown with the Line Integral Con-
volution method [PZ11]) is used to advect a function (middle left) for
various different times (middle right and right). . . . . .. ... ... ..

Given source and target functions (blue and red frames), our method
matches the advected source to the target (black frame). The resulting
interpolation is obtained by advecting for different times leading to spatial

displacement of values. . . . . . . . . . . .. ... ... ... ... ...,

Linear advection of an input function (top left) works well for short times
(top middle), but discretization errors in the form of oscillations appear
for longer times (top right). For comparison, the non-linear transport
(bottom) better approximates the flow and it yields a smooth result, even

for long times (bottom right). . . . . . . ... ... L.

Given a vector field v (left), the kernel of its operator ad, consists many

vector fields that commute with v, where we show the smoothest one

Transport (pushforward) of a vector field u (middle left) over the flow
lines of v (left) is shown for various times ¢ = 0.125 and ¢ = 0.25 (middle

right and right). . . . . . . ...
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Interpolation results between the eigenfunctions 7 and 8 of the Laplace—
Beltrami operator (blue and red frames). Notice that our result (black
frame) highly matches the target function and that the interpolation
path is smooth. . . . . . . . . .. ... 94

Our method takes as input a function (blue frame) and its advected
version (red frame) computed using a vector field (top left). The output
of our method is the matched function (black frame, right) and the
corresponding vector field (black frame, left and middle). Notice that the
resulting field highly matches the original field and the error between the
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Abstract

This thesis introduces fundamental equations as well as discrete tools and numerical
methods for carrying out various geometrical tasks on three-dimensional surfaces via
operators. An example for an operator is the Laplacian which maps real-valued functions
to their sum of second derivatives. More generally, many mathematical objects feature
an operator interpretation, and in this work, we consider a few of them in the context
of geometry processing and numerical simulation problems. The operator point of view
is useful in applications since high-level algorithms can be devised for the problems
at hand with operators serving as the main building blocks. While this approach has
received some attention in the past, it has not reached its full potential, as the following
thesis tries to hint.

The contribution of this document is twofold. First, it describes the analysis
and discretization of derivations and related operators such as covariant derivative,
Lie bracket, pushforward and flow on triangulated surfaces. These operators play a
fundamental role in numerous computational science and engineering problems, and
thus enriching the readily available differential tools with these novel components offers
multiple new avenues to explore. Second, these objects are then used to solve certain
differential equations on curved domains such as the advection equation, the Navier—
Stokes equations and the thin films equations. Unlike previous work, our numerical
methods are intrinsic to the surface—that is, independent of a particular geometry
flattening. In addition, the suggested machinery preserves structure—mnamely, a central
quantity to the problem, as the total mass, is exactly preserved. These two properties
typically provide a good balance between computation times and quality of results.

From a broader standpoint, recent years have brought an expected increase in
computation power along with extraordinary advances in the theory and methodology
of geometry acquisition and processing. Consequently, many approaches which were
infeasible before, became viable nowadays. In this view, the operator perspective and
its application to differential equations, as depicted in this work, provides an interesting
alternative, among the other approaches, for working with complex problems on non-flat
geometries. In the following chapters, we study in which cases operators are applicable,

while providing a fair comparison to state-of-the-art methods.



Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

Technion - Computer Science Department - Ph.D. Thesis PHD-2017-15 - 2017



Chapter 1

Introduction

This thesis presents practical methods for dealing with a few challenging problems which
are considered on non-trivial curved domains. For instance, we would like to numerically

estimate how a thin sheet of wine runs down a wine glass. How would one begin to

solve this difficult problem?

The following aspects should be taken into consideration. First, the motion and
its causes, i.e., the dynamics of the problem is analyzed into a concise mathematical
representation given by a differential equation. In this work, we assume that the
governing equations were already derived by previous work, e.g., our motivating example
of wine could be modelled approximately with thin film equations [ODB97, CMO09].
Second, the geometrical curved domain is represented in a way which allows to perform
simple computations while maintaining the ability to encode complex geometries. To this
end, the domain is approximated with a triangle mesh, namely, a set of vertices, edges
and faces that are given by planar triangles glued over their edges. The third aspect
and the main focus of this work, is the solution of the former equations on the discrete
surface in terms of a numerical method which can be coded in some programming
language.

Differential equations describe the change in time or space (or both) of an essential
quantity to the problem. Thin films, for example, are characterized through the film’s
height, h, computed per point of the domain. The temporal and spatial evolution of
h is considered a solution of the associated equations. Numerically solving differential
equations is a challenging task, involving the construction of temporal integration rules

along with a proper discretization of spatial differential operators to produce a reliable
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estimate of the underlying dynamics. With this classification in mind, the first half
of the following work deals with the spatial aspects, whereas the second half mostly
handles the temporal mechanisms. Below, we show the result of a numerical solver
corresponding to the evolution of a thin film subject to surface tension forces in space

(horizontal axis) and time (vertical axis).

We proceed by taking a top-down approach. We will first describe the partial
differential equations (PDEs) we are set-out to solve, and then, we will focus on the
spatial components that are required for composing effective numerical solvers. The
temporal aspects will not be discussed in this introduction, but within the relevant
chapters. As the above example hints, we will be interested in transport-dominated
effects, and thus, we begin with presenting a PDE which mathematically captures how
a certain quantity, u, moves due to a given velocity field, v. In fact, it is one of the most
ubiquitous PDE, used to describe numerous real-life phenomena and it is known as the
transport equation:

Oyu+ (v,gradu) =0, (1.1)

where 0y is a derivative in time, grad is the gradient operator and (-,-) is the standard
scalar product. Indeed, Eq. (1.1) measures transport as it couples the change in u over
time with its (minus) change in space, since the term (v, grad u) is nothing else but a
directional derivative of u with respect to v.

In Chapter 5, we consider the transport equation along with boundary conditions at
the initial and final times, i.e., u(0) = ug and u(1) = u1, and the main goal is to compute
u(t) and v(t) for t € (0,1). Naturally, it is an ill-posed problem and some regularization
is needed to increase the chances of finding a solution. This particular setup is adapted
to the task of improving an initial mapping ¢ between two surfaces M; and Msy. As
we will show in Chapter 5, if the function space of Mj is put in correspondence with
the function space of Ms, the given mapping ¢ could be greatly improved. Fortunately,
the above boundary value problem is tailored to this task, taking ug = f oy and u; = g,
where f € Ly(M;) and g € La(Ms), and using the resulting v(t) to generate the new
. We refer the reader to the relevant chapter for further details.

The next PDE we consider is related to flow of fluids, and it guarantees the

preservation of momentum, being part of the famous Navier—Stokes equations [CMM90]:

v + Vv — uV2u + gradp =0, (1.2)
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where v is the velocity, p is the pressure, V is the covariant derivative and V? is a
vector Laplacian with p being the viscosity coefficient. Unfortunately, solving Eq. (1.2)
on curved domains is challenging as we briefly mention below and discuss in length
in Chapter 3. Nevertheless, the above vector PDE could be greatly simplified to a
scalar PDE by defining the vorticity of the flow, w = curl v, which always points in the
direction of the surface normal, in the two-dimensional case. Thus, instead of solving
Eq. (1.2) directly, we model almost inviscid flows in Chapter 6 by studying the vorticity

equation [MBO1], resulting from taking the curl of the above equation:
Ow + (v, gradw) — pAw =0 . (1.3)

We are back again with a transport-type equation, Eq. (1.1), but now it is non-linear

due to the constraint which couples between w and v and includes viscous effects.

The next and final set of PDEs we investigate in this work are the thin films equations,
related to the problem we discussed at the beginning of this chapter. On curved domains,

having u represent the mass density of the film, these equations read:

Opu + div (=M (u) - grad p(u)) =0 , (1.4a)
M) = %u?' i Sl (i -5) (1.4b)
p=—H —eTu—eAu , (1.4c)

where H, T and S are curvature-related quantities, ¢ < 1 is the fluid’s height to length
ratio, div is the divergence operator which measures the amount of flux associated with
v, and A is the Laplace—Beltrami operator. In this case, the advection-type equation is
non-linear and fourth order, making its discretization particularly challenging, as we
discuss in Chapter 7. However, since thin films exhibit a gradient flow structure [RV13],
we are able to discretize these equations efficiently, simulating various intricate motions

of thin sheets of liquid on general domains, as shown, e.g., in the wine example above.

The equations presented in this introduction, except for Eq. (1.2), share a similar
structure where the change in time is modelled by the differential change in space. In
addition, recall that

div(uv) = (v, gradu) + u - div(v) ,

and thus, we distinguish between differential operators as grad, div curl and A, whose
discretization can be found in standard textbooks, such as [BKP*10] to the directional
derivative, D(v) = (v, grad -), which is the main focus of Chapter 2. Considering D(v) as
an operator which maps scalar functions to their derivatives has many advantages. For
example, given a finite basis, D(v) is simply a square matrix whose properties can be
investigated or prescribed, as was done in Chapter 2. We show below the two harmonic
vector fields—divergence- and curl-free vector fields—on the torus surface, along with

the corresponding D(v) operators, as computed in a reduced basis.



More importantly to this thesis, when solving transport-dominated differential
equations, the use of D(v) allows us to avoid the numerically sensitive process of
integrating the flow lines which was done, e.g., in [SY04, ETK"07]. Namely, instead
of first computing the flow lines of v and then transporting » along them, we could
directly facilitate D(v) in our implicit or explicit time integrator. Encouraged by the
usefulness of D(v), we extended this idea to the case of vector derivatives, V,v, in
Chapter 3 for the purpose of solving Eq. (1.2). Unfortunately, while V,v is intrinsic to
the surface, our discretization involves extrinsic differentiation with projection, and thus
the obtained fluid simulator is inferior to the one we designed in Chapter 6. Nevertheless,
the covariant derivative is useful in many other scenarios—vector field design being one
of the main examples we focus on in that chapter.

Finally, another significant benefit of the operator point of view, is that it naturally
leads to a weak formulation of the underlying problem. To contrast with a strong
formulation where quantities are evaluated pointwise, weak formulations typically
involve an integrated version of the quantity, in a small domain. Having a weak version
of the problem helps when approximate or even noisy data is given. For instance, in
Chapter 4, we study the problem of jointly remeshing a pair of input triangulated
surfaces, M1 and Ma, to consistent quadrangulations. The meshes can have different
number of vertices and thus some mapping ¢ : M1 — My is assumed to be given. To
compute consistent quad meshes, we optimize for two rotationally symmetric vector
fields x1 and x2 on M7 and Mo, respectively, and to enforce consistency we need the
map differential, dp. That is, our basic consistency condition is that dy(z1) = x4 for
each point in M. In practice, ¢ can be noisy, leading to a noisy dp and a non-robust
algorithm. Instead, we design an efficient and robust algorithm in Chapter 4, by

facilitating the functional version of the consistency condition:
Cle]- D(x1) = D(=2) - Cle] (1.5)

where C[p] is the operator which corresponds to the mapping ¢. We refer the reader to
the thorough discussion and further information in the relevant chapter.

To conclude, the operator approach is highly useful in several scenarios, as this
thesis shows, allowing for a principled way to design algorithms which will be effective
and robust, while remaining efficient to compute. It is the hope of the author, that
the operator perspective will keep growing in the future, adding more formulations and

applications to geometry processing literature and in other scientific domains.



Chapter 2

An Operator Approach to

Tangent Vector Field Processing

In this chapter, we introduce a novel coordinate-free method for manipulating and
analyzing vector fields on discrete surfaces. Unlike the commonly used representations
of a vector field as an assignment of vectors to the faces of the mesh, or as real values on
edges, we argue that vector fields can also be naturally viewed as operators whose domain
and range are functions defined on the mesh. Although this point of view is common in
differential geometry it has so far not been adopted in geometry processing applications.
We recall the theoretical properties of vector fields represented as operators, and show
that composition of vector fields with other functional operators is natural in this setup.
This leads to the characterization of vector field properties through commutativity with
other operators such as the Laplace-Beltrami and symmetry operators, as well as to a
straight-forward definition of differential properties such as the Lie derivative. Finally,
we demonstrate a range of applications, such as Killing vector field design, symmetric

vector field estimation and joint design on multiple surfaces.

S1+S2+S3

Figure 2.1: Using our framework various vector field design goals can be easily posed as linear
constraints. Here, given three symmetry maps: rotational (S1), bilateral (S2) and front/back
(S3), we can generate a symmetric vector field using only S1 (left), S1 + S2 (center) and S1 +
S2 + S3 (right). The top row shows the front of the 3D model, and the bottom row its back.



2.1 Introduction

Manipulating and designing tangent vector fields on discrete domains is a fundamental
operation in areas as diverse as dynamical systems, finite elements and geometry
processing. The first question that needs to be addressed before designing a vector field
processing toolbox, is how will the vector fields be represented in the discrete setting?
The goal of this paper is to propose a representation, which is inspired by the point of
view of vector fields in differential geometry as operators or derivations.

In the continuous setting, there are a few common ways of defining a tangent vector
field on a surface. The first, is to consider a smooth assignment of a vector in the
tangent space at each point on the surface. This is, perhaps, the most intuitive way to
extend the definition of vector fields from the Euclidean space to manifolds. However,
it comes with a price, since on a curved surface one must keep track of the relation
between the tangent spaces at different points. A natural discretization corresponding
to this point of view (used e.g. in [PP03]) is to assign a single Euclidean vector to each
simplex of a polygonal mesh (either a vertex or a face), and to extend them through
interpolation. While this representation is clearly useful in many applications, the
non-trivial relationships between the tangent spaces complicate tasks such as vector
field design and manipulation.

An alternative approach in the continuous case, is to work with differential forms (see
e.g. [Mor01]), which are linear operators taking tangent vector fields to scalar functions.
In the discrete setting this point of view leads to the famous Discrete Exterior Calculus
[Hir03, FSDHO7], where discrete 1-forms are represented as real-valued functions defined
over the edges of the mesh. While this approach is coordinate-free (as no basis for
the tangent space needs to be defined), and has many advantages over the previous
method, there are still some operations which are natural in the continuous setting, and
not easily representable in DEC. For example, the flow of a tangent vector field is a
one parameter set of self-maps and various vector field properties can be defined by
composition with its flow, an operation which is somewhat challenging to perform using
DEC.

Finally, another point of view of tangent vector fields in the continuous case is to
consider their action on scalar functions. Namely, for a given vector field, its covariant
derivative is an operator that associates to any smooth function f on the manifold
another function which equals the derivative of f in the direction given by the vector
field. It is well known that a vector field can be recovered from its covariant derivative
operator, and thus any vector field can be uniquely represented as a functional operator.
We will refer to these operators as functional vector fields (FVFs). Note, that while this
point of view is classical in differential geometry, it has so far received limited attention
in geometry processing.

In this paper, we argue that the operator point of view yields a useful coordinate-free

representation of vector fields on discrete surfaces that is complementary to existing



representations and that can facilitate a number of novel applications. For example, we
show that constructing a Killing vector field [Pet06] on a surface can be done by simply
finding a functional vector field that commutes with the Laplace-Beltrami operator.
Furthermore, we show that it is possible to transport vector fields across surfaces, find
symmetric vector fields and even compute the flow of a vector field easily by employing
the natural relationship between FVFs and functional maps [OBCS*12]. Finally, the
Lie derivative of two vector fields is given by the commutator of the two respective
operators, and as a result the covariant derivative of a tangent vector field with respect
to another can be computed through the Koszul formula [Pet06].

To employ this representation in practice, we show that for a suitable choice of
basis, a functional vector field can be represented as a (possibly infinite) matrix. As
not all such matrices represent vector fields, we show how to parameterize the space
of vector fields using a basis for the operators. With these tools in hand, we propose
a Finite Element-based discretization for functional vector fields, and demonstrate its
consistency and empirical convergence. Finally, we apply our framework to various
vector field processing tasks showing comparable results to existing methods, as well as

novel applications which were challenging so far.

2.1.1 Related Work

The body of literature devoted to vector fields in graphics, visualization and geometry
processing is vast and a full overview is beyond our scope. Thus, we will focus on
the representation and discretization of vector fields, as these aspects of vector field
processing are most related to our work.

One approach to discretization (e.g. [PP03, TLHDO3]) is to use piecewise constant
vector fields, where vectors are defined per face and represented in the standard basis in
R3. This approach is simple and allows to define discrete versions of standard operators
such as div and curl, which are consistent with their continuous counterparts (e.g. one
can define a discrete Hodge decomposition [PP03]). However, since the representation is
based on coordinate frames, it makes vector field design challenging as the relationship
between tangent spaces is non-trivial, leading to difficult optimization problems.

An alternative discretization of vector fields was suggested as part of the formalism
of Discrete Exterior Calculus (DEC) [Hir03], where vector fields are identified with
discrete 1-forms, represented as a single scalar per edge. This approach is inherently
coordinate-free, allowing to formulate vector field design as a linear system [FSDHO7].
Unfortunately, computing the Lie derivative of vector fields remains a complex task
using DEC (as shown in [MMP*11]).

Vector field design and processing applications are also tightly connected to the
analysis of rotationally symmetric (RoSy) fields, see e.g. [PZ07, RVAL09, CDS10]. In
the latter work, for example, a vector field (or a symmetric direction field) is represented

using an angle per edge (an angle valued dual 1-form), which represents how the vector



changes between neighboring triangles. While these approaches are also coordinate-free
and lead to linear optimization problems for direction field design, it is not clear how

vector-field valued operators can be represented in such a setup.

In this paper, we argue that in addition to the existing discretization methods, it
is often useful to represent vector fields through their covariant derivatives as linear
functional operators. This representation is coordinate-free and, in addition, elucidates
the intimate connection between vector fields and self maps of the surface, allowing us
to extend the basic vector field processing toolbox to computational tasks which are

challenging using existing discretization tools.

Note that the operator representation of vector fields has been used in the context
of fluid simulation by Pavlov et al. [PMT*11]. However, in that work, the authors were
primarily interested in representing divergence-free vector fields and did not use this
representation for tangent vector field analysis and design. In this paper, we consider
general vector fields, demonstrate how this representation can be used for vector field

processing, and show a deep connection with the functional map framework [OBCS*12].

2.1.2 Contributions

Our main observation is that tangent vector fields can be represented in a coordinate-free
way as functional operators. While this view is classical in differential geometry [Mor01],
it has so far received limited attention in geometry processing. Using this perspective

we!

e Show how functional vector fields can be naturally composed with other operators,
and thus relate vector fields to other common operators such as maps between

shapes and the Laplace-Beltrami operator (Section 2.2).
e Provide a novel coordinate-free discretization of tangent vector fields (Section 2.4).

e Describe various applications for vector field processing including Killing vector
field design, design of symmetric vector fields and joint vector field design on
multiple shapes, which are all easily solvable as linear systems in our framework
(Section 2.5).

2.2 Vector Fields as Operators

In this section we define the coordinate-free view of vector fields as abstract derivations
of functions in the continuous setting. This point of view is well-known in differential
geometry (see e.g. [Mor01] for an excellent reference). Thus, we only recall the standard

definition and its main properties.
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Figure 2.2: Given a vector field V' (left) and a function f (center left), the inner product of
V[ (center right) with V is the covariant derivative Dy (f) (right). For the marked point, for
example, V is orthogonal to Vf, yielding 0 for Dy (f). Vector fields are visualized by color
coding their norm, and showing a few flow lines for a fixed time t.

2.2.1 The Covariant Derivative of Functions

We first assume that we are given a compact smooth Riemannian manifold M and a
tangent vector field V', which can be thought of as a smooth assignment of a tangent
vector V(p) to each point p € M. The vector field defines a one-parameter family of
maps, @1{, : M — M for t € R, called the flow of V. The flow is formally defined as the

unique solution to the differential equation:

d

SoL(p) =V@Lp), ) =p (2.1)

Then, for a given function f € C*°(M), the covariant derivative Dy (f) of f with respect
to V is a function g, which intuitively measures the change in f with respect to the flow

under V. Formally,

g(p) = Dy (f)(p) = lim f(@@(p)) - f(p)

t—0 t

A classical result in Riemannian geometry ( [Mor01], p. 148) is that the covariant

derivative can also be computed as :

Dy (f)p) = gp) = (V®),V®), (2.2)

where (, >p denotes the inner product in the tangent space of p, and V f is the gradient
of f (see Figure 2.2).

2.2.2 The Covariant Derivative as a Functional Operator

We stress that Dy is best viewed as an operator, which maps smooth functions on M
to smooth functions on M. Moreover, one can show that Dy encodes V so that if 1}
and Va are vector fields such that Dy, f = Dy, f for any f € C*°(M), then V; = V;
(see [Mor01, pg. 38]). Said differently, there is no loss of information when moving from

V to Dv.

The covariant derivative (viewed as a functional operator, i.e. an FVF) satisfies the
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following two key properties:
Linearity:
D(af+ Bg) = aD(f) + BD(9), (2.3)

and Leibnitz (product) rule:

D(fg) = fD(g) + gD(f). (2.4)

Conversely, a functional operator D corresponds to a vector field, if and only if it
satisfies (2.3) and (2.4) (see [Spi99, pg. 79]).

Why are these the necessary properties for operators that represent vector fields?
Intuitively, this is because vector fields can be thought of as first order directional
derivatives, which have two essential properties. First, that constant functions are
mapped to the zero function. And second, that Dy (f) depends on f only to first order.

One of the advantages of considering vector fields as abstract derivations is that this
point of view can be generalized to settings where differential quantities are not well
defined. For example, on a discrete surface there is no well defined normal direction
at vertices and edges. By working with purely algebraic constructs, such as linear
operators, we can define differentiation without requiring the concept of a limit, which
is useful when the underlying surface is not continuous and such a limit does not exist.
Moreover, as we will see, the operator point of view makes it easier to manipulate vector

fields and relate them to other functional operators.

2.2.3 Properties

While the operator point of view is equivalent to the standard notion of a vector field
as a smooth assignment of tangent vectors, certain operations are more natural in this
representation. Below we list such operations, which we will use in our applications in

Section 2.5. The proofs of all lemmas are provided in the supplemental material.

Operator composition. By using the operator point of view of vector fields, it
becomes easy to define their composition both with other vector fields and other more
general functional operators. Unfortunately, given two vector fields Dy, and Dy,, the
operator Dy, o Dy, does not necessarily correspond to a vector field. However, one can

modify this operator to obtain a fundamental notion:

Lie derivative of a vector field. Given two vector fields V; and V5, the Lie derivative
(or Lie bracket) of V5 with respect to Vj is a vector field V3 defined as:

»CV1 (VQ) = [Vl, VQ] = DV3 = DV1 o) DV2 — DV2 e} DV1' (25)

It is easy to see that Dy; thus defined is both linear and satisfies the product rule. Hence,

Dy, corresponds to a unique vector field V3. Intuitively, the Lie derivative captures the
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Figure 2.3: Two orthogonal vector fields on the torus V7, V5, whose Lie derivative is 0. Modifying
the norm of V5 using a function s yields a lie derivative which is parallel to V5.

commutativity of the flows of V4 and V5. In particular, the Lie derivative is zero if and
only if the flows defined by V; and V5 commute (see [Spi99, pg. 157]):

Py 0@ 0 @Y, 0 @Y, = Id Vs, t €R (2.6)

Figure 2.3 illustrates the computation of the Lie derivative on a torus. We consider
two vector fields V7 and V5 whose flows commute. The average norm of [V7, V3] computed
using the discrete operators we describe in Section 2.4 is on the order of 1e-8, close to
0 as expected. In general, if [V}, V5] = 0, it can be shown that for any scalar function
s: M — R, [V1, sVa2] must be parallel to Va. In Figure 2.3, we show a scaling function s,
and the computed vector field V3 = [V, sV5], which is parallel to V3, as expected.

Composition with other operators. Of course, it is possible to consider the com-
position of the FVF operator Dy with other functional operators. Interestingly, the
commutativity of Dy with a differential operator D is closely related to the commuta-
tivity of its flow with D.

Lemma 2.2.1. Let Tt, t € R be the functional operator representations of the flow
diffeomorphisms ®!, : M — M of V, defined by TL(f) = f o ®! for any function
feC>®(M). If D is a linear partial differential operator then Dy o D = D o Dy if and
only if for any t € R, Th o D = D o T}..

For example, on a Riemannian manifold, we can consider composition with the
Laplace-Beltrami operator L. The commutativity of Dy with L is then closely related
to the metric distortion imposed by the flow of V. In particular, recall that a vector
field is called a Killing vector field (KVF) if ®!, is an isometry for all ¢ (see [Pet06],
Chapter 7). Then:

Lemma 2.2.2. A vector field V is a Killing vector field if and only if Dy o L = L o Dy,.

From this lemma, it is easy to see that KVF's form a group under the Lie derivative.
Indeed, the following lemma, which follows directly from the definition of the Lie

derivative, is useful in general:
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Figure 2.4: Using commutativity with L, we compute the KVFs on the sphere (V1, Vs, V3).
Alternatively, we compute V; = [V1, V3], note the similarity of V3 and Vj.

Lemma 2.2.3. Given two vector fields Dy, and Dy, that both commute with some
operator D, the Lie derivative Ly, (V2) will also commute with D.

Figure 2.4 demonstrates these properties on the sphere. On the left, we show
V1, Va, V3, the three KVFs of the sphere, computed using Lemma 2.2.2 by constructing
a linear system (as explained in Section 2.5). On the right, we show V4 = [Vi, V3], which
was computed as the Lie bracket of the first two KVFs. Note the similarity between V3

and V4. We will use these results for designing approximate KVFs in Section 2.5.

Composition with mappings. In many settings we are also interested in the relation
between vector fields on multiple surfaces related by mappings. In particular, given
a vector field V7 on surface M and a diffeomorphism T : M — N, one can define the
vector field V on surface N via the push forward: Va(q) = dT(V1(T%(q))). Note that
in the discrete case, it is often difficult to compute the differential d1' of a map T
between shapes with different discretizations. At the same time, one can equivalently
define the vector field V5 using the operator approach, without relying on d7’, by using
the functional representation of the map T.

As mentioned in [OBCS™12], the functional representation Tr of a map T is a linear
operator on the space of functions, taking functions on N to functions on M defined by
Tr(g) = goT for any function g € C°°(NN). This means that the functional vector field
Dy, and thus V5 itself can be obtained by simple composition of three linear functional

operators without the need to estimate the differential d7', using:
Lemma 2.2.4. Dy, = (Tr)~' o Dy, o T.

Figure 2.5 illustrates vector field transportation using this approach (vector fields
are visualized using [PZ11]). Given V; on M, and a map T : M — N, we generate V5
on N using Lemma 2.2.4. V3 is computed using the differential of the map, given by
the affine map between corresponding triangles. Note that V3 tends to be noisy, due to
the locality of the transport procedure, as opposed to the smoother V5. Furthermore,
this approach is applicable to shapes with different connectivity, where computing dT is
challenging. In Section 2.5 we use a similar approach to design vector fields which are

consistent with the map T': M — N.
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Figure 2.5: Given a vector field V; on M and a map 7' : M — N, we generate a vector field V5
on N using Lemma 2.2.4. Compare with directly transporting V; using the differential of the
map, yielding V3. Note the ringing artifacts in V3.

Vector field flow. The FVF Dy representing a vector field is also closely related to
the functional representation of the flow ®,. In particular:

Lemma 2.2.5. Let Tt = <I>§/ be the self-map associated with the flow of V' at time
t. Then if T} is the functional representation of 7%, for any real analytic function f
(see [DFN92], p. 210):

o0 k
Thf = exp(t Dy)f =3 UEVLS

k!
k=0

This lemma is particularly useful since it allows to avoid the potentially costly solution
of the system of equations (2.1) and directly estimate the functional representation of the
map P!, through operator exponentiation. Note that Dy is a moderately sized matrix
when represented in a basis, and therefore its exponent can be computed efficiently.

Figure 2.6 shows an example of function flow using this method.

Covariant derivative of a tangent vector field. Some PDEs can be described
using the covariant derivative [Mor01] of a vector field V; with respect to another vector
field V5, denoted Vy,Vi. For planar vector fields, for example, Vy, Vi = J(V1)Va, where
J(V1) is the Jacobian matrix of Vj.

On a surface, however, this representation requires a basis for the tangent space
at every point, and a suitable connection that allows to transport a vector V(p) to a
neighboring point ¢, which makes Vy, V) elusive to compute in a coordinate-free way.
Fortunately, there is an intimate connection between the Lie and covariant derivatives
of vector fields, through the Koszul formula, ([Pet06], p. 25):

29(V, Va, Z) = Dy, (9(Va, Z)) — g(V1, [V2, Z])
+ Dv,(9(V1, 2)) — g(Va, [V, Z]) (2.7)
—DZ(Q(VI’V2))+9(Z7 [VhVQ])'

Here, Z is an arbitrary vector field, g(-,-) = (-, -)p is the inner product in the tangent

space of p, and [-, -] is the Lie bracket (Eq. (2.5)). Hence, given an operator representation
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Figure 2.6: Applying the flow of a vector field (left) to a function (center left) using Lemma 2.2.5.
(center right, right) The function after the flow, for two sample ¢ values.

of Dy, and Dy,, we can use Equation (2.7) to compute Vy,Va. We leave further

investigation of this direction, and possible applications for future work.

2.3 Representation in a Basis

The properties mentioned above suggest that representing and analyzing tangent vector
fields through their functional representation can enable a number of applications which
are challenging using standard methods. Our goal, therefore, will be to represent this

operator such that it can be easily analyzed and manipulated in practice.

2.3.1 Basis for the Function Space

As mentioned in Section 2.2.2, an FVF is a linear operator acting on smooth functions
defined on the manifold. In practice, we will assume that the functional space of interest
can be endowed with a (possibly infinite) basis, so that any function can be represented
as a linear combination of some basis functions {¢;}. Then, for any given function
[ =23, aip;, we have that g = Dy (f) = Dy (>, ai;) = Y, aiDy(¢;). Since Dy (¢;) is
also a function, it can be represented in the basis as Dy (¢;) = > y D;;j¢;. Therefore,
=>_;(22; Dijai)$; = >, bj¢;. In other words, if one thinks of the coefficients a;, b;
as vectors a,b and D = (D;;) as a matrix, then the transformation between the basis
representations of f and g = Dy (f) is given by: b = Da.
When the basis functions ¢; are orthonormal with respect to the standard functional
inner product on M, i.e. [y, ¢i¢;du = 1if i = j and 0 otherwise, then the (i, ;)™
element D;; of the FVF corresponding to V' is given by:

D = / 6:Dv (67 du(p / 6i(p) (V(0), Vé5), du(p), (2.8)

where (, >p denotes the inner product in the tangent space of the point p, and du(p)

represents the volume measure at p.
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The Laplace-Beltrami basis. A useful basis for the space of smooth functions on
a compact manifold, which we will often use in practice, is the basis given by the
eigenfunctions of the Laplace-Beltrami operator (note that on a compact manifold
the space L2(M) is strictly larger than the space of smooth functions). Since each
eigenfunction of the Laplace-Beltrami operator is smooth, Equation (2.8) is well defined.
One advantage of this basis is that the basis functions are ordered and can be attributed
a notion of scale, given by the corresponding eigenvalue. This has been exploited in a
number of scenarios including the work on functional maps [OBCS*12] where a mapping
between two shapes is compactly encoded using a sub-matrix of a possibly infinite
functional map matrix. This choice of basis yields a compact representation of the FVF

operator as an Ny X Ny matrix, where Ny is the number of basis functions we use.

2.3.2 Parameterization with Basis Operators

As mentioned in Section 2.2.2, the space of linear functional operators is strictly larger
than the space of vector fields. Therefore, in order to work with this representation in
practice, it is useful to have a parametrization of the space of FVFs, which is easy to
manipulate.

One possible such parameterization, is to consider a basis for the space of tangent
vector fields 1);, and to represent an operator Dy, as a linear combination of the functional
vector field operators Dy, . In our work, we consider the eigenfunctions of the 1-form
Laplace-de Rham operator to generate a basis for the 1-forms on a surface, and use
these as a basis for the tangent vectors, by duality [Mor01].

Given such basis operators Dy, the FVF operator Dy that represents a vector field
V =3, a;®; is given by: Dy = ). a;D,,. Note, that this basis is also ordered, so that
smoother vector fields can be represented using fewer basis operators. In practice, we
truncate the basis, and limit the number of basis operators to a fixed value Np.

With this parameterization, it is straightforward to use the properties we mentioned
in Section 2.2 to design a vector field that has various desirable characteristics, simply

by solving a linear system for the coefficients a;. Figure 2.7 shows a vector field designed

Figure 2.7: Prescribing directional constraints (left) or singularities (right).
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Figure 2.8: Given a vector field (left), we reconstruct it with growing accuracy by increasing
the number of basis operators Np (right). Note that the index 2 singularity is accurately
reconstructed given enough basis operators.

by posing a small number of directional constraints (one direction for the teddy (left)
and 4 zero valued vectors for the kitten (right)), and solving for the coefficients as
explained in Section 2.5.

Figure 2.8 demonstrates the effect of using a varying number of basis operators.
Given a direction field (left), we project it on a growing number of basis operators and
show the reconstruction error as a function of Np (right). We additionally show the
reconstructed vector field, for a few choices of Np. Note, that although the direction
field is smooth, due to the jump from unit length norm to zero norm at the singular
point, it is difficult to reconstruct this vector field exactly. However, using a growing

number of basis operators we can approximate better this discontinuity in scale.

2.4 Discretization

So far we have described the properties of tangent vector fields as functional operators in
the continuous case. In this section we will focus on the discretization of these concepts
to surfaces which are represented as triangle meshes. We propose a finite-element based

discretization, and discuss its consistency and experimental convergence properties.

2.4.1 Representation

We will first address the following problem: given a triangle mesh M = (X, F, N), where
X are the vertices, F' the faces and NV the normals to the faces, and a piecewise constant
tangent vector field V = {v, € ]R{3|7“ € F,v, L N,}, how do we represent the functional
vector field Dy 7

The answer is in fact straightforward, when we consider the representation of Dy, in
the functional basis given by the standard hat functions. On a triangle mesh we can
represent functions in a piecewise linear basis, namely f(p) = Z'fi'l b;v;(p), where ~;
are the standard hat functions (valued 1 at vertex i and 0 at all other vertices), and

bj € R are the coefficients. Now, given the function f(p) = >_;b;7;(p), and a piecewise
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constant vector field V', we wish to compute g = Dy (f). We set g(p) = >_; a;7;(p), and
solve (2.2) in the weak sense, as is standard in Finite Element Analysis (see [AFWO06]

for a complete discussion of this approach):

/wgdu:/ viDv (f)dp, Vi
M M

Plugging in the expressions for f, g and Dy we get Vi:
Zaj/ Yivjdp = ij/ Yi (V5. V) dp. (2.9)
j M g M

The integrands in (2.9) vanish everywhere, except on the set of triangles R;; C F,
for which both v; and ; are non-zero. For ¢ = j, these are the triangles neighboring
the vertex ¢. For i # j, we have that (4, j) must be an edge, and R;; contains only the
two triangles which share that edge.

This leads to ; a;Bi; = >_; b;S;j, where:

Bij= ), / Yvidps  Sij= ) / i (V5, V) dp.
t'rERij tr t'rERz‘j tr

Computing the elements B;; yields the standard mass matrix used in the solution of

Laplacian systems, whereas S;; is given by (see the inset figure for the notations):

€

€
sel(yriua) R

Sii=— > Sy .

JEN() 6

Here, r1 and 7y are the two faces that share the edge (i,7), Vi is the value of V' on
the face rq, ef is the rotation by 7/2 of the edge opposite to the vertex j in the face
71 (similarly for Va and ey), and N (i) are the neighboring vertices of vertex i. The
derivation is given in the supplemental material.

We further replace B with a diagonal lumped mass matrix W of the Voronoi areas
w; of the vertices [BKPT10], and get:

a=Dyb, Dy=W"7!8 (2.10)

Note, that the size of Dy is | X| x | X[, but it is sparse, as only the diagonal and
entries of adjacent vertices are non-zero.
It is sometimes useful to decompose Dy as a product of two operators: Dy =

P‘X'XlFl(ﬁ{th'XlX‘, where P is independent of V' and depends only on the mesh. We
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take:

1

— A, (D)= (Vy, V)., 2.11
o Ar, (D)= (V. V), (2.11)

(P)iT =

where A, is the area of the triangle t,.. In fact, the operator 155 is simply the smooth
operator Dy per triangle, where V' is fixed. Therefore, it preserves most of the properties
of its smooth counterpart. However, to get an operator which commutes with other
operators, we need to apply P, averaging values from faces to vertices. This introduces
a discretization error into our formulation, due to the discontinuity of the vector field
near the vertices.

Alternatively, we can use the first Ny eigenvectors ggl of the discrete Laplace-Beltrami
operator as the basis for the function space, and then Dy will be represented using an
Ny x Ny matrix, which we will denote by ﬁ‘L/B . We compute ﬁ‘L/B by using a change of
basis:

DEP = BYDy B, (2.12)

where B is a matrix whose columns are ngBZ and BT is its pseudo-inverse. This represen-
tation introduces some additional error, due to the truncation of the basis, and there
exists a trade-off between the complexity of the representation (in terms of N¢) and the

amount of detail the functions we work with can represent.

2.4.2 Properties

It is interesting to investigate which properties of Dy are preserved from the smooth

case, and which are not but converge under refinement of the mesh.

Constant functions. We have that Dy (¢) = 0, for any constant function c. It is
easy to see this property is preserved in the discrete case, since the rows of Dy sum to

zero, hence the constant functions are in its kernel.

Product rule. The continuous Dy fulfills two defining properties: linearity (Equa-
tion (2.3)) and the Leibnitz product rule (Equation (2.4)). Since Dy is a matrix,
linearity is clearly satisfied. However, as we work in a limited subspace of functions, the
product rule is no longer valid: given two PL functions f, g, their pointwise product
fg is no longer PL, and therefore we cannot apply Dy to it. However, we can show
empirically that when applying increasingly finer discretizations of Dy to increasingly
finer discretizations of continuous functions f, g, the product rule error decreases.

