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Abstract

Inferring maps between shapes is a long standing problem in geometry processing. The
less similar the shapes are, the harder it is to compute a map, or even define criteria to
evaluate it. In many cases, shapes appear as part of a collection, e.g. an animation or a
series of faces or poses of the same character, where the shapes are similar enough, such
that maps within the collection are easy to obtain.

Our main observation is that given two collections of shapes whose “shape space”
structure is similar, it is possible to find a correspondence between the collections, and
then compute a cross-collection map. The cross-map is given as a functional correspon-
dence, and thus it is more appropriate in cases where a bijective point-to-point map is
not well defined. Our core idea is to treat each collection as a point-sampling from a
low-dimensional shape-space manifold, and use dimensionality reduction techniques to
find a low-dimensional Euclidean embedding of this sampling.

To measure distances on the shape-space manifold, we use the recently introduced shape
differences, which lead to a similar low-dimensional structure of the shape spaces, even if
the shapes themselves are quite different. This allows us to use standard affine registra-
tion for point-clouds to align the shape-spaces, and then find a functional cross-map using
a linear solve. We demonstrate the results of our algorithm on various shape collections
and discuss its properties.
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Abbreviations and Notations

A, B
M,N

f:M—=R
T:M— N
F:L*>(M)— L*(N)
Vm,n

Ryn

ag;

Y

G

PCA

GMM

ICP

CPD

SDD

VDM

two shape collections

two shapes

a real-valued function defined on a surface M

a bijective map between shapes M and N

a map between the function spaces of M and N

the area-based shape difference between shapes M and N
the conformal-based shape difference between shapes M and N
the ¢-th singular value

the threshold for the intrinsic dimension estimation

the unknown functional map we wish to approximate
Principle Component Analysis

Gaussian Mizture Model

Iterative Closest Point

Coherent Point Drift

Shape Difference Distance

Vector Diffusion Maps
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Chapter 1

Introduction

1.1 Background

Shape correspondence and shape collection analysis are fundamental tasks in geometry
processing, at the core of many applications, such as animation, geometric modeling, 3D
scanning and analysis of medical data, to mention just a few. Shape correspondence refers
to the task of, given two shapes, finding a correspondence between them, while shape
collection analysis refers to the task of, given a shape collection, obtain a meaningful
insight about it, or improve certain aspects of it. A shape collection is set of shapes. In
order to be able to perform a meaningful analysis, we would usually want to have the
maps between the shapes in the collection. The different tasks that we would like to
perform on a shape collection may include: improving the consistency of its maps, shape
matching between two collections, and more.

In many cases, correspondences between shapes are represented as a point-to-point
map, taking points on the first shape to points on the second. Such maps are appro-
priate when the shapes are similar, e.g. different poses of the same person. For more
complicated cases, e.g. the same pose of different characters, it is not always clear which
points should be in correspondence. In such cases, it is easier to model a correspondence
as a function-to-function map [19], taking functions on the first shape to functions on the
second. This approach is more flexible and allows us to encode the uncertainty inherent
to the solution of an ill-posed problem.

Often, shapes do not appear in isolation, but in collections of related shapes with
certain structure. For example, a densely sampled animation between two poses has
a different structure than a set of unrelated poses. Extracting such a structure, and
aligning two collections with similar structure, namely finding a correspondence between
the shapes, is an important task, which can aid, e.g. statistical analysis of medical
imaging data. If the collection is homogeneous, i.e., the shapes are similar to each other,
it is often feasible to obtain a good correspondence between shapes within the collection,
and then leverage this information for further analysis of the collection’s structure.

We address the following problem: given two homogeneous shape collections with



intra-collection maps, we seek a correspondence between the shapes (namely which shape
in collection A maps to which shape in collection B), as well as the cross-map between all
the shapes (see Fig. 1.1). While this seems harder than finding a map between every pair
of shapes in the two collections, we demonstrate that the structure within each collection
can be extracted and represented concisely, such that if the structures are similar, the
collections can be aligned. This allows us to compute only maps between corresponding
shapes, which are easier to obtain.

1.2 Owur Approach

To align two collections of shapes whose geometries are different, we need to define a
shape representation such that the similar structure can emerge. Thus, we need a rep-
resentation which can encode relations like “shape A is to B, like C' is to D”, and allow
us to compare differences of differences of shapes. Recently, exactly such a representa-
tion was introduced [20], where the difference between two shapes, for which we have a
correspondence, can be represented using a linear operator which acts on functions on
one of the shapes. This representation is based on the functional maps framework [19],
which has already been used in various contexts. Comparing two such operators pro-
vides a meaningful measure of the shape difference as it can encode not only whether two
shapes are different, but also where they differ. This brings all the “shape differences”
in the same collection to a common ground, and allows us to use standard techniques for
Euclidean point clouds to perform the analysis.