Let f3, gn, be the two random smooth piecewise linear functions defined on a mesh
with h vertices, and take V' to be a smooth tangential vector field. Now, for every h,
compute the error e, = Dy (frgn) — (9o Dv (fr) + fnDv(gn)), where the multiplication
is done vertex-wise. The inset figure shows the graph of ||ep||2/h as a function of h,

in loglog scale, for a few choices of models. Note that the graph is linear, implying

20



_10°
= \
E -10 \

10

-15
10
10 10* 10°
h

exponential convergence under refinement.

Uniqueness. The correspondence between a vector field V' and its FVF operator Dy
is one-to-one and onto in the continuous case, implying that given an operator Dy we
can uniquely reconstruct the vector field V. This property, unfortunately, may not hold

in the discrete case. We do, however have the following weaker result:

Lemma 2.4.1. Let M = (X, F,N) and let V7, V5 be two piecewise constant vector fields
on M. Then: lA)Fl = ﬁ{}; if and only if Vi = Vs.

In practice, given an operator Dy we reconstruct the corresponding vector field V

by projecting on the operator basis, as described in Section 2.3.2.

Metric invariance. The continuous functional vector field operator Dy commutes
with the pushforward under a map. Specifically, given a bijective diffeomorphism
T : M — N, a vector field V3 on M and a function f : M — R, we have that
Dy, (f)(p) = Dy, (f o T~1)(T(p)), where Vo = dT(V1(p)), and dT is the differential of T'.
As a consequence, Dy does not depend on the embedding of the shape M.

As we do not have the uniqueness property, the discrete metric invariance property

is also limited to the 155 operator:

Lemma 2.4.2. Let My = (X1, F,N1) and My = (X2, F, N2) be two triangle meshes with
the same connectivity but different metric (i.e. different embedding). Additionally, let
V1 be a piecewise constant vector field on Mj, then ﬁgl = D{}; .

Here (V3), = A(V1),, where A is the linear transformation that takes the triangle
r in M to the corresponding triangle in Ms. Note that lA)Vl is computed using the
embedding Xj;.

Integration by parts. For a closed surface, we have that [,, f(V-V) = [, (Vf,V) =
Jay Dv(f), for all f: M — R. This holds exactly in the discrete case, when using the

standard vertex-based discrete divergence, defined as in [PP03]:
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[BCBSG10] [BCBSG10] [BCBSG10]

Figure 2.9: Geodesic distances between pairs of starting points are measured before and after
the flow. Comparing the normalized average error for the models shown yields (left to right):
0.2,0.96, 2.47 for our method, and 0.23,1.15, 4.5 for [BCBSG10] (units are average edge length).

Lemma 2.4.3. Let M = (X, F, N), V a piecewise constant vector field on M, f =", fivi

a PL function on M, and w; the Voronoi area weights, then:

|X| | X

> wiDvf)i=> wifi(V-V)i.
i=1 i=1

2.5 Applications

In this section, we describe how our representation can be used to compute vector
fields which have various desirable properties. While some of the suggested applications
have been attempted before (e.g. designing vector fields using direction and singularity
constraints [FSDHO07, CDS10], computing Killing vector fields [BCBSG10] and symmet-
ric vector fields [PLPZ12], among others), our framework is unique in that it allows
to combine any such constraints into a single optimization problem. In addition, we
provide a proof-of-concept for more advanced tools, such as jointly designing vector

fields on two or more surfaces.

2.5.1 Implementation Details

Given a mesh M, scalars Ny, Np and a set of desired properties for a vector field, we

propose the following algorithm:

1. Compute the first N; eigenfunctions of the LB operator qASi, using the area nor-
malized cotangent scheme [BKP110].

2. Compute the first Np 1-form eigenfunctions of the Laplace-de Rham operator,
and convert those to piecewise constant vector fields 1&2 We used the definitions
from [FSDHO07] for both operations.

3. Convert 1; to ﬁ{;B using Equation (2.12).
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4. Optimize simultaneously for the vector field V' = )", ailﬁi and its functional
representation Dy = ). ailA){ZiB , by solving a linear system for a;. The joint
formulation allows us to stack constraints which are best represented using the
operator (e.g. commutativity constraints) together with constraints which require
the vector field (e.g. prescribed directions at specified locations). This yields a

linear system Wa = c, which we solve in the least squares sense.
5. Output the computed vector field V =}, aiz[A)i.

Throughout our experiments we used meshes in the range of 5k-200k vertices, with
Ny and Np between 50 and 300, depending on the experiment. The computational
time was dominated by the eigen-decompositions and took a few minutes on a standard
laptop.

Figures 2.3, 2.4, 2.5 and 2.7 from the previous sections were generated using this
framework. In addition, we describe a few examples of potential applications of our

framework, related to the properties discussed in Section 2.2.

2.5.2 Approximate Killing Vector Fields

Lemma 2.2.2 provides a linear constraint on the FVF operator, which guarantees that a
given vector field is a KVF. We can use this result, and optimize for the best KVF on a
given surface, by optimizing for a set of coefficients a such that the resulting operator
Dy will commute with the Laplace-Beltrami operator, i.e. ||[Dy oL — Lo Dy|| = 0.
Here we get a homogeneous system Wa = 0, hence the AKVF is the singular vector
corresponding to the lowest singular value.

Figure 2.9 shows a comparison of the resulting vector fields with the results of the
state-of-the-art algorithm [BCBSG10]. The comparison is done using the same meshes,
where on each mesh we pick a few vertices and show the flow lines for a fixed time ¢
starting from these vertices. Note, that we achieve similar results, but in our framework
we can easily combine the KVF constraint with other constraints such as commutativity

with a symmetry operator.

Figure 2.10: An AKVF V (left), an indicator function f (center), and its symmetrization
computed by projecting f on the kernel of Dy (right).
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Figure 2.11: On the human model (left and center) we show design results with and without
symmetry constraints - note the difference on the right hand. On the spot model (right) we
show symmetric and anti-symmetric vector fields.

Interestingly, the spectral decomposition of the functional vector field operator is
meaningful and potentially useful in applications. Specifically, functions are in the kernel
of Dy if and only if they are fixed points of the flow <I>§/ for all ¢ (since Dy f = 0 if and
only if exp(tDy)f = f,Vt ). Therefore, the kernel of an AKVF operator spans the linear
subspace of symmetric functions under the corresponding symmetry. This implies, that
given an arbitrary function f, we can symmetrize it by projecting it onto the kernel of
such an operator. Figure 2.10 shows an example of an AKVF V| an indicator function

f and its symmetrization sym(f).

2.5.3 Composition with Mappings

Given a self-map S, we design a symmetric vector field by posing a constraint of
the form |[Dy oS — SoDy|| = 0. Figure 2.11 (left and center) shows an example
of a vector field designed with directional constraints and one designed with both
directional and symmetry commutativity constraints. Note the difference on the hand
of the model, as the symmetric constraints enforce similar behavior on both hands.
Additionally, we can define an anti-symmetric vector field, by requiring V(S(p)) =
—V(p), where S is the symmetry map. To enforce this requirement, we use the
constraint || Dy o S + S o Dy|| = 0. Figure 2.11 (right) shows an example of symmetric
and anti-symmetric vector fields.

Given a collection of shapes, a desirable goal when designing vector fields is to
have different constraints on each shape, yet generate compatible vector fields across
the collection. In Figure 2.12 (right) we achieve this goal using the map composition
property. We are given two shapes M; and M, and a functional map Tr between
the corresponding function spaces. In addition, on each shape we are given a set of
directional constraints c1,co. We wish to generate vector fields V; on the shapes M;,
such that V; commute with Tx, and fulfill the constraints. A natural approach would
be to transfer the constraints and solve separately for each mesh. However, as shown
in Figure 2.12 (left), there is a large difference between the resulting fields - e.g in the

locations of the singularities. Figure 2.12 (right), shows the result when solving jointly
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for both shapes. Note that the singularities on the back of the shape are consistent
between the models. For evaluation, we transport Vi to My and measure the angle
difference between the resulting vector field and V,. Figure 2.12 (center) shows the
resulting histogram, emphasizing that our joint design method preserves the directions
better.

Angle error
MJoint design: mean=0.15
|Mindependent design: mean=0.27 |

Independent

design Iliu“ I

TN N
02 04 06 08 1 12 14 16
Radians

Figure 2.12: (left) Independent design on two shapes which are in correspondence does not
yield a consistent vector field, even if compatible constraints are used. (right) Solving jointly
using our framework yields consistent vector fields (note the corresponding locations of the
singularities on the back of the shape). See the text for details.

2.6 Discussion

Tangent vector fields on surfaces are used in a myriad of applications in computer graphics
and geometry processing. We propose to represent them as functional operators, thus
enabling applications which were not easily attainable using standard representations.
We have provided a discretization of the operator, and demonstrated it is consistent
and experimentally convergent under refinement. Finally, we described some high level
vector field design applications, such as Killing, symmetric and joint vector field design.

We believe the proposed representation opens the door for many additional ap-
plications. Specifically, the covariant derivative of one vector field with respect to
another could potentially be useful for computing the Gaussian curvature, and for
posing smoothness constraints for vector field design. Further applications include

finding pairs of vector fields with zero Lie derivative for surface parameterization.
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In general, we feel that we only uncovered the tip of the iceberg of possible applica-
tions and extensions of this framework. In an even broader context, considering both
the operator representation of maps between surfaces, and the operator representation
of vector fields, seems to imply that a lot is to gain by abstracting common notions in
geometry processing, and viewing them more generally as operators. It remains to be

seen whether this approach is applicable to additional concepts as well.
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Chapter 3

Discrete Derivatives of Vector
Fields on Surfaces — An Operator

Approach

Vector fields on surfaces are fundamental in various applications in computer graphics
and geometry processing. In many cases, in addition to representing vector fields, the
need arises to compute their derivatives, for example for solving partial differential
equations on surfaces, or for designing vector fields with prescribed smoothness properties.
In this work, we consider the problem of computing the Levi-Civita covariant derivative,
i.e., the tangential component of the standard directional derivative, on triangle meshes.
This problem is challenging since formally, tangent vector fields on polygonal meshes
are often viewed as being discontinuous, and hence it is not obvious what a good
derivative formulation would be. We leverage the relationship between the Levi-Civita
covariant derivative of a vector field and the directional derivative of its component
functions to provide a simple, easy-to-implement discretization for which we demonstrate
experimental convergence. In addition, we introduce two linear operators, which provide
access to additional constructs in Riemannian geometry that are not easy to discretize
otherwise, including the parallel transport operator, which can be seen simply as a
certain matrix exponential. Finally, we show the applicability of our operator to various
tasks, such as fluid simulation on curved surfaces, and vector field design by posing

algebraic constraints on the covariant derivative operator.

3.1 Introduction

Tangent vector fields are ubiquitous in computer graphics. From fluid simulation to
texture synthesis, the need to represent vectorial data arises in many applications.
Often, it is necessary to compute the covariant derivative of a tangent vector field in
an arbitrary tangent direction. For example, when simulating fluid flow using Euler

equations, the covariant derivative of the fluid’s velocity is the main ingredient in the
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computation of the time evolution of the flow [Tay96]. Furthermore, some vector fields
are characterized by the properties of their derivatives: smooth vector fields [KCPS13]
minimize the Dirichlet energy, while Geodesic vector fields [PHD"10] are constant
length and have symmetric covariant derivative operators. Although specific solutions
have been tailored to various applications, there currently exists little work on discrete
representations of derivatives of tangent vector fields on polygonal meshes, which are

applicable to general scenarios.

There are two main challenges in deriving such a discretization. First, even on
smooth surfaces, defining derivatives of tangent vector fields is more involved than
defining derivatives of functions. Specifically, comparing the values of a function at two
points on the surface is trivial, but it is not obvious how given two tangent vectors
at different points one can determine if they are “the same”, since tangent vectors at
different points are expressed with respect to different reference frames. Hence, one
needs a way to transport vectors across tangent planes, a construct encoded by a notion
of parallel transport. Unfortunately most theoretical treatments of these topics make
heavy use of local coordinates, which makes defining discrete analogues for polygonal
meshes difficult.

The second challenge is due to the nature of discrete surfaces, namely polygonal
meshes, and the way tangent vector fields are represented. The simplest representation,
which is the one we opt for, is piecewise constant vectors on the faces of the mesh.
However, in such a representation vector fields are discontinuous across edges, which a
priori can lead to difficulties in computing their derivatives. In this paper, we formalize
this intuition by showing that for this choice of vector field representation, there exists
no definition of a discrete vector field derivative which satisfies all the properties of
the continuous Levi-Civita covariant derivative exactly. Faced with these challenges,
we propose a novel approach to discretize the Levi-Civita covariant derivative. We
compute the directional derivatives of the vector field’s component functions and take
the tangential part of the resulting vector field. In the continuous case, it is well-
known that such a definition yields the unique Levi-Civita covariant derivative [Mor01,
pg. 181]. While being intuitive and easy to implement, our approach offers several
conceptual benefits. First, by working with functions instead of vector fields, we
overcome the difficulty of comparing vectors in different tangent planes. Second, by
projecting the component functions on a multi-scale basis, we impose some smoothness
on the underlying vector field, which allows us to obtain a stable discretization of the
Levi-Civita covariant derivative for which we demonstrate experimental convergence.
Finally, we derive a representation of the covariant derivative as an operator acting on
vector fields. This allows us to design vector fields with various properties, and to define
parallel transport without resorting to the computation of discrete flow lines, simply as

a matrix exponential.
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3.1.1 Related Work

Unlike the discretization of the directional derivatives of functions, which can be reduced
to computing gradients and is thus well-established (e.g., [BKPT10, ABCCO13]), there
exists, to the best of our knowledge, no unified treatment of covariant derivatives of
vector fields on meshes. Some derived quantities such as the divergence and the curl
have received wide attention [PP03, War07, Hir03, MDS*02], whereas the general case
we are interested in—the Levi-Civita covariant derivative of a tangent vector field, has
not been discretized directly. As a full review of the use of derivatives of vector fields in

applications is beyond our scope, we mention a few representative examples.

Discrete calculus frameworks There exist several frameworks for geometry pro-
cessing and graphics applications that provide discretizations of differential quantities.
Discrete exterior calculus (DEC) [Hir03] is one of the most extensive and widely used,
and provides discrete equivalents for vector field operators such as curl, divergence, gra-
dient and Hodge Laplacian. In addition, DEC provides a strong theoretical foundation
in the discrete setting with theorems which mimic the corresponding statements for
smooth surfaces. However, not all operators are supported in DEC, and specifically
there is currently no consistent discretization of the covariant derivative of vector fields.
Other frameworks, such as surface Finite Element Methods (FEM) [DE13], and Finite
Element Exterior Calculus [AFWO06] have also been proposed, but their focus has tradi-
tionally been on solving boundary value problems for differential equations. While these
approaches have been successfully used to discretize differential operators including the
Laplace—Beltrami operator [War07, DE13], discretizing arbitrary differential quantities
on unstructured meshes remains challenging.

Another approach is to use a global conformal parameterization to the plane [LWCO05]
together with standard FEM to solve a modified problem which takes into account the
distortion introduced by the parameterization. Such methods, however, can be sensitive
to the large area distortion induced by conformal maps, which may cause many triangles

in the planar mesh to collapse, leading to unstable numerical systems.

Vector field design Vector derivatives are often required for vector field design
applications. One of the most prominent requirements is that the resulting vector field
is sufficiently smooth, and this calls for a way to relate vectors in nearby tangent spaces.
On a triangle mesh, two classes of methods have been proposed to quantify smoothness
of vector fields. The first is to use discrete 1-forms instead of vector fields, and rephrase
the required operators in terms of DEC [FSDH07, BCBSG10], making use in particular
of the Hodge Laplacian operator which provides a measure of smoothness for vector
fields in a similar way as the Laplace—Beltrami operator does for functions. However,
this limits the scope of applications, since, for example, it is not clear how to compute

the directional derivatives of vector fields, and if various operators (e.g., the symmetric
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part of the covariant derivative operator) can be represented in DEC.

Another common method to measure smoothness of vector fields is by prescribing
a rule on every edge of the mesh, which allows one to compare vectors on the faces
across this edge. Perhaps the most natural instance of this approach is to relate vectors
on a pair of neighboring triangles by “unfolding” them into a single plane. Indeed,
it is customary to refer to this process as the discrete Levi-Civita connection, e.g.,
[CDS10], and various comparison rules have been proposed for different applications
([PS06, CDS10, PHD*10, LJX*10] among others).

However, this general approach has several significant drawbacks. First, these
comparison rules only define directional derivatives in the direction of the dual edges of
the mesh, and it is not obvious what the derivative should be in a general direction. If
we extend this approach to a general direction by following the discrete geodesic in that
direction, it is not clear what happens at a vertex. Furthermore, the resulting definition
is not stable: a small change in the direction can change the following face on the
geodesic path, yielding a different vector and potentially a large change in the derivative.
Finally, in many cases the “unfolding” approach is used to define discrete parallel
transport, namely a way to transfer a vector between faces on the mesh. Our method
provides a more general definition of parallel transport, by allowing to transport a vector
field on the flow lines of another vector field. Implementing this using the unfolding
approach would require numerically integrating the direction vector field to generate
the flow lines, and then unfolding the triangles along the flow lines, which are both
algorithmically complicated and numerically sensitive operations. Using our method we

can compute discrete parallel transport simply using a matrix-vector multiplication.

Fluid simulation The directional derivative of a vector field with respect to itself
appears in various PDEs, one of them is given by the Euler equations for inviscid
incompressible flow. Understanding the solutions to these equations is a research field
in itself (see e.g., [Bat00]), thus we only mention some of the more relevant work in
computer graphics, and specifically fluid simulation on surfaces. Existing solutions
include parameterization-based techniques [LWCO05], and methods which assume a
particular structure on the mesh, e.g., by working with subdivision surfaces [Sta99].
These methods have the drawbacks of introducing unwanted errors due to the distortion
of the parameterization, and the added complexity of converting a general triangle mesh
to a subdivision surface. Note that on a two-dimensional surface, the Euler equations
can be reformulated in terms of the vorticity of the flow [NVW12, ETK07], yielding
a simpler representation of the velocity through the stream function. However, vortex
methods have several limitations, e.g., it can be more difficult to set boundary conditions,
and therefore in some cases it is preferable to use a velocity based method. Finally, a
method which is tailored for inviscid and incompressible flows on triangle meshes is
provided in [SY04]. This method is based on semi-Lagrangian velocity advection on a

triangle mesh, which requires tracing velocity flow lines and triangle unfolding, that
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suffer from the drawbacks mentioned previously.

3.1.2 Contributions

Our main contribution is a simple yet efficient method for discretizing the Levi-Civita
covariant derivative on triangle meshes. We focus on three aspects in our exposition:
properties of the discretization, the novel perspective offered by the operator approach,
and sample applications. Note, that since we provide a tool and not a specialized appli-
cation, we focus on proof-of-concept scenarios to illustrate the possibilities associated
with our discretization.

In the following sections we discuss our main contributions:

e The discrete formulation of the Levi-Civita covariant derivative, including experi-

mental convergence results (Section 3.3).

e A representation of the derivative as a linear operator that takes vector fields to vec-
tor fields, whose algebraic properties have geometric meaning, e.g., exponentiation

leads to an algebraic definition of parallel transport (Section 3.4).

e Several examples demonstrating the applicability of our discrete derivative: vector

field design and fluid simulation on surfaces (Section 3.5).

3.2 Directional derivatives of vector fields

Our main goal is to discretize the directional derivative of a vector field on a surface,
also known as the Levi-Civita covariant derivative. We will first discuss the definition of
such a derivative and its properties in the continuous case. We provide a brief intuitive
introduction to the required concepts in this section. Readers well versed in differential
geometry can skim these and proceed to the discrete treatment in Section 3.3. As we
focus mostly on the geometric intuition behind the definitions, we refer the interested
readers to [Mor01, Chaps. 5.2, 5.3] and [Car94, Chap. 2] for the detailed treatment.

3.2.1 Notation

In the following we denote a surface by M C R3, upper case letters (e.g., U, V, W) denote
tangent vector fields, and lower case letters (e.g., f,g) denote real-valued functions. We
denote by | - || an operator which takes a tangent vector field and outputs a function of

its pointwise norms.

3.2.2 The Levi-Civita covariant derivative

To gain some intuition, first consider the motion of a particle in the plane, R?. Its

trajectory forms a path (t) € R%,¢ € R, and its velocity 7/(t) = U(t) € R? is a vector
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Figure 3.1: (left) The velocity U(t) and acceleration U’(t) of a particle traveling along a curve
~(t) on a surface, and the tangential component of the acceleration Vi U. (right) The parallel
transport of Vg along  is the vector field V(¢) defined as the unique solution of the differential
equation V..,V (t) = 0 with V(0) = V5.

tangent to the path. Its acceleration is the vector:

. Ult+At) -U(t
00 = i, S (3.1)
For example, if the trajectory is a straight line and the velocity is not constant,
then U’(t) will point in the direction of travel. If the particle travels at constant
speed, then the acceleration U’(t) is in a direction orthogonal to the path, since

(U(t),U(t)) =2(U'(t),U(t)) = 0. Like the velocity, the acceleration vector lies in R2.

Now, consider the same particle traveling on a curved surface M C R3. Again, its
trajectory forms a path y(t) € M,t € R, and its velocity vector U(t) is tangent to it.
However, the acceleration vector U’(t) is no longer tangent to M and it decomposes into
a component normal to M, the normal acceleration, and a component tangent to M, the
tangential acceleration (see Figure 3.1, left). Intuitively, since the particle is constrained
to live on the surface M, we can take an intrinsic point of view by considering only the

tangential part of the acceleration.

We can similarly compute the tangential component of the derivative of any vector

field V defined along a curve, and not necessarily tangent to it, by considering the

V(y(E+AD)) =V (y(#))
At

the standard x,y, z coordinates in R3, this definition can be further extended to define

tangential component of lima; ¢ along the curve ~. Finally, using

the covariant derivative of a tangent vector field V' = (vy,vy,v;) on M in a specific

direction given by a vector field U on M:

VuV(p) = B((Duvs, Dyvy, Dyv:)(p)), p € M, (3-2)

where P, is the orthogonal projection on the tangent plane to M at p and, for any
function f, Dy f = (Vf,U) denotes the derivative of f in the direction of U. Notice
that (Dyv,, Dyvy, Dyv,)(p) is a vector in R3, while ViV (p) is a tangent vector. The
vector field ViV is known as the Levi-Civita covariant derivative of V with respect to
U [Mor01, pg. 181].
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|| ViU ||Vl |

Figure 3.2: Constant norm vector fields U; on a surface of revolution, and their norm ||V, U;||
and flow lines. Note that the norm is zero on the geodesics (marked red), and that the flow
lines are orthogonal to U;, since they are constant norm.

3.2.3 Parallel transport

The definition of the covariant derivative is closely related to the notion of parallel
transport. Intuitively, parallel transport allows us to “carry” a vector along a curve,
such that it remains “parallel” to itself. For example, the norm of a parallel-transported
vector remains fixed, and if the curve is a geodesic then the angle the vector forms
with the tangent to the curve also remains fixed. This is formalized using the idea that
parallel transport should be the integral of the covariant derivative. Formally, given a
curve (t) in M and a tangent vector Vj at v(0), the parallel transport of V; along ~ is
defined as the unique solution of the differential equation V)V (t) = 0 with initial
condition V' (0) = Vj [Car94, pg. 52], see Figure 3.1 (right).

Before we dive into the properties and the proposed discretization of ViV we would
like to give some intuition as to the quantity we are computing. Consider a surface
of revolution, like the ones shown in Figure 3.2, and a constant norm vector field
U which is orthogonal to the rotation axis (i.e., it “goes around” the surface). Now
consider a particle traveling on the flow lines of U at constant speed. If the flow line is
a geodesic, e.g., as the curves marked in red, then traveling at constant speed would
yield 0 tangential acceleration. This is seen in the center figures, which show the color
coding of ||VyU||. If the particle is not traveling on a geodesic, it has to accelerate to
keep “turning”. However, since the speed is constant, the acceleration U’(t) would be
orthogonal to the direction of travel, as is seen in the figures showing the flow lines of
VuU.

3.2.4 Properties

As we aim for a generic discretization of ViV, which works well in various applications,
we would like to assess the properties that are required from such an object. For
example, it has been shown in [War07] that for the Laplace-Beltrami operator and
under mild conditions, there is no discretization which fulfills all the defining properties

of the continuous operator. In our case, the Fundamental Theorem of Riemannian

33



Geometry guarantees that if an operator fulfills the following five properties, then it is
the unique Levi-Civita covariant derivative [Car94, pgs. 50-55]. Hence, it is of interest
to understand these properties, and see whether they are achievable in the discrete case.
To make the discussion more concrete, we also denote for each property the application

in which it will be required.

Linearity. As any derivative it is a linear operator:
Vo(V+W)=VyV +VyW. (3.3)

Linearity allows us to represent the operator VV in a basis, and construct various

energies for vector field design.

Product rule.
Vu(fV)=fVyV +VDyf. (3.4)

Although we do not use this property directly in our applications, the product rule is a

fundamental characteristic of any derivative.

Locality. The derivative operator is “local” in the direction argument, namely
it depends on the value of U at a point, and not on its neighborhood. In other
words, if Uy and U are vector fields such that U (p) = Us(p) for some point p, then
(Vu,V)(p) = (Vi,V)(p) for any smooth vector field V. This means that there are no
derivatives of U involved, and therefore this requirement can be rephrased as linearity

with respect to functions in the direction argument:
Vivsgw (V) = fVuV 4+ gVwV. (3.5)

This allows us to represent the operator Vi in a basis, which we use for computing

parallel transport.

Metric compatibility. This property relates the derivative of a vector field to
the derivative of its norm. Similar to the case of a particle in R?, where we had
(V(t),V(t)) =2(V'(t),V(t)), in general, Dy(V,V) = 2(VyV,V). Note that together
with linearity, this implies for any pair of vector fields, V and W'

Dy (V,W) = (VuV, W) + (V, V). (3.6)

Symmetric Hessian. Finally, the last property relates to the second derivatives
of functions. In the Euclidean case, the Hessian matrix is symmetric since partial
derivatives commute. The generalization of the Hessian to the surface is the bilinear
operator: H(f)(U,V) = (VyVf,V) [Car94, pg. 142]. The last property requires that

this operator is symmetric:
(VuVf,V)=(VyVfU). (3.7)
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A consequence of this property is that [U, V] = ViV — VU for any vector fields U and
V', where [-] represents the Lie bracket operator [Car94, p. 27]. We use this operator to

design local parameterizations.

In the following section we investigate the discretization of the covariant derivative.
We first address the question of how vector fields are represented on a mesh, and discuss
our choices. Then we consider the challenges for our choice of representation in the
discrete setting. We show that for piecewise constant vector fields, under some mild
conditions, it is not possible to define a discrete version of the covariant derivative
operator which is both linear and fulfills the metric compatibility property. Finally,
we propose a simple approach that is based on the recently introduced multi-scale
discretization of the directional derivative of functions [ABCCO13], and we demonstrate
experimental convergence of the previously mentioned properties under mesh refinement,

when both the vector fields and the functions are smooth.

3.3 Discretization

3.3.1 Vector field representation

The definition of a derivative of a vector field is closely linked with the way vector fields
are represented in the discrete setting. One option is to use discrete 1-forms [Hir03],
which would require using the flat and sharp operators for converting from vector fields
to 1-forms and back. Another option is to define a smooth atlas on the mesh through a
parameterization of the 1-ring of each vertex (e.g., as in [ZMT06, KCPS13]), effectively
turning the mesh into a smooth manifold. If a vector field is continuous and piecewise
smooth in the atlas, it is possible to define first weak derivatives. Further, recent work
by [RS14, MPZ14] showed how a combinatorial data structure can be used to represent

vector fields while ensuring that field flow lines do not merge.

While these options can be a potential starting point for discretizing the covariant
derivative, they require a somewhat complicated definition of a discrete vector field.
We, on the other hand, choose the most simple discretization of a tangent vector field,
namely piecewise constant on faces. Such vector fields occur often in applications. For
example, scalar functions are often discretized as piecewise linear on the vertices of the
mesh, and their gradients are piecewise constant vector fields. Furthermore, in mesh
parameterization and mesh quadrangulation applications [KNP07, BZK09, CBK12,
BCE'13, MPZ14, MPZ14, PPTSH14] piecewise constant vector fields are often given
as constraints for controlling the alignment of the result. Hence, as we work directly
with piecewise constant vector fields, without requiring additional conversions to 1-forms
or atlas-based representations, our approach is simpler, more intuitive and easier to

implement.
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3.3.2 Notation

We represent surfaces with triangle meshes, given by M = (V, £, F), which denote the
vertices, edges and faces, respectively. Functions are represented as piecewise constant
on the faces, namely f : F — R, f = {f,i € F}. Tangent vector fields are given as
piecewise constant on triangles, namely U : F — R3,U = {U" = (u},u},ul),i € F},
such that U’ is parallel to the plane containing the i-th face. Discrete operators are
represented with a “tilde”, e.g., Dy : (F — R) — (F — R) is the discrete directional
derivative for functions and Vi : (F — R3) — (F — R3) is the discrete covariant
derivative for vector fields. In what follows, we assume to be given a function f and

tangent vector fields U, V.

3.3.3 Challenges in the discrete setting

As mentioned, we choose to represent vector fields as piecewise constant on the faces.
Such a representation, while simple and intuitive, leads to an inherent difficulty in
defining a meaningful notion of covariant derivatives, since intuitively the derivatives of
piecewise constant vector fields should be zero at the faces.

Indeed, inside a triangle, taking derivatives of piecewise constant vector fields is
futile. Thus, a bigger patch must be taken into account. This, however, would require
constructing a mechanism for transporting vectors across triangles. Moreover, it is easy
to see that given the above discretization of vector fields and functions, the product
rule (Eq. (3.4)) cannot hold exactly for every pair of functions and vector fields. This,
however, is true for many notions of discrete derivatives.

Unfortunately, there exists a more fundamental difficulty in discretizing the Levi-
Civita covariant derivative, which holds not only for our discretization, but even if
functions do not “live on the same domain” as the vector fields, e.g., functions that are
piecewise linear. In particular, even in this case, two of the defining properties of the
covariant derivative, namely linearity and metric compatibility, cannot be both satisfied
exactly in the discrete setting, under some mild conditions. To state this precisely, since
the inner product (U, V') produces a function on the faces of the triangle mesh, to allow
discrete functions to live on a different domain we can use an averaging operator A
that takes functions on faces and produces functions on vertices, edges or faces. We
will assume that A is linear, non-negative and maps constant functions to constant

functions. This leads to the following formulation of the metric compatibility condition:
DxA((U,V)) = A(VxU,V) + (VxV,U)). (3.8)

Here Dy is a directional derivative for functions with respect to the vector field X.
Le., Dx takes a function defined on some domain (e.g., vertices, edges or faces) and
produces a function defined on the same domain. VxU is the covariant derivative for

vector fields, and the inner product is the standard inner product of vector fields in
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R3. Under these conditions, we have the following result (proved in the supplemental

material):

Lemma 3.3.1. If Dx is a linear operator such that Dx f = 0 if f is a constant function,
and the covariant derivative for vector fields is linear: @X(Ul +Uy) = @XUl + @XUQ,
then the metric compatibility condition (Eq. (3.8)) implies that Dx f = 0 for all f in
the range of A. Le., Dx A(h) =0 for any h.

We note that although this lemma is stated for vector fields that are constant on the
faces, the proof is actually quite general and can be adapted to other settings as well.
Hence, as we cannot hope to achieve the exact properties of the smooth covariant
derivative, we opt for a simple discretization which is based on the directional derivative
of the component functions, as given by equation (3.2). Using this definition, it is
possible to show that all the properties of the Levi-Civita covariant derivative (except
the symmetry of the Hessian) are all consequences of the product rule for functions
[Mor01, pg. 181]. Therefore, if the operator Dy f provides a better approximation to
the product rule as the mesh resolution increases, so we can expect that the operator
VyV will give a better approximation to properties (3.3)-(3.6) under mesh refinement,
although the metric compatibility condition will never be satisfied exactly.

It has recently been shown in [ABCCO13] that it is possible to discretize the
directional derivative of functions Dy f using a multi-scale basis, such that the error
in the product rule property experimentally decreases with the increase in the mesh
resolution. We choose a similar discretization for the directional derivative of functions
defined on the faces of the mesh, and thus get experimental convergence of the product
rule for the component functions of the vector field. This in turn, in the convergence
experiments we performed, leads to experimental convergence of the covariant derivative

properties.

3.3.4 Directional derivative of functions

In the discrete differential geometry literature, functions are commonly discretized
either as scalars on the vertices or as scalars on edge midpoints, which are then linearly
interpolated to the faces. These are known as conforming and non-conforming linear
elements, respectively. In both cases, the gradient operator is well-defined as piecewise
constant on the faces (see [War07, Chap. 2| for a full discussion).

Contrary to the common setting, our functions are defined on faces, thus we need to
extend the notion of a discrete gradient. Given a function f, we define an averaging
operator A, and define Vf = VAf, where A averages the values of f to the edges, and
V is the discrete gradient for non-conforming elements. Potentially, it is possible to
define A such that it averages values to the vertices instead of edges. However, then
A will be of size |V| x |F|, and therefore, its range will be smaller than its domain.

Thus, there will necessarily be two functions on the faces which are mapped to the same
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Figure 3.3: Comparison of our discretization ViV with the analytic solution for specific U, V on
the sphere. We show the convergence graph for the RMSE error for decreasing mean edge length,
as well as a visualization of the flow lines and norm of the computed ViV for the densest mesh.

function on the vertices. This will lead to difficulties, as it can introduce non-zero vector
fields, whose interpolation to the vertices leads to a zero vector field. If, on the other
hand, A averages to the edges, its size is |€| x |F|, and therefore the range is larger than
the domain, and this problem is potentially avoided. It is easy to see that a positive
local averaging operator A will have an empty kernel in general, and in particular for
any mesh that has at least one odd degree vertex (see the proof in the supplemental
material).

Formally, we define the directional derivative for functions as:

where A;; = wj/ > wy if i is an edge in face j, and A;; = 0, otherwise. wj is the area of
face j and the sum runs over the faces which share the edge i. Now, as Af is a function
on edges, its gradient is piecewise constant per face, and has a standard definition
(see [Pol05, Sec. 2.3]).

As mentioned previously, we represent the operator Dy in a reduced multi-scale basis
(the eigenfunctions of the Laplace-Beltrami operator), as this enforces some smoothness

on our vector fields.

3.3.5 Covariant derivative of vector fields

Our covariant derivative operator is based on the extrinsic definition presented in
Eq. (3.2). Given the discretization for the directional derivative of functions on the

faces, the covariant derivative for vector fields follows easily:
VoV (p) = Py ((Duvs, Duvy, Dyv2)(p)) ,p € M (3.10)

where V' = (vg,vy,v.) and P, is the projection operator onto the tangent plane of M
at p. As the directional derivatives of the components of V' are given on the faces, P, is
well defined.
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Figure 3.4: The behavior of our discretization of the covariant derivative on the properties (3.4)—
(3.7) under mesh refinement, for the ellipsoid model. We show the RMSE error of the left hand
side vs. the right hand side of the equation for decreasing mean edge length h. Note that the
plot suggests a polynomial convergence rate in h, where we denote by m the respective slope
estimate. We additionally show the functions and vector fields that were used for the highest
mesh resolution. See the text for further details.

To summarise, given two piecewise constant vector fields, U and V', we first take
the component coordinate functions of V', average them onto the edges, and compute
the corresponding gradients. These are piecewise constant on the faces, therefore their
inner products with U give us three real-valued functions on the faces. We use those
functions to construct a vector field in R?, and project this vector field onto the faces.

To validate our discretization, we experiment with known vector fields U,V on the
unit sphere and compare our result with the expected result in the continuous setting.
Figure 3.3 shows the result of this comparison, for meshes with decreasing average edge
length h. We show U, V, the analytic result ViV, and the result of our computation
V' V. Note that the convergence is polynomial in h, and that for the most dense mesh
the figures of the flow lines and norm are almost indistinguishable from the ground truth.
We further demonstrate the convergence results in Figure 3.4, which shows the loglog
plot of the RMSE error of properties (3.4)—(3.7), for ellipsoid meshes with decreasing
average edge length h. We additionally show the vector fields U, V, W and the functions
f, g which were used for the mesh with smallest edge length. The functions f,g are
the eighth and tenth eigenfunctions of the area weighted cotangent Laplace—Beltrami
operator and the vector fields U, V, W correspond to eigen 1-forms 4, 3 and 1 of the
Hodge Laplacian. Note that the plot suggests a polynomial convergence rate in h, where
we denote by m the respective slope estimate. Furthermore, given eq. (3.10), it is easy

to verify that property (3.3) holds exactly.

3.4 Geometry from linear operators

In addition to computing the quantity ViV, it is often advantageous to fix one of
the vector fields, and consider the corresponding operator on all possible inputs. For
example, we can omit the direction U and consider the operator VV, which will provide

some information on the derivatives of V' in all possible directions. This point of view is
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useful, because it can uncover some hidden structure of V', in a global way. As a simple
example, the singular vector of VV which corresponds to the smallest singular value,

will provide the directions in which V' changes as little as possible.

This interplay between the algebraic properties of the operators and the geometry
of the vector fields they represent is quite useful in practice, because it allows us to
do global operations which are traditionally local. For example, manipulating VV
is instrumental for vector field design, and Vu allows us to easily compute parallel

transport.

3.4.1 Preliminaries

Matrix representation While it is possible to analyze these operators directly as
abstract linear operators, it is more intuitive to consider their matriz representation.
Specifically, we assume that we have a finite orthonormal basis of vector fields {V;,i €
1,..,k}, ie., [, (¥;,¥;) =1if i = j and 0 otherwise, and such that the vector fields
we are interested in can be represented as V = Zle a;V; (in Section 3.5.1 we will
elaborate more on our choice of basis). Now, any linear operator R from tangent vector
fields to tangent vector fields can be represented using a k x k matrix R, whose (i, j)
entry is: R;; = [}, (R(¥;),¥;). In the following we will discuss the properties of
the operators using their matrix representations. For example, when we mention the

operator transpose, we refer to the corresponding matrix transpose.

Flow of a vector field We will need the following definition. The flow of a vector
field U is a one-parameter family of maps (IJf] : M — M for t € R, such that the

following holds:

d
20 =U(@y(@),  y(p) =p.
Intuitively, the flow of a vector field encodes what happens to a particle which starts at
a point p € M, and its velocity is dictated by the vector field at every point. Hence,
it provides a way to recover the trajectory of a particle from its velocity, and thus

computing the flow is also known as integrating the vector field.

3.4.2 The operator VV

Operator action: (VV)(U) = VyV.

Here V is fixed, and we compute its derivative in some direction given as input.
This operator is the extension to surfaces of the Jacobian operator of vector fields
in Euclidean space, which is simply the matrix of partial derivatives. Its algebraic
structure provides us with information about the nature of the derivatives of V in

various directions. For example, as any linear operator, it can be decomposed into
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Figure 3.5: Approximate Killing vector fields computed by minimizing the symmetric part of
vvV.

symmetric and anti-symmetric parts:

VV =2 (VV +(VV)") + % (VV —(VV)T) = Ky + Gy,

N =

where as discussed previously, we consider the operator as a k X k matrix representation
and thus can compute its transpose. The symmetric and anti-symmetric parts are
also linear operators which take tangent vector fields to tangent vector fields and have

geometric meaning.

Symmetric Part. The operator Ky = § (VV + (VV)7) is related to how much
the flow ®!, distorts the metric. Specifically, if Ky = 0, then V is called a Killing
vector field (KVF), and its flow ®!, is an isometry for all ¢ ([Pet06, Chap. 7.1]). One
such example in the plane is V = (—y, z), whose flow is simply a global rotation. Such
vector fields are quite rare, and exist only on very specific surfaces, however we can
try to minimize ||Ky ||? for any surface, yielding vector fields whose flow is close to an
isometry. Such vector fields are useful in geometry processing applications, as they allow

to generate texture and geometric patterns [BCBSG10].
We use this property to design vector fields which are approximate KVFs, by

solving a linear system of equations. Note, that as opposed to previous work, we can
pose the constraints directly on the derivative operator, without requiring an indirect
approach through commutativity with the Laplace—Beltrami operator [ABCCO13], or
reformulation using DEC [BCBSG10]. Figure 3.5 shows a few approximate Killing vector
fields computed this way. Interestingly, KVFs are also related to fluid flow on surfaces, as
they provide a steady state solution to the Euler equations (see Section 3.5). Furthermore,
the Killing operator Ky plays a role in the behavior of viscous fluids [NVW12], which

we would like to investigate in future work.

Anti-symmetric part. The operator Gy = % (VV — (VV)T) encodes the failure
of VV to be symmetric. We know from property (3.7) that if V' = V f for some function
f then VV is symmetric, hence it is possible to consider Gy, as the failure of V' to be the
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Figure 3.6: Parallel transport of a vector field U (left) along its own flow lines, comparison to
the ground truth on the sphere (middle). Note the 3 marked singularity curves: the red curve
is a geodesic, so vectors transported on it preserve their orientation. The blue curves are two
symmetric singularity curves. The vectors transported on them rotate by 7, so they reverse their
orientation. The transition between these singularity curves is smooth. (right) Convergence
graph of the error in the computed angle, and the final result of our computation for the largest
number of basis functions.

gradient of a function. Specifically, minimizing |Gy ||* with some additional conditions
would provide vector fields which are “as gradient as possible”. For example, if we
require that ||[V|| = const it is possible to show that the flow lines of V' are geodesics
and V is a geodesic vector field (GVF) if and only if Gy, = 0 [PHD*10], which can
be useful in architectural geometry. In the applications section we demonstrate how
by constraining VV to be symmetric, in addition to the smoothness induced by our
framework, we can, using a much simpler setup, achieve similar results, even without
adding the constraint on the norm of V. Furthermore, our approach allows us to combine
various constraints, e.g., that the resulting vector field is symmetric with respect to
some symmetry map of the surface.

Uniqueness. As we discussed, we can design vector fields V' which have certain
properties, by posing constraints (e.g., symmetry or anti-symmetry) on VV. This raises
the question whether a given VV completely encodes V', or there can be multiple vector
fields with the same VV. We have the following:

Lemma 3.4.1. For a closed oriented surface M, ViV =0 for every smooth U if and
only if V=0 or M is a flat torus.

Hence, if VV; = VVa, then Vi (Vi — Vo) =0V U, which by the lemma implies that
V1 = Va, yielding the uniqueness we required.
3.4.3 The operator Vi

Operator action: (Vy)(V) =VyV.
Here the direction of the derivative is given by a fixed U, and we compute the

derivative of some vector field V' given as input. This operator is closely related to the
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Figure 3.7: Parallel translation of U (top row) along the flow lines of U. Our discrete parallel
transport is robust to merging flow lines as is shown in the result, I'y 2., (bottom row).

directional derivative of functions, which we denoted as Dy. The scalar directional
derivative operator was recently used by Azencot and colleagues [ABCCO13] to represent,
analyze and design discrete vector fields. While this approach is useful in certain
applications, it is also limited, since the scalar directional derivative operator Dy does
not depend on the metric of the surface, making the computation of metric-dependent
operations such as the parallel transport of vector fields impossible without additional
structure. As we show below, the Levi-Civita covariant derivative, acting on vector
fields shares many useful properties with the functional operator, such as uniqueness
and decomposition, but also enables more applications including parallel transport in a
very compact and convenient manner.

Uniqueness. The operator Vi encodes the vector field U uniquely. Hence we can

design a vector field U by defining constraints on V. We have:

Lemma 3.4.2. Two smooth vector fields U and V are equal if and only if VgW =
Vv W for all smooth vector fields W.

Symmetric part. The operator Vi allows us to easily distinguish divergence-free

vector fields, as those whose symmetric part of Vi is zero:

Lemma 3.4.3. Let M be a closed surface. A smooth vector field U is divergence-free
if and only if Vy is anti-symmetric with respect to the inner product on the surface.
Le., if and only if [,,(VuV,W)dx = — [, ,(VuW,V)dz for all smooth vector fields V
and W.

Parallel transport. The Levi-Civita covariant derivative, represented as an opera-
tor Vi is intimately related to parallel translation along the flow lines of U. Suppose we
have a vector field V' and let ®,(p) be the flow of U. Now, consider the operator I'y,
which takes a vector field on M and returns a vector field on M, which is defined as

follows: T'y¢(V)(p) is the vector obtained by parallel transporting the vector V(®!;(p))
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along the flow line from ®},(p) to p. It is well-known (e.g., [Car94, pg. 57]) that the

following relation between the operators Vi and I'y; holds:

d

Vo)) = 2 (Tua(V) )| (3.11)

=0

Hence, the Vi operator is the derivative of the backward parallel transport operator at
the point p. Now, if we consider the discrete version of (3.11), i.e., replace Vy and 'y,
with their discrete matrix-based representations, Vi and fut, respectively, it is easy to

check (see supplemental material) that I given by:

Ty = exp(tVy), (3.12)

where exp is the matrix exponentiation, is a solution. By defining fut as in (3.12)
we maintain the relation between the discrete parallel transport and covariant derivative
operators which exists in the continuous case, and gain an easy to implement matrix-

based operator.

This observation allows us to compute the parallel transport of vector fields along
the flow lines of other vector fields simply by using the matrix exponential of Vy;.
This is somewhat remarkable since computing discrete parallel transport on discrete
flow lines directly would require us to numerically integrate the field U to generate
the flow lines, and then compute the discrete geodesic curvature of these flow lines
for the transport, e.g., as was done in [PS06]. This procedure can be cumbersome,
computationally heavy and potentially numerically unstable. For example, the result
may not even be a well-defined vector field with multiple vectors in a single face, and

some faces not containing any vectors.

On the other hand, when considering the Levi-Civita covariant derivative as an
operator acting on vector fields, and representing it as a matrix in a basis, computing
parallel transport becomes a standard linear algebra operation involving only matrix
exponent and matrix vector multiplication. Note, that parallel transporting a vector
field U along its own flow lines is closely related to the numerical scheme known as
“semi-Lagrangian advection” in fluid simulation [SY04]. It is therefore possible that our
parallel transport matrix operator could be used in such a setup. We leave further
investigation of this direction as future work.

In Figure 3.6 we compare the result of parallel transport done using our approach
to the ground truth on the sphere. We take a vector field U = (0, z, —y), which rotates
around the sphere, and compute f‘U,g,r(U ), the parallel transport of U over itself for
time ¢ = 27, by taking exp(QW@U)U. In this case, the flow lines are constant latitude
lines, and the result of the parallel transport has an analytic expression [dCV92, pg.
243].

Figure 3.6 shows the vector field U (left) and the ground truth result (center).

Our parallel transport operator uses a fixed number of basis vectors, and the parallel
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Figure 3.8: Given a vector field U (left), we construct local parameterization by optimizing for
V' (middle) which minimizes the energy fM U, V24X [5, 1 (U, V) ||?. The local coordinates
are computed by flowing on U and V, resulting in a texture mapped grid marked in blue (right).

transported vector field is non-smooth, therefore we expect the result to improve with
an increasing number of basis vectors. This is indeed demonstrated in the graph on
the right. The graph shows the error in our computation of the angle of the parallel
transported vector field f‘U727r(U) with U, with respect to using a growing number of
basis vectors Np. The two figures in the graph show the flow lines and the norm
of fU,QW(U ) for the largest number of basis functions. Interestingly, the norm of the
parallel transported vector field can be flown separately using the flow of the operator
for functions Dy, which leads to more accurate results. Note that the resulting norm
and angles are almost indistinguishable from the ground truth.

We provide further evaluation of our discrete parallel transport. It is known that
discrete flow lines of vector fields can in some cases merge or split (e.g., [SZ12, Fig. 4]).
In Figure 3.7 we demonstrate the result of parallel translation of U (top row) along U.
Notice that although the flow lines of U might split (see the zoomed area, top, right),
our result, f‘U727r(U ), preserves its smooth behavior.

While matrix exponentiation is itself a difficult problem, and the result can be
inaccurate for large matrices [MVLO03], note that in our case the matrices are relatively
small (on the order of 300), as the vector field is represented in a multi-scale basis. In
our implementation we used Matlab’s expm function, and did not encounter any issues.
Furthermore, to compute the parallel transport there is no need to compute the full
matrix exponent, but only the matrix vector product exp(QW@U)U , for which more
stable and efficient methods exist [AMH11]. It is possible that more basis vector fields
would be required to represent complex vector fields with a large number of singularities,
which are common in parameterization and quadrangular remeshing applications. In
such cases, it might be instrumental to investigate our operator in the hat basis, which
will lead to a sparse representation, for which methods such as [AMHI11] are still

applicable. We leave further study in this direction for future work.

3.4.4 The operator [U,]

Operator action: [U, ](V) = VyV — VyU. Given two vector fields U, V, consider the
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Figure 3.9: Approximate geodesic vector field design. We seek a vector field V' which minimizes
the energy ||VV — (VV)T|?, which yields V that is close to a geodesic vector field (top left).
The Oloid model has zero Gaussian curvature everywhere except on the creases, hence when
it is flattened the flow lines should yield straight lines (bottom left). Compare with the result
of [PHD"10](right). Our results are comparable, while our setup is considerably simpler, and
allows for combination of constraints.

problem of constructing local texture coordinates (u,v) such that the iso-v and iso-u
lines align with U and V, respectively. Given p € M, one naive approach would be to
flow along U from p and sample the flow line at fixed constant intervals. Then, starting
from the resulting sampled points, flow along V' and sample again. The union of the
sampled points forms a grid. Of course, we could reverse the order and flow first on V'
and then on U, however, we expect to obtain the same set of sampled points. Formally,

this requirement means that the flows of U and V should commute.

The operator [U, V], which is known as the Lie bracket or Lie derivative of U and
V', computes exactly this property—the lack of commutativity of the flows of U and V.
Specifically, it is possible to construct a local parameterization as described previously
around a point p € M if and only if U(p), V(p) form a basis for the tangent plane and
[U,V] =0 (see e.g., [Kol93, thm. 3.17]).

Using the operators Vi and VU we can represent [U, -], and use it for vector field
design. For example, given a vector field U, we can construct a matrix representation
of [U,-], and compute its singular vectors. Since [U,U]| = 0, U is always the singular
vector corresponding to the O singular value. However, the next singular vector V
minimizes [, ||[U, V]|?, and would give us the best vector to couple with U to get a
parameterization. Note, that we can easily add additional terms to the energy, e.g.,
Jas 11U V) ||, if we want U and V' to be orthogonal.

Figure 3.8 demonstrates this for the computation of a local parameterization. We are
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Figure 3.10: Trade-off between as-gradient-as-possible vector field constraints and symmetric
vector field constraints, with the symmetry constraints weighted higher in the image on the
right.

given U (left), and we minimize the energy Eyy (V) = [, I[U, VIIIF + X [y, 1 {U, V) |12
The resulting vector field V' (middle) together with U is used to build the local coordinates
using the flow method described previously. This yields a textured mapped grid (right,
shown in blue). Note, that the vector fields U,V are orthogonal but do not have the
same norm. Hence, simply rotating U by 7/2 would not have given the same texture

coordinates, as the flows would not necessarily commute.

3.5 Applications

Until now we have concentrated on the properties of the various operators we can
derive from the Levi-Civita covariant derivative, and provided some proof-of-concept
applications for the geometric quantities it allows us to compute. In this section, we
first discuss some implementation details and limitations, and then discuss two concrete
applications of this machinery: designing tangent vector fields and simulating fluid flow

on surfaces.

3.5.1 Implementation details

Choice of basis For our basis for Dy, we chose the first N 7 eigenvectors of the
DEC based 2-form Hodge Laplacian [Hir03]. For Vi, VV and all operators acting on
vector fields, the basis is given by the first Np eigenvectors of the DEC based 1-form
Hodge Laplacian [FSDHO7]. To represent our operators as matrices in the basis, we first
convert the 1-forms to piecewise constant vector fields (as in [FSDHO07, eq. 4], where we
sample at the barycenter of the triangle), then apply the operator to the basis elements,

and project the result back onto the basis.

Limitations We define the covariant derivative using the embedding in R?, however,

a classical and fundamental property of the covariant derivative in the continuous case
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is that it is intrinsic, i.e., it does not depend on this embedding ([Mor01, pg. 181]). In
the discrete case, we no longer maintain this property. For rigid deformations, there
exists a trade-off between invariance and discretization error. If we use a small number
of basis functions, the component functions are smooth, but we lose invariance to rigid
transformations. However, the error introduced by the rigid transformation decreases
polynomially in the number of basis functions. If, on the other hand we use the full
basis in equation (3.9), the operator will be invariant to rigid transformations (see
supplemental material for the proof). For isometric deformations the averaging operator
A introduces some error even when using the full basis (as it causes averaging of vectors
on faces which undergo different rotations), and for a truncated basis we again have
an error which decreases polynomially. Despite this limitation, we believe that the
additional simplicity we gained by using the embedding is worthwhile, especially in

applications which use a single non-eforming mesh.

3.5.2 Vector field design

As discussed in the previous sections, by using the covariant derivative operators, we can
pose various constraints to design tangent vector fields with some prescribed differential
properties. Since the operators Vi and VV are linear, each of the optimization problems
that we formulate can be solved efficiently by solving a linear system, or by computing

a singular value decomposition.

As-Gradient-As-Possible vector fields We first consider minimizing the energy
IVV — (VV)T||2, which quantifies the anti-symmetric part of VV. As mentioned in
Section 3.4.2, this energy will be zero if V' is a gradient field. Furthermore, [PHD'10]
showed that if additionally the norm of V' is constant, then the energy will be zero only
if V is a vector field whose flow lines are geodesics, also known as a geodesic vector field
(GVFs).

While we do not impose the additional constraint, our results on the Oloid model,
as shown in Figure 3.9, are comparable to the results of [PHD"10], when weighing the
edges according to their mean curvature is not taken into account.

Finally, as we work in the generic framework of functional operators, it is straightfor-
ward to combine this energy with additional constraints in a similar manner to [ABCCO13].
For example, we can require the vector field to be symmetric with respect to some
symmetry map provided for the surface. By weighing differently the constraints we can
allow the user to explore multiple solutions (see Figure 3.10) which may be difficult to

achieve using other frameworks.

As-Killing-As-Possible vector fields As mentioned previously, vector fields V' for
which VV is anti-symmetric are vector fields whose flow preserves the metric, also

known as Killing vector fields (KVFs). These are useful for pattern generation, as shown
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e.g., in [BCBSG10]. By minimizing the energy |[VV + (VV)T||?, we can construct

vector fields that are as close as possible to KVF's, as we demonstrate in Figure 3.5.

Smooth vector fields As our last design goal we consider the task of computing as
smooth as possible vector fields, similarly to what was done in [KCPS13]. One way to
characterize such vector fields, is by minimizing the Dirichlet energy |[VV||2. Figure 3.11
shows an example of two vector fields computed this way, and Figure 3.12 compares the
vector field computed using our method (left), with the one computed by the approach
of [KCPS13] (right). Note that the resulting vector fields are comparable in terms of
smoothness. Compared to the ground truth on the unit sphere, the Dirichlet energy
obtained by [KCPS13] is more accurate than ours (1.0017 vs. 0.9515, where the analytic
solution is 1), potentially due to energy loss incurred by our projection on the basis of
vector fields. Furthermore, the method by [KCPS13] is more general than ours, as it
can handle N-RoSy fields in addition to vector fields.

To conclude, while there exist other specialized methods for posing many of the
design constraints mentioned here, e.g., [ABCCO13, PHD 10, KCPS13, BCBSG10] our
setup is unique in that it is simple, it allows us to pose all of these constraints, and

generate a large variety of vector fields, since we have direct access to the VV and Vy;

e
VY

Figure 3.11: Designing smooth vector fields by finding vector fields which minimize the energy

vV,

operators.
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Figure 3.12: Our smooth vector field (left), compared to the one obtained by the method
of [KCPS13] (right).

3.5.3 Fluid simulation on surfaces

As our last application, we consider the problem of simulating the behavior of an
incompressible flow on a curved surface. A fluid can be described as a time varying
velocity field U(t), whose behavior is governed by the Navier—Stokes equations [Tay96].
We discuss here only incompressible (divergence-free) inviscid (viscosity-free) flows, for

which the defining equations are known as the Euler equations [Tay96, Eq. 1.10]:

ou

r T —Pori(VuU), (3.13)

where P, is the orthogonal projection onto the space of divergence free vector fields.

Using our discrete definition of the covariant derivative, it is straightforward to
compute the time-varying velocity U(t) of a flow, given some initial conditions. We
implemented a very simple pipeline, using a black box time integrator (Matlab’s
ode45 [DP80]). One iteration consists of computing VU using our operator, followed
by projection onto the space divergence free vector fields by solving the Poisson equation
As = —w, where w is the vorticity function given by the curl of U, projected onto the
space of functions spanned by our basis. The change in U is now given by the gradient

of s rotated by 7/2 in each face. We use the operator from [PP03] for computing the
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Figure 3.13: (top) A few frames from a periodic solution of the Euler equations on the sphere.
Note that the vorticity (color coded) is globally rotated, as expected. See the text for details.
(bottom, left) The relative kinetic energy [, [|U(2)[l/f,, 1U(0)| during the simulation. Note
that it is periodic, and remains within 98% of the original energy. (bottom, right) A histogram
of the vorticity, for the first (blue) and last (red) frames. Note, that the histogram is preserved
as expected.

curl of a vector field.

Despite the simplicity of this approach, we found that in most cases it was enough to
simulate interesting flows, for which we know the analytic solution or expected behavior.
We demonstrate some example in the accompanying video for the simulation of the
flows. We stress that this is a proof-of-concept of the applicability of our operator to
fluid simulation on surfaces. We leave further tuning, as well as incorporating a more

sophisticated time integrator as future work.

Steady state solutions If U is a Killing vector field, or U = JV¢;, where ¢; is
an eigenfunction of the Laplace—Beltrami operator, then U(t) = U is a steady state
solution to equation (3.13) (see [MBO1, pg. 46, eq. 2.13], and also the supplemental
material for a simple proof). Hence, as a sanity check, we compute the average of
| Prwrt (Vo U)||/||U|| for such a vector field U. The result can be considered an indicator

to the stability of our method, and was on the order of 10~ for the unit sphere.

Periodic solution on the sphere On the sphere there exists a periodic time varying
solution, given by: U(t) = Uy + >, a;(t)JV¢;, where Uy is a Killing vector field, and ¢;
are eigenfunctions of the Laplace-Beltrami operator corresponding to the same eigenvalue.
Furthermore, the curl of the velocity field (its vorticity) w(t) is advected by this flow
isometrically, namely a pure rotation. We are not aware of a reference for this solution
in the literature, and thus provide the proof in the supplemental material. Figure 3.13
(top) shows a few frames from such a simulation on the unit sphere, where we took ¢; to

be an eigenfunction in the third group of spherical harmonics. We show the color coding
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Figure 3.14: A few frames from a solution of the Euler equations on the torus for a co-rotating
vortex pair.

of the vorticity function, which is indeed advected as an isometry. Figure 3.13 (bottom
right) shows the relative kinetic energy [y, |U(t)|l/ [, |U(0)|| during the simulation.
Note, that the energy itself exhibits periodic behavior, and remains within 98% of the
original energy. This indicates the stability of our method, especially since we used
a straightforward black box time integrator for all simulations. Finally, Figure 3.13
(bottom left) shows a histogram of the vorticity values, for the first and last frames of

the simulation. Note that the histogram remains fixed, as expected.

Co-rotating vortex pair On a plane, a pair of point vortices (namely singular points
where all the vorticity is concentrated) spinning in the same direction should rotate
around each other ([Saf92, pg. 117]). We generate a similar configuration on a torus,
where we take the initial vorticity wg to be constant at all vertices except two vertices
v, v;, where we take wy to be 1. The constant is set such that fwg =0, and then w is
projected onto the span of our basis functions. Figure 3.14 shows a few frames from
this simulation (see also the accompanying video). Note that the vortices rotate as
expected. One limitation of our method is that it is not circulation preserving, as is for
example the method in [ETK*07]. This is visible in the torus simulation, as some of

the vorticity is lost due to numerical dissipation. We leave the exploration of efficient

methods to overcome this limitation as future work.

Figure 3.15: Three frames from a fluid flow simulation showing a positive/negative vortex pair
on a surface.
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Figure 3.16: A few frames from a solution of the Euler equations on the teddy for two colliding
pairs of counter-rotating vortices.

Counter-rotating vortex pair Similarly to the previous experiment we take two
point vortices rotating in opposite directions. In the plane such a configuration translates
in a straight line ([Saf92, pg. 117]), and a similar behavior is demonstrated on the back
of the frog model, in Figure 3.15 and in the accompanying video. The stability of our
method is exhibited by the fact that the vortex pair travels intact the whole length of
the frog model.

N-vortex structures Here we take a more complicated configuration of vortices. The
first includes two pairs of counter-rotating vortices which collide, where the expected
behavior is that they continue in a direction orthogonal to the original direction after
collision. This is shown in Figure 3.16 and in the accompanying video on the teddy bear
model. The second configuration includes 3 co-rotating vortices forming an equilateral
triangle, where the flow should rotate the three vortices as a single unit ([New01, pg.
78]). We reproduce this behavior as can be seen in the video. Note that while two of the
vortices merge during the process, they separate again at the end of the flow, returning

to a configuration similar to the original one.

3.6 Conclusions and Future Work

In this paper, we proposed a novel discretization for the Levi-Civita covariant derivative
of vector fields on discrete surfaces, which has various appealing properties. First, it
exhibits experimental convergence of the five defining properties of the derivative in the
continuous case. Second, it can be represented as a linear operator acting on tangent
vector fields, thus allowing us to harness tools from linear algebra, such as matrix
exponential, to perform geometric operations which were otherwise harder to achieve,
e.g., parallel transport of a vector field along the flow lines of another vector field.
Finally, we demonstrated the applicability of our discretization to various geometry
processing tasks, such as local parameterization, vector field design and fluid simulation.

We believe there is much more left to explore, as we only gave a taste of the possible
applications of our formulation. First, the covariant derivative appears in many PDEs

on surfaces, and it is interesting to apply our discretization to additional problems. For
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example, it is possible to compute the covariant derivative of the normal vector field,
thus yielding a novel discretization of the shape operator. Second, our parallel transport
approach can potentially be applied to fluid flow simulation, to yield a more stable
exponential integrator, and the Killing operator can be used for simulating viscous
flow. Furthermore, we would like to investigate additional operators derived from the
covariant derivative, such as the connection Laplacian, which can potentially be used for
vector field smoothing. To conclude, we believe that our discrete covariant derivative
will inspire future work that tackles additional challenges in vector field processing, thus
providing a stepping stone towards a complete framework for vector calculus on discrete

surfaces.
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Chapter 4

Consistent Functional Cross
Field Design for Mesh

Quadrangulation

We propose a novel technique for computing consistent cross fields on a pair of triangle
meshes given an input correspondence, which we use as guiding fields for approximately
consistent quadrangulations. Unlike the majority of existing methods our approach does
not assume that the meshes share the same connectivity or even have the same number
of vertices, and furthermore does not place any restrictions on the topology (genus) of
the shapes. Importantly, our method is robust with respect to small perturbations of
the given correspondence, as it only relies on the transportation of real-valued functions
and thus avoids the costly and error-prone estimation of the map differential. Key to
this robustness is a novel formulation, which relies on the previously-proposed notion of
power vectors, and we show how consistency can be enforced without pre-alignment of
local basis frames, in which these power vectors are computed. We demonstrate that
using the same formulation we can both compute a quadrangulation that would respect
a given symmetry on the same shape or a map across a pair of shapes. We provide
quantitative and qualitative comparison of our method with several baselines and show
that it both provides more accurate results and allows to handle more general cases

than existing techniques.

4.1 Introduction

Remeshing of triangle meshes to quad meshes is a fundamental task in geometry
processing and related domains with applications in shape modeling, texture synthesis
and numerical simulation, to name a few. In many cases, quad remeshing is jointly
applied to several shapes and when their correspondences are given, the results are
frequently required to be consistent with respect to those mappings. For instance, the

quad mesh which models an animated character should be aligned to the underlying
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Figure 4.1: Our method computes guiding fields on triangle meshes which respect either the
underlying symmetry of a single surface (left) or the related correspondence between a pair of
shapes (right), while being able to handle arbitrary topology such as the genus one surface on
the left. We use these fields to compute approximately consistent quad meshes with off-the-shelf
quadrangulation methods.

deformation modes [MPP*13]. Similarly, on a single shape which exhibits symmetry, a
symmetric quadrangular mesh is often preferred [PLPZ12]. The goal of this paper is
to propose a robust, unified framework for approximately consistent quad remeshing
which is applicable to a single shape or a pair of shapes, without assumptions on the
mesh connectivity or shape topology.

To date, there exist several automatic methods for generating quadrangular surfaces
from triangle meshes. A common approach, which we will also follow in our paper,
uses a guiding field within a parametrization-based method. Namely, remeshing is
achieved by designing a smooth cross field that accounts for local features, followed
by an optimization part which seeks a parametrization whose gradients are aligned
with the computed field. Quadrangulation is then performed in the parameter domain,
where correct stitching of isolines is maintained along cut graphs [BLP*13]. In this
context, our algorithm produces a set of consistent cross fields, which are used as
input to previous remeshing machinery [BZK09, EBCK13]. Namely, quadrangulation is
computed on each mesh separately, and thus we obtain only approximate consistency of
quads.

One option for designing smooth cross fields is to encode the angle with respect to a
local basis per triangle. The goal is then to minimize the squared difference of these
angles along edges, while allowing for integer period jumps [RVLL0S]. Unfortunately,
the resulting mixed-integer problem is non-convex and achieving a global optimum is
challenging in practice. To rectify this, using trigonometric periodic functions on the
angles multiplied by 4 allows to avoid integer variables altogether, see e.g., [RVAL09], at
the cost of introducing pointwise unit-length constraints. Equivalently, in the complex-
valued representation [KCPS13] each cross is encoded using the unique power vector
obtained by representing the cross directions as complex numbers and taking the 4-th
power. Further, dropping the pointwise unit-length constraints yields a convex quadratic
problem whose global minimum is attained with a single linear solve.

All of the above commonly-used cross field design approaches depend on a choice of

local basis (frame) per triangle. In many cases, this basis dependency does not pose any
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practical challenges. However, when consistency is needed, computing transformations
which align these basis vectors across shapes is essential in order to faithfully compare
the measured angles. For instance, for meshes with different connectivities, a triangle
is not necessarily mapped to a single triangle, and thus several basis vectors must be
taken into account. One of the main advantages of our approach is that we formulate
the consistency constraints in terms which are invariant to the local basis. This novel
change greatly simplifies the problem since the basis vectors can be chosen arbitrarily
on each shape.

To enforce consistency of cross fields between two shapes, scalars or vectors need
to be mapped and compared using the input map. Therefore, the quality of the map
and map differential are of crucial importance to achieve good quadrangulation results.
However, computing acceptable approximations of these objects is a hard problem in
itself, making the entire remeshing pipeline highly dependent and potentially sensitive
to high frequency noise in the given correspondences. In our framework, we relax this
constraint by assuming that only functional correspondences are given. Functional
maps [OBCS™12] provide robust means to encode mappings between surfaces by putting
in correspondence their function spaces. We pose the consistency requirements solely
in the functional language, which allows us to apply our machinery to any shapes for
which functional mappings are available. This includes both functional correspondences
obtained via a pull-back with respect to a given pointwise map (thus represented in
the full basis), and functional maps computed automatically and represented in a
reduced spectral basis. An advantage of our formulation is that it allows a separation
of the involved components. Namely, the smoothness and alignment constraints are
high-dimensional but sparse, whereas the consistency terms are either high-dimensional
and sparse or low-dimensional and dense. In both cases, this separation leads to a
structured Hessian of the minimized energy, allowing us to employ efficient optimization
techniques.

In this paper, we suggest an effective methodology to design consistent cross fields for
the purpose of compatible mesh quadrangulation. Thanks to our functional approach,
the obtained machinery is similar regardless of whether a single symmetric shape or
two shapes are used. Moreover, unlike most previous techniques, such as [MPP*13], we
place no restriction on the connectivity of the triangle meshes, and further can handle
shapes with arbitrary topology. To summarize, our main contributions include: the
invariance of the proposed method with respect to a local basis, the ability to design fine
details separately on each mesh while requiring consistency only in a low-dimensional
space, and the ability to handle arbitrary meshes. We also demonstrate that our method
is simple and robust, in large part due to its ability to avoid the potentially difficult and
error-prone step of computing a map differential, and at the same time scalable, as it
can accommodate functional correspondences represented in a reduced basis. To achieve
these goals, we formulate consistent cross field design via a simple, global quadratic

energy minimization problem which we efficiently solve by evaluating the action of the

o7



Hessian on a general vector.

4.1.1 Related Work

Quadrangular remeshing is a challenging problem, and in the last few years there has been
a surge of research in this direction. We refer the reader to recent reviews for a general
overview of quadrangulation methods [BLP*13] and direction field design [VCD'16]
on a single shape, and focus our literature review on joint design of cross fields and
quadrangular meshes.

Perhaps closest to our approach is the Functional Vector Field work [ABCCO13]
where joint design of smooth vector fields is formulated in the functional framework.
The optimization there is convex, yet the vector fields need to be represented in a low
dimensional basis, which is computed using the eigenfunctions of the Hodge Laplacian.
We generalize this approach to cross fields, by representing vector fields in a local frame
per face, thus avoiding the need for a low dimensional basis, and formulating a functional
consistency constraint which is invariant to this choice of frame.

One of the first approaches to joint quad mesh design was presented by Yao et
al. [YCJL09]. There, the user sketched compatible skeletons which were used to generate
compatible base meshes, from which compatible quadrangulations were extracted.
Unfortunately, this approach requires extensive manual input, and affords little control on
the quality and smoothness of the resulting quads. Later approaches to interactive design
of quadrangular meshes were based on learning quad templates from examples [TINT11,
MTP*15], with the goal of computing quad meshes which are approzimately consistent
with quadrangular meshes designed by artists. These methods are local, as they rely on
segmenting the input into disk-like patches, which may yield sub-optimal results.

The more general problem of computing consistent or approximately consistent
quad meshes jointly on a pair or a collection of shapes with respect to an input
correspondence has only been addressed by a few methods so far. Given a collection
of shapes in correspondence, Meng et al. [MH16] co-extract compatible feature lines,
and then design cross fields independently for each shape, using the feature lines as
alignment constraints. In the following step, they co-design a compatible cut graph,
and then align all the shapes in a common parameter domain. However, since the cross
fields are designed independently, the correspondence of feature-less regions is not taken
into account. Alternatively, Marcias et al. [MPP*13] take as input a set of shapes with
compatible triangulations, use the principal directions of the deformation gradient as
alignment constraints for designing a single cross field on one of the shapes, extract
from it a quad mesh and then propagate it to the rest of the sequence. The case where
the connectivities of the triangle meshes are different, is not handled in that work.

These two approaches highlight the main challenge of cross field-guided compatible
quad remeshing: transporting the cross fields across meshes. The first approach avoids

this issue by designing each cross field separately, whereas the second approach uses a
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high quality triangle-to-triangle map to transport vectorial information. In an attempt
to address this challenge in the context of symmetry-aware cross field design, Panozzo
et al. [PLPZ12] use a fuzzy symmetry map, which averages the contribution of the
transported cross field from the neighborhood of a few triangles. While achieving
excellent results in some cases, this approach has some important limitations. First, it
requires the computation of a high-quality symmetry map, especially tailored to their
approach. As is shown in [PLPZ12], when using other symmetry maps, the results can
be suboptimal. This is a practical limitation, as their proposed symmetry computation
method does not handle, for example, high genus intrinsic symmetries. Second, their
algorithm uses hard constraints to align the cross field with the symmetry line. This
constraint prevents singularities from appearing on the symmetry line, unnecessarily
limiting the space of feasible cross fields. Furthermore, a high quality symmetry line,
which might be challenging to compute, is required for this constraint. Finally, the
formulation provided there is not in the form of a global optimization problem, and the
optimality of the solution under their proposed error metric is not guaranteed.

Our method overcomes the limitations exhibited by previous approaches, as it is
robust to the input map, can be applied to meshes with different triangulations and
to symmetric meshes without requiring the computation of the symmetry line, and
is formulated as a convex quadratic optimization problem whose global optimum is

efficient to compute.

4.2 Overview and Background

Given a shape along with a self-map (e.g., associated with a symmetry) or a pair of
shapes with maps between them our goal is to produce quadrangulations that would be
consistent with respect to the input map. To this end, we first design consistent cross
fields, and then use existing methods to extract quadrangulations from them. Thus, the
main focus of our work is to devise a robust method for consistent cross-field design,
and we present quad-remeshing as the main target application, among many possible
others.

Our main contribution is a novel cross field consistency energy (Section 4.3.3) which
we combine with existing smoothness and curvature directions alignment energies into a
global convex quadratic optimization problem. For the method to be widely applicable,
the consistency energy should be robust to imperfections in the input map. Thus,
instead of transporting cross fields with estimated map differentials, which are often
noisy for imperfect input maps, we formulate consistency in terms of scalar functions
and use composition with the input map for transport.

Cross fields can be represented discretely in a few ways (see e.g., [VCD116, Sec. 5]),
which affects the way the difference between two crosses is measured. Since each cross
is composed of a set of 4 indistinguishable vectors, any comparison between two crosses

should be invariant to reordering of the sets. A common way to handle this is to define
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a local basis, represent the cross as a complex number in this basis, and then compute
its power vector, namely the 4-th complex power of this vector [KCPS13, Fig. 5]. As
the power vector is unique for each cross, power vectors can be compared directly in
order to compare crosses.

This link between cross fields and their corresponding power vector fields hints at
the possibility to leverage techniques used for robust vector field transport [ABCCO13]
for cross field transport. However, one caveat is that smoothness of power vector fields
is measured differently than smoothness of vector fields, therefore a low dimensional
basis of smooth vector fields can no longer be used for the representation. Furthermore,
the power vector fields are dependent on the local basis in which they were computed.
We show how this dependence can be eliminated, and use this insight to formulate the
consistency energy.

We efficiently solve the resulting optimization problem, then normalize the out-
put power fields and convert them to their associated cross fields. To extract the
quadrangulations, we feed the resulting cross fields to a Mixed Integer Quadrangula-
tion (MIQ) [BZK09] implementation that computes parametrization functions whose
gradients align with the directions of the cross fields. Finally, the meshes and the
parametrizations are given as input to a Quad Extraction (QEx) [EBCK13| implementa-
tion which robustly extracts the quad meshes associated with the parametrizations. We
use the implementations of MIQ and QEx directly and thus we omit further discussion
on these methods, and refer the interested reader to the respective papers for additional
information. Technical details such as the actual code packages and the parameters we
used are described in Section 4.5.