However, our data is usually high-dimensional. In order to achieve an effective and
meaningful representation for the distances between the shapes, we would like to trans-
form the data into a lower dimension. Therefore, we assume that each collection includes
shapes which are sampled from a low-dimensional shape space manifold. We then use
diffusion maps [6], a standard non-linear dimensionality reduction technique to find a
low-dimensional Euclidean embedding which reproduces as best as possible the original
intrinsic distances on the shape space manifold. We repeat this procedure for both col-
lections and obtain a low-dimensional embedding of both collections. After achieving
these embeddings, a “shape” is simply a point in a low-dimensional point cloud, and the
distances between the shapes are simple Euclidean distances.

After obtaining two point clouds, we would like to align them. This alignment is a
standard registration of point clouds. Our chosen method of registration is using an affine
one, which enables the registration algorithm to tolerate a certain error in the distances
between the shapes, since the collections may not be exactly aligned. We also allow
reflection, to compensate for the isomentries which may arise after the dimensionality
reduction step. Our chosen algorithm for the affine registration is coherent point drift [17],
a state-of-the-art cloud registration algorithm which is suitable for affine registration.

Once the collections are aligned, we can use the assumption on the common struc-
ture, to specify constraints of the type “A is to B as C' is to D” as linear constraints on



a functional map which maps a shape from the first collection to a shape in the second.
These constraints are enough to recover the cross-collection functional map without re-
quiring any additional descriptors. After defining these constraints, the cross-collection
functional map can be easily computed using a linear solve. We then extend this map
to the rest of the collection, through composition, which puts both collections in corre-
spondence.



Figure 1.1: Using our method, we can find correspondences and map functions defined
on shapes from two collections, given only maps within the same collection. This map
is easy to compute, and provides a meaningful representation of the relation between
shapes from different collections, for which a point-to-point map is difficult to obtain
and is not well defined. (a) original collections, (b) collection alignment, (c) functional
map approximation between all shapes in both collections.



Chapter 2

Previous Work

The concept of registering two shape collections using dimensionality reduction tech-
niques has not (to the best of our knowledge) been proposed before, nor has the task
of finding a cross-collection functional map. Nevertheless, the tasks of finding a map
between two shapes and the analysis of shape collections have been widely studied in
different contexts.

2.1 Finding a Map Between Two Shapes

The task of finding a map between two shapes has been studied from different points of
view, under various assumptions, e.g. in [15,19]. See [23] for a recent survey. Various
methods have been proposed to recover a map between two shapes. The main disad-
vantages of existing methods is that it requires some prior, e.g. the user must define
a set of corresponding points on both shapes in order for the algorithm to produce a
valid result. In [7], the authors used Classical MDS to construct an invariant signature
for isometric surfaces, which is an embedding of the geodesic structure of the surface
in a small dimension in which geodesic distances are approximated by Euclidean ones,
therefore translating the problem of matching non-rigid objects into a simpler problem
of matching rigid objects. It is worth noting that our method incorporates much more
information, as the whole collection is considered when computing the map.

2.2 Shape Collections and Map Consistency

Considering the entire collection when computing maps within the collection has also
been addressed previously, e.g. in the context of improving the maps inside a shape
collection. In [10-12,18], the authors add the constraint of global map consistency in
order to improve a set of initial maps, using different optimization methods. In addition,
structural information from the collection is commonly used for co-segmentation, e.g.
in [13,14,26], among others. Another work related to the idea of search engines for shape
models, presented in [2], uses structural descriptors of shapes in order to find partial



correspondences between pairs of shapes, enabling efficient searching and exploration
within the shape collection. In general, we differ from these methods by our assumption
of having two homogeneous shape collections, with good maps within the collection,
instead of having a single heterogeneous collection. This allows us to assume there exists
common structure, and use it to align the collections as a whole.

2.3 Dimensionality Reduction of a Shape Collection

Dimensionality reduction of a shape collection is also a technique which has been used in
the past. Spectral analysis of shape collections using dimensionality reduction techniques
has been used in [9,24,25] for shape de-noising. Other related works have been studying
the pre-image problem for a shape collection. In [24], the authors proposed a way to
compute the pre-image of a shape collection using diffusion maps and Karcher Means.
The pre-image was computed using a Nystrom extension. Another work which used
projection into a shape manifold is [8], where the projection was performed using a
non-linear interpolation according to a Delaunay triangulation of the collection. In [20],
the authors proposed a way to represent the intrinsic shape-space of a collection using
functional operators. This representation allows to represent differences between shapes
as comparable objects instead of merely distances, and then to embed the shape-space in
two dimensions, e.g. for visualization. Another related work is [1], in which the authors
used dimensionality reduction on a collection of facial images, in order to both analyze
and synthesize these kind of images. The authors have also dealt with the challenge
of finding a meaningful comparison method for two such images, and chose the Jacobs,
Belhumeur, and Basri (JBB) method. The dimensionality reduction was performed using
Least-Squares multidimensional scaling. However, we also find correspondences between
shapes from the two different collections, a challenge which has not been addressed in [1].

In both [20] and [1], the dimensionality reduction was performed using a linear tech-
nique such as Principal Component Analysis or MDS, which assumes the underlying
shape-space manifold is linear. In many cases, though, such an assumption is too restric-
tive, and projecting the shape-space on a linear manifold might destroy its structure.
We use non-linear dimensionality reduction instead to overcome this difficulty.