We emphasize that we optimize for a consistent cross field and thus the quadrangu-
lation is only approximately compatible in practice. Indeed, we concentrate specifically
on the design of consistent cross-fields and our method is not intended to provide
guarantees about the quality of the quad final meshes. Nevertheless, in practice, we
achieve highly-consistent quad meshes, as can be seen in Fig. 4.2. The bunny model
exhibits an intrinsic symmetry (the head is rotated), which makes the stationary line

non-trivial, and yet, our method produces a visually appealing symmetric quad mesh.
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Figure 4.2: A quad mesh generated with our method using k£ = 100 eigenfunctions on the
intrinsically symmetric bunny model.
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In the following two sections, we describe the design of consistent cross-fields first
with respect to a symmetry on a single mesh (Section 4.3) and then with respect to a
pair of meshes with a (functional) map between them (Section 4.4). We then present
results obtained using our approach, by focusing on joint quadrangulation as a principal

potential application.

4.3 Self-consistent Cross Field Design

We assume to be given an orientable manifold triangle mesh M with vertex set V, edge
set £ and face set F. Vector fields as well as cross fields are piecewise-constant on faces
in our setup. Namely, per triangle, a vector is encoded using 2 numbers with respect
to a local basis (b,b) and thus both the cross field z and its power field y can be
expressed as vectors in R2¥!, where |F| is the number of faces. To compute the power
vector corresponding to a cross in a given face, we take an arbitrary vector of the given
4, compute the angle 6 it makes with b, and the resulting power vector in this face is
the unit length vector in the 40 direction. Next, we describe the energy terms we use to

design the power field y.

4.3.1 Smoothness

Following previous work, we use Dirichlet’s energy which is defined via the covariant
derivative of power fields, to quantify how much y changes across the edges of the mesh.
Integrating the squared norm of this measure over the surface leads to the following

where Gg € R2I€I¥2I€] ig 4 diagonal matrix which encodes the barycentric mass of edges,
and grad, € R2I€1%27] is the covariant derivative, also referred to as the discrete Levi-
Civita connection, modified to account for taking the 4-th power, whose construction is
given in e.g., [DVPSH14, Eq. (3)].

4.3.2 Alignment to input directions

In many situations, the designed field will be required to align with certain directions,
where the principal curvature directions are a natural choice for quad remeshing. Given
an input cross field, we compute its associated power vector field w € R2¥1, and arrive

at the straightforward alignment term:

1 1
B =518 —w)l} = 5y — w)TSTGr Sy~ w) . (42)
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Figure 4.3: Optimizing for smooth cross fields which are not aligned (left) or aligned (right) to
curvature directions produces equally smooth cross fields, where the right field better respects
the underlying geometry.

where Gr € R2¥1%271 is the diagonal mass matrix for the faces, and S € R 1x27
is a diagonal matrix of weights given by the user, indicating the relative importance
of the alignment constraints. For instance, when the principal curvature directions
are used for alignment, S is usually a measure of the anisotropy of the curvature. In
Fig. 4.3, we show that without alignment constraints (left), the smoothest cross field
may not necessarily follow the curvature directions, whereas even a modest alignment

requirement yields a smooth field which is parallel to the cube’s edges (right).

4.3.3 Consistency

Vector fields. A vector field is consistent with respect to a self-map ¢ : M — M, if
for any point ¢ € M, the following equation holds:

do(v(q)) = v(é(q)) - (4.3)

Namely, points which match under the mapping should be equipped with identical
vectors, via the transformation of the tangent spaces given by the map differential de¢.
Two major challenges are related to enforcing the above equation in practice. Firstly,
when ¢ is approximate, enforcing Eq. (4.3) to too many outliers may erroneously affect
the result. Secondly, computing the map differential d¢ is a non-trivial and potentially
unstable task, especially in the presence of noisy maps. See Section 4.6 for further
details and comparisons.

Instead of working directly with Eq. (4.3), vector fields can also be seen as derivations
[Mor01, pg. 37]. That is, we can apply Eq. (4.3) to a real-valued function f: M — R

and obtain the following consistency constraint:

v(f)op=uv(fog), (4.4)

where v(f) = (v,grad f) is the pointwise directional derivative, and o denotes com-
position with a map. It is a well-known direct consequence of the chain rule [Mor01,
Eq. (1.14)] that for a fixed tangent vector field v, Eq. (4.4) is satisfied for all smooth
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functions f, if and only Eq. (4.3) holds. Note that for a fixed f and ¢, Eq. (4.4) is linear
in v, meaning that it can be optimized, for example by solving a linear least squares

system.

Power vector fields. Cross fields are only smooth up to rotation by integer multiples
of 7/2, and thus Eq. (4.4) cannot be applied directly without incorporating integer
constraints. With a local basis (b, bL) per face, the four vectors of the cross can be
mapped to a single vector per face, by taking the 4-th complex power of the vector with
respect to the basis b. This power vector field is smooth, if the change of basis between
neighboring faces is taken into account. However, power vector fields are not canonical,
as they depend on the choice of local basis (b, b") per face. Thus, comparing two power
vectors at a given point is only meaningful if they were defined with respect to the same
local basis. In other words, it is not enough for the power vector field to satisfy Eq. (4.3)
or, equivalently Eq. (4.4) for all f, to guarantee a consistent cross field. Instead, the
transformation between the basis vectors (at every pair of points ¢ and ¢(q)) should
also be accounted for.

To overcome this difficulty, one can try to treat the basis b as a smooth vector field,
and design it simultaneously with the power vector field y, such that b also fulfills the
consistency condition in Eq. (4.3). However, this yields an optimization problem which
is twice as large in the number of variables and constraints, and which is non-linear
because of the dependency between the basis vector field and the power field y. Instead,

we show how to remove the basis dependency altogether using the following observation:

Lemma 4.5.1. Given a cross field z and an arbitrary point ¢ € M, we compute the
associated power vectors y; and s at ¢ using two different basis vectors b; and bs,

respectively. Then, for any real-valued function f, the following relation holds

(y1, (grad f)1,p) = (y2, (grad f)a2p)

where (grad f);, is the power vector of (grad f) at ¢ in the basis b;.

In other words, the inner product of two power vectors defined with respect to the
same local basis is invariant to the choice of basis. Intuitively, the inner product between
two power vectors encodes the angle between the underlying crosses and is thus basis
independent. See Appendix C.1 for the straightforward proof. Thus, in the case of
power fields, we modify Eq. (4.4) and consider instead:

(y, (grad f)p) 0 ¢ = (y, (grad(f © ¢))) - (4.5)

Note that the two sides of the equation are computed at different tangent spaces, of the
symmetric points ¢ and ¢(q), with respect to arbitrary basis vectors. The comparison

between these values is meaningful due to the proposition above.
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Intuitively, for the constraint to hold, the function (y, (grad f),) should be symmetric
under the map ¢. Fig. 4.4 visualizes this function on the surface during our iterative
optimization process, described below. As the optimization proceeds the function
becomes more symmetric, and thus the consistency error is reduced. We note that
unlike Eq. (4.4), Eq. (4.5) is non-linear in the function f. However, both of these
equations are linear in y, which allows us to use this equation directly to enforce

consistency of a cross field with respect to a given map ¢, with an arbitrary local basis.

20 40 60

Figure 4.4: We iteratively optimize for a consistent cross field whose action on a fixed function
produces a symmetric result. In this example, y’s action at iteration 0 is not highly symmetric,
but it quickly improves during the iterations 20,40 and 60.

Discretization. In practice we work with functions represented in a chosen functional
basis B, with the two most commonly used bases in our setting being either the indicator

RIVIXE such as the

(hat) basis at the vertices, or a multiscale low-dimensional basis B €
Laplace—Beltrami eigenfunctions. In that case, functions are represented as vectors of
size k, where k < 300 in all our experiments. We are given as input a functional map,
which maps real-valued functions represented in the basis B to other such functions,

and we represent it as a matrix C' of size k X k.

The operator grad is the standard gradient operator for functions in the piecewise
linear hat basis, and thus we use the transformations f = Bf and f = BT f between
functions f € R¥ in the basis B and functions f € RV in the hat basis, where B7 is the
pseudo-inverse of B. We further use the matrix I{f e RIVIXIF1 to interpolate face-wise

values to vertex-wise values.

The function (y, (grad f),) € R¥! is linear in y, and thus its computation can be
encoded as a matrix-vector product. We interpolate the face-wise values of the inner
product to the vertices and define D(f) € RV*21 such that D(f)-y = I3, (y, (grad f),).
To use functions f given in a reduced basis B we define the reduced operator D(f) €
RF*2IF1 as: D(f) = BT D(BY).

Finally, using these operators we enforce our consistency rule (4.5) on a subset of m
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functions f; given in the basis B, and arrive at the following novel constraint:

Ee= 53 10D =D f) -yl (16)
i=1

Discussion. While in the above formulation we describe the use of functional maps
encoded in a reduced basis of size k, we stress that our framework can be easily applied
in the particular case when a dense (vertex to vertex) or precise (vertex to point on face)
map is known. In this setting, B is the identity matrix of size |V| and C' € RIVI*IVl is a
sparse matrix encoding the dense correspondence or using three values per row for the
precise (inside the face) map. Similarly, D(f) = D(f). For all the figures we provide in
this paper, we show the results obtained using the reduced functional map, unless noted
otherwise (see e.g., Figs. 4.10a, 4.10b and 4.14).

4.3.4 Energy minimization

We combine the above design constraints into a single minimization problem. Linear
blending of energy terms is controlled via two parameters «. and «y, both in the range
[0,1]. Overall, the power field that we use to generate the quad mesh with is the

minimizer of the problem:

argmin (1 — a;)[(1 — ) Es + ac Eo] + oy By . (4.7)
Yy

Notice that the above problem is quadratic in y since we omit the unit length constraint
on y as was done in [KCPS13]. Consequently, we have a linear gradient and a constant
Hessian. In Appendix C.2, we discuss how to efficiently solve the above problem using a
standard optimization toolbox. In particular, we show that although the Hessian of our
energy is large and dense, its product with a given vector can be computed efficiently
by decomposing it into a large and sparse and small and dense parts. In Fig. 4.5, we

present a few examples of models with intrinsic symmetries and the quadrangulation

17T

7

Figure 4.5: Typical quadrangulation results for models which are equipped with intrinsic
symmetries.
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result we obtained using only k£ = 100 eigenfunctions in all three cases.

4.3.5 Relation to other functional approaches.

Functional maps [OBCS"12]. Given a map ¢, the linear operator that maps any
real-valued function f to the pull-back fo¢ was denoted by Ovsjanikov et al. [OBCS*12]
as the functional map representation of ¢. That work, and follow up works [OCB™'16],
have observed that it is often easier to frame problems using the functional map rather
than the pointwise map. Our work follows this theme, as in order to enforce Eq. (4.5),
it is only necessary to have access to the functional map f o ¢. As we show below, this
greatly simplifies the computations and at the same time extends the applicability of the
resulting algorithm. This is because our formulation avoids not only the estimation of
the map differential, but does not require even the knowledge of a precise point-to-point
map, the estimation of which from a functional map can be challenging [RMC15], and
is required by some state-of-the-art mapping methods [LRB*16, OCB*16].

Functional vector fields [ABCCO13]. Joint design of smooth vector fields has
been done in [ABCCO13] by leveraging Eq. (4.4). There, to avoid working with a
local basis per face, vector fields have been represented as functional operators, namely
matrices, and Eq. (4.4) was implemented as a commutativity constraint. However, to
reconstruct the face-wise vector field from its functional representation, and to enforce
smoothness on the resulting vector field, Azencot et al. worked in a low dimensional
basis of tangent vector fields computed as the eigenfunctions of the Hodge Laplacian.
To generalize their approach to cross fields, one would need to modify the basis to
be able to represent smooth cross fields, and in addition modify the consistency term
to take into account the local basis in which the cross-field was computed. We avoid
the first issue by working directly with the face-based vector fields as the variables,
and the second issue by working with a basis-invariant formulation. Note, that simply
designing a power vector field using the functional vector field machinery would not
yield the smoothest cross-field, as the singularities that arise are different (see Fig. 4.6,
and also [RLL106, Fig. 8]).

4.4 Consistent Field Design on Two Shapes

To extend the model we proposed in Section 4.3, we consider the following scenario.
Given a pair of triangle meshes My and My, possibly with different vertex and face sets,
our pipeline requires as input the functional maps C12 and Cy;, which map functions
on M to functions on M, and vice versa. One of the advantages of our approach to
consistent cross field design, is that it naturally generalizes from the case of a single
shape to a pair of shapes. Indeed, the new smoothness and alignment components are

extremely similar to the former case, whereas the main change is in the consistency term
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Figure 4.6: Using the method of Azencot et al. [ABCCO13] for designing power fields would not
yield the smoothest cross fields, but would produce fields with different singularity structures.
For comparison, we show the quad mesh computed from the smoothest cross field (left and
middle left), and from the smoothest vector field treated as a power field with a smooth local
basis (middle right and right).

where we now optimize for two power fields instead of one. Our objective is to optimize
for fields y; on M; and ys on My such that the following energy terms are minimized.
For example, we show in Fig. 4.7 the different results we obtain with (bottom) and
without (top) our consistency condition.

In this setting, given two shapes, we simply add together the smoothness and

alignment constraints for each y;. Formally,

1 1
By = 5 llerad, mly, + 5l grad, el | (48)

1 1
b = §||Sl(y1 - wl)”%\/jl + §”Sg(y2 — wQ)H?\/& , (4.9)

where w; and S; are typically the curvature directions and their weights on M;. To
avoid clutter of notation, we uniformly use grad,, for the covariant derivatives on both
of the meshes, in cases where no confusion might arise. Notice that while being stacked
jointly, Egs. (4.8) and (4.9) are independent of the relations between M; and My, i.e.,
the associated Hessians are block-diagonal.

To develop the consistency rule for a pair of shapes, we recall the geometric meaning
of our constraint on a single mesh. Namely, in the former case we required that for a
given function, taking the appropriate inner product with y and the functional map
(pull-back) should commute (Eq. (4.5)). For two shapes, we have a similar scenario,
being different in that the mapped versions are on the other mesh, where before we
had only one surface. In addition, to avoid favoring a particular mapping direction,
we symmetrize our constraint by adding an analogous term in the other direction, and
thus we need both Cjo € RF2XF1 and Cy; € RF1**2. We obtain the following consistency

condition:

1 m
Ee=35 Z; 1C1 D(fi2) - y2 = D(Cor - fig) - )
m (4.10)
1
3 ; [Cv2 D(fia) 31 = D(Cra - fia) -3
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Figure 4.7: Curvature information can sometimes lead to quasi-consistent results even without
consistency a. = 0 (top row). However, we show that facilitating our compatibility condition
. = .01 with the precise mapping from BIM represented using a functional map of size k = 50,
produces more consistent quad meshes (bottom row).

where {f;1} and {fi2} are sets of m functions chosen arbitrarily on M; and Mo,
respectively. Again, we remind that our operators are given in some pre-calculated
functional basis. For instance, C12 maps a function f; represented in the basis B; €
RIViIXFk1 0 a function fo = Cia - fi given in the basis By € RV2lxk2,

Finally, we gather the above energy terms into a single problem, where we optimize
for power fields y; and y2. Notice that, as in the case of a single shape, while y; are
encoded in a specific local basis in every tangent plane of every point on shape i € {1, 2},
our formulation is invariant to the choice of these bases. We employ the same weighting

parameters as before, and arrive at our final optimization energy:

argmin (1 — oy)[(1 — a¢) Es + ac B + a Ep . (4.11)
Y1,Y2

Discussion. We point out that our approach can be extended to the case of shape
collections in a straightforward way. That is, smoothness and alignment constraints are
simply stacked as in Egs. (4.8) and (4.9), and consistency could be achieved by either
enforcing Eq. (4.10) between each of the shapes and a template mesh or by exhaustively
enforcing it between all possible pairs. One challenge involved in taking this approach
is that it might be not practical to solve the obtained problem when the collection is
large. As we were focused on developing the cases of a single shape and a pair of shapes
in this paper, we leave further investigation of consistent quadrangulation of shape sets

for future work.
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4.5 Implementation Details

We implemented our method using MATLAB and tested it on a Intel Xeon 3.20GHz
processor with 32GB RAM. The optimization problems we consider in Eqgs. (4.7) and
(4.11) could be re-arranged as standard quadratic programming problems, composed of
sparse components, Fs and Ej, and a dense element, F, (see Appendix C.2). Thus, we
were able to use MATLAB’s quadprog optimization tool with a user-handle to compute
Hwv, where H is the Hessian and v is a vector, in order to avoid storing the full dense
Hessian. The initial solution was the smoothest power field (a. = 0 and «; = 0) in all
our tests. For problems with 5k/11k/20k/27k/50k vertices, the power field design part
converges in 5/7/13/34/90 seconds with a point to point mapping or in 10/18/68/90,/169
seconds using a reduced basis of size k = 100, respectively.

For the functional basis B, we took the first k£ eigenfunctions ordered by their eigen-
values, starting with the smallest one. Similarly, we use the first m = min(k; — 1, k2 — 1)
eigenfunctions excluding the constant one for the test functions {f;} which appear in
Egs. (4.6) and (4.10). In practice, we test against the power of the gradient (grad f;),
weighted by )\;1, where ); is the associated eigenvalue. To generate point to point
mappings, we used implementations of Blended Intrinsic Maps (BIM) [KLF11] without
landmark correspondences, seamless surface mappings [APL15] and the descriptor based
pipeline from [OBCS*12] with landmark constraints. For the computation of functional
maps in a reduced basis we used a pipeline that combined descriptor and sparse landmark
correspondences by adapting the approaches of [OBCST12] and [PBB*13].

In all of our experiments, the power version of the principal curvature directions is
used for the alignment constraints (Eq. (4.2)). To this end, we implemented the method
proposed in [Rus04], where the weights are computed per triangle j by S(j) = |k1 — kal|?
with k; the extremal curvature values, and we clamp values below .1 to zero. Once the
cross fields are computed, we use it as input for the implementation of MIQ provided in
libigl [JPST13], and we then feed the resulting parametrization to the implementation
of QEx provided by the authors [EBCK13] to obtain a quadrangular mesh. Both, MIQ

and QEx, were used with default parameters in our tests.

4.6 Evaluation and Results

4.6.1 Comparison with FSS

We compare our symmetric quadrangulation results with the state-of-the-art method of
Fields on Symmetric Surfaces (FSS) by Panozzo et al. [PLPZ12]. In all of the following
experiments, for computing the FSS results we used the cross field output data provided
by the authors. For generating our cross field, we used as input the symmetry-map
generated by their intrinsic symmetry computation method (using code provided by the
authors), which results in a vertex-to-point in face mapping, and used the full hat basis

unless otherwise noted. For both methods, we generated a quad mesh from the cross
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field using MIQ and QEx, using the same parameters for both approaches.

Behavior near the symmetry line. As discussed in Proposition 6 in [PLPZ12], at
the symmetry line the cross field should either have a singularity, be aligned with the
symmetry line, or form 7 /4 angle with the symmetry line. In their approach, the field
is forced to align with the symmetry line using hard constraints. However, allowing
singularities on the symmetry line, and therefore allowing the cross field to switch
between the two configurations (aligned and rotated by 7/4), may increase the overall
consistency and smoothness. Instead, we omit this constraint, and solve for the global
minimizer of Eq. (4.7), allowing us to compute quadrangular meshes which are more
consistent with respect to singularity point locations and error metrics. In Fig. 4.8
we show the quad mesh generated by FSS (yellow) and by our approach (blue) using
the full map. Note how forcing the quad directions to align with the symmetry line
generates noisy quads in the FSS approach, e.g., along the chest and nose of the gargoyle

as shown in the zoomed-in figures, whereas our method generates a smoother edge-flow.

ST S

Figure 4.8: The approach of Panozzo et al. [PLPZ12] constrains the field to be aligned with the
stationary line (yellow). Thus, the space of possible minimizers is significantly smaller, yielding
sub-optimal results on the chest and nose of the shape (zoomed-in areas). In contrast, our
method allows for general cross fields which exhibit intricate behavior along the symmetry line
(blue). Consequently, our output better respects the involved geometry, while achieving lower
error values (see rightmost column in Figs. 4.10a and 4.10b).
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Figure 4.9: Robustness to triangulation. (left) We extensively decimated %85 of the vertices in
the left part of Max Planck’s model, leading to non-symmetric curvature alignment constraints
(middle) due to the difference in triangle areas. Nevertheless, our method produces a symmetric
cross field whose associated quad mesh is highly consistent (right). Notice that this example is
particularly challenging for methods which employ the map differential.

Applicability. As mentioned in their paper (see Figure 8 there), F'SS requires a high-
quality symmetry map, and a corresponding symmetry line. In addition, for computing
the map differential, they use the gradients of two functions (one symmetric and one
anti-symmetric), which should also be extracted from the map and be of high quality.
Our approach, on the other hand, requires only a functional correspondence, which
can be given in a reduced or full basis, and can potentially be noisy. Therefore, our
approach is applicable to more general shapes and less robust correspondences and as
different mapping methods work better in different scenarios, ours general applicability
is a clear advantage. For instance, in Fig. 4.9, we employ the mapping obtained using
BIM on a mesh which is particularly challenging as there is a significantly different
density of triangles along the stationary line (left). Nevertheless, our method produces

a reasonable quad mesh (right) using only k£ = 100 eigenfunctions.

Quantitative comparison. We ran our method on all the models shown in [PLPZ12],
for which the FSS intrinsic map computation could be used. We measured the consistency
error of the resulting cross fields using two metrics: eqys Which is closely related to
our consistency condition (Fig. 4.10a) and epgg which is guiding the FSS approach
(Fig. 4.10b). The first metric, eqys, is given by

€ours = Ec(ma fz) + Ec(nygi) ,

where both of the terms are computed using the functional map constructed from the
known precise mapping, i.e., C € RVI*VI In the left term E.(m, f;), we use m and f;
as defined in Section 4.5, and we randomly generated n = 1000 vertex indices for which

we created hat functions g; that are used to compute E.(n, g;). The second metric is
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defined as follows.

erss = ||zp — (sym(z))l13s

where x is the cross field generated by FSS, and sym(x) is the symmetrized version
of x, computed by applying the “symmetrization by field transport” step of the FSS
algorithm to x. We compare x with its symmetrized version by comparing their power
fields, and weigh the errors by the face area, namely ||y||2;, = yT Gry. If epss = 0, it
would imply that symmetrizing the cross field x has no effect, and thus x is already
exactly symmetric. For both metrics, we show the results for FSS (yellow squares) and
for our approach when using the FSS map in the full basis (blue circles) and in the
reduced basis (red diamonds). To evaluate the error results together, we consider the
relative error as it is measured with respect to the value we obtained with our method

when using the full basis.
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(a) We compared our method using functional
maps given in a full basis (blue circles) or a

reduced basis (red diamonds) to FSS [PLPZ12].

Using the full basis, our approach achieves
superior results on all the models, and in some
cases by a large margin, as can be seen in the
relative error above. See the text for additional
details.

. .
1 [ ] [ ] L [ L ] L ]
(b) In addition to the comparison we show in
Fig. 4.10a that uses a modified version of our
consistency condition, ey, we also compute
the relative error metric epsg, which is opti-
mized in FSS. For all the models, we obtain
improved error metrics when using the full

basis and comparable results for the reduced
case. For more details, see the text.

As can be seen in Figs. 4.10a and 4.10b, our method with the full basis achieves
better error results on all of the meshes except for bimba, where the results of the
two methods are similar. Note that in these experiments we used the same input
including the symmetry map computed by the method in [PLPZ12], and only the
computation of the cross field is different. Thus, these quantitative results highlight the
robustness and accuracy of our functional formulation. In particular, on models where
our cross fields switched their behavior along the symmetry line, we gained significant
improvement: e.g., of factors 3.3,4.65, and 9.53 on the models busto, Max Planck and
gargoyle, respectively, in our metric eqyrs. The improvement in epgg for these models
was 1.87,3.75 and 4.35, respectively. Moreover, we note that our method with a reduced

functional basis of size k < 300 produced comparable or better results when compared to
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Figure 4.11: We compare our consistent quadrangulation of a pair of meshes with AAQ [MPP*13]
using code supplied by the authors. We computed a quad mesh on each mesh using it as the base
mesh (yellow), which should then be transported to the second mesh to yield exactly consistent
quadrangulations. For our approach (blue), we used the point-to-point correspondence also given
to AAQ. Note that our results are both smooth and consistent, where as while the AAQ results
are exactly consistent, they are dependent on the base mesh, and considerably less smooth. See
the text for more details.

FSS with our metric egus. However, when measured in epgg, these cross fields typically
generated inferior error results, while being visually plausible as can be seen in Fig. 4.5
(left and right).

4.6.2 Comparison with AAQ

We compare our consistent quadrangulation of a pair of meshes with the state-of-the-art
method of Animation Aware Quadrangulation (AAQ) by Marcias et al. [MPP*13]. For
computing the AAQ results we used the code provided by the authors, and applied it to
the two human meshes shown in Fig. 4.11, using the default parameters. We generated
two cross fields, by choosing first the kneeling human as the base mesh (yellow left) and
then the standing human as the base mesh (yellow right). Each of these quad meshes
should be transported to the second frame to generate exactly consistent quad meshes
(we do not show the transported quads). Note, that AAQ can only be applied to meshes
with the same triangulation, thus we also used this point-to-point map (in the full basis)
as our input and applied our pipeline to generate consistent cross fields (blue). We
then generated a quad mesh from the cross fields using MIQ and QEx, using the same
parameters for both approaches.

Note, that while the output of AAQ is exactly consistent (as they transport the
quads directly), the resulting quad mesh pairs would be very different depending on
which mesh is used as the base mesh. Furthermore, our result is qualitatively better
for both meshes (as it is both smooth and consistent), even though we only jointly
design the cross-fields and quadrangulate separately. In general, the deformation of the
triangles between these two meshes is quite large, which, as noted in the AAQ paper, is
a challenge for the their method. Further, since AAQ only considers the deformation
between the meshes, and not the curvature directions explicitly, the results for a pair of

meshes are less aligned with the geometry than our results. We do note that AAQ is
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Figure 4.12: Alignment vs. symmetry on a 3D bar shape. (z,) The directional constraints
are placed on the bottom face and and on one of the sides as marked by the arrows. (1) Due
to the misaligned constraints, requiring solid-to-dashed line consistency as well as directional
alignment yields a rather complex quad structure. (2) Relaxing the alignment constraint leads
to a highly symmetric quadrangulation. Notice that the resulting cross field in this case is in
fact the minimizer of the Dirichlet’s energy. (3) Conversely, low values for consistency with high
values for alignment produces mildly symmetric field which is better aligned in a least squares
sense.

geared towards the more complex scenario of a collection of meshes, which we do not
currently support, however their approach is specifically designed for triangle meshes

with the same connectivity, thus is less general than ours in this respect.

4.6.3 Parameters exploration

Effect of consistency and alignment constraints. To motivate the use of our
compatibility constraints, we demonstrate in Fig. 4.7 the quad meshes we obtain with
and without this constraint on a pair of surfaces. Specifically, in the top row, we show
that when requiring zero consistency, i.e., a. = 0, the resulting quads are somewhat
related, mainly due to curvature information, but the singularities are in different
locations (green points). Increasing this parameter to a,. = .01 yields a compelling
result, where the isolines and singularity locations are very consistent (bottom row). In
addition, we show in Fig. 4.12 a more thorough evaluation of consistency vs. alignment
weights on a 3D bar model. Our results show that requiring high alignment (x,,) in this
case produces relatively complex quad meshes (1 and 3), while low alignment with high
solid-to-dashed consistency yields smooth and symmetric result (2). The colored edges

encode the parametrization cuts.

Size of the functional basis. In theory, our consistency rules in Eqs. (4.6) and
(4.10) should hold for any function. However, these constraints are based on mapping
functions between surfaces using a functional map, which is potentially given in a low-
dimensional basis. Thus, transferring functions with high-frequencies in this case may
result in significant errors due to projection onto the basis. Nevertheless, as our basis is
given in terms of a multiscale eigen-decomposition of the Laplace-Beltrami operator,
we hope to use as few as possible basis elements in our application. In practice, the

basis size k determines which functions are well-represented, and in Fig. 4.13 we try to
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quantify which k’s allow to produce high-quality quad meshes. (left) Using only & = 10
eigenfunctions is clearly insufficient as the resulting mesh is only quasi-symmetric,
mainly due to curvature information, whereas increasing the basis to size £ = 100

(middle) produces a highly-consistent mesh. With k = 5161, we obtain optimal results.

4.6.4 Robustness

Noisy point-to-point mappings. A key advantage to working in the functional
setup is that it allows to gracefully handle scenarios where approximate or noisy
correspondences are given. To evaluate the robustness of our method to inexact
mappings in the context of approximately symmetric quad remeshing, we propose the
following experiment. The model we use in Fig. 4.14 is equipped with a compatible
triangulation, and thus we have the ground-truth mapping ¢. Using this map, we
generate two additional noisy correspondences, ¢o and ¢4, where each point is randomly
mapped with gaussian weights to the 2-ring and 4-ring neighborhood of its matching
point, respectively,

Equipped with this data, we generate symmetric quadrangulations with our method
using ¢, ¢o and ¢4 shown in the left, middle and right columns, respectively, where the
top row is computed with the full basis and the bottom row uses a reduced basis of size
k = 100. As can be seen in Fig 4.14, with perfect information ¢, the results we obtain
are outstanding, exhibiting complex quad structures (top left). However, our outputs
are of lesser quality when noisy maps are used, with bent isolines on the head for ¢o
(top middle) and non-symmetric stationary line around the chest for ¢4 (top right). In
contrast, when we use the associated functional maps in a reduced basis, the results we
obtain and show at the bottom row reveal comparable consistency quality, regardless
of the underlying noise in the mappings. While this result might seem non-intuitive
in light of the error values we achieved in graphs 4.10a and 4.10b, we stress that the
intrinsic mappings produced with FSS [PLPZ12] are of extremely high quality. However,
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Figure 4.13: Effect of changing the functional basis’ size. (left) When using only 10 eigenfunctions
in B, we show that the resulting quadrangulation is hardly consistent with respect to the existing
bilateral symmetry. (middle) Increasing the basis to include 100 elements significantly improves
the result. (right) Finally, using the whole spectrum yields nearly perfect results.

75



MAP

FMAP

Figure 4.14: In this example, we demonstrate the robustness of our method in the presence of
imperfect correspondences. We compared the quad meshes we obtain when using maps with
deteriorating quality (left to right) in the full basis (top row) and reduced basis (bottom row).
While we achieve very good results with the exact mapping (top left), the quad meshes produced
with the noisy maps display only quasi-symmetry (top middle and top right). For comparison,
employing a small functional map of size k = 100, yields consistent quadrangulations in all cases
(bottom row). See the text for additional details.

computing good mappings is a hard problem in the general case, and thus we advocate

the use of a reduced basis in cases where inexact data is given.

Pushforward error evaluation. When given a pair of shapes with the same connec-
tivity, we can provide a more accurate measurement of the consistency error related to
our computed cross fields. To this end, we facilitate a decimated version (752 vertices) of
the SCAPE dataset [ASK™05]. We compute cross fields y; and y, on the template pose
paired with each of the first 50 poses. Then, using the ground-truth map differential,
we push the associated x; to My and calculate the error G 7o(q)|lz2(q) — (do(z1))(q)]|?,
for each face ¢ € F5. In Fig. 4.15 we show the resulting sorted error distribution as
computed for all of the pairs. The obtained results are consistently within the 107>

range for all pairs, which is reasonable for such coarse triangulations.

% of matching

L’ error X107
Figure 4.15: We design consistent cross fields x; and zo, on pairs of shapes from the SCAPE
dataset (a. = .1,y = 0), and we measure the pointwise L? error of the computed x5 compared
to d¢(x1) which is the pushforward of x; using the ground-truth map differential. In the above
plot, we show the distribution of the error for all of the pairs. Notice that in most of the cases,
80% of the points have an error of at most 1075,
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Figure 4.16: We generated a precise mapping using sparse landmark correspondences given as
input to the seamless method [APL15]. With the resulting map, we compute consistent cross
fields on both meshes with the full (left) and reduced (right) basis.

Applicability to various mapping methods. In our tests, we use different mapping
methods and functional maps. For example, the results in Figs. 4.2, 4.5 (left and right),
4.8, 4.10a and 4.10b, are based on the intrinsic correspondences generated with FSS.
Moreover, we utilized BIM in Figs. 4.5 (middle), 4.9, 4.7 and 4.13. Example 4.16
is particularly challenging as it involves non-isometric meshes for which the current
state-of-the-art methods produce only approximate maps. Specifically, we used the
seamless mapping method [APL15], and we generated approximately consistent quad
meshes using the full basis (left) and the reduced basis (right). Notice that the resulting
quadrangulations are qualitatively similar being slightly more consistent for the full

map case.

Genus 1 examples. In Fig. 4.1 (left), we show an example on a genus 1 model with
intrinsic symmetry. Notice that since the tail is attached to the head of the kitten, it is
unclear in this model where exactly the symmetry line goes through, which makes it
a stress test for many mapping techniques. Nevertheless, we were able to compute a
high quality functional map, which allows us to generate an approximately consistent
quad mesh which mostly respects the underlying symmetry. In addition, we tried a
similar experiment on a pair of meshes from the FAUST dataset, where we “glued”
the hands of one of the persons. Using a reduced functional map of size k£ = 50, we
obtain compatible quad meshes, as can be seen in Fig. 4.17. Notice that the right leg
is somewhat less consistent and it is due to the map which is only approximate. We
show in the zoomed-in figures that the same singularity structure is maintained on both
meshes, but it is twisted on the left person. We validated that the mapping is wrong
in this area by mapping a function from the left person to the right, and, indeed, the

colors in the zoomed-in area are inconsistent between the meshes.
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Figure 4.17: Unfortunately, methods for mapping surfaces with different genus are scarce.
Nevertheless, the robustness of our machinery to different mapping methods allows us to
compute consistent quadrangulations even in the difficult case of genus 0 and genus 1 surfaces.

4.7 Limitations

One limitation of our method is that in some cases, we achieve poor consistency results
on certain areas of the mesh, even though the general quadrangulation is relatively
consistent. We believe it is due to the fact we omitted pointwise unit length constraint,
allowing the optimization to reduce energy by scaling vectors in problematic regions.
Related to this issue, is that we generate uniform quadrangulations, regardless of the
underlying geometry. In this context, additionally optimizing for a consistent sizing
field might be beneficial. Finally, as we mentioned in Sec. 4.2, our method produces
only approximate consistent quad meshes, since we optimize for a guiding field and not
directly for the quads. As a result, our method does not provide guarantees about the
exact quality of the resulting quad meshes. All of these shortcoming offer interesting

directions for further consideration and future work.

4.8 Conclusion and Future Work

In this paper, we presented a novel unified technique for computing consistent quad-
rangulations of individual and pairs of shapes, with respect to a given symmetry and
correspondence respectively. Our method does not require the input shapes to have the
same triangulation and can handle shapes with arbitrary topology, while at the same
time placing special emphasis on robustness and efficiency. Key to the success of our
technique is a novel formulation that only requires a functional (rather than pointwise)
correspondence across shapes and allows us to avoid the difficult estimation of the map
differential, while being able to accommodate functional maps given in a reduced basis.
Our formulation results in a simple and easy to implement method that produces more
accurate results compared existing baselines and allows to handle more general difficult
cases.

In the future we plan to extend our method to handle entire collections of shapes,
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and also to use our functional formulation to enable cross field design with other
(possibly user-guided) novel constraints, which are difficult to enforce locally. In
addition, our formulation is applicable to any N-RoSy fields, and not necessarily cross
fields, and we wish to further investigate its applicability to joint design of PolyVector
Fields [DVPSH14].

79



80

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

Technion - Computer Science Department - Ph.D. Thesis PHD-2017-15 - 2017



Chapter 5

Advection-Based Function

Matching on Surfaces

A tangent vector field on a surface is the generator of a smooth family of maps from
the surface to itself, known as the flow. Given a scalar function on the surface, it can
be transported, or advected, by composing it with a vector field’s flow. Such transport
is exhibited by many physical phenomena, e.g., in fluid dynamics. In this paper, we are
interested in the inverse problem: given source and target functions, compute a vector
field whose flow advects the source to the target. We propose a method for addressing
this problem, by minimizing an energy given by the advection constraint together with
a regularizing term for the vector field. Our approach is inspired by a similar method
in computational anatomy, known as LDDMM, yet leverages the recent framework of
functional vector fields for discretizing the advection and the flow as operators on scalar
functions. The latter allows us to efficiently generalize LDDMM to curved surfaces,
without explicitly computing the flow lines of the vector field we are optimizing for. We
show two approaches for the solution: using linear advection with multiple vector fields,
and using non-linear advection with a single vector field. We additionally derive an
approximated gradient of the corresponding energy, which is based on a novel vector field
transport operator. Finally, we demonstrate applications of our machinery to intrinsic

symmetry analysis, function interpolation and map improvement.

seee

Figure 5.1: Our method takes a source function (blue frame) and a target function (red frame)
and finds a single vector field (gray frame) whose assoc1ated ﬂow map advects the source function
to a function which matches the target function at the end time (black frame). In addition, our
method yields a smooth interpolation of functions by advecting the source function for different
times (5 frames from the right).
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5.1 Introduction

Finding correspondences between geometric objects is a fundamental problem in ge-
ometry processing. In many cases, the map between the objects can be represented
through correspondences between scalar functions. A Gaussian distribution centered
at the location of the object [SNBT12], an intensity function representing medical
data [BMTYO05] or a geometric descriptor [OBCS*12], are all examples utilizing this
approach. In fact, matching functions is a more general problem, as functions are not
restricted to encode shapes, but can represent alternative information, such as distortion

information [OBCCG13|, appearance properties [BVDPPH11]| or texture coordinates.

A natural extension to the function correspondence problem is to additionally
compute an interpolation between the given functions, namely a time varying function
which starts from the source and smoothly interpolates to the target. One possible
approach then, is to recast the problem as finding a set of vector fields, whose associated
flow maps are composed to yield an interpolation between the functions. The flow map
of a vector field is computed in any point of the domain by “traveling” from that point
and following the trajectory of the vector field (known as the flow line), for a specified
time. Advection of a function is then achieved by composing it with the inverse of the
flow map (see Figure 5.2), where interpolation is computed by advecting the source
function for various times, and the target function is attained at the final time.

This approach to function interpolation has long been considered in medical imaging
where anatomical images are deformed from one to another. Several methods designed
for solving this problem are currently available [SDP13] of which the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) algorithm [BMTYO05] is widely adopted.
LDDMM tackles the problem by minimizing an objective function, which combines the
advection constraint with a regularizing term on the vector fields. In practice, energy
minimization is computed by explicitly constructing the flow map and its Jacobian, or
deformation gradient. Therefore, carrying over this framework to curved domains is
challenging, as these quantities are difficult to represent and compute on such domains.
We suggest to overcome these difficulties by reformulating the energy using the framework
of functional vector fields [ABCCO13], leading to a novel advection-based method for

spatial interpolation between real-valued functions on curved triangle meshes.

Figure 5.2: The flow map of a vector field (left, shown with the Line Integral Convolution
method [PZ11]) is used to advect a function (middle left) for various different times (middle
right and right).
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The main component required for our method is an advection operator acting on
curved domains. Previously, advection has been employed to simulate fluids [SY04],
and more recently to compute stable shock filters [PK15]. However, these methods
rely on the explicit computation of flow lines which is algorithmically complicated,
unstable and error-prone on curved triangle meshes. Alternatively, tangent vector fields
can be encoded as directional derivatives of functions, and thus as linear operators
acting on the space of functions. Adopting this approach, [ABCCO13] showed that
on triangle meshes, discrete tangent vector fields can be encoded as sparse matrices,
whose exponential represents their associated flow map. Further, the composition of
a map with a function is given in this setup as a matrix-vector multiplication, and
hence advection can be efficiently approximated by computing the action of the matrix
exponential on a vector [AMH11]. Notice that since functions are directly mapped to
functions, the explicit computation of flow lines and its inherent difficulties is completely
avoided in this setup.

In this paper, we facilitate the functional advection technique for solving the function
matching problem. Initially, we propose to optimize for a set of vector fields and use
linear transport, i.e., taking only the first two terms of the matrix exponential. This
approach works well in scenarios as fluid simulation [AWO™'14, AVW15] where the
Courant—Friedrichs-Lewy (CFL) condition limits propagation speeds and thus restricts
the dynamic time step to be small. However, it is sometimes necessary to find a single
vector field; a constraint that is rarely attainable with the linearized formulation as the
required time step for matching might be too big. For instance, assume that the target
function is in fact the advected version of the source function, as is the case in optical
flow problems [SRB14]. In this context, one hopes to reconstruct the underlying vector
field that governs the motion. Thus, we generalize our energy functional to include the
full matrix exponential, for cases where it is crucial to interpolate using a single velocity
field.

Unfortunately, the associated directional derivative of the matrix exponential is
computationally intractable in most of our problems. Recently, Corman et al. [COC15]
noticed that this derivative is in fact a block in the matrix exponential of a bigger
operator, and thus used a sum of matrix exponentials of bigger matrices. However,
they worked in a reduced spectral basis, allowing them to facilitate this observation
which requires the computation of a large number of matrix exponentials (as many as
the number of basis vectors). We, on the other hand, work with the full basis, thus
their approach is less applicable in our case. Instead, we observe that an approximation
of the matrix exponential derivative can also be formulated in terms of a Lie bracket
operator acting on vector fields. Thus, we propose a novel discrete bracket and exploit
the relation between vector fields and matrices to arrive at a tractable derivative for the
matrix exponential. Overall, we emphasize that through the entire computation of the
functional’s gradient, we never store or explicitly compute the matrix exponential, but

only its action on vectors.
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We demonstrate our machinery in several applications as spatial interpolation
between various functions and reconstruction of the governing velocity in an optical
flow type scenario. Moreover, we construct a continuous symmetric map based on two
descriptors. Finally, we show that our method can be used to extract the point-to-point

map that is related to a given functional map.

5.1.1 Related Work

We discuss here various approaches which either solve the same problem on Euclidean
domains, solve a related problem on triangle meshes, or target similar applications as

ours.

Computational anatomy. The problem of matching consecutive medical images is
a classical problem in computational anatomy, and one of the common solutions uses the
flow of one or more vector fields, see [SDP13], for a recent review. Among the plethora
of such methods, LDDMM [BMTYO05] is extremely popular, and has been extended to
many settings, though not to curved triangle meshes. On flat domains, discretizations of
LDDMM use semi-Lagrangian techniques for vector field integration, and for computing
discrete mappings and their differentials, using simple interpolation rules. However,
on curved meshes these computations are more challenging, as trajectories should be
constrained to remain on the curved surface. Our discretization, on the other hand,
is based on the functional approach, thus functions can be advected without explicit

computations of mappings and their differentials.

Optical flow. vector field based registration is also popular in computer vision, where
it is known as optical flow, see [SRB14] for a recent review. In the classical formulation,
when two images are given, the goal is to find a smooth displacement vector field which
matches the first image to the second. This is in fact the linearized version of advection
on Euclidean domains, highly appropriate in optical flow since the change between
consecutive images is small. Optical flow has been generalized in many ways, and
was recently adapted to advection-based matching of a series of functions on triangle
meshes [LB08]. There, however, multiple samplings of the interpolated function are
given as input, i.e., not only the initial and final functions as in our setup, inherently
assuming that the deformation between two consecutive functions is small. Furthermore,
they compute multiple vector fields which realize the flow, and their advection approach

exhibits far more diffusion than ours.

Optimal transport. Matching between distributions is a prevalent objective in opti-
mal transportation (OT) methods [Vil03, Vil08]. In fact, the Benamou-Brenier [BB0O]
formulation shares some similarities with our matching approach, with the important
difference that their associated vector field is time-dependent in general. In the special

case when distances are raised to the power of 1 [SRGB14], instead of a general power
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p, OT is formulated using a single vector field. However, advecting the function on the
resulting vector field leads to a trivial pointwise linear interpolation between the source
and target functions, whereas our method yields spatial displacements. Alternatively,
using squared distances [SDGPT15] (i.e., p = 2) yields interpolation results that are
closer to ours, yet requires regularization for computational efficiency which leads to

blurring, and does not output a single vector field.

Related Applications in Computer Graphics. Our method can be classified as
on-surface interpolation of functions, and there exist a small number of works addressing
similar problems in Computer Graphics. Perhaps the closest to our approach is the
method for continuous matching [COC15]. There, the authors improve a given point-to-
point map, by optimizing for a vector field such that the composition of its flow map
with a given input map approximates another known map. However, optimization in
their setup requires working in a reduced spectral basis in order to be computationally
feasible due to their usage of explicit matrix exponentials. In addition, their obtained
field is smooth and thus does not account for high frequency deformations whereas
our method does. Deformation of functions on surfaces is also addressed in [RTD'10],
by computing a map fulfilling some point constraints and composing its inverse with
the function to be deformed. This problem is in some sense simpler than the one we
address, since the constraints imply that the correspondence between the source and

target functions is known, and only interpolation is needed.

5.1.2 Contributions

Our main contribution is a method for solving the inverse problem of computing a vector
field whose flow advects one function to another on curved triangle meshes, where the

functions are not required to be similar or have overlapping support. To this end we:

e Reformulate the LDDMM energy using functional operators. We explore linear and
non-linear advection formulations and provide the associated gradients (Sections
5.3-5.5).

e Present a novel Lie bracket operator on vector fields (Section 5.6) which is
instrumental for efficiently computing the derivative of the advection operator
(Appendix D.3).

e Present applications of this machinery to optical flow on curved domains, in-
terpolation of scalar functions, extraction of a point-to-point map from a given

functional map, and realization of intrinsic symmetry maps. (Section 5.8).
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5.2 Vector Fields and Flows

To formally specify our objective we briefly describe the following definitions for vector
fields and their flows. In differential geometry, it is well-known [Frall] that tangent
vector fields are fully encoded through their action on smooth scalar functions. Given a
surface M with its associated metric (-, -) and a smooth function f : M — R, the action

of a vector field v on f is given by the directional derivative of the function:

o(f) = Do(f) = (v, Vf) , (5.1)

where the inner product is computed per point p € M. Vector fields and mappings are
tightly linked as any tangent vector field v defines a one-parameter family of self-maps

!, known as the flow of v, which satisfies:

d .
P =vod, oy=id.

Advection of scalar functions is then achieved by composing f with the inverse of the
flow map, i.e., f(t) = fo¢,*. Thus, f(t) is the unique solution of the following partial

differential equation,

d
S0 = =Du(f0), FO)= . (52)

The operator of advection plays a key role in our method since it allows to match
between functions. We proceed by describing our approach for function matching on

surfaces.

5.3 Advection-based Function Matching (ABFM)

A straightforward (and computationally trivial) approach to interpolating functions is
to linearly blend them. However, pointwise interpolation is independent of the global
structure of the functions and the underlying geometry. Moreover, if the functions are
spatial deformations of one another, i.e., an associated field generates the functions (as
in optical flow), linear interpolation would not produce satisfying results. These issues
motivate a different approach.

Given a surface M and two scalar functions f,g : M — R, we seek for a time-
varying tangent vector field v(t) whose associated flow advects f onto g. In general,
this problem is ill-defined, as there can be many such fields, therefore some additional
regularization on the vector field is required. To this end, we design an energy functional
which includes two terms: a data term that promotes the advection constraint, and
a regularization term which enforces smoothness on the vector field. Our approach
is inspired by the popular LDDMM framework [BMTYO05], which enforces a similar

functional. In Figure 5.3, we show matching and interpolation results computed using
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Figure 5.3: Given source and target functions (blue and red frames), our method matches the
advected source to the target (black frame). The resulting interpolation is obtained by advecting
for different times leading to spatial displacement of values.

our method.

We propose to solve the following optimization problem:
17 2 _
argming | [o(t)lladt + —Hf o, T =gl (5.3)
v

Namely, our data term seeks to minimize the norm of f(7) — g, where f(7) satisfies
Eq. (5.2) when advecting f using the optimized velocity. The scaling parameter o
weighs the matching against the penalty due to the regularization of the velocity, i.e.,
we treat the matching as a weak constraint.

We choose a function norm that is more suitable for measuring distances between
disjoint functions, i.e., functions whose supports (where f, g # 0) are disjoint. Specifically,
increasing the parameter 8 allows for interpolating functions that are farther apart.
The term which regularizes vector fields also uses a modified norm, see e.g., [BMTYO05],

which promotes a smoother velocity as a grows. Thus, we define the following norms:

2 _ X X )ax ’U2= v\xr v\r X
Hfl!g—/Mf( )Cs fa)de . o]l /M< (2), Do v(z))dz

where Cj is defined as Cg = id —3 A p with Ay p the negative-definite Laplace-Beltrami
operator. Similarly, the operator D, is given by D, = id+a Apy, where Ay is the
Hodge Laplacian.

5.4 Discretization

The main challenge in the discretization of our objective function on triangle meshes is
computing the flow map ¢!. This requires computing the flow lines of v, which is known
to be a non-trivial and error prone problem on curved meshes, requiring combinatoric
decisions (e.g., to which triangle should the flow line continue). Furthermore, it is

not clear how one could compute the gradient of our objective functional if using
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such a direct approach for computing the flow lines. In the following, we propose an
alternative method, which involves only the advected functions and does not require

the computation of the flow lines, based on the functional representation of vector

fields [ABCCO13].

Notation. We are given a triangle mesh with face set F and vertex set V. We define
our discretizations in matrix notation, and thus represent functions as vectors of length
|V|, and vector fields as vectors of length 3|F|. Vertex and face areas are respectively
denoted by Ay € RVl and Ar € RV, where the area of vertex i is computed by
one third of the total area of its adjacent triangles. We use diagonal mass matrices
given by Gy = [Ay] € RVI*WVI for vertices and G = [AF] € R3FPSIFT for faces. The
bracket [] operator converts vectors in RV and RV to diagonal matrices in RIVI*VI
and R3V X371 respectively (replicating each entry 3 times for the latter). In addition,

we define the interpolation matrix If; e RVIXIFl to average quantities from faces to

_ Ar()
— 3Av(9)

differential operators, grad € R371*VI and div € RVI*371 are the standard ones as
defined in [BKP*10, Chapter 3].

the vertices, i.e., I{f(i,j) , iff vertex ¢ belongs to face j and 0 otherwise. Our

Functional Vector Fields. Following the construction introduced in [ABCCO13]
and using our notation, we have that D, and its dual version Ef, required for derivative

computations, can be computed as follows
D, = I]];[v],T grad, Dj= If[grad 1r,

where Dy is a matrix of size |V| x |F| defined as the operator which satisfies D¢(v) =
Dy(f). Here, []o € R3¥IXI71 is a block diagonal matrix which encodes a pointwise
multiplication of a vector field by a face-based function, and its transpose evaluates a

pointwise inner product.

Functional Advection. A particularly useful property of D, is that discrete advec-
tion of a function f can be computed using the action of the matrix exponential on f,

namely,

fi=exp(—tD,) f = Dy f, (5.4)

o (=0)"
gl

k=0

where the action is computed in an efficient manner with methods as [AMH11]. When
viewed as an operator that maps functions to their directional derivatives, the discrete D,
with the relation (5.4) is closely related to the functional maps framework [OBCS*12].
In this context, the operator exp(—t D,) is in fact the functional map associated with

the flow map of v. Finally, there are cases (e.g., in fluid simulation) where it is sufficient
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Figure 5.4: Linear advection of an input function (top left) works well for short times (top
middle), but discretization errors in the form of oscillations appear for longer times (top right).
For comparison, the non-linear transport (bottom) better approximates the flow and it yields a
smooth result, even for long times (bottom right).

to use the linearized version of advection, i.e.,

fi=(@{d—tD,) f . (5.5)

In Figure 5.4, we show a comparison between the linear and non-linear versions of
advection. Starting from the same initial function (top and bottom, left), the linear
computation (top) exhibits discretization noise, i.e., oscillationst (top right), while the

non-linear discretization (bottom) provides a smooth result (bottom right).

Discrete Energy. To fully discretize problem (5.3), we break the time parameter
into NV segments of equal size 67 = 7/N. Thus, we optimize for a finite set of vector
fields {vj}éyzl that are constant per time segment. Using the above definitions and

matrix notations, we arrive at the following discrete optimization problem

N
) 1
arg min TTE vfG;Davj—l—ﬁégTGngég , (5.6)
{v;} j=1

where dg = f o ¢, 7 —g. The map ¢, " is obtained by composing the flow maps of the

different velocities, i.e.,

- —s —s
fo¢v7—=fo¢v1‘ro..o vNT,

where composition is achieved through matrix multiplication.

The transported function can be computed using the linearized flow (5.5) or the
non-linear flow (5.4). In general, the linearized method is preferred in cases where the
overall smoothness of advection is of less importance (see applications in Section 5.8
that are related to Figures. 5.11, 5.12), since the composition of discrete mappings

may induce some error. Also, the linearized method yields reasonable results when the
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underlying deformation is small or the flow time is sufficiently short. On the other hand,
non-linear advection is crucial when one requires a single vector field that generates
a smooth deformation (see e.g., Figures 5.9, 5.10). In the following, we consider two
scenarios: linear flows with multiple vector fields and non-linear flows with a single

vector field. Hence, we have

N

foo,m =[] (Gd=67Dy) | £, or  foy,T =exp(—TDy)f,

j=1

where we used the notation ¢, " in the non-linear case to distinguish it from the linear
case. Finally, we use the notation f; to denote the advected version of f to time ¢, i.e.,

fi=foo,tor fy = fop,t, depending on the associated flow, and fo = f.

Discrete Gradient. To solve the discrete problem (5.6), the gradient of the energy
functional is required. Given that D, and Cg are self-adjoint operators, i.e., in our
case these are symmetric matrices with respect to the corresponding inner product, the

derivative of the energy functional is given by

O 5 srcrpant L (24 aveys (5.7)
—FE =907 vit+— | =— . .
8’1}j FHat g 2 8vj ¢ V-8 g

The full derivation of the gradient appears in Appendix D.1. Note, that the gradient
depends on &, fi, and thus on the choice of advection operator. We provide in Appen-
dices D.2 and D.3 the derivative of the advection for the linearized and non-linear flows,

respectively.

5.5 Linear and Non-linear Advection-based Function Match-
ing
The first scenario we consider takes N > 1 and employs linearized flows, i.e., uses the

advection f o ¢, " as described in Section 5.4. To compute the directional derivative of

the energy functional (5.7), we derive the component é% ft and obtain

N
d _ _
B0, fo=—or | ] Gd=orDy,) | Dy, ,,. - (5.8)
i=j+1

where f(;_1)5, is the (partial) advection of fy to time (j —1)d7. We refer to this method
as Linearized Advection-based Function Matching (LABFM) and Figures 5.11, and 5.12
were generated using this method.

While the LABFM method is fast and simple to implement, there are certain
applications in which N = 1 is a design requirement. Thus, we extend the former

method to include non-linear flows, i.e., f o ¢, 7, and to optimize for a single vector
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field. The modified energy becomes

T

Blo) =~

vI'Gzr Dyv+ %@TGV Csdg ,

where, as before, we need to re-derive the suitable gradient of the component 0, f;. We
emphasize that computing the derivative of this expression is more involved compared
to the former case. In particular, exp(—7 D,) € RVl is a dense matrix, thus
using finite differencing methods or extracting a block in the exponential of a bigger
operator [COC15] is possible only for small problems. Instead, we derive in Appendix D.3
an approximation of the gradient by exploiting the relation between matrices and vector

fields. We arrive at the following expression,

k
exp(—7 Dy) Dy, Zexp <% adv> , (5.9)

—f=—

.
k+1
where k is a scalar used to approximate a continuous integral, and ad, is the Lie
bracket [Frall], an operator that acts on vector fields, i.e., ad, u = [v, u], where u is a
vector field. Intuitively, the bracket measures the amount of change u exhibits with

respect to the flow lines of v. We defer the discussion on the operator ad, and its

exponentiated version to the next section.

5.6 Lie bracket of Vector Fields

The Lie derivative evaluates the change of a vector field over the flow of another vector
field. Given two tangent fields v and u, we say that their flows ¢! and ¢! commute
when their bracket is zero. Geometrically, it means that one can apply ¢! and then ¢!,
or the other way around and arrive at the same point. Formally, the bracket is given in
operator form by:

Dy ) = DyDy — DuDy (5.10)

where [v, u] denotes the associated vector field. Notice that under the bracket operation,
vector fields form a group (since second derivatives cancel), i.e., Dy, ) is a directional
derivative operator. We show in Figure 5.5 an example of the smoothest vector field u
(right) that commutes with v (left).

Representing and computing the Lie derivative on surfaces is an on-going challenge
and several methods try to solve this problem. For instance, [AOCBC15] exploit the
functional approach and offer an efficient representation of the bracket in a reduced
spectral basis. We choose to follow [ABCCO13] as their bracket discretization is
closely related to the directional derivative operators we use. Specifically, the discrete
version of Eq. (5.10) is computed in [ABCCO13| by taking the commutator of the
respective matrices. However, the resulting matrix acts on scalar functions, whereas

ad, € R3] i5 an operator that takes a vector field and returns a vector field.
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Figure 5.5: Given a vector field v (left), the kernel of its operator ad,, consists many vector fields
that commute with v, where we show the smoothest one (right).

Nevertheless, we observe that a vector field [v, u] can be extracted from its directional
derivative Dy, ,) by applying the operator on the coordinate functions z,y and z. For
instance, to reconstruct the z-coordinate we compute Dy, () = [v, u],. Repeating this

procedure for y and z (the derivation appears in Appendix D.4) yields:

>,

v

0 0 D
ad, = D, 0 |—|D, | e RT3 (5.11)
0 D, D.

o O

where D, = [v]] grad I{,T and 5]0 = [grad I\ff]?

A novel property of ad, is its relation to the differential of the flow map ¢¢. The
differential of a self-map ¢! generates a self-map Ady; on the tangent bundle, i.e., Ady,
also known as the pushforward, transports vector fields to fields. For finite matrices, our
representation is extremely useful since we can discretize Adg: by taking the exponential
of ad, [Hall5]:

Adgt u = exp (tad,) u , (5.12)

where the term exp(tad,) appears in our gradient computations (5.9), and we evaluate
it using Eq. (5.11) and the matrix exponential. In Figure 5.6, we demonstrate the action
of Ady: associated with v (left) on the field u (middle left) for several times (middle
right and right).

0 6 6 &

Figure 5.6: Transport (pushforward) of a vector field « (middle left) over the flow lines of v
(left) is shown for various times ¢ = 0.125 and ¢ = 0.25 (mlddle right and right).
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Algorithm 5.1 Energy and gradient calculation for the Quasi-Newton iteration of the
non-linear ABFM algorithm. The routines exp and exp_tspan are described in [AMH11].

function NLABFM(f, g, v)
// Energy computation
fr < exp(—7, Dy, f)

59 A fT — 8
E« vl GrDyv+ ﬁ(ngGV Cgég // Eq. (5.6)

// Gradient computation

d ﬁfT exp(—7, DL, Gy, Csdyg)
ds + exp_tspan(adl, d, 0, 7, k)
return E, D

5.7 Implementation Details and Limitations

We implemented our method in MATLAB using the minFunc routine [Sch12] which
employs a quasi-Newton algorithm with L-BFGS (limited memory) updating. In
Algorithm 5.1, we provide the function handle that computes the energy and derivative
of NLABFM. This pseudo-code includes calls to exp and exp_tspan which compute the
action of a matrix exponential on a vector for a specific time and for a range, respectively
(see [AMHL11] for further details). Notice that the gradient computation includes the
transpose of the matrices Dv,ﬁf and ad,. This is due to the use of (&,ft)T in the
gradient (5.7) and since exp(A4)7 = exp(AT) for any matrix A.

Our advection method depends on the end time parameter 7. Unfortunately, the
computation of the action of the matrix exponential is not stable for long times.
Consequently, the optimization does not find a descent direction and stops immediately.
We handle this limitation with a simple modification to the definition of the non-linear

flow, i.e.,

n

fow,m =exp(—7Dy)f = | [[exp(—67D0) | £,
j=1

where 07 = 7/n. Notice that we use the same vector field v in the product and the
above relation holds up to machine precision. However, the gradient also changes in a

way that is not equivalent in the discrete setting, i.e.,

n k

0 oT — 50T

%ft =~ Zexp (=(n—r)éT Dy) Dy, ;. Z exp <k: adv> .
r=1 s=0

The main difference in the above expression compared to Eq. (5.9) is that we advect for
a range of times instead of advecting only for the end time, and, in particular, advection

for shorter times contributes to the computation.
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Figure 5.7: Interpolation results between the eigenfunctions 7 and 8 of the Laplace—Beltrami
operator (blue and red frames). Notice that our result (black frame) highly matches the target
function and that the interpolation path is smooth.

Table 5.1 shows the parameters we used in all of our experiments. For small defor-
mations, taking 7 = 1 is sufficient to achieve good results, whereas large deformations
require larger 7. Increasing the parameters o and 3 corresponds to smoother fields and
functions, respectively. Finally, decreasing ¢ weighs the matching constraint higher
with respect to the vector field constraint. In practice, we employ a “cooling” procedure
for o (denoted with asterisk in the table) to achieve better matching, i.e., o is divided

by 10 per a fixed amount of iterations.

5.8 Results

Spatial interpolation of functions. Fig. 5.3 shows an intuitive spatial interpolation
between a large smooth Gaussian (blue frame) and two small smooth Gaussians (red
frame). Our method yields a result (black frame) which matches the target function,
where the rest of the frames are obtained by advecting the source over the resulting
velocity field for different times. While our result is similar in nature to those obtained

with optimal transportation techniques [SDGP*15], we stress that our method is not

Figure T @ B o N n
Fig. 5.1 1 1 0 le—2* — 10
Fig. 5.3 2 le+3 le—5 1le—4 — 40
Fig. 5.7 1 1le+3 0 le—1* 20 -
Fig. 58 10 1le+3 0 le—2* — 200
Fig. 5.9 1 1 le—4 5e—-3 — 20
Fig. 510 1 1le+3 0 le—2* — 20
Fig. 5.11 1 1 0 le—2* 10 —
Fig. 5.12 1 1 0 le—2* 10 -

Table 5.1: The parameters used in our experiments. See the text for details about the effect of
each parameter on the obtained results.
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Figure 5.8: Our method takes as input a function (blue frame) and its advected version (red
frame) computed using a vector field (top left). The output of our method is the matched
function (black frame, right) and the corresponding vector field (black frame, left and middle).
Notice that the resulting field highly matches the original field and the error between the function
(bottom right) is very small. See the text for additional details.

designed for probability distributions. In particular, our differential operators and their
integrated versions do not exhibit a maximum principle, i.e., the advected functions are
not guaranteed to be probability distributions, even if they originated from a probability
distribution. Nevertheless, the drift can be minimized by taking a small o parameter.
Similarly, we show in Fig. 5.7 a smooth interpolation between the eigenfunctions 7 and
8 of the Laplace—Beltrami operator. Matching between eigenfunctions is important for
improving maps between surfaces, as was shown in [COC15]. In addition, several map-
ping techniques rely on associating scalar geometric descriptors [OBCS*12]. Therefore,

our method can serve as a building block in such scenarios.

Optical flow on surfaces. In cases when the target function is the advected version
of the source function, one common objective is to reconstruct the underlying vector field
which generated the motion. For instance, in the context of optical flow, registration
between consecutive frames of a movie allows to up-sample the given signal. In Fig. 5.8,
we show optical flow on curved surfaces where the source function (blue frame) is
advected to time 7 = 10 (red frame) over the velocity field (top left, showing its LIC
visualization and top middle left, showing its norm). Our method matches the target
function (black frame, right) with a vector field (black frame, left and middle) that
is very close to the original field. In addition, we show the absolute error between
the target function g and the matched function f o ;!0 i.e., we compute pointwise
lg — f o, 19 (bottom right). Notice that both f and g are on the scale of 1, thus our

matching exhibits significantly small error.

Continuous matching of symmetric surfaces. Given a surface and its symmetry
map, our goal is to infer a one-parameter family of maps which continuously matches

the surface to its symmetries. In Fig. 5.9, we take a source function (blue frame), map
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Figure 5.9: Our method handles large deformations between the source function (blue frame)
and the target function (red frame), and succeeds in finding a single velocity ﬁeld whose ﬂow
represents the continuous symmetry map (black frame). We show an RGB color coding of the
surface mapped under the resulting flow for times 0,7/2,7 and 27 (bottom, left to right).

it with the symmetry map (red frame), and we optimize for a single vector field which
matches between those functions (black frame, shown with LIC and norm of the field).
The bottom row shows an RGB color coding of the coordinate functions mapped with
the flow map of the velocity. The initial geometry with two points marked on top of it
(left) is advected to time 7/2 (middle left) and then to time 7 (middle right). Notice
that the points and the coordinate functions are smoothly mapped to the correct values.
We additionally show an extrapolation of the advection to time 27 (right), where some
drift is noticeable, yet it is relatively small. Fig. 5.10 shows a similar experiment on a
much more complex data since the geometry contains creases, thus it is not clear that
the required vector field even exists. Yet, our method yields a reasonable continuous

symmetric mapping which maintains the general behavior.

Function Matching for Mapping. The functional map framework [OBCS™12]
provides the basis for many mapping algorithms. In this framework, one can infer pose

Figure 5.10: An experiment similar to one shown in Fig. 5.9 on a more complex geometry
that contains creases. Nevertheless, our method finds a smooth field whose flow generates a
continuous symmetric mapping.
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Figure 5.11: Matching between two non-smooth functions (blue frame) to two smooth functions
(red frame) shown as texture coordinates. See the text for additional details.

constraints requiring functions to correspond, and compute a map taking functions
to functions, which best fulfills these constraints. The effectivity of this framework is
somewhat hindered by the fact that it is sometimes difficult to extract a corresponding
point-to-point map if it is required. Using our framework, when working with self-maps,
it is possible to leverage the functional map idea (mapping between corresponding
functions), while simultaneously maintaining a point-to-point correspondence, defined
using the flow map of the computed vector field. This approach was suggested in [COC15],
yet as we work in the hat basis both for functions and vector fields, we are not limited

to a small subspace of functions and vector fields.

We extend the setting using linearized advection of multiple vector fields to match
multiple functions by summing over the errors. Figure 5.11 demonstrates that we can
indeed match successfully between two non-smooth functions (blue frame, visualized
as transported texture coordinates using a given map from the model on the left)
to a smooth version of these functions (red frame, obtained by transportation with
the corresponding functional map), and achieve the required functions (black frame).
Moreover, we compute the pointwise sum of absolute errors between the target functions
{9i 12:1 and the matched functions {f; o ¢] 22:1, i.e., we plot the pointwise difference
> ilgi — fio @] (right). In Figure 5.12 we repeat this experiment on two models
from the SCAPE dataset, using the functional map obtained from the ground truth
correspondence to transport the functions we use as targets (which are the coordinate
functions of the source mesh, two of them visualized as texture coordinates). Computing
the flow using one function constraint (gray frame) and 3 function constraints (black
frame) - we again match the target functions. Furthermore, we compute the point-to-
point map corresponding to our flow and compare the error with respect to the ground
truth, with the output of [COC15] on the same inputs. The resulting errors are shown

in Figure 5.13, demonstrating that we improve the output point-to-point map.
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Figure 5.12: A similar experiment to Fig. 5.11 where given a set of non-smooth source functions
(blue frame) and smooth target functions (red frame), we optimize for a single match (gray
frame) and three matches (black frame). We compare our result to matching obtained with the
method of [COC15] (bottom left).

5.9 Conclusion and Future Work

We have presented a novel method for matching scalar functions on curved triangle
meshes that is based on the vector field’s flow. We designed an energy minimization
framework which is inspired by the well-known LDDMM algorithm and facilitates the
machinery of functional vector fields. Our unique approach avoids the problematic
explicit computation of flow lines and allows to advect in a linear and non-linear fashion.
We showed that our matching method is applicable in scenarios of small and large
deformations. We also demonstrated its effectiveness in optical flow problems, continuous
matching of symmetric surfaces and in the context of the functional maps framework.

Numerous problems which are related to geometry processing can be posed as
function matching problems. Thus, we believe that the generality of our framework
will make it a valuable tool in many practical scenarios. In particular, we would like
to extend our machinery to match and interpolate between tangent vector fields, a
problem whose solutions are useful in fluid simulation techniques. Moreover, we would
like to generalize our method for computing barycenters or weighted averages of scalar
functions. Finally, we believe that our method can be also considered in the context of

geometry-aware texture synthesis interpolation.
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Figure 5.13: Our method matches only three functions on the data of Fig. 5.12, yet it provides
a better reconstruction of the reference functional map when compared to the method [COC15].
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Chapter 6

Functional Fluids on Surfaces

Fluid simulation plays a key role in various domains of science including computer
graphics. While most existing work addresses fluids on bounded Euclidean domains,
we consider the problem of simulating the behavior of an incompressible fluid on a
curved surface represented as an unstructured triangle mesh. Unlike the commonly
used Eulerian description of the fluid using its time-varying velocity field, we propose to
model fluids using their vorticity, i.e., by a (time varying) scalar function on the surface.
During each time step, we advance scalar vorticity along two consecutive, stationary
velocity fields. This approach leads to a variational integrator in the space continuous
setting. In addition, using this approach, the update rule amounts to manipulating
functions on the surface using linear operators, which can be discretized efficiently using
the recently introduced functional approach to vector fields. Combining these time
and space discretizations leads to a conceptually and algorithmically simple approach,
which is efficient, time-reversible and conserves vorticity by construction. We further
demonstrate that our method exhibits no numerical dissipation and is able to reproduce

intricate phenomena such as vortex shedding from boundaries.

6.1 Introduction

Fluids are fascinatingly complex and challenging to simulate, with applications ranging
from aerodynamics and meteorology to special effects in computer animation, to name

just a few. While fluids in Euclidean domains have been extensively studied in both

Figure 6.1: Jet flow (left) and shear layer flow (right) on curved surfaces.
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computational fluid dynamics and computer graphics [Bril5], fluid simulation on curved
surfaces has mostly been limited to special cases (e.g., spheres) or particular surface
representations, such as subdivision surfaces [Sta03], and practical numerical simulation
methods are scarce. This is unfortunate, as simulation of fluids on surfaces has practical
value in a variety of domains, including, e.g., atmospheric research [MWC92], the
investigation of liquid crystal films [CMO05, Bael2], and the entertainment industry.

The main obstacle to adopting successful numerical algorithms from Euclidean
domains to surfaces stems from the fact that a fluid is most often represented by its
velocity field, and the equations governing the behavior of the physical system require
computing derivatives of vector fields, which is challenging on a discrete surface.

Many fluids are naturally incompressible, i.e., the flow preserves the volume of the
fluid. In this case the flow can be represented by its vorticity, given by the curl of the
velocity field. In general, vorticity is a vector field that describes the local spinning
motion of the fluid. On two dimensional domains, such as surfaces in 3D, vorticity
can be represented as a (time-varying) scalar function. This change of perspective
significantly simplifies the analysis and simulation of a fluid, since its behavior can be
succinctly described using linear operators that act on real-valued functions on the
surface.

Although this fact is well known [Saf92], it has, somewhat surprisingly, received little
attention in the context of designing numerical methods for simulating fluids on surfaces.
We make use of this formulation in order to construct a time integrator for vorticity on
smooth surfaces, which is solely based on first principles of vortex dynamics. Our time
symmetric advection scheme is intuitive and easy to implement; yet, it turns out to
be wvariational, i.e., belonging to the class of structure preserving Lie group integrators
for so-called Lie—Poisson systems [MV91, BS99, MPS99], which can be described in
analogy to rigid body dynamics. Thus our method preserves momentum (i.e., vorticity)
exactly, despite being of low numerical order. This in turn leads to a method that is
qualitatively correct, numerically stable, and largely independent of the chosen time
step.

Our resulting integration scheme is based on updating the scalar vorticity function
in time. It involves the push-forward or advection of vorticity along the flow lines of a
given vector field. Unlike existing methods which require the explicit computation of
the flow lines of a vector field on a surface, we show that this advection can be simply
computed as a product of a matrix exponential with a vector in the discrete setting, by
leveraging the recently proposed functional framework for vector fields [ABCCO13| and
mappings [OBCS*12]. As we show in this paper, this change of viewpoint considerably
simplifies the implementation and improves the accuracy of our method.

We demonstrate that our results on Euclidean domains are comparable with existing
fluid integrators, while being conceptually simple and straightforward to implement.
Furthermore, we describe various experiments where our simulation reproduces the

results of analytically derived configurations (for example, spherical solutions), validating
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its numerical fidelity. Finally, we use our method for simulating flow near the inviscid

limit, including effects from vortex shedding at boundaries.

6.1.1 Related Work

The research dedicated to computational fluid dynamics fills numerous books, and a
complete survey is beyond the scope of the paper. We thus restrict the discussion of

related work to Eulerian methods on compact two dimensional manifolds.

Velocity-based approaches. A fluid on a Euclidean domain can be modeled by a
time varying vector field by representing the components of the vector field as functions
on the domain (see, e.g., [Sta99]). This approach does not immediately generalize to
curved surfaces, however, where the representation of vector fields using coordinates is
problematic. One option is to use global or local surface parameterizations [LWCO05,
HAW™09], which may introduce undesired distortion, or to restrict to special cases, such
as subdivision surfaces [Sta03]. A pioneering approach for fluid simulation on general
triangle meshes was suggested by Shi et al. [SY04], and later extended to deforming
surfaces in [NMZ07]; however, these methods require explicit computation of flow lines,
which is a challenging task. A related method [FZKHO05] used an unstructured Lattice
Boltzmann Model to simulate fluid behavior on triangulated surfaces by considering
interactions between mesh vertices. This approach, however, also requires an explicit
representation for the fluid velocity, unlike our method which relies on manipulating
real-valued functions. Auer and colleagues [AMT112] proposed a different technique
based on simulating the flow on a surrounding Euclidean grid and projecting it onto
the surface using the Closest Point Method. While simple and efficient, this approach
requires a careful construction of the grid, whereas our method works directly on the

triangle mesh itself.

Vorticity-based approaches. Discrete Exterior Calculus (DEC) approaches have
been developed for simplicial manifolds. In principle, by avoiding parameterization,
these approaches provide a natural framework for simulating fluid flow. One of the first
methods to adopt this perspective was proposed by Elcott and colleagues [ETK107],
using the vorticity formulation of incompressible fluid flow. Their method preserves
circulation, while ours preserves vorticity. We improve on their work by avoiding the
computation of flow lines of the velocity vector field, which tends to be both challenging
to implement and numerically unstable for triangle meshes. Additionally, our variational
approach does not suffer from significant energy dissipation.

Another vorticity based method is proposed by De Witt and coleagues [DWLF12],
who use the eigenfunctions of the Laplacian for accelerating the computation, and in
order to avoid the somewhat costly Poisson step when computing the velocity from the

vorticity. While this method could potentially be extended to curved surfaces by using
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the eigenfunctions of the Laplace-Beltrami operator, such an approach would require
a large number of eigenvectors to correctly represent a detailed flow, which would be

prohibitively costly for large models.

Several existing methods exploit the principles of DEC in combination with structure
preserving variational time integrators [PMT*11, MCP*09]. We improve on these works
by exploiting additional structure that is only available in two dimensions: the real-
valued vorticity function. As a consequence, our approach requires only about a fifth
of the number of unknowns (vorticity vs. flux and pressure). Further, our formulation
avoids the computation of the Lie—Poisson bracket of vector fields, which is used to
express the time continuous fluid motion on smooth surfaces, but is difficult to discretize.
Indeed, different from [PMT+11, MCP109], by first discretizing time and then space, we
circumvent this difficulty and the attendant need of projecting back onto the subspace
of divergence-free vector fields. Then, using the framework of functional vector fields on
discrete surfaces [OBCSt12, ABCCO13], the spatial discretization is straightforward in
our setup, in particular by avoiding the costly computation of the flow lines of a vector

field on a surface for advecting the vorticity function.

Thus while being intrinsic, intuitive and easy to implement, our method is variational,

and thus preserves many structural properties of the flow even for large time steps.

Our method is time reversible and exhibits no numerical diffusion. Additionally, it
conserves vorticity by construction. As a consequence, we automatically obtain correct
vortex shedding. This contrasts our method with (i) Lagrangian frameworks, where
vortex shedding is modeled by adding fractions of the boundary layer vorticity to the
flow [PK05, WP10] and (ii) Eulerian approaches where vortex shedding is hampered by
numerical diffusion, requiring additional constructions, for instance using precomputed
boundary layers [PTSG09] or hybrid approaches [ZLCW13|.

6.2 Fluid Flow on Surfaces

The motion of an incompressible and inviscid fluid on a two dimensional Riemannian
manifold (M, (.,.)) is described by a time-dependent, divergence-free velocity vector
field v¢, whose time evolution is governed by Euler’s equation. Here we discus Euler’s
equation in its wvorticity formulation, since this is the formulation that we work with.
Before introducing our temporal and spatial discretizations below, we first present the
time and space continuous setting. For further details on the vorticity formulation of
Euler’s equation, we refer to e.g., [Saf92, CMM90).

Fluid velocity. If we restrict our attention to a two dimensional manifold M, then
the divergence free velocity vector field v, that characterizes the fluid motion has a

simple representation in terms of a time varying scalar function oy, known as the stream
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function. This relationship is given by

vy =—JVoi+no, (6.1)

where V is the usual gradient operator acting on functions, J denotes a (pointwise)
rotation of a vector field by 7/2 in each tangent plane, and 7 is a time constant harmonic
vector field (i.e., both divergence and curl-free). If the manifold has a boundary, then
we further require that oy vanishes identically on it. Notice that (6.1) corresponds to
the Hodge-Helmholtz decomposition of v, using zero boundary conditions for oy.

The curl of the velocity vector field,
wy = curly, , (6.2)

is known as worticity. While in 3D domains vorticity is itself a vector field, for two
dimensional manifolds it can be represented by a scalar vorticity function. In this case,

the stream function and vorticity are related through
Wt = —AO't y (63)

where A is the Laplace-Beltrami operator. Note that v; is defined by w; up to the
harmonic component 79 and, for closed surfaces, o; is defined by w; up to an additive

constant.

Vortex dynamics. The fluid motion is governed by Euler’s equation, most compactly
expressed in vorticity form,
d)t == —<th, I/t> s (64)

where wy = %wt is the time derivative of the vorticity function. A direct consequence
of this equation is that wy is frozen-in, i.e., it is transported in the same way as fluid
particles (see e.g. [Dav15, pg. 49]). The velocity field can be recovered from vorticity by
first computing the stream function o, using the linear equation (6.3) and then plugging
the result into (6.1). Hence, Eq. (6.4) can be viewed as an evolution equation for both

w; alone and for the whole fluid motion.

Viscosity. So far we have assumed the fluid to be inviscid, i.e., that there is no
energy loss due to viscous friction. Nonetheless, the limit of zero viscosity yields the
dynamical and visual complexity of fluids, such as smoke. The assumption of zero
viscosity differs, however, from the limit of zero viscosity: in the absence of viscosity
there exists no mechanism for the creation of vorticity, while in the limit vorticity is
created through vortex shedding from boundary layers.! While the above exposition

only treats the inviscid case, viscosity is readily incorporated into the equations of

!This insight explained d’Alembert’s paradox, which predicts vanishing drag on bodies moving with
constant velocity [AJ05].
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motion using Arnold’s observation [AK99] that viscosity can be regarded as an external
force acting on the fluid,
O:}t == —<th, Vt> - pAwt . (65)

Note that this equation represents the vorticity form of the general Navier—Stokes
equation of fluid motion (in the absence of additional external forces), where p is scalar
representing the kinematic viscosity. We return to viscosity later in our exposition and

for now confine the discussion to the inviscid setting.

Flows of divergence-free vector fields. A key aspect of our method is the evolution
of the vorticity function along the flow-lines of the fluid’s velocity field. For this, we

recall the notion of the flow of a time-varying vector field.

Given a time-dependent velocity field vy, its flow ;(p) describes the position after

time t of a particle that starts at a point p at time 0. Formally, the flow is defined via

¢t(p) = v(pe(p)),  o(p) = p, (6.6)

for all p € M. Thus ¢;(p) defines a curve on M, and ¢;(p) is its tangent vector at the
point ¢¢(p).

The flow ¢4 is an invertible self-map on M, i.e., ¢ : M — M, and as such it can
also be used to transport real-valued functions on M. In particular, the flow ¢, acts

linearly on smooth functions f: M — R through the pushforward:

y(f)=fop; ' . (6.7)

Note that ®; is a linear operator acting on real-valued functions defined on M. In terms

of the flow of the velocity field, vorticity satisfies
Wt = (pt(WO) s (68)

where wg = curl vy and ®; is the pushforward of the flow ¢; associated with 4. Physically,

this resembles the well known fact that vorticity is advected along the fluid flow.

We introduce the flow as a conceptual tool here. However, our implementation does
not require an explicit calculation of the flow. Indeed, one of our key observations is that
discretizing Eq. (6.8) directly is much simpler than computing the flow ¢, and can be
done efficiently through a simple matrix exponential, by utilizing the recently proposed
functional representation for vector fields [ABCCO13], and mappings [OBCS*12]. In

this framework, ®; is referred to as the functional map that corresponds to the flow ;.
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6.3 Time Discretization

When discretzing time (but not yet space), we seek to determine from an initial
vorticity wp, a sequence w; that ezactly respects the defining properties of ideal fluid
flow (Egs. (6.1), (6.3), and (6.8)), independently of the time step. We achieve this by
introducing a sequence of time-discrete flow updates, resembling the time-continuous
setting. Indeed, notice that Eq. (6.8) in the time-continuous case implies that w;ys =
Dyis(wp) = Py(ws), suggesting that the time-discrete flow update can be performed
incrementally. Notice further that the identity ®;44(wp) = P¢(ws) implies ®_;(w;) = wo,
which is known as conservation of vorticity.

Accordingly, we define in the time-discrete case:

Vorticity conservation: Each w;y; is obtained by pushing forward w;, i.e., for two

consecutive wj, w;4+1 there is a functional update map ®;_,;,1 such that
wit1 = Piip1(ws) - (6.9)

It remains to specify the exact structure of the linear operators ®;_,;.1, which we

do as follows:

Self advection: The update ®; ;1 is obtained by the flows of the (time-constant)
divergence free velocity fields v; and v;41, which are (linearly) coupled with
vorticity via w;11 = curly;1 and w; = curly;. Namely, we first flow on v; for a
fraction 1 — s of the time step, and then on v;4; for a fraction s of the time step.

Hence, for s € [0, 1] we require
O i = 0@, (6.10)

where ®? is the functional representation of the flow of v; for time ¢ = s h for a

given time step h (see Fig. 6.2).

Combining Egs. (6.9) and (6.10) we obtain a one-parameter family of time integrators,

O (wig1) = 7y (wi) - (6.11)

Note that Eq. (6.11) is a non-linear implicit equation for w;;; since ®**! depends
non-linearly on w;;1. We describe a way to solve this equation in practice in Sec. 6.4,
in particular using Eq. (6.16), which considers the explicit dependence of ®!*! on v*1
(and thus w'*!) in the discrete setting.
Two particular choices of s stand out: For s = 0 we obtain the explicit update
equation
wit1 = P4 (wi) ,

which gives rise to a particularly efficient (but less accurate and stable) implementation.

Instead, in order to maintain structure preservation, we work with s = 1/2 to obtain an
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Figure 6.2: The new vorticity w;y1 is obtained by first advecting w; along v; for a fraction 1 — s
of the time step, and then along v;,1 for the remainder of the time step. This is equivalent to
matching the forward advected w; (along v;) with the backward advected w; 1 (along v;y1).

implicit, time-reversible trapezoidal scheme,

@14_11/2((4.)1‘4_1) = (I)Zl/Q(WZ> . (612)

i+1
—1/2
of the two stationary vector fields v;41 and v;. We stress again that in our

In summary, the above update method computes w;;+; from w; through the flows ®
(piJrl

1/2
implementation we avoid explicit computation of flows, as explained further below.

and

Note that the reversible nature of the time-integrator immediately implies that there
is no loss of information in between time steps, i.e., our algorithm has no numerical
diffusion. As we further conserve vorticity by construction, we achieve plausible and

stable fluid simulations even for large time steps over long simulation periods.

Discussion. Our method is a trapezoidal rule and thus second order in time. Apart
from the invariants enforced by construction, our time discretization also preserves
the Hamiltonian structure of ideal fluid flow in continuous space. In fact, our method
can be derived along the lines of [BS99] using a suitable discrete Lagrangian and
thus belongs to the class of structure preserving Lie group integrators for Lie-Poisson
systems [MV91, BS99, MPS99]. Note, however, that this depends crucially on the fact
that the space of smooth functions on M carries a so-called Poisson structure. In the
spatial discretization we are unaware of such a structure, leading to a method which is
no longer Poisson but still variational, similar to existing variational fluid integrators on
spatial discretizations [PMT+11].
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Figure 6.3: Taylor vortices in the plane with periodic boundary conditions. Compare
with [MCP*09, Fig. 4].

6.4 Spatial Discretization

In the discrete case, we are given a triangle mesh .# = (¥, &, .%), and need to represent
scalar functions, vector fields, and the corresponding operators that map between them.
In addition, we require a spatial discretization for the advection operators ®:.

We represent real-valued functions as scalars on the vertices of the mesh, i.e.,
f: 7 — R, and extend them to the whole surface using the standard piecewise linear
hat basis functions. We also consider vector fields as being piecewise constant on the

faces of the mesh, i.e, v: . % — R3, s.t. each v is parallel to the plane spanned by face 1.

Differential operators. We use two sets of functions as the representatives of our
vector fields: the stream functions oy, and the vorticities wy;. To mimic the continuous
case, we require operators V, curl, div, and A to be such that the following relationships
hold:

v, =—-JVoy+ny, w=-curly

\ (6.13)

diviy =0, wy=—Aoy .

Remarkably, the standard operators used in the literature fulfill these properties (as is

shown in [PP03]), making spatial discretization straightforward in our setting.

Functional operators. In the time-continuous setting, vorticity is pushed forward
from the initial vorticity wp using the (functional representation) ®; of the flow of 1.
In the time-discrete setting, where the vector fields v; are stationary in between time
steps, we can in principle directly compute the flow of v; and advect w; along this
flow. This computation, however, is both costly, difficult to implement and is prone to
instabilities. Instead, by considering the recently proposed functional representation of
vector fields [ABCCO13] we show that the advection of vorticity can be done directly
without computing the flow.

In particular, we follow [ABCCO13] to represent vector fields by their action on

scalar functions. Namely, given a vector field v, the authors propose to consider the
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Figure 6.4: When the vector field on the left is used as initial condition, the corresponding
vorticity simply rotates on the sphere (middle left). The graph (middle right) shows the relative
kinetic energy of the vector field at time ¢ compared to the initial energy, for different time
steps h. The maximum change is on the order of 107°. Compared to the Runge-Kutta time
integrator our method is more stable for a longer time with a larger time step (right).

associated derivation operator, given by:

V(f)=(Vfv ). (6.14)

Following [ABCCO13], we discretize Eq. 6.14 so that given a scalar function f on the
vertices of the mesh, g = V(f) is another such function, whose value at vertex i is given
by:
1
JEN(3) “17 FEN()

where the sums run over all faces adjacent to vertex i, V f; denotes the value of Vf in
face j, and A; is the area of the 4 face. The resulting linear operator is given by a
sparse matrix of size |¥| x |#|, which is obtained by applying V to the piecewise linear

hat basis functions. In the following we identify V with this matrix.

The main advantage of representing vector fields as linear operators acting on
functions in our setup is that (the functional representation of) the flow of a stationary
vector field v is simply given by the matrix exponential of V (see [ABCCO13, Lemma
2.5]). Thus, the functional map corresponding to the flow of v can be computed directly
from V via

O, =exp(shV) . (6.16)

Furthermore, advecting a function f with the low ®; of v, can be done simply by the
matrix vector multiplication exp (s h V) f. Crucially, in the discrete setting, this product
can be computed efficiently without evaluating the full matrix exponential, which can
be both dense and difficult to approximate [AMH11]. We leverage this insight in the
context of fluid simulation by using Equation (6.16) to derive an accurate and stable
advection procedure, which circumvents the need to compute the full flow of the velocity
field.

This leads to the following space-discrete version of Eq. (6.12):
h h
exp —§V¢+1 Wit1] = €xp §Vi w; . (6.17)
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t=0 t=9.2
Figure 6.5: Taylor vortices on curved surfaces exhibit the same qualitative behavior as in the
plane.

Notice that the above equation is an ezact integration of w advected along piecewise
constant flows. This is in contrast to approaches advecting velocity [MCP*09, PMT*11],
where by construction only low order approximations can be used. We practically observe
that for our method a first order approximation of the exponential map is sufficient
and does not decrease simulation quality. This amounts to time integration using the
trapezoidal rule in the spatial discretization, preserving second order accuracy from the
space continuous setting. Since, to our knowledge, a proper spatially discrete Poisson
structure is missing, our time integrator may no longer be Lie—Poisson in this case.

Nonetheless, it is still variational, time reversible, and vorticity conserving.

6.5 Implementation

Our temporal and spatial discretizations lead to a simple algorithm, which evolves the
vorticity in time, by computing w;;1 from a given w;, so that the whole fluid motion is
obtained from an initial vorticity wy. Below we discuss implementation details required

for making our method practical and efficient.

Solution of the non-linear equation. The update rule we suggest in Eq. (6.17) is a
non-linear equation for wj41, since V; and V;;1 depend (linearly) on w; and w;1 through
w; = curly; and w;y1 = curl vy, respectively. For an efficient solve, we (i) express

wi+1 in terms of the stream function o;41 and (ii) use the first order approximation
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Figure 6.6: A pair of vortices with equal but opposite strength on a hyperbolic surface. The
vortices move to the boundary where they separate, travel independently along the boundary,
and join again at the opposite side. The bottom row shows the same experiment on a poor
triangulation, emphasizing the robustness of our method to the underlying mesh. This experiment
is with zero viscosity. Compare with Fig. 6.11 for similar initial conditions, with non zero
viscosity, which yields vortex shedding from the boundary.

exp(eA) =~ I + €A of the matrix exponential. That is, we solve
h h
— I+ §VZ W; = I — §Vi+1 AO‘i+1 s (6.18)

which is quadratic in 0;41, and then recover w;y; and v;41 using Equations (6.13):
wWit1 = —A0ji41, Vi+1 = —J Vi1 + 19, where 7g is computed from 1. This formulation
allows for deriving an analytic expression of the attendant Jacobian as a sparse matrix—
an essential feature for efficiency. This, in turn, allows for using a standard Gauss—
Newton solver, which typically converges in two to five iterations. As an initial guess
for the solver, we use the one-point quadrature —Ao;11 ~ exp (hV;) w;, which can be
computed efficiently [AMH11].

Viscosity. So far we have only discussed inviscid fluids. However, as explained above,
the treatment of viscosity can be readily integrated into our method. Adding the viscous

force to both sides of the update equation (6.18) leads to

h h h h
— (I—i— p§A> (I-l— EVZ) W; = (I — p§A) (I — EVi—H) AUi-{-l- (6.19)

Adding viscosity not only allows for simulating complex physical phenomena, such as
vortex shedding, as we explain in the next section, but also has numerical advantages.
Indeed, various Eulerian methods suffer inherently from numerical dissipation, to the
extent that makes it necessary to re-inject lost vorticity [FSJ01]. Other Eulerian methods
with no numerical dissipation (such as [MCP*09, PMT"11] and ours) require explicit
addition of viscosity in order to prevent discretization artefacts. Indeed, while in the
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Figure 6.7: The above initial configuration on a sphere is known to collapse for singular point
vortices [VL13]. Our method successfully reproduces this result.

spatially continuous case energy cascades to smaller and smaller scales [Cho94], the
number of available frequencies in the spatially discrete setting is limited. Without
viscosity, this results in accumulation in the highest available frequencies, leading to

discretization artefacts.

Boundaries. The treatment of domains with boundary is straightforward in our
approach. We solve Eq. (6.19) under the constraint that the stream function o is zero
along every boundary component. In practice we use a sparse matrix that maps functions
from all mesh vertices to interior vertices (by simply ignoring boundary vertices). This
matrix is applied to Eq. (6.19) as well as to its Jacobian, and we solve for inner vertices

only using Gauss—Newton’s method.

6.6 Evaluation

We have extensively evaluated our algorithm, with focus on numerical stability, energy
behavior, and physical correctness. We have simulated known solutions on planar
domains in order to compare our results with existing methods, and used flows with
known analytic solutions on curved surfaces. Further, we have simulated a number of
interesting flows on curved surfaces, including effects from vortex shedding at boundaries
near the inviscid limit, which are inspired by previous work. All the results are also
shown in the accompanying video. All figures, unless mentioned otherwise, show vorticity
of the flow, color coded on the surface. In figures 6.4 and 6.5 the flow is additionally
visualized using the method of [PZ11]. Finally, we investigated how the time varying

operator V; can be used to uncover global behavior of the flow.

Performance. We used a non-optimized MATLAB implementation, with a standard

Gauss—Newton solver for Eq. (6.19), using the analytic, sparse Jacobian. In all our
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Figure 6.8: A ring of 6 vortices exhibits different behavior when placed on different parts of
an oblate spheroid (left). The top row shows vortices placed closer to the tip of the spheroid
(red dots in the illustration), and the bottom row shows the behavior for similar vortices placed
closer to the x — z plane (blue dots in the illustration).

experiments, the method was very stable and converged in 2—5 Newton iterations (using
a tolerance of 10~7), depending on time step size and flow complexity. The experiments
were performed on an Intel i7 processor, with 16 GB RAM. In our experiments the
method scaled linearly with mesh size, and a single Newton iteration typically took

around 1 second per 10K vertices.

6.6.1 Analytic solutions

Planar Taylor vortices. We first tested our method on the well-known Taylor
vortices configuration on a planar Euclidean domain with periodic boundary conditions
(see e.g., [MCP'09]). In this experiment, two Taylor vortices either merge or separate
depending on their initial distance. Taking this distance to be just above the critical
bifurcation threshold (i.e., the vortices should separate) provides an excellent test case
for fluid simulation methods (see [McKO07, Eq. (1.16)] for initial conditions). Our method
reproduces this complex dynamical behavior and produces correct results as shown in
Fig. 6.3 (compare with [MCP*09, Fig. 4]).

Rotating sphere flow. On the sphere an analytic solution exists for fluid flow, whose
initial condition consist of the combination of a Killing vector field with a rotated
gradient of an eigenfunction of the Laplace-Beltrami operator. In particular, it can be
shown that the energy of inviscid flow with these initial conditions remains in the low
frequencies, giving a periodic motion. This makes the configuration a good test case
for energy conservation, and for validating qualitative behavior of our solver. Energy
plots for different time steps are shown in Fig. 6.4. The relative change in energy is
on the order of 107°. Note that while our method remains stable for a time step of
h = 2-1073, replacing our time integrator with a Runge-Kutta time integrator leads to

significant energy loss for a much smaller time step.
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Figure 6.9: A double shear flow on a hyperboloid. Note the thinning of the shear layers, and
the creation of vortices. See [SS13] for the reference behavior in the plane.

6.6.2 Vortex configuration on surfaces

Taylor vortices on a curved surface. We generated initial conditions similar to the
Taylor vortices in the plane on a curved surface representing a hand. We used the same
parameters as in [McKO07, Eq. (1.16)], measured as geodesic distances (using [CWW13])
on the mesh. Fig. 6.5 shows frames from the animation, yielding the same qualitative

behavior as in the plane.

Vortex pair. In the plane, two point vortices of equal and opposite strength translate
along the orthogonal bisector of their connecting line. This can be viewed as a zero
dimensional vortex ring, i.e., the 2D equivalent to a circular vortex filament in 3D.
In Fig. 6.6 we demonstrate the same qualitative behavior on a hyperbolic surface. In
the absence of viscosity the vortices travel towards the boundary, where they separate
and move independently along the boundary, until they meet again at the opposite
side. This configuration is extremely stable over very long simulation times (performing
the periodic motion several times), demonstrating the absence of numerical diffusion,
vorticity conservation, and excellent energy behavior of our method.

The qualitative behavior of other point vortex configurations is also reliably repro-
duced by our method. For instance, Fig. 6.7 shows a configuration on the sphere which

is known to collapse [VL13].

Oblate sphere. It is known that N point vortices (with N < 7) on a round sphere
stay in a stable relative equilibrium, when equally spaced along a latitude circle below a
critical colatitude [VL13]. We demonstrate a similar configuration on a stretched (along
one axis) sphere, where point vortices are replaced by Gaussian vortices. As shown in
Fig. 6.8 in the top row, when placing the vortices around a “flat” pole below the critical
angle (for point vortices on a round sphere), the flow preserves the six fold symmetry,
as in on the round sphere. In the bottom row, the vortices are positioned above the
critical angle (i.e. further from the tip), and symmetry breaks. Still, the vortices show
periodic behavior, indicating that the corresponding point vortex configuration might

be integrable. To our knowledge such configurations have not been studied analytically.
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Figure 6.10: Two jet simulations on a sphere with a symmetric triangulation. On the top row
the initial vorticity function shares the symmetry of the mesh. Our method preserves this
symmetry, yielding a symmetric flow. On the bottom row the initial vorticity is no longer
symmetric, yielding a more realistic turbulent flow. For such unstable flows the simulation is
sensitive to the discretization of the initial vorticity.

Double shear flow. Two vortex layers of equal but opposite strength with small
perturbations generate a vortical flow with a symmetric structure [SS13, Section 4.2].
We use similar initial conditions on the hyperboloid. The resulting flow exhibits the
same qualitative behavior, including the intricate symmetries. Fig. 6.9 shows frames
from the resulting simulation. Note how vortices curl up, creating thinner and thinner

vortex lines, similarly to the reference behavior in the plane.

6.6.3 Turbulent flow and vortex shedding

Jet on a sphere. A jet is modeled by steadily injecting vorticity of equal but opposite
strength at both sides of the jet’s orifice. Fig. 6.10 shows two jet simulations on a
symmetric triangulation of the sphere. In the top row, the initial vorticity function
shares the symmetry of the mesh, and due to the stability of our method, this symmetry
is exactly preserved by the flow. In the bottom row, the initial vorticity is not exactly
symmetric with respect to the triangulation, which introduces instabilities in the flow,
leading to a more realistic simulation. In general, unstable flows such as this are sensitive

to the discretization of the initial conditions.

Vortex shedding. As explained before, our method naturally handles vortex shedding
from boundaries. We used a pair of point vortices on the Enneper’s surface, as in Fig. 6.6,
but with non-zero viscosity. In contrast to the inviscid case, where the two vortices

separate and travel along the whole boundary, with viscosity vortex shedding from the
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Figure 6.11: Two vortices collide with the boundary on the Enneper’s surface. Note the details
in shed vorticity generated by the boundary due to viscosity. Compare with Fig. 6.6 for similar
initial conditions but zero viscosity.

boundary generates two additional small vortices which “trap” the original vortices and
prevent them from circulating, see Fig. 6.11.
In the accompanying video we also show the wake behind a two dimensional cylinder

on a round sphere, generated through vortex shedding.

6.6.4 Flow properties

Globally invariant functions. In addition to being instrumental in the computation
of vorticity advection, the functional representation of vector fields of Azencot et
al. [ABCCO13] also allows us to gain information about different properties of the flow,
that would be difficult to obtain otherwise. Here, we briefly outline one such application
and leave further exploration as future work.

Given the solution to a flow, we may be interested in finding regions of the surface
that are invariant under the flow, i.e., regions from which the fluid does not leave or
regions into which the fluid does not enter during the simulation. We relax this problem
to consider all functions f such that ®(f) = f for all ¢. In order to find such a function,
note that if f is mapped to itself under the flow of a constant vector field v, then
exp(tV)f = f for all ¢, which means that Vf = 0, or equivalently that f is in the kernel
of V. Therefore, we are looking for a function f that is simultaneously in the kernels of
all V;. Notice that this is the case if and only if f is in the kernel of >, VI'V;, where we
are using that in the time-discrete case there exist only finitely many temporal sample
points. Using this observation, we compute the kernel of ), VIV, for the rotating flow
from Fig. 6.4 and the stable vortex ring from Fig. 6.8. The resulting functions in the

respective kernels are shown in Fig. 6.12.

6.7 Conclusion

Building on the vorticity formulation of fluids, we presented a method for temporally
and spatially discretizing the equations of fluid flow. The attendant time integrator

for the inviscid case is variational, preserves vorticity exactly, is time reversible, and
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Figure 6.12: A function which is invariant to the whole flow, computed from the flow’s kernel.
Top row, for the flow from Fig. 6.4, and bottom row for the flow from Fig. 6.8.

does not exhibit numerical diffusion. Additionally, our approach allows for adding a
principled treatment of viscosity, enabling the simulation of complex phenomena, such
as vortex shedding, without any special or unphysical treatment of boundary layers.
The resulting algorithm is efficient, simple to implement, and leads to unprecedented
simulation results of fluid flow on curved surfaces, which were previously only possible
for flat Euclidean domains.

In our derivation, we have first discretized time and then space, thereby suggesting a
variational integrator in the spatially continuous setting. At the core of our integration
lies the observation that each time step can be performed along two consecutive stationary
velocity segments. The flow corresponding to these stationary segments can efficiently
be computed using the functional point of view in the spatially discrete case, where it
simply corresponds to a matrix exponential. We have demonstrated how to achieve
efficiency by approximating this exponential up to first order terms, without sacrificing
stability.
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Chapter 7

Functional Thin Films on

Surfaces

The motion of a thin viscous film of fluid on a curved surface exhibits many intricate
visual phenomena, which are challenging to simulate using existing techniques. A
possible alternative is to use a reduced model, involving only the temporal evolution
of the mass density of the film on the surface. However, in this model, the motion is
governed by a fourth-order nonlinear PDE, which involves geometric quantities such as
the curvature of the underlying surface, and is therefore difficult to discretize. Inspired
by a recent variational formulation for this problem on smooth surfaces, we present a
corresponding model for triangle meshes. We provide a discretization for the curvature
and advection operators which leads to an efficient and stable numerical scheme, requires
a single sparse linear solve per time step, and exactly preserves the total volume of the
fluid. We validate our method by qualitatively comparing to known results from the
literature, and demonstrate various intricate effects achievable by our method, such
as droplet formation, evaporation, droplets interaction and viscous fingering. Finally,
we extend our method to incorporate non-linear van der Waals forcing terms which

stabilize the motion of the film and allow additional effects such as pearling.

7.1 Introduction

The intricate motion of a viscous thin film subject to external forces, such as gravity,
inspires research in physics, mathematics and computer science, among other scientific
disciplines. In many scenarios the domain on which the fluid resides is curved rather
than flat. The tear film on the cornea of the eye [BUMT12], the dynamics of lava
flows [Gri00] and the formation of ice on the aerofoil of an aircraft [MCO04], are all
examples related to the evolution of thin films on curved geometries. The goal of this
paper is to suggest a method for simulating thin films on surfaces, which is based on
gradient flow evolution and the operator view of the flow induced by tangent vector
fields.
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Generally, the Navier—Stokes equations coupled with appropriate boundary condi-
tions are assumed to give a good approximation of the film’s dynamics. However, for the
flows we are interested in, these equations are considered difficult to solve numerically,
especially on curved domains. Moreover, in the case of thin films we can assume
an extremely small height-to-length ratio which leads to a substantial simplification
through the lubrication approximation [Rey86]. Namely, under the assumptions of the
lubrication model, the evolution of the film’s mass density is governed by a fourth-order
nonlinear partial differential equation (PDE).

A natural approach to simulate thin films within this reduced model would then be
to discretize the resulting PDE (e.g., [RRS02]). Choosing such a strategy, however, one
will be faced with two main challenges. First, one will need to derive a suitable set of
discrete differential operators acting on discrete curved domains (e.g., triangle meshes).
Then, the second task will be to construct a proper numerical time integration scheme.
While any attempt to discretize general PDEs will encounter these obstacles, in the
particular case of thin films, the restriction on the time step size (see e.g., [GBS06])
makes the usage of explicit schemes impractical. Although it is possible to use implicit
schemes instead, such schemes do not guarantee in general the preservation of the
underlying structure. For example, conserved quantities in the continuous setting (such
as the total volume of the thin film) may become non-conserved in a discrete framework.
Due to the above obstacles, direct discretization of the PDE is usually considered less
attractive.

An alternative point of view is to leverage the gradient flow structure which is known
to exist for thin film equations (see e.g., [GO03, RV13]). In this model, the motion of
the film is determined by the minimizer of a certain cost function, which is defined over
the manifold of all possible densities of the film with prescribed volume. Intuitively, the
cost function is minimized when the resistance of the fluid to flow due to dissipation
induced by friction balances the additional forces (e.g., surface tension and gravity) that
act on the film. One of the advantages of this approach is that every gradient flow has
a natural time discretization which leads to a variational problem. In practice, it allows
for significantly larger time steps compared to explicit numerical schemes. Furthermore,
by construction, the associated energy is guaranteed to decrease at each step.

However, we still need to address the issues of modeling the underlying mass transport
and the conservation of fluid volume. A reasonable choice within the gradient flow
model is to minimize the cost function under an additional constraint given by the
transport equation. Intuitively, the transport equation describes how the mass density
is affected by the motion of the fluid through the corresponding velocity field. Recently,
[ABCCO13] suggested a coordinate-free approach for solving the transport equation on
triangulated surfaces by representing tangent vector fields as linear operators on scalar
functions. Their method is advantageous since it avoids the complicated integration of
the fluid’s motion, while ensuring the preservation of the integral of the transported

quantity.
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Figure 7.1: Vanilla sauce on a chocolate bunny. The physical parameters are b = 20,e = 0.1, 8 =
0.

In this work, we argue that the gradient flow model combined with the operator view
of tangent vector fields leads to a robust and highly efficient simulation tool. Specifically,
we consider the thin film model of [RV13] in the presence of a precursor layer (i.e.,
the film resides on top of a very thin layer defined over the whole domain) and in the
geometric setting of triangulated surfaces. Under the assumption that we are given
an approximate normal field, we present formulations of discrete curvature operators
which are tailored for our model. In addition, we employ insights from [ABCCO13] to
advect the mass function of the thin film in a manner which causes very little numerical
dissipation, and is guaranteed to conserve exactly the total volume of the fluid. The
resulting method boils down to a linear solve of a sparse system per time step. We
demonstrate the effects of curvature, gravity (see e.g., Fig. 7.1) and material parameters
on the flow, and qualitatively compare our results to previous numerical simulations.
Finally, we present various effects (e.g., droplet formation and interaction) which are

achievable within our framework.

7.1.1 Related Work

As the behaviour of viscous thin films on surfaces has not, to the best of our knowledge,
been previously simulated in the graphics community, we focus our attention on Eulerian
methods from the computational fluid dynamics community, and to work on similar
phenomena which appeared in the computer graphics literature.

The evolution of thin films over arbitrary domains has been an active area of
research in CFD for many decades. We refer the interested reader to the seminal
review by [ODB97] and to the more recent review by [CM09]. These reviews present a
continuous model for thin films, based on lubrication theory, which defines a reduced
model for the 3D Navier—Stokes equations given the assumption of a small thickness of
the film.

One approach to thin film simulation is to directly discretize the governing PDE as
was shown for planar (see e.g., [ZB99, GR00]) and curved (see e.g., [RRS02]) domains.
In general, this point of view leads to several challenges, of which the restriction on
the time step size for explicit schemes is perhaps the most problematic. Namely, the

application of a CFL-type condition leads to the requirement that the time step 7 is on
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the order of (§z)*, where §z is the minimal edge length. To overcome this constraint,
[GBS06] employed convexity splitting for their time integration scheme (within a level-
set framework). Nevertheless, their scheme does not guarantee conservation of the
fluid’s volume, and has additional restrictions due to the level-set formulation.

An alternative discretization for thin films can be derived from the gradient flow
model, for which a natural variational time integrator exists. In general, variational
integrators are known to conserve the underlying structure, e.g., the variational scheme
in [MCP"09] preserves a notion of discrete momentum. For the case of thin films
over curved domains (see e.g., [Vanl4, RV13]), the gradient flow approach leads to an
attractive numerical scheme. In the latter work, which is closest to our approach, the
authors used Discrete Exterior Calculus (DEC) [Hir03] for the spatial discretization,
representing the flux field with discrete 1-forms. Our approach differs from their work as
we use a velocity based formulation, leverage [ABCCO13] for the advection, and suggest
discrete curvature operators. These changes allow us to generate stable simulations on
meshes with obtuse triangles which are common in graphics. A detailed comparison
with [RV13] is given in Sections 7.2 and 7.4.

We conclude with some representative related work from the graphics community
literature. Free surface flows for highly viscous fluids were suggested in [CMVHIT02],
where effects such as melting wax are demonstrated. While one could consider adding
a surface as a solid boundary and using a similar approach for simulating viscous
films, it would be quite difficult to achieve the intricate effects we show without
using a very dense grid resolution. More recently, various methods were proposed
for modeling thin features in free surface flows by explicitly tracking the free surface
mesh [WMFB11, ZWW™12], by using thickened triangle meshes [BUAG12], tetrahedral
elements [CWSO13], or simplicial complexes [ZQC*14], to mention just a few. Such
approaches, however, require careful manipulation of the connectivity and topology of
the free surface geometry, which are avoidable when simulating films on surfaces, as the
free surface can be represented as a scalar function.

Finally, some approaches simulate water related phenomena. [WMTO05] model the
contact angle with the surface, representing the free surface with a level-set based
distance field. While various effects are achievable with this approach, the method
requires a high-resolution grid which leads to a time-consuming system requiring a few
days of computation per simulation. On the other hand, using a height field based
method as in [WMTO07] considerably reduces computational complexity, however, the

instabilities and effects we demonstrate below were not shown there.

7.1.2 Contributions

Our main contributions can be described as follows:

e A discrete model for thin film evolution on general triangle meshes.

e An efficient and robust scheme, which exactly preserves the total fluid’s volume.
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e Simulation of various intricate effects, such as fingering, evaporation and droplet

formation, interaction between droplets and pearling.

7.2 Dynamics of thin films

We investigate the evolution of a layer of an incompressible viscous fluid flowing with
velocity » on top of a curved surface I', under the influence of surface tension and,
potentially, gravity. The liquid layer is attached to the surface at the liquid-solid
interface, i.e., no-slip boundary condition (we extend this later), whereas the liquid-air
surface is evolving freely. A typical scenario is illustrated in Figure 7.2 showing the

notation for various related quantities.

Navier—Stokes equations. A common approach for modeling the evolution of thin
liquid films is to consider the Navier—Stokes equations. These equations describe the
fluid’s velocity in the liquid phase (the bulk), the surface tension on the liquid-air
interface (i.e., the free surface), and a suitable boundary condition for the velocity in
the liquid-solid interface (i.e., on the solid surface). Formally, the fluid velocity » and

the pressure p satisfy the equations:

v+ (v-V)v — pAv + Vp = 0 in the bulk
div v = 0 in the bulk
v = 0 on the surface

on — yHn = 0 at the free surface

where 0 = —pid +u(Vo + Vol) is the stress tensor, 4 and 7 are the viscosity and the
capillary constants (see Fig. 7.2). Furthermore, the free surface x itself evolves according
to the kinematic condition 0;x = v.

Unfortunately, a straightforward discretization of these equations is challenging. In
particular, to achieve the type of effects we show below, the main obstacle is due to
the prohibitively small time steps which are imposed by such a method. Moreover,
the spatial discretization is also challenging since Eulerian methods will require dense
sampling of the domain, whereas Lagrangian techniques will involve complex tracking
of the free surface. Therefore, direct discretization of equations (7.1) is not practical for

graphics applications for this type of problems.

Lubrication approximation. Since we are interested in thin films, a reduction in
dimensionality can be achieved by using the lubrication approximation model (see
e.g., [ODB97]). In this model, the dynamics of the film are governed by the evolution
of a function (i.e., a scalar quantity) defined on the surface I.

Given a characteristic scaling of height and length, the key assumption to consider

height
length

is a small height to length ratio, i.e., € = <& 1. Then, one takes into account
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Figure 7.2: A typical scenario is illustrated for the full 3D Navier—Stokes (left) compared to the
reduced lubrication model (right). Notice that under the lubrication assumptions the involved
quantities are computed directly on I', e.g., u is a scalar function.

an asymptotic expansion of the Navier—Stokes equations with respect to €, where the
resulting thin film equations are composed of the leading order terms. Taking this path,
a derivation of a lubrication model without gravity for the mass density v on curved
domains yields equations of the form (see [RRS02] and [RV13]):

Opu = divp (M (u)Vrp) (7.2a)
M(u) = éqﬁ id £l (Hid - 8) (7.2b)
p=—H — eTu— eAru (7.2¢)

where M (u) is the mobility tensor (to be discussed later) and p can be considered as a
pressure-like quantity on the surface, i.e., the fluid moves away from areas of high p.
H and K are the mean and Gaussian curvatures, T = H? — 2K, and S is the shape

operator.

Notice that inertia effects are neglected in this model, i.e., the Reynolds number
is assumed to be small, Re < 1, as expected (by simple scaling arguments) for a thin
enough film. Moreover, we assume that the mass density u is a proper function. As
u is closely related to the fluid’s height A, that is u = h — §H h?, the consequence of
the former constraint is that the free surface is assumed to be representable as a height
function over I', and hence, e.g., contact angles higher than /2 and wave-like structures

cannot be modeled with equations (7.2).

In addition to providing a reduced model for the Navier—Stokes equations, the
thin films equations are also instrumental for analyzing the behavior of the flow. As
mentioned above, the fluid flows towards low pressure areas thus visualizing p allows
to evaluate the underlying dynamics of the film. Moreover, a qualitative study of the
expected flow can be done by estimating the different scales of the various components
in p. For instance, the dominating term in Eq. (7.2¢) is the mean curvature and hence

the dynamics on curved domains are expected to be completely different when compared
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Figure 7.3: By visualizing the pressure we can identify regions where the fluid is likely to
accumulate. For example, for an initially uniform layer of fluid, the initial pressure py indicates
that fluid is expected to concentrate at the respective centers, where the pressure is lowest. See
Fig. 7.4 for the temporal evolution of the flow.

to the flat case (where H = 0). Indeed, we demonstrate this and other effects in the
following example.

In Figure 7.3 we show the color coding of the pressure computed for an initial
uniform deposition of liquid on a bumpy plane (left) and on the Scherk surface (right).
These figures suggest that the fluid is most likely to accumulate at the center of the
respective surfaces, where the pressure is low. Indeed, we show in Figure 7.4 (top) the
color coding of the evolution of the mass density u on the bumpy plane, starting from a
uniform layer of fluid. In this case, since the dominating term is H (top, left), the film
flows towards the maximal mean curvature, at the center of the basin. Similarly, for
a minimal surface, namely when H = 0, the terms that govern the dynamics are the
Gaussian curvature and the Laplacian of w. In Figure 7.4 (bottom), we show frames
of the flow on the Scherk minimal surface, starting again from a uniform layer of fluid.
Here, the initial Laplacian of w is 0 thus the minimal Gaussian curvature (bottom, left)
drives the fluid towards the center of the surface.

Unfortunately, the simulation of thin film flow based on a PDE of the form (7.2)
suffers from serious drawbacks. First, explicit discretization of equation (7.2) requires
very strong time step restrictions, and stable (semi-)implicit discretizations allowing
for large time steps, are unknown. Second, qualitative properties, such as volume
preservation and energy decay, are difficult to ensure. Finally, on general triangulated
surfaces it is unclear how to discretize the geometric quantities in a physically consistent
way.

These issues motivate a different approach—instead of directly discretizing the PDE,
it is possible to model the evolution from the wvariational perspective of gradient flows,
as was first suggested in [RV13]. To introduce the concepts to the graphics community,
and to keep the paper self contained, we first briefly describe the gradient flow model of

thin films, and then discuss our modifications in the next section.

Gradient flow model. The key insight behind the variational approach is that the

quantity p can be viewed as the negative (Fréchet) derivative of the free energy functional
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=281 t—=3534
Figure 7.4: (top) The motion of the film primarily depends on the mean curvature thus the
fluid concentrates in the center basin, ug = 0.1,e¢ = 0.1. (bottom) For minimal surfaces (i.e.,

when H = 0) the film is mostly influenced by the Gaussian curvature as shown for the Scherk’s
surface, ug = 0.1,e = 1.

E(u) = /F {—Hu - %Tu2 + %]VFU\Q} dz so that the PDE (7.2) is of the gradient flow

form Opu = —G(%ﬁu)). The evolution of u then can be understood as a “steepest”
descent for the free energy £, at a rate regulated by the mobility M (u) via the function
G(¢) = divp (M (u)Vre). The previous statement can be made precise by introducing
the flux f = —M (u)Vrp, so that the PDE can be written in the form of a flow equation

as
Opu = —divy f. (7.3)

Then the gradient flow is equivalent to the statement that the free energy decays as
LE(u) = =D (f, ) < 0, where the bilinear form D§(f, f) / f-M(u)~!f dz is known
as the (viscous) dissipation. This in turn is equivalent to the variational requirement

that the density variation 0yu and the flux f minimize (at each time ¢) the so-called
Rayleigh functional %DZ( L+ 65 (u )(@u) under the transport constraint (7.3).

Intuitively, the energy is an approximation of the area of the free surface, which
should be minimized due to surface tension, and the dissipation is the “price to pay” for
the total shear stress due to the flow inside the film. Hence, among all the possible flows
which preserve the mass of the fluid, we look for the one which optimally minimizes the

area of the free surface and the stress inside the film.

Finally, following the idea of natural time discretization of gradient flows [Ott01]

and minimizing movements [GAO6], we integrate in time to arrive at a variational

approximation of u**1 = u(t¥ 4 7) given u¥F = u(t*):

W = arg min {;TD;(f, f)+56(u)} (7.4)

u:]:‘l'(ukvf)

where F, (u”, f) denotes a suitable (approximate) solution at t* 4 7 of the initial value
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transport problem (7.3) with u(t*) = u*. The constrained minimization problem (7.4)
is equivalent to discretizing the original PDE (7.2) in time; instead of the PDE then,
one can describe (and discretize) the thin film flow through the three components of
the gradient flow: the free energy £¢, the dissipation D and the flow equation (7.3) (or
in the time-discrete setting the flow operator F;).

In [RV13], suitable energy and dissipation functionals are derived for gravity- and
surface tension-driven thin film flow on a smooth curved surface. The variational time
discretization (7.4) is coupled then with a spatial discretization based on Discrete Exterior
Calculus, resulting in a fully discrete scheme on triangulated surfaces that addresses
some of the shortcomings of PDE-based solvers pointed out previously. Specifically,
discrete qualitative properties are straightforward to preserve: the energy decay is built
into the time discretization (7.4), as will be shown later, and it is also easier to set
up discrete mass conservation for the flow equation than for the full PDE (7.2). In
addition, because of the explicit control on the energy decay, the variational scheme is
very stable, allowing for large time steps.

Unfortunately, directly applying that scheme for graphics purposes on general
triangle meshes is challenging since curvature quantities and mass preserving transport
are more difficult to discretize in this setting. In [RV13] mass preservation was achieved
by working with a flux-based formulation, that lends itself naturally to a finite-volume
approach such as Discrete Exterior Calculus. However, in the presence of obtuse
triangles, i.e., triangles with angles larger than 7/2, negative entries can arise in the
diagonal matrices that the scheme uses to define inner products between discrete k-forms.
This can lead to non-convexity and eventually to instability and/or non-convergence
of the variational scheme. Notice that for general meshes, eliminating these obtuse
triangles is highly non-trivial.

In the next section we present our approach for discretizing the thin film gradient
flow model on general triangulated surfaces. We first develop the discrete energy and
dissipation terms by modeling the fluid as a prismatic layer formed by an offset surface to
the triangle mesh, which naturally introduces discrete curvature quantities. In addition,
we switch to a velocity-based formulation of the transport equation dyu + divp(uv) = 0,
which allows us to use the new discretization suggested in [ABCCO13], that does not

suffer from the aforementioned problem.

7.3 Thin films on triangulated surfaces

As we have previously seen in Figure 7.4, the film dynamics are heavily dependent on
the curvature operators, H, K and S. In their work [RV13] presented one dimensional
applications and simulations on two dimensional surfaces where the curvatures are
easy to compute analytically (such as surfaces of revolution and graphs). One could,
of course, extend their method to triangulated surfaces by choosing a set of discrete

curvature operators from the many available in the literature (see e.g., [GG06]). We
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chose instead to go back to fluid mechanics and look for a definition of the energy and
dissipation functionals that could be applied on continuous but non-smooth surfaces,
such as a triangulated mesh. We present the resulting model in this section, but have
reserved a more technical derivation for the supplemental material.

Our main observation is that if I' is equipped with a continuous vector field n that
is approximately normal, one can follow similar derivations as in [RV13], and arrive at

energy and dissipation functionals given by (up to an O(e?) error):

£(u) = /(bz ~ Hyu+ S(bcost — T + £[Vrul da (7.5)
I
and
D (v,v) = / v-M(u) tvda (7.6)
I
2 —
M(u) = (5 + g) id +e% (7Hid 35 — 55) (7.7)

respectively, where (unlike in [RV13]) the curvature quantities in these equations are
now given in terms of the approximate normal field n. In (7.5) we included the gravity
terms that involve the Bond number b, which measures the relative strength of gravity
vs. surface tension, the altitude z, and the angle 6 of the surface normal with the vertical
direction. The discrete total curvature T and shape operator .S are given in section 7.3.1
and the rotated shape operator S is given in section 7.3.3. Moreover, we incorporated

in (7.7) a constant S which allows for various slip conditions.

7.3.1 Geometry of thin films on triangulated surfaces

For a smooth surface, the geometry of a liquid layer is modeled by a scalar height
function h, which describes the extension of the liquid along a surface normal direction
at each surface point. In the limit of thin films, this height field is scaled by a global
scaling parameter €. Then, the liquid layer is bounded by the surface on one side and
by an offset along the surface normal by eh on the other. The laws of physical motion
of the liquid are expressed by expanding the 3D motion up to second powers in e.

Adopting this perspective for the case of a triangulated surface I', we take the
approach of associating surface normals n as well as the offset function h with vertices
and extending the resulting offset field linearly across triangles, leading to a prismatic
liquid layer per triangle, see Figure 7.5 (left). This approach ensures continuity of the
offset field across edges, which we harness to ensure mass conservation when the liquid
evolves.

There is, however, a caveat with this approach: it is widely accepted that there exist
no “best” vertex normals in the discrete case. Consequently, we only require consistent
normals in the following sense. If the average edge length of the mesh is dx, it suffices

that we are provided with a set of (unit length) vertex normals n such that the difference
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Figure 7.5: (left) Prismatic layer of viscous fluid, depicted as a piecewise linear field over a triangle.
(right) Prismatic volume with tangential vector field v (red) and attached Hagen-Poiseuille type
velocity profile IT, (v).

|v — n|, between the normal v of any (flat) triangle of the mesh and the vertex normal
n of its vertices, is of order dz2. !

As in the smooth case, the lubrication approximation requires an additional scaling
variable € in which the relevant physical terms are developed up to second order. With
the lateral extension of the film being measured in direction of the discrete normal n,

we obtain the free surface
Lep = {x +eh(z)n(x) |z T}

of the thin film at the liquid-gas interface and the fluid volume V,;, = {x+seh(z)n(z) |z €
I, se(0,1]}.

In order to derive the variational time discretization of the evolution of the thin film
we make use of three different expansion formulas, namely the expansion of volume,
area, and length with respect to the thickness parameter €. Returning to the smooth
case for a moment, such an expansion leads to expressions in terms of curvatures of
the underlying surface, containing the shape operator S, its trace, and its determinant,
known as mean and Gauss curvature, respectively [Car94].

We exactly recover this geometric description in our discrete model. Indeed, first
recall that in the smooth setting the shape operator is defined as the tangential gradient
of the (smooth) unit normal field. Accordingly, we define in the discrete case a generalized

shape operator (in the sense of considering arbitrary “normals” n) by
1
S = =5 P(Vrn + (Vrn))P (7.8)

where Vi = PVps is the (triangle-based) tangential gradient on I" and P =id —v @ v
is the projection onto the (triangle-based) tangent space. From this shape operator

we deduce a discrete mean curvature H = Tr(S) and a discrete Gaussian curvature

!Notice that this condition implies that Vrn is both tangential and symmetric up to order dz.
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K = 1 (Tr(5)? — Tr(5?)). Notice that in this setup S, and therefore also H and K, are
constant per face.

Second recall that in the smooth case, mean and Gaussian curvatures alternatively
arise by considering first and second variations of offset volume and surface area. The
same holds true in the discrete case, i.e., for our prismatic layer. For example, for the

expansion of offset volume we obtain (up to an O(e® + dx) error)

E2
/ dz = / <eh — Hh2> da .
Van r 2

Here H equals the trace of our generalized shape operator S defined above. Hence, the
two alternative discrete definitions of mean curvature (as the trace of the tangential
gradient of the normal, and through the second order expansion of the of the offset
volume) are consistent. Intuitively, the correction term %H h?, and in particular the
appearance of mean curvature, accounts for change of surface area in the lateral direction.

Notice that the integrand can be written as eu, with u = h—§H h2. Thus u describes
(up to a factor of €) the fluid volume per surface area and can be considered as the local
mass density. This quantity is an alternative and, from the viewpoint of the underlying
conservation law, preferable variable.

Likewise, for the expansion of the surface area we obtain (up to an O(e® + dz) error)
that

2
/ da = / (1 — ehH + % (2n°K + yvph12)> da .
r r

eh

Notice that when h = 1, i.e., when one considers constant offsets, then this expression
is equal to the famous Steiner formula, known from differential geometry [Fed69]. As
before, H and K that arise from the expansion of the surface area are exactly the mean

and Gaussian curvatures, respectively, defined using our generalized shape operator S.

7.3.2 Energy

The first ingredient of our variational time discretization is the energy of the thin film,
given by the sum of surface energy (the total area of the free surface I'¢j,, which tends to
be minimized due to surface tension) and gravitational energy (weighted by the Bond

number b):

S(h):/ da+b/ zdz.
Lep, Ven

€

Here the Cartesian coordinate z denotes the altitude, i.e., we assume that gravity is
acting along the z-direction.
The surface energy was spelled out above. Analogously to the expansion of the offset

volume, we obtain for the expansion of gravitational energy (up to an O(e® 4 dz) error)
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that

2
/ de:/ (ezh+6(_h2HZ—|—hQCOSH)> da.
Ven r 2

Here, per triangle, 6 is the angle of the direction of gravity with the triangle normal.
Exchanging the height h against the mass density u and restricting to the (non constant)

leading order terms we finally end up with the energy functional

Se(u):/(bz—H)u+;(bCOSH—T)UQ—i-;Wquda (7.9)
r

with T = H? — 2K.

7.3.3 Conservation law for the flow

Mass conservation during the temporal evolution of the fluid is one of the central physical
principles of viscous flow [CMM90]. Violations of this principle in numerical simulations
lead to undesirable artefacts. For our approach, we outline how mass conservation can
be ezxactly maintained by working with a conservation law in divergence form. Mass
conservation is a balance principle: the change of volume must equal the flux of material
across the volume boundary. On an arbitrary (triangular) patch 7 this translates into

the balance equation

d
— dzx = / v-pda,
dt Jv,, () Fun(T)

€

where v is the fluid’s velocity vector and p is the (inward pointing) normal of the faces
F,(T) of the prism Vg, (T) above T (cf. Fig.7.5 (right)). Using the divergence theorem
of Gauss and Taylor expansions in the height, which corresponds to an expansion of the

length functional on the edges of the patch, we obtain the conservation law

Oy = — divr <u/ Qsvr s ds) ,
0

where v s(z) is the tangential component of the velocity in the liquid layer and the
tensor Qs = id —su (5’ —H id) accounts for the geometry of the prism Vi, (7). The
rotated shape operator S = —[v]xS[V]« is defined via the skew-symmetric matrix [v]«,
which in turn is given by requiring that [v]« - 2 = v x x for any vector z. We define the
(weighted) average velocity v = foe Qsvr s ds, independent of s, so that the conservation

law is restricted to the triangulated surface I' and takes the simple form

Oyu + divp(uv) =0. (7.10)
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The weighting reflects the inclination and torsion of the faces of the prisms. The
advantage of working with an averaged velocity is that it resides directly on the surface
I'. In the discrete case, this velocity field can be modeled using piecewise constant (per
triangle) vector fields, and mass balance can be expressed using commonly used discrete

differential operators.

7.3.4 Dissipation and mobility

In the previous section, we used averaging in order to reduce the velocity field in the
bulk to a velocity field on the surface. For treating dissipation, we require the opposite
direction, i.e., to reconstruct a velocity field in the bulk from the velocity filed on the
surface. Since the inverse of averaging allows for many solutions, this reconstruction
step is not unique a priori. In order to single out a unique velocity field in the bulk, we
invoke a physical principle by considering the field that causes least energy dissipation.

Concretely, we require a (tensor) profile function Il such that vr s = IL,v and
foe Qsllgds = id (see Fig. 7.5 (right)). Note that there are many possible velocity
profiles II : s — Il that satisfy this integral constraint. From the theory of viscous flows
[Poz11] we know that the physically observed profile minimizes the viscous dissipation
rate fVeh Vo + Vol |2dz. This is dominated by the vertical shear stress, i.e., the
normal derivative of the tangential velocity, which can be expressed as a quadratic
form in v. Approximating this quadratic form to leading order in €, substituting v by
I1(v), and optimizing the transportation cost for given boundary conditions Il = 0
(no-slip at substrate) and zero shear stress at free surface under the integral constraint
foe Qsllgds = id, yields an optimal profile IT*, which to leading order matches the
well-known Hagen-Poiseuille profile. We thus obtain the dissipation as a function of the

averaged velocity v as
D, (v,v) = / v-M(u) tvda, (7.11)
r

where the mobility tensor is defined as

u u? . —
M(u) =3 +eg5 (7THid —35 —585) .

For a more detailed derivation of the optimal profile see the supplemental material.

7.3.5 Minimizing movement approach

Combining the three building blocks we have derived, and using the minimizing move-
ment approach, we arrive at an effective variational time discretization for the evolution
of a thin film on a triangulated surface. The energy £¢ (7.9) depends on the mass
density u, whereas the dissipation D, (7.11) is a quadratic form on motion fields v. For

given u”* at time step k any mass density u at time step k + 1 results from the transport
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of u* via an underlying motion field. Hence, the time discrete conservation law (7.10)
has to be handled as a constraint representing the coupling of u and v. Altogether,
we iteratively define u**! as the minimizer u of the following constrained optimization
problem:

min {;TDZk (v, 0) + gﬁ(u)}

U,V

subject to u = T, (v)(u"),

where T (v) denotes the operation of transporting u* with constant velocity v for a
time interval of length 7. The factor % reflects the proper rescaling in time to obtain
the dissipation to be spent to transform u* into w.

We consider a number of extensions to this model, which are known for the flat case
[ODB97]. The first one replaces on I' the no-slip v = 0 by the Nawvier slip condition
v = B0,v with f denoting the slip length (in case of large variation of the velocity in
the normal direction, the fluid undergoes slipping on the surface I'). To reflect this one
has to add § to the mobility M. This slip boundary conditions accelerates the motion
of the fluid. Furthermore, we consider evaporation. It takes the form of a sink term in
the right hand side of the conservation law and is modeled in the time discrete setup
by the constraint u — T} (v)(u*) = —m, for a small constant c.. Intuitively, the
evaporation rate is faster for thinner films, which reflects a faster heating of thinner

films.

7.4 Spatial discretization

The main challenge here is to define a stable discretization of the transport equation (7.10)
such that various properties (e.g., energy decay and mass preservation) will hold on
general triangle meshes. While many of the operators we use are standard in geometry
processing, we highlight the properties these operators should possess such that the

resulting optimization scheme would indeed be stable.

Notation. We consider a triangle mesh and denote by V its vertex set and by F
its face set. We use bold faced symbols to denote the spatial discrete analogues of
continuous quantities (e.g., u is the discrete mass density). When required, we use
the subscripts V and F to denote quantities on the vertices and the faces, respectively.
The bracket [-] operator is used to convert vectors in RVl and R’ to block diagonal
matrices in RY*VI and R3IF13171 respectively (replicating each entry 3 times for the
latter).

Functions, vector fields and inner products. We use a typical setup, i.e., piecewise-
linear functions and piecewise-constant vector fields, with corresponding inner products.

Specifically, we represent real-valued functions as scalars on the vertices of the mesh, i.e.,
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u € RVl and extend them to the whole mesh using piecewise linear hat basis functions.
Similarly, vector fields are treated as piecewise-constant on the faces of the mesh, i.e.,
v e R31,

For defining discrete inner products we require vertex and face areas, denoted by
Ay € RV and Ar € RV, respectively. For the vertex area we use 1/3 of the total
area of its adjacent triangles, and we define an interpolating matrix I)]; e RVIXIFT which

interpolates quantities from faces to the vertices, i.e., Ij; (i,7) = ?ﬁfv ((ji)), iff vertex 14

belongs to face j and 0 otherwise. This choice implies that Ar = (I{;T )T Ay, which will

be important for consistency later. Now, discrete inner products are defined by:
_ T _ T
/ uluzda = u1 Gyllz, /(Vl, V2>da = Vi G]:Vz,
r r

where Gy = [Ay] € RVXIVI and G = [AF] € RIFIX3T denote the diagonal mass

matrix of the vertices and the faces.

Differential Operators. Equations (7.5) and (7.10) require discrete gradient and
divergence operators. In the smooth case, these operators fulfill integration by parts,
namely on a surface without boundary we have: [.(v, Vru) da + [pu - divrv da = 0.
In order to maintain discrete preservation of mass (see appendix E.1), we need the
operators grad € R31*VI and div € RVI¥31 to fulfill this discretely, namely:

vIGr(gradu) + (divv) ' Gyu = 0,

for arbitrary v and u. Interestingly, the standard operators (e.g., as defined in [BKP 10,
Chapter 3]) fulfill this property.

2.1 - — Ours
_ - =~ [Rumpf and Vantzos 2013]
O - - =
Vi - 0.05
2 F —~ 0 -
W E/ -0.27 P <
~— E | -
69! E-0.45 .- -
0717~
11.3 ‘ ‘ ‘ ‘ ‘ ‘
10e-4  6.67e-4 3.34e-4 0.0le-4 10e-4  6.67e-4 3.34e-4 0.0le-4
T T

Figure 7.6: Comparison with [RV13]. (left) Plot of the observed energy reduction §(£) =
E(t+ 1) — E(t) as a function of the time step 7, on a mesh with obtuse triangles. The present
scheme consistently decreases the energy (6(€) < 0), whereas the other method has trouble
with small time steps. (right) Regarding the positivity of the solution, again on a mesh with
obtuse triangles, the present method preserves the initial minimum wu, whereas the other method
exhibits negative values of w.
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[Rumpf and Vantzos 2013]

Figure 7.7: Starting from the same initial conditions and physical parameters, our transport
scheme (top) achieves a better resolved finger compared to the result (bottom) generated with
the more diffusive scheme suggested in [RV13].

Approximate normal field, curvature and gravity. As described in the previous
section, all of the required curvature quantities can be computed once a suitable
approximate normal field is given. In practice, we use the area-weighted averages of
triangle normals [BKP110, pg. 42] as vertex normals. By applying the discrete gradient
operator defined previously, the tangential gradient of the discrete normal field per face

j is:
3
(vf‘n)j = m&l}_(j) (; nji(jeji)T>

where the sum runs over the three vertex normals nj, of the face and Jej, is the
rotated (by 7/2) edge opposite to vertex i in the triangle j (see Figure 7.5). The gravity
quantities can be computed as follows: z is the vertical coordinate function and cos 8 is

the vertical component function of n.

Mobility. The discrete mobility M(u) is a 3|F| x 3|F| diagonal matrix, where for
each face the associated quantities can be computed using Eq. (7.7), the curvature

operators, and the interpolated mass density uz on the faces (u is defined on vertices).

Transport operator. In the continuous case, equation (7.10) guarantees that the
integral of J,u vanishes on a closed surface (since the divergence of any vector field
integrates to 0). However, once we discretize u and v then div(uv) is no longer well
defined using our discrete operators, since uv is not a piecewise constant vector field. To
avoid this issue, we first apply the product rule to (7.10) and reformulate the constraint
as Oyu = —(v - Vpu + udivpv). We then follow [ABCCO13] and define a directional
derivative D(v) such that 15Gy (D(v) + [divv]) u = 0 for any u and v (see appendix
E.1 for the proof). Specifically, the directional derivative is given as D(v) € RIVIxVI
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by D(v) = I [v]T grad, where [-]o € R3F1XI¥| converts vector fields to block diagonal
matrices.

The main advantage of this point of view is that in the discrete case the transport
equation turns into a system of ODEs of the form d;u + Au = 0, for a constant matrix
A, which can be solved using a matrix exponential [HO10]. Thus, for a velocity v
constant in time, the discrete transport equation can be solved in the time interval
[t* t* + 7] to yield the solution

u = exp (—7D(v) — 7[divv]) uf (7.12)

at t = t* 4+ 7, where 7 is the time step. In the case of evaporation, we have an additional
term —7[u* + c.] 2 in the exponential.

We compared our transport scheme to the method of [RV13] on the bunny model
which has obtuse triangles. Specifically, we computed the difference in energy and the
minimal v in the first iteration for different time step sizes. In Figure 7.6 (left) we show
that our method is consistently decreasing the energy, whereas the method of [RV13]
actually increases the energy for small time steps. In addition, we show in Figure 7.6
(right) that their method yields negative values for u even for very small time steps,
whereas ours preserves the initial value of the precursor layer.

Furthermore, the suggested transport mechanism is more appropriate to the flows
we are interested in than the one suggested by [RV13]. In particular, droplet formation
and fingering instabilities are transport-dominated effects. Thus, a natural requirement
from a transport mechanism is to exhibit minimum diffusion, allowing to capture better
resolved fingers on relatively coarse meshes as we demonstrate. We show in Figure 7.7
that starting from the same initial conditions, our scheme is qualitatively less diffusive
compared to the method of [RV13].

7.5 Fully discrete model

Given the above discrete operators and quantities, we can write the fully-discrete

optimization problem for computing u, v given uX:

: 1 € €
win { LD+ ).

(7.13)

subject to u = exp (—7D(v) — 7[divv]) uF.

Then, the fully-discrete energy and dissipation are given by:

E(u) = al Gyu + %uT(GyB + L)u,

Dy(v,v) = vIGrM(ub)~ty,
where a = bz — H, B = bcos§ — H? + 2K, and the stiffness matrix L = —Gydiv grad.
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7.5.1 Properties

Discrete energy. The discrete energy £(u”) is non increasing.
Proof: Noticing that u = u* and v = 0 is an admissible pair for the minimization

problem (7.13) since they satisfy the constraint, we have immediately that:
1 1
5 Dae (VHLVEH) £ (u ) < oD (0,0) + £4(uF) = £ < £9(u")

since D¢, (vF*1, vk+1) > 0 and D¢, (0,0) = 0.
u u
Intuitively, since D is non-negative, if the fluid moved and “paid” with dissipation,
then it found a smaller energy solution (otherwise it will have remained at the previous

state, with the same energy).

Discrete mass. The total discrete mass m(u) = [ u da = 1LGyu is ezactly pre-

served.

Proof: The transport equation (7.12) can be written as u = exp(—7A)u*, where
A = D(v) +[divv]. In appendix E.1 we show 1L,GyA = 0 for any velocity v. Hence, we
have m(u®) — m(u) = 1LGy {id — exp(—7A)} u* = 1LGy, {TA - %2A2 +.. } u* = 0.

7.5.2 Optimization

To solve the discrete variational model (7.13) we use the first order approximation

exp(—7A) ~ id —7A of the matrix exponential, so that the linear equation:
u=u* - 7(D(v) + [divv])u” (7.14)

replaces the non-linear constraint (7.12). Hence, at every time step we solve a quadratic
problem with a linear constraint, which is convex for a small enough 7 (see §5.3 “Dynamic
Time-stepping”). As we will show next, this can be done very efficiently, by solving a
single linear system for u. Note that it is straightforward to check that the results of
§5.1 hold for the linearized constraint as well, hence we gain efficiency yet do not lose
stability.

The linear system. Using the method of Lagrange multipliers we obtain the first

order necessary conditions:

GFM(uh) v — (ﬁ(uk) + [u’f]dw)T Gyp =0
Gy (a+eBu)+eLu— Gyp =0 (7.15)
Gy (u —u* 4+ 7(D(v) + [divv])uk> =0,

where p is the dual variable.

135



Figure V] Avg. per step F£steps Total time

Fig. 7.1, Bunny* 38306 0.484 1999 967.8
Fig. 7.4, Bumpy plane 40401 0.683 4996 3410.4
Fig. 7.4, Scherk surface 40401 0.627 1997 1252.4
Fig. 7.9, Rounded cube* 19728 0.142 4991 709.5
Fig. 7.10, Sphere 40962 1.645 300 493.5
Fig. 7.12, Moomoo* 16710 0.080 1981 158.4
Fig. 7.13, Torus 40000 1.079 456 491.8
Fig. 7.14, Moai 89126 3.106 314 975.3
Fig. 7.15, Rain 10242 0.198 18001 3570.1
Fig. 7.17, Pensatore 27732 0.818 991 810.3
Fig. 7.16, Wine glass* 38976 0.708 496 351.1

Table 7.1: Timing statistics (in seconds). Asterisk denotes simulations where an iterative solver
was used, whereas for the rest, we used a direct non-iterative solver.

A key ingredient to deriving (7.15) is the dual operator D(u), defined such that
D(v)u = D(u)v, as it allows us to take derivatives with respect to v. This operator is:
D(u) = I [grad u]!". Similarly, it holds that ([u]div)v = [divv]u.

Finally, eliminating v and p, we arrive at the following reduced linear system for u:
(id treR(uF, u’;)(GyB+L))u = vt TR(uFub)Gya (7.16)

where R(u”, uf) = F(u})M(u*)GZ'F(ub)T and F(u¥) = D(u¥) + [u¥]div and uf =
exp(—7[u¥ 4 c.]72)u” if evaporation is included and u¥ = u* otherwise.

Thus, we obtain a fully discrete scheme where given an initial mass density ug, we
evolve it in time using the above update rule.

We implemented our method in MATLAB using standard linear solvers for Eq. ((7.16)).
In all our experiments, the method was very stable allowing for large time steps (on the
scale of O(e + dx), which is excellent for 4th order problems) depending on the initial
conditions and the underlying mesh. The experiments were performed on an Intel(R)
Xeon(R) processor with 32 GB RAM, and we show in Table 7.1 the statistics for the

different simulations.

7.5.3 Limitations

Dynamic Time-Stepping. Given that the stiffness matrix L is positive semi-definite,
the system (7.16) is invertible as long as 71 €| R(u®)||2||G#|2B < 1, where B is the
absolute taken on the minimum value of B and it is a measure of how strongly negative
the quantity bcosf — T is on the surface. Moreover, we employ a CFL-type condition
depending on the maximum velocity of the film v, and grid size, i.e., we require that

Tov < 0x. Finally, we take the time step to be 7 = min{m, 72}.

Positivity Preservation. Unfortunately, even if we start from a strictly positive ug,
the evolution of the film u” is not guaranteed to stay positive [RV13]. Aside from being
non-physical, in the case of negative values, droplets might rupture. In practice, all of
our simulations remain positive, excluding the evaporation example. Nevertheless, the

evaporation term has a stabilizing effect, indeed, negative mass concentrations are also
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Figure 7.8: Capillarity ridge with high velocity and undershooting.

evaporated. Intuitively, positivity is difficult to maintain due to the jump in pressure
along the triple line (the interface where air, solid and liquid meet). Moreover, the
so-called capillary ridge is formed, due to the competition between surface tension and
other forcing effects, e.g., gravity, see Figure 7.8 and 7.9. Thus, right where the film is
at its thinnest, the resulting velocity is high, implying instability along the direction of
motion. We leave further investigation of the issue of positivity preservation for future

work.

Meshes with creases. In general, the model we developed in Section 7.2 has a strong
dependency on the consistency of the vertex normals. In practice, general meshes might
have creases, or small dihedral angles, which will cause H to be arbitrarily negatively
large and non-smooth. This can have a detrimental effect on the simulation, as the fluid
will be drawn towards these singular locations. There are two possible remedies for this
situation: we can either refine the mesh (possibly non-uniformly), however that would
require additional pre-processing before one can apply our scheme to an arbitrary model.
Alternatively, we can add a regularizer to the energy so that it is easier to control the
simulation. We opted for the second option, as it makes our method easier to use,
and can allow the artist some freedom to control the simulation in a non-physical way.
Hence, for meshes with creases (see e.g., Fig. 7.17), we multiply the stiffness matrix L
defined in Section 7.5 by a constant 1 < r < 100. This effectively adds some numerical
diffusion, allowing for more smooth solutions. Note that discrete conservation of mass

is not affected by this modification.

plelele

Figure 7.9: In the absence of gravity, the fluid departs areas where the mean curvature is strongly
negative and capillary ridges form. Later, surface tension balances the fluid on top of every face,
cf. [RRS02] (up =0.1,b =0,e =0.1,5 = 0).
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e=0.05, b=30, f=0  &=0.005, b=>50, f=0 &=0.05, b=50, f=0.05 |

I I l 8

£=0.05, b=75, f~=0  &=0.1, b=50, f=0 | £=0.05, b=50, f=0

Figure 7.10: Fingering behavior for varying parameters, at ¢ = 10. In every column, one
parameter is modified from the reference configuration (f). See the text for details.

£0.04

0

Detachment of fluid. As the fluid is “tied” to the surface, droplets cannot detach
when they become too large. In these cases, the droplets grow narrower and taller
until equilibrium is reached and the approximate lubrication solution is stable, although
the full 3D flow is not. Note, that in this case one could potentially switch to a full
3D simulation, which will allow the droplet to separate from the surface. This is an

interesting direction for future research.

7.6 Experimental results

Parameter exploration. We begin by exploring the effect of various parameter
choices on the simulation of the thin film. For this example, we choose a sphere as a
simple geometric model with limited curvature effects on the flow. The basic experiment
includes placing a concentration of fluid at the top of the sphere, with slightly perturbed
initial conditions to avoid perfect symmetry. Due to gravity the fluid flows downward,
and the initial perturbations give rise to fingering instabilities, (see [TH10] for an
experimental demonstration of fingering on a sphere). The result for the parameters
e = 0.05,b = 50, 5 = 0 is shown in Figure 7.10 (f), demonstrating the emergence of a
secondary finger in the center (see also Fig. 7.16, showing multiple fingers in a wine
glass).

We refer to this setup as the reference configuration, and now modify in every column
of the figure a single parameter to isolate its effect on the simulation, for which we
show a snapshot at time ¢t = 10. Left: varying b changes the speed with which the film
flows downward, without strongly affecting the shape of the fingers. Specifically, for
a lower b value (a), the secondary finger does not emerge yet, whereas for a higher b

value (b) it is more pronounced than in the reference configuration. Middle: changing e
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Figure 7.11: The energy £(u) for the simulations in Figure 7.10.

affects the surface tension component, and therefore the shape of the fingers. Reducing
e yields thinner fingers (c), whereas increasing it (d) makes more viscous thick fingers,
and eliminates the secondary finger. Right: increasing 5 considerably speeds up the
fluid (e), allowing it to flow more freely in all directions (as opposed to increasing b

which causes faster flow in the direction of gravity).

Energy reduction. The numerical scheme we use is guaranteed by construction to
reduce the energy £(u) at every time step. Figure 7.11 shows the energy decay in time,
for the different simulations in Figure 7.10. We observe that the slip parameter 3 affects
the speed with which the energy is reduced, the gravity parameter b also affects the
initial value of the energy, and the parameter € has a minor impact on the energy, as it

is dominated by the leading order term.

Thin films interaction. Figure 7.12 demonstrates the flow and interaction of thin
films on the moomoo model. The higher bulk of fluid accumulates beneath the horns of
the model, followed by a faster motion when it comes in contact with the lower bulk of
fluid (see also Figure 7.14). Then, the motion is mostly determined by the two main
fingers flowing on the sides of the model. In Fig. 7.15 we show the interaction of many
droplets viewed from four sides of the unit sphere. We repeatedly pour new droplets at

the top of the sphere at a fixed rate and drain the liquid from the bottom.

Droplet formation. A thin film concentrating beneath a flat surface develops an
instability called droplet formation (cf. [SK98]). In Figure 7.13, we start with a uniform
layer of fluid on the torus with small perturbations, and allow it to drop beneath the
torus due to gravity. As the fluid accumulates around the circular set of lowest points,

droplets form.

Evaporation. Figure 7.14 shows how evaporation (¢, = 0.01) and the precursor layer
affect the motion of the film. We deposit precursor layers of different heights on the
two halves of the Moai model and place a similar bulk of fluid near the eyes. Due to

the initially thicker precursor layer, even though it evaporates quickly, the film on the
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Figure 7.12: Flow on the moomoo model (b = 20,e = 0.1, 5 = 0). Note how the upper and lower
films interact: the larger mass density of the upper film causes it to catch up with the lower
front leading to the formation of quickly propagating fingers.

left part of the model flows to a greater distance compared to the film on the right.

Eventually, all the film evaporates.

7.7 Van der Waals potential term.

As mentioned in the limitations section, a major drawback of our method is that the
positivity of the mass density u is not guaranteed. One approach towards solving this
issue is to add the integrated non-linear potential term [ W (u)da ~ 15,GyW (u) to
the discrete energy £¢(u). The purpose of this term is to penalize values of u that
are under a certain threshold up. A computationally simple choice, commonly used to
model intermolecular forces, is the well-known Lennard-Jones (LJ) potential [Jon24]

won- ()" ()

u u

given by

In the context of thin films, the LJ potential was used in [GRO1], and in addition to
maintaining the height of the precursor layer, it also leads to the spontaneous formation
of droplets (pearling) due to the potential well (see inset figure).

Namely, the modified energy favors large densities of fluid (where the potential
is zero) or densities of the precursor layer size (where the potential has a minimum).
Overall, using the LJ potential stabilizes the simulation by promoting the continued

positivity of the solution. Although it is not entirely accurate physically, it is similar
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Figure 7.13: Starting from a perturbed uniform layer of fluid, the fluid flows downwards,
accumulates and finally forms droplets.

enough to the real intermolecular interactions, that occur between substrate, liquid film
and the air and determine the hydrophobic/hydrophilic properties of the surface, to

achieve visually appealing results.

W(u)

0 \_—

Up

The modifications needed to incorporate the LJ potential can be summarized as
follows. The new energy is given by &g (u) = £°(u) + 1,Gy W (u). Thus, the new

Euler-Lagrange equations (7.15) can be reduced to the following primal-dual system

p=a+e(B+Gy,'L)u+W(u),

(7.17)
u=1u"— TR(uk)va .
Therefore, the resulting Newton system can be written as
id —e(B+Gy,'L) — [W"(u)]\ (ép\ (rp (7.18)
TR(u¥)Gy id su)  \ry)’ '

where

—rp=p—a—¢B+G,'Lju-W'(u),
—ry =u—u® +7R(U")Gyp .

The correction for dp can be eliminated, resulting in a single equation for the update of
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Figure 7.14: Evaporation effect on the evolution of the film.

u. The modified update rule (7.16) for the correction is given by

(id +rR(uM)Gy (e(B+Gy'L) + [W”(u)]))du -

(7.19)

u—u"+7R(U")Gy (a+ € (B+G,'L)u+ W' (u)) .

A single Newton step takes the form of u <— u — ydu, with 0 < v < 1 such that the
energy is reduced. In practice we took v = 1 in all of the examples that we show. As for
the initial guess for the Newton iterations, we took u = u®. Unfortunately, the concavity
of W (u) poses a too strict requirement on 7 for the system (7.19) to be invertible. In
practice, we split the potential to its convex W (u) and concave —W_(u) parts, so

that the usual bound discussed in subsection 7.5.3 can be used. Specifically, we define

Wk, w) = W (u) — (W (uh) + W (u)(u - ub)) |

0000

Figure 7.15: Rain of droplets lead to their interesting interaction over the sphere (see the video
for the full simulation). The sphere is shown from its four sides, where the axis of rotation is
shown above.

where for the LJ potential we have W (u) = 1 (u—up)4 and W_(u) = (%")2 Finally,
we modify the system (7.19) such that W”(u) — W/ (u) and W'(u) - W/ (u) —
W’ (u*). Note that a small value for the threshold uy, can approximate an effectively
de-wetted surface (i.e. a very thin precursor layer) with droplets of apparently compact
support. As small values of u, exacerbate the non-convexity of the LJ potential, this
necessitates smaller time steps.

In Figure 7.18 we show the effect of pearling that occurs whenever a trail of thin
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layer of liquid appears during the motion. In Figure 7.19 we show that due to the high
attractive and repulsive forces, droplets emerge spontaneously. Both of these effects are

achievable due to the Van der Waals non-linear potential term.

Figure 7.16: Multiple fingers on the inside of a glass of wine (b = 500, e = 0.0001, § = 0).

7.8 Conclusion

We presented a novel method for simulating viscous thin film flow on triangulated
meshes. Our approach is based on a variational time discretization and is therefore
stable and allows for large time steps. Furthermore, we guarantee by construction that
the discrete total mass is preserved and that the discrete energy is non-increasing. The
algorithm is based on a single sparse linear solve per iteration, and is therefore very
efficient. We demonstrated various intricate film motions, such as viscous fingering and
droplet interaction.

There are many potential extensions to our model. For instance, it might be
possible to extend the model to handle effects due to surface tension gradient. Also, our
discretization of the mass transport constraint might be potentially useful in additional
applications. Finally, we mentioned various extensions throughout the paper such as

positivity preservation and fluid detachment which might be interesting to achieve.

Figure 7.17: Thin film flow on a geometrically complicated model. Note how starting from a few
blobs of fluid, the film naturally follows the creases of the object, merges and splits accordingly.
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Figure 7.18: The two big droplets (top, left) travel fast enough to leave a trail of fluid behind
(top, middle and right), which later separates into several smaller droplets (bottom). This
phenomenon is known as pearling.

Figure 7.19: Starting from a slightly perturbed uniform layer of fluid (top, left), droplets quickly
form due to the attractive/repulsive forces resulting from the van der Waals non—hnear potential
(top, middle and right). Later, the droplets travel downwards due to gravity and several merges
between droplets occur (bottom).
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Appendix A

Appendix of Chapter 2

A.1 Proof of lemma 2.2.1

Lemma 2.2.1. Let T }t;, t € R be the functional operator representations of the flow
diffeomorphisms ®!, : M — M of V, defined by ThL(f) = f o @} for any function
feC®(M). If D is a linear partial differential operator then Dy o D = D o Dy if and
only if for any t € R, Tho D = D o T¥..

Proof. Let p € M and f € C*°(M) be a smooth function. If V(p) = 0, then ®{,(p) = p
and Dy (f)(p) = 0. It immediately follows that Dy o D(f)(p) = D o Dy (f)(p) if and
only if T% o D(f)(p) = D o Th(f)(p) because the right hand side of both equation is
equal to 0.

Now assume that V(p) # 0. There exists (see, e.g. [Spi99] Theorem 7, p.148) a
local coordinate system in an open neighborhood of p such that V = 8% and D can be
written as

D= Z aq(x,y)0"

0<|a|<n

where o = (4, 7) is a multi-index , |a| =i + j and 0% = %.

First assume that Th o D = D o T%. Since the derivative (with respect to t) of
fo®! (p) at t = 0 is equal to Dy (f)(p), the differentiation with respect to ¢ of the
equality D(f)(®},(p)) = D(f o @, (p)) gives at t = 0: Dy(D(£))(p) = D(Dv (1)) (p).
As this holds for any f and p, we deduce that Dy o D = D o Dy.

Assume now that Dy o D = D o Dy. As in the proof of Lemma 2.2.4, since the
flow of V' is a one parameter group we just need to prove that Tfp oD=Do T}t, for ¢
contained in an arbitrarily small interval containing 0 but not reduced to 0. Using the

product rule we have

Oaq 0°f
Ox 0zi0zI”

0=DyoD(f)—DMDv(f) = Y

0<|o=(,j)|<n

Since this equality holds for any f we deduce that for any «, %L; = 0. As a consequence,
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the coefficients a, of D are constant along the trajectories of V in the local coordinate
system and thus for |¢| small enough we obtain T% o D(f)(p) = D o TL(f)(p). O

A.2 Proof of lemma 2.2.2

Lemma 2.2.2. A vector field V is a Killing vector field if and only if Dy o L = L o Dy

Proof. As L is a differential operator, it follows from Lemma 2.2.1 that Dy oL = Lo Dy
if and only if 7% o L = Lo T}k. Recalling that the Laplace-Beltrami operator is invariant
under the action of isometries of M, we immediately deduce that if V' is a Killing vector
field then Dy oL = Lo Dy. Now, if Tho L = LoT}, then the Laplace-Beltrami operator
L is preserved by the action of the diffeomorphisms ®!,. Since L determines the metric

on M, ®!, have to be isometries. O

Lemma A.2.1. Given two vector fields Dy, and Dy, that both commute with some

operator D, the Lie derivative Ly, (Va) will also commute with D.

Proof. Using that DDy, = Dy, D and DDy, = Dy, D we immediately obtain

D(Dy, Dy, — Dv,Dv,) = DDy, Dy, — DDy, Dy,
— DywDy,D — Dy, Dy, D
= (‘DVlDVQ_DVQDVl)D- O

A.3 Proof of lemma 2.2.4

Lemma 2.2.4. Dy, = (Tr)" o Dy, o Tk.

Proof. Given p € M, by definition of the push forward we have Va(T'(p)) = dT(Vi(p))
where dT' denotes the differential of the diffeomorphism 7. Now if f € C*°(N) is a

smooth function, then using the chain rule we get

Dy, o Tr(f)(p) = Dvi(f o T)(p) = d(foT)(Vi(p))
= df(dT(Vi(p)))
= df(Va(T(p)))
= Dw(f)(T(p))
= TroDy(f)(p)

As T is a diffeomorphism, T is an isomorphism and we obtain Dy, = (Tr) toDy, oTp.[J
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A.4 Proof of lemma 2.2.5

Lemma 2.2.5. Let T' = ®!, be the self-map associated with the flow of V at time
t. Then if T% is the functional representation of T, for any real analytic function f
(see [DFNO92], p. 210):

Thf = exp (t Dy)f = Z (D

Proof. The set of diffeomorphisms associated to the flow of V' is a one parameter group:
for t,s € R, @’{;’s = ®!, o B3, (see [Spi99, pg. 147, thm, 6]). The right hand side of
the equality of the Lemma also having the same property, it sufficies to show it for ¢
contained in any arbitrarily small interval containing 0 but not reduced to 0. Given
p € M, if V(p) = 0, then for any k, (Dy)*(f)(p) = 0 and both hand sides of the equality
are equal to f(p). Now assume that V(p) # 0. There exists (see, e.g. [Spi99] Theorem
7, p.148) an analytic local coordinate system in an open neighborhod of p in which V' is
equal to a . As a consequence without loss of generality we can assume that V = 8‘9

and p = 0, and prove the equality in this coordinate system. As the flow of 2 35 1s just a
translation, the left hand side of the equality becomes Trf(0) = f(t). As D% (f) = %,

the right hand side is just the Taylor expansion of f at 0 in the direction of x:

Ltk ok

a5 (0).
— k! Ox

Since f is an analytic function, for |¢| small enough, this Taylor expansion is equal to

f(t). a

A.5 Proof of lemma A.5.1

To compute the entries in the matrix S, we need to compute integrals of the form
di; = ftr vi (Vvj, Vi) dp, where t, is a triangle, 7; is the hat basis function of the vertex
1, and V,. is a constant vector in ¢,.. These integrals are non zero only if both ¢ and j

are vertices of t,, and their value is given by the following Lemma.

Lemma A.5.1. Let M = (X, F,N) and let V be a piecewise constant vector field on M.
In addition, let ¢, = (i,j, k) € F be a triangle and V. be the value of V on t,. Then:

k
1 ¢
ro_ . _ = 1
ty = [ 9 V= (e V7))
i J

where e is the edge of t, opposite to vertex j rotated by 7/2, such that it points

outside the trlangle (see the inset figure for the notations).
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Proof. The gradient of a basis hat function is given by (see e.g. [BKP110]): Vv, =
ejLT (2A,), where A, is the area of the triangle ¢,. This value is constant in ¢,, as is V,,

and therefore we have:

N IS _ L ,
dz‘j - /tr i <V'YJ7V;“> dp = 2A, <€jr’w> /tr Vidp.

The integral of a basis hat function on the whole triangle is exactly the volume of a
pyramid with basis ¢, and height 1. Hence, ftr Yidp = A, /3. Plugging this in dj; we
get:

T 1 1
de = 6 <€j7,, ‘/T‘> .

Note, that this expression holds also when j = 1. ]

Now, computing the values of S;; and Sj; is simply a matter of identifying on which set
of triangles d;; is not zero.
For S;j, these are only the two triangles ¢, ts neighboring the edge (i, 7). Hence we

have:

where the notations are given in the inset figure.
For S;;, the relevant triangles are the faces t, which are near the vertex ¢ (denoted

by Np(i)), hence we have:

Sii =

Z <eilr,Vr>.

trENp (’L)

=

Finally, we would like to show that S; = — Zj Sij. From the definition of S;; we

have that: .
51 F () (e 15)
J

JEN(i)

By re-arranging the sum as a sum on the neighboring faces, we get:

Siel X (v ()

r=(i,j,k)ENp (3)
It is easy to check that for a triangle r = (i, j, k) we have:
ejr +exr = (Pi — pr) + (pj — i) = pj — Pk = —€ir,
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and hence:

Ssh 5 ()

r=(4,5,k)ENp(i)

A.6 Proof of lemma 2.4.1

Lemma 2.4.1. Let M = (X, F, N) and let V7, V5 be two piecewise constant vector fields
on M. Then: D‘};l = 1552 if and only if Vi = Vs.

Proof. We will show that given a tangent vector field V', and a corresponding operator
155, we can reconstruct V uniquely from f){; Since f){; is defined locally per face,
where V is smooth, the uniqueness is in fact implied by the uniqueness property in the
smooth case. However, for completeness we will validate this explicitly, by providing a
reconstruction method that extracts V' given Dg .

Given a face r = (i, j, k) we compute ¢; = (ZA?{?(%))T and similarly for ¢;, ¢, where
~; is the hat basis function of vertex i. Now, we consider the set of constraints we have
on V,. First, by definition we have that (ﬁ{?(’yﬂ)r = (V7, V) = ¢;. In addition, V,
should be tangent to the triangle, hence (V,, N,.) = 0, where N, is the normal. This

yields the following linear system for V.

(V7); Ci
(Ve |y | @
(Vy? | ck

NT 0

However, since s = v; +7; + v = 1, we have that ﬁ{;(s) =c¢+cj+e =0,
and similarly V+; + V~; + V~, = 0. Therefore, one of the equations is redundant.
Furthermore, V+; is in the direction of the edge (7, k) rotated by m/2, and similarly for
V7~; and they are both orthogonal to N,. Therefore, if the triangle is not degenerate,
Vi, V7yj, N, are linearly independent, and the system is full rank. Since we know that

ﬁg was constructed from V', the system has a unique solution given by V. O

A.7 Proof of lemma 2.4.2

Lemma 2.4.2. Let My = (X1, F,N1) and My = (X2, F, Na) be two triangle meshes with
the same connectivity but different metric (i.e. different embedding). Additionally, let
V1 be a piecewise constant vector field on Mj, then 1551 = D{}; .

Here (V3), = A(V1),, where A is the linear transformation that takes the triangle

r in My to the corresponding triangle in Ms. Note that lA?Vi is computed using the
embedding Xj;.
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Proof. By definition we have that
- R (p}, - p;)
(D )i = (Vi1 (V),) = <2 LB ) ),

where the face r = (i, 5, k), p} are the coordinates in X of vertex i and R% is counter-

clockwise rotation by 7/2 in the plane of the triangle . On the other hand we have
: R (pj, — p5)
DF ri = ) r) = i ! r
(D, )ri = ((Vi)2, (Va)r) < on, )
RO A(pL — pl
— M7 AWVi), ),
2| Al Ay

where |A| is the determinant of A. It is easy to check directly, that for any A we have
that: AT(R)TA =|A|(R*)T, which implies ﬁFI = 15{;2, as required. O

A.8 Proof of lemma 2.4.3

Lemma 2.4.3. Let M = (X, F, N), V a piecewise constant vector field on M, f =", fivi

a PL function on M, and w; the Voronoi area weights, then:

| X | X

> wiDv fi=> wifi(V-V)s.
i=1 i=1

Proof. From the definition of f)v, we have that

RS R 1 X R | X1 |X] 1X|
> wiDyf)i =Y (WDvf)i=> (Si=>_> Siifi
i=1 i=1 i=1 i=1 j=1
Switching the roles of the indices i, j, we get:
|X] X | X R
NN Sifi=Ygifis 9= S
i=1 j=1 i=1 j=1

The only non-zero entries in the i-th column of S are on the diagonal and entries Sj;

such that j is a neighbor of . Thus we have:

g9i=Si+ > Sj.
JEN (i)

Plugging in the definition of Sj; and S;; we get:

gi:% Z <eilr,Vr>+é Z <<eﬁ,Vl>+<ef§,Vg>>.

tr€Np (i) JEN(2)
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Again, we can re-arrange the second sum as a sum on neighboring faces and get:

0=b B (el S () ()
_1

trENp () trENp (i)
> > <e,.i,n,vr> = wi(=V)s.
tTENF(’L')
Finally, we get:
|X| |X| |X|

S wiDvf)i=> gifi=> wi(+V)ifi,
i=1 i=1 i—1

as required.
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Appendix B

Appendix of Chapter 3

B.1 Challenges in the discrete setting

We would like to show that the metric compatibility is impossible to achieve in the
discrete setting even when functions and vector fields do not live on the same domain.
Below we will assume that vector fields are discretized on the faces of a triangle mesh and
functions are discretized on some other domain (vertices, edges, faces, etc.). However,
the proof is quite general, and can potentially be extended to the case where even the
vector fields are also discretized on some other domain (e.g. on edges), depending on
the choice of inner product.

We will use the following formulation of the metric compatibility:
Dx AU, V)) = A(<@XU, V> n <6XV, U>). (B.1)

Here Dy is a covariant derivative for functions with respect to the vector field X.
Le., Dy takes a function defined on some domain (e.g., vertices or edges) and produces
a function defined on the same domain. VxU is the covariant derivative for vector
fields, and the inner product is the standard inner product of vector fields in R3. Since
the inner product (U, V') produces a function on the faces of the triangle mesh, we need
an operator A that takes functions on faces and produces functions on vertices or edges.

We will assume that A has the following properties:
1. It is linear: A(f + g) = A(f) + A(g).

2. It maps constant functions to constant functions. L.e., if we are given a function f,
such that the value of f on face ¢ is equal to its value on face j for every j, then

A(f) is also a constant function on the target domain (e.g, vertices or edges).
3. It is non-negative.

Under these conditions, we have the following result:
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Lemma B.1.1. If Dy is a linear operator such that Dx f = 0 if f is a constant function,
and the covariant derivative for vector fields is linear: @X(Ul +Us) = VU + @XUQ,
then the metric compatibility condition (Eq. B.1) implies that Dxf =0 for all f in the
range of A. Le., DxAh =0 for any h.

Proof. We will use V; to denote a vector field which is non-zero on face ¢ and has unit

norm, and use e; = (V;, V;), as the indicator function of face i.

1. The metric compatibility condition implies that:
DxA(e;) = Dx A((Vi, Vi) = 2A((Vx Vi, Vi)

Since V; = 0 on any face other than ¢, we have VXV>VZ- = q;e; for some scalar a;.
Thus,
Dx.A(ei) = 2A(aiei) = 2CLZ‘A(€¢).

In other words, A(e;) is an eigenvector of Dy with eigenvalue 2a;. Our goal will
be to show that a; = 0 for all 4, since in that case Dx.A(h) = 0 for any h.

2. For any i # j, we have V)V = 0. Thus:

0=DxA((V;,V;)) = A(VxV;, V) + A(VxV;, Vi)).

3. Let V.=, V;. Note that (V,V) = > e; = ¢ a constant function on the faces.
Thus Dx A((V,V)) = 0. But

DxA((V.V)) = 2A((Vx V. V)) = 2A(<VX Z Vi, Z Vi>)

= 2A(<Z VxVi ) %>) =240 _ (VxVi, V3))

.3
=2} A(VxVi Vi) = 0
Z'7j
Using parts 1. and 2. above (which states that that the cross terms cancel out),

this further simplifies to:
DxA((V,V)) =2 A(VxVi, Vi) =2 aiA(e;) =0.

4. Since A(e;) is an eigenvector of Dx with eigenvalue 2a;, the previous part can be
rewritten as (by summing eigenvectors with the same eigenvalue): j Ajo; =0,
where \; are all distinct and non-zero, and ¢; = ), A(e;) such that 2a; = A;.
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We claim that ¢; are all linearly independent. To see this suppose that ¢ =
> jzk bj®j, for some k, such that {¢;} are linearly independent and b; # 0. Then

since Dx¢; = A;¢; we have:

D bidig; =Y bidrdy,

J#k J#k
which implies (since b; is non-zero) that A\, = \; for all j, which is a contradiction.

5. Since ¢; are all linearly independent, y Aj¢j = 0, implies that \;¢; = 0 for all
j. Thus, either \; = 0 or ¢; = 0. But ¢; = . A(e;) for some index i, and A
is assumed to be non-negative, >, A(e;) = 0 only if A(e;) = 0 for every i. But
this means that A\; = a; = 0. Therefore, a; = 0 for all ¢, which implies that
DxA(h) = 0 for all h. O

B.2 Properties of the continuous operators associated with

the Levi-Civita covariant derivative

The following lemmas all deal with smooth manifolds. We will assume that each manifold
is compact and without boundary. Moreover we will assume that all vector fields are
not only smooth but analytic. Note that this requirement is necessary for Lemma B.3.1,

and not e.g. for Lemma B.2.3 but we will assume it throughout for simplicity.

Lemma B.2.1. For a closed oriented surface M without boundary, VyV =0V U if
and only if V. =0 or M 1is a flat torus.

Proof. The proof of this lemma relies on the result of Lemma B.3.1 below. First, note
that if M is not a genus 1 surface, then according to Hopf index theorem [Mor01,
pg. 256], there must be some point p s.t. V(p) = 0. But then pick another point
p’ and construct a vector field Z such that the flow-lines of Z connect p and p’. Le.
D4 (p,t) = p' for some t. Since VzV = 0 this implies, using Lemma B.3.1 below, that
V(p') = V(p) = 0, and thus V = 0 everywhere, since p’ was arbitrary. Let assume
now that M is a torus. Since ViV = 0V U, parallel transport around any paths must

commute, so there is no curvature and thus M must be a flat torus. O

Lemma B.2.2. Two vector fields U and V are equal if and only if VoW = Vy W for
all vector fields W'.

Proof. Recall from the definition of parallel transport that if VxV = 0, then V is
preserved by parallel transport along the trajectories of X. Suppose X # 0, so that
there is some point p, s.t. ®;(p) # p for some t. Then for any vector field V, V(®;(p)) is
the parallel transport of V(p) along the trajectory of X from p to ®;(p). As the parallel
transported image of V' (p) is uniquely defined, it is easy to build two vector fields V}
and Va such that Vi(p) = Va(p) but Vi(®:(p)) # Va(P:(p)), a contradiction. O
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Lemma B.2.3. A vector field U is divergence-free if and only if Vi is anti-symmetric
with respect to the inner product on the surface. Le., if and only if [,, (VuX,Y)dr =
— iy (VuY, X) dx for all vector fields X and Y.

Proof. Suppose U is divergence-free. Then, using the metric compatibility of the

covariant derivative:
/ (Vo X,Y) + (VoY X)) do
M

_ / Vo (X,Y)dz = / div(U) (X,Y) dz = 0
M M

where the second to last equality uses Stokes’ theorem and integration by parts.
Now, suppose that Vy is anti-symmetric. Then by the same argument we get:
Joy div(U) (X,Y) dx = 0 for any X and Y. Suppose f = div(U) is not zero. Then there
exists a point p such that f(p) = e > 0. Let © be a small neighborhood of p such that
f(p) does not change sign and is strictly greater than 0. By constructing a vector field
X that vanishes outside of , and considering [}, div(U) (X, X) dz it is easy to see that

this integral must be positive. But this contradicts the assumption of anti-symmetry.[]

B.3 Properties of the discrete operators associated with

the Levi-Civita covariant derivative

Lemma B.3.1. Let fU,t = exp(t@U), where Vy is the matriz representation of the
discrete covariant derivative operator defined in the main paper, and exp is matrix
exponentiation. Then:

Vo)) = = (Tua(V))| (B.2)

t=0

Proof. We have: %FUJ = %exp(t@(]) = Vyu exp(t@U), where we can use standard
matrix derivative rules, as Vi does not depend on ¢. Hence, for t = 0 we get: %fU,t ‘ o =

@U, as required. ]

Lemma B.3.2. If Dy uses a full basis, then the operator NV is invariant to rigid
transformations. Namely, let M = (V,E,F) be a mesh embedded with coordinates
X € R3, and let U,V be two tangent vector fields on M. In addition, let T be a global
rigid transformation T : R? — R3. Then:

(VTN n T(V) = TV )uV), (B.3)

where VX is the discrete covariant derivative operator on a mesh embedded with coordi-

nates X.
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Proof. Since we only deal with vector quantities (e.g. the input vectors, and the edge
vectors of the mesh), and intrinsic scalar quantities (e.g. triangle areas) it is clear that
the definition is invariant to global translation.

Let 7 be given by a global rotation matrix R”. Consider the gradient of the three
components of V' in the face ¢ € F, namely the 3 x 3 matrix Gf/{ ; Whose columns are
(VX Av,) (3), (VX Avy) (i), (VX Av,)(i)], where A is an intrinsic averaging operator, and
V¥ is the gradient of non-conforming elements on a mesh embedded with coordinates

X.
From the definition of the gradient, it is easy to check that

Gy = —(EX)TCAV/ A, (B.4)

where EZX is a 3 X 3 matrix whose rows are the rotated vector edges of the face i, C; is
a 3 x |€| matrix which chooses the edges in the face i, V' is a |F| x 3 matrix where the
i-th row represents the vector in face i, and /\; is the area of face i. Similarly, for the

rotated mesh we have:
Gif, = —(BTCAVR/ A, (B.5)

since C; is combinatorial, A and /\; are intrinsic, and rotating the vector field can be
expressed as post multiplying by R. Similarly, rotating the coordinates (and thus the
edge vectors) of X can also be expressed as post multiplying by R, hence we have:
EXE = EXR. Combined with (B.4) and (B.5) we get:

By definition, we have that (DEV)(i) = (bgvr,ﬁgvy,bgvz)(i) = U(i)Géi, where
U (i) is the vector U in the face i. Hence, plugging in (B.6) we get:

(DEE(VR)) (i) = (UR)OGVE; = UGRR'GY;R = U(i)GY,R, (B.7)

hence: (Dgg(VR))(i) = (D)U(V) (i)R.
It is straightforward to check that by projecting out the normal component we get
(@)U(g(VR))(i) = (@f]((v))(z)R as required. O

B.4 Periodic solution to Euler’s Equation

In this section we consider the evolution of an incompressible inviscous fluid on a
2-dimensional sphere. Our goal is to show that if the velocity field at time 0 equals:
V(0) = Uy + JV¢; where Uy is a Killing vector field, J is an operator that rotates
a given vector field by m/2 in each tangent plane and ¢; is an eigenfunction of the

Laplace-Beltrami operator corresponding to the j™ eigenvalue, then the solution to
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Euler equation at time ¢ will have the form

V(t)=Uo+ Y ai(t)JVe.
i

Here, a;(t) are scalar-valued functions and ¢; are eigenfunctions of the Laplace-Beltrami
operator corresponding to the same j™ eigenvalue. Thus, V (¢) is a linear combination
of a KVF and a rotated gradient of an eigenfunction corresponding to the j** eigenvalue
for all times ¢. Moreover, we would also like to show that the vorticity w(t) = curl(V'(¢))
is advected isometrically by the flow.

To show that V(t) = Uy + >, ai(t)JV¢;, for all ¢, recall the vorticity formulation of

Euler equation:
L V(t) = JVi(t)
2. w(t) = —Ly(t)
3. 4w(t) = —Dyw(t)

where V() is the velocity field, w is the vorticity, ¢ is called the stream function, L is
the Laplace-Beltrami operator and Dy (;) the covariant derivative (of functions) in the
direction of V (t) (see e.g. [Tay96, pg. 536, Eq. (1.27)]).

Suppose (0) = ¢1 + ¢; where ¢1 corresponds to the first non-zero eigenfunction
of the Laplace-Beltrami (note that JV¢; is a Killing vector field). Thus, we have:
w(0) = =LY (0) = —(A1¢1 + Ajo;) and V(0) = —=JVé1 — JV¢;. Now:

d
L=9(0) = Dy () Lb(0) = (V(0), VL(0))

= (JVP1 + IVj, V1 + A V)

= (JV91,A\;jV ;) + (JVdj, MV 1)

=(\j — A1) (JVé1, Vo)

Now since Uy = JV¢; is a Killing vector field, L (Uy, Vf) = (Up, VLf) for any f, which
implies in particular that L (Uy, V¢;) = \; (U, V¢;), and therefore (Up, V¢;) is an
eigenfunction of L corresponding to the j*' eigenvalue. Note that this implies that
%w(O) is contained in the span of the eigenfunctions corresponding to the ;' eigenvalue.
Moreover, using the same argument as above, the same is true for any ¢. Thus we have:
Y(t) =1+ >, ai(t)p; and V(t) = Ug+ >, ai(t)JV¢;, for all t, where a;(t) are scalar
valued functions of time and ¢; are eigenfunctions corresponding to the ;' eigenvalue
of L.

Note that V (¢) is not a Killing Vector field for any time ¢. However, as we will show

the vorticity function w is advected isometrically by V(¢).
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For this note that w(t) = —L(t) = —(Md1 + A >, ai(t)¢;) for all ¢, and

%w(t) = —Dyw(t) = (\j — A1) <JV¢>1, > ai(t)V¢>i> .

)

Now consider another PDE for the evolution of w (which would a-priori give a different
flow).

%w(t) = —Dyvp,w(t) =\ <JV¢1, Zai(t)v¢i> .

i
Note that when w(t) has the form as above, these two equations only differ by a scalar,
i.e. the speed of evolution. Moreover note that when w(0) = —(A1¢1 + Aj¢;) then w(t)
will have this form for all ¢ for both PDEs. Thus, whether w is advected by V() or by
a constant Uy = JV¢; the trajectory will be the same. Since we know that JV¢1 is a
Killing Vector field, this means that w(t) is advected isometrically by V().
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Appendix C

Appendix of Chapter 4

C.1 Proof of lemma 4.3.1

Lemma 4.3.1. Given a cross field z and an arbitrary point ¢ € M, we compute the
associated power vectors y; and ys at ¢ using two different basis vectors b; and bs,

respectively. Then, for any real-valued function f, the following relation holds

(y1, (grad f)1,p) = (y2, (grad f)a2,p)

where (grad f);, is the power vector of (grad f) at ¢ in the basis b;.

Proof. Let x be one of the 4 vectors of the cross field at ¢. We represent it using b; as
x = 5, R%b;, where s, = ||z||, §; € [0,27) and R? is counter-clockwise rotation by angle ¢
in the tangent plane of ¢. Similarly, let (grad f)(q) = sy R*b;, where sy = ||(grad f)(q)||,
and we assumed that both s, and s; are not zero. Now, the power vector of x w.r.t the
basis b; is given by y; = R*ib;, and similarly (grad f)(q);p = R**ib;. The inner product
is therefore:

(yi, (grad f)(@)ip) = b R R*b; = cos(4(c; — 6;)),

since the bases b; are unit-length. Now simply note that the difference of angles is

independent of the basis which gives us the result. O

C.2 A Practical Optimization Approach

In what follows, we re-formulate our minimization problem (4.7) as a standard quadratic
programming optimization problem. Our analysis shows that the involved Hessian
is composed of a sparse term and a dense component, which is the product of a
matrix and its transpose. Thus, we can facilitate MATLAB’s quadprog with the
trust-region-reflective method, allowing to solve a large and dense problem as
long as its Hessian is structured. As the derivation for the case of a pair of shapes closely
follows the single shape scenario, we omit the discussion of re-formulating the problem
given in Eq. (4.11).
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Recalling the smoothness and alignment terms, Eqgs. (4.1) and (4.2), respectively,
we observe that their associated Hessian matrices, Hs and H; are extremely sparse. We

denote

H; = gradg Ge grad, ,
H=5TGrS,

where H has a sparsity structure of a Laplacian matrix (one-ring of faces) and Hj is a
diagonal matrix. In addition, the alignment component includes a linear term which we
denote by f = —H;-w and a quadratic part in w which does not affect the optimization.

For the consistency component given in Eq. (4.6), we distinguish between two cases.
In the first case, we use a reduced functional basis, i.e., k& < 300, and we denote
Gei = CD(f;) —D(C- f;), with G¢; being a constant matrix of size k x 2|F|, since
C and f; are fixed throughout the optimization. The consistency condition has the

following Hessian:

H.= iGTG :
=1

Unfortunately, direct computation of H. results in a large and dense matrix and thus,
in practice, we only perform manipulations of the form GZZ- (Ge,i - y). The second case,
when k = |V|, is much simpler as H, is sparse and problem (4.7) can be solved directly

in this scenario. Overall, we achieve the following Hessian,
H=(1-u)[(1—-a.)Hs+a.H]+ oy H .
Finally, using the above notation, our problem (4.7) can be written as

1
arg min inHy + Ty . (C.1)
y
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Appendix D

Appendix of Chapter 5

D.1 Directional derivatives of the discrete energy (5.6).

We take variations of F/ with respect to the velocities v;, and idenitfy the coefficient of

v; with the partial derivative a%jE :

0 0T _ 1 0T o
aE(’U‘] +t5v‘7)‘t:0 = ? 5’11] G]-' Da Uj + ?'U] G]-'Da (57}]
Lo(ofe o \"
+ 952 <8vj 5Uj> Gy Cﬁ dg

1 oft
+ 252 0gGy Cg (8%5vj>
1 o \"
J

T 0
= ; -
= 61)] ( v; E) .

Notice that the above holds in our setup since D, and Cj3 are self-adjoint operators

with respect to the inner products defined by Gr and Gy respectively.

D.2 Directional derivatives of f o ¢, 7 (linear advection).

The key insight for deriving the gradient for f o ¢, is to employ the dual operator D

in order to extract the particular v;. As in Appendix D.1, we have:
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D.3

o,
af © ¢v+t5v

t=0

P N
a—H 1d or D t(STng])f‘

j=1 \i=j+1 i=1
N N
=—6r> | [] (d=67Dy,) | Dso, f;-1)5
j=1 \i=j+1
N N
or> | ] Gd-é7 D) | Dy, y,.0
j=1 \i=j+1
= 81)] vi

Directional derivative of f o ¢,7 (non-linear

tion).

9 N
= a H (1d —0T vathcSvj) f’t:
=1

N N -1
= 'H (id =67 D) (—5TD(svj)(H(id—5TDw)

advec-

In what follows, we describe our approximation to the derivative of f o, 7. Notice that

for finite matrix groups, a direct differentiation is available (see e.g., [Hall5]). However,

the resulting expression is not computationally tractable as it contains an exponential of

a 9|F|? x 9|F|? matrix. We, on the other hand, facilitate the discrete relation between

vector fields and matrices and thus obtain an efficient yet approximate expression for
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the derivative.

9 (1 ,
e (202 lexp(=7 Dyte60) f — 9\5) Lfo =
1

0
g <exp(—7 Dv+t5v)f -9, [

ot (GXP( TDert(Svf 9 ’t 0> =

% <eXp(—T Dy)f — g, [gt exp(—7 Dyt16v } f>
f

B8
> (2)
B

1 1
— <5g,exp(—7 D,) [/ exp(—ad_s;p,) _Tgvds]
o 0
1
5 <5g,exp(—7’ Dv) |:/ Dexp(S‘r adv)évd8:| /
0

B
1
—; <(Sg,exp(—7' Dv)/0 Dyexp(st adv)évds>ﬂ =

1
— <5976XP(—TDU)DJ:/O exp(sT adv)d35v>ﬁ =0

k
-7 — ST
m <5gaexp(—7 Dy)Dy Szgexp (? adv> (5’U>B

The proof for (1) is given in [Hall5] and (3) is a simple averaging rule for approximating
the continuous integral with a finite sum. The pass in (2) states exp(adp,)D, =
Dexp(ady)us 1-€-, applying this operation to the matrices D, and D,, is the same as acting
the on vector fields v and u. In the discrete setting this relation does not hold, thus

pass (2) can be considered as an approximation of the required computation.

D.4 Construction of the operator ad,.

To derive Eq. (5.11), we employ the following observations. As the current D, operates
on vertex-based functions, yet ad, is expected to act on vector fields, we define D, =
[fu]? grad I, an operator on face-based functions. Moreover, a vector field v = (Vg Uy, Vz)
can be reconstructed by applying its directional derivative operator on the coordinate

functions of the surface. Namely,
Dv(x) = Vg , Dv(y) = Vy , Dv(z> =UVz,

where any point p € M is given by (xp, yYp, 2p) € R3. Thus, using the above observations

we obtain,

Dy ) () = DyDy(z) — DyDy(x)
= Dy(uz) — Dy(vy)
= Dy (uz) — 5% (u)
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where 5f = [grad I\]j fIL. Finally, applying the above argument to the coordinate

functions y and z yields,

= (D[v,u] (x)? D[v,u] (y)v D[v,u] (Z))
= (Dv (uz) — 5% (u), Dy (uy) - fvy (u), Dy(uz) — 51)2 (U)) )

where Eq. (5.11) is the matrix form of the above computation.
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Appendix E

Appendix of Chapter 7

E.1 Mass preservation

To prove that mass is strictly preserved we recall the first order necessary conditions in

the context of the Lagrangian.
TGFrM(u®) v — 7 (ﬁ(uk) + [u*] div)T Gyp=0
Gy(a+eBu)+eLu— Gyp=0
Gy (u —u" + 7(D(v) + [div v})uk) =0
It is interesting to note that, using the definition of L and a discrete integration by parts,

the second equation is equivalent to p = a4+ eBu — ¢ divgrad u in correspondence to

the corresponding continuous equation p = a + ebu — eAru.

At first, we rewrite the first equation and get

—M(u*) ([p] grad u” - grad[u*]p)

using the facts that Gy and [u*] commute as diagonal matrices, that [v],ur = [ur]v
for any ur (discrete scalar on faces) and v (discrete vector), and that the interpolation
matrices are defined so that I% = GZ'(I{;)TGy. Again, it is interesting to note that

the equation above is an approximation of the corresponding continuous one:
v = M(u") (pruk — Vp(ukp)> = —uFM(WF)Vrp
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Now, we consider the discrete m(u) = 1$Gvu with 1y a vector of ones of length
|V|. Indeed, multiplying the third equation with 17, using the duality of D and D, and
taking into account that the interpolation matrix I})_- is defined so that I}{-ly =1r we
obtain
m(u k“) (uk) =T 1va( (v) + [div v]) u®
= v ( (") + [u ]dw) Gyly

= —7vIiGr ([I})_—lv] gradu® — grad[uk]ly)
=—7vIGr (grad u”® — grad uk> =0.
The key step is applying the previous calculation with p = 1y, and so the discrete

conservation of mass is equivalent to the fact that a constant discrete pressure gives zero

discrete velocity.
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