2.4 Video Sequence Registration

Another usage for the registration of two collections is in the context of video sequences
[4,5,16]. In these studies, the purpose is to align two video sequences using registration
techniques. There, however, the problem is better posed, as there are considerably less
parameters and more available data.

10



2.5 Difference from Our Approach

To conclude, the main difference between previous work and our approach is that none
of the previous approaches attempted to register directly two shape collections. The
main obstacle to doing that is finding a common representation such that an alignment
is possible. By leveraging the functional approach, namely considering maps and shape
differences as linear operators, we can map both shape-spaces to a common space, where
alignment is possible. Furthermore, we can use this alignment to compute a functional
map, which takes into consideration both collections as a whole.

2.5.1 Algorithm Outline

Given two shape collections A and B with internal correspondences, we do the following:

e Choose a base shape in each collection, and use it to calculate the shape differences
representation.

e Reduce the dimensionality of the collections using diffusion maps on the shape
differences representation to obtain two point clouds, then use affine registration
to align the clouds, and find corresponding shape pairs.

e Define shape-analogies constraints between corresponding pairs and the base shapes,
and obtain an approximated functional map between the base shapes.

The outline of the algorithm is also presented in Figure 2.1.

11



Input:
* Two shape collections
* Functional maps in each collection

= Constraints on the cross-collection
functional map between the base
shapes

Choose a base shape in each
collection

Linear solve to obtain an
approximated functional map

Compute shape differences inside
each collection

Extend the functional map to all
shape pairs in both collections

Dimensionality reduction
= point clouds

Align the point clouds
= shape pairs

Figure 2.1: The pipeline of our algorithm.
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Output:

¢ Corresponding shape pairs

* Approximated functional maps
between all pairs




Chapter 3

Collection Representation

Given two shape collections, we assume they are sampled from two low-dimensional
space-shape manifolds. Our goal is to represent each shape as a point in R", such that
Euclidean distances in this representation have some intrinsic geometric meaning, and
we can later align the resulting point clouds. If we are given additionally maps between
every two shapes within each collection, we can use these maps to compute a notion of
a shape difference. This is a linear operator, which encodes the variation induced by the
map. Assuming that shapes which are corresponding in two collections undergo a similar
transformation under a map from some base shape, e.g. the change from a neutral face
to a frowning face is similar for two different characters, such a shape difference would
provide the intrinsic representation we require.

3.1 Assumptions

For our algorithm to be applicable, we must make a few assumptions on the input shape
collections. First, we assume that both collections are homogeneous, e.g. represent the
same character or the same object in different poses, and we are given maps between
all pairs. Next, we assume that the collections have similar structure. Specifically, this
means that there is a subset of shapes in both collections which can be paired, such that
the differences between them are similar. For example, in Figure 3.1 we show two shapes
(a cat and a lioness) which have different geometries, however the difference between the
two cats is similar to the difference between the two lionesses. Furthermore, we assume
that for each collection there exists a base shape which can be used to evaluate the shape
differences to all the other shapes in the collection. Finally, we assume that the low
dimensional Euclidean embeddings of the two collections are not symmetric, and thus
can be reliably registered.

We emphasize that the two collections can differ in their number of shapes. In such
cases, some of the shapes in the larger collection are expected to be considered as outliers,
enabling the other shapes to be matched successfully. Figure 3.2 shows an example of
the alignment of two collections with a different number of shapes: a dense and a sparse

13
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Figure 3.1: Similar structure in two collections. Although the geometry of the cat (left)
differs from the geometry of the lioness (right), the difference between the cats is similar
to the difference between the lionesses.

sampling from an animation sequence.

3.2 Functional Maps

The recently proposed functional maps framework [19] is used to represent maps between
surfaces. We use this framework in order to counsider functional map on surface, rather
than the standard bijective point-to-point maps. This is a more general notion of a map
and is more suitable for cases in which a point-to-point map is not always meaningful.
A functional maps functions defined on surfaces. Namely, given two surfaces M and N,
amap T : N — M between them induces a map between function spaces F : L2(M) —
L?(N), where L?(-) is the set of square integrable real-valued functions on a surface. This
functional map F takes a function f : M — R and maps it to g : N — R, and is defined
using g = F(f) = f oT. In addition, the original map T' can be recovered from F. As
explained in [19], F' is a linear transformation between function spaces. Therefore, given
a choice of basis, it can be represented as a matrix in the discrete setting. An example
of such a functional map is presented in Figure 4.3.

3.3 Shape Differences

A shape difference [20] is a linear operator which encodes the disparity between two
shapes M and N under a given functional map F. We use the two types of shape
differences defined in [20]. The first type is based on the area distortion and the other
is based on the conformal distortion, as induced by the map. Together these two shape
differences completely encode the map F'.

The area-based shape difference is marked Vis x and the conformal-based shape dif-
ference is marked Ry v, where the respective map is usually clear from the context. The
specific calculation for the discrete case is demonstrated in Section 3.4. We emphasize
that both Vi y and Ry n are not numbers but operators. Note that two shape differ-

14



Figure 3.2: Two similar animations of different shapes, sampled at different rates (30
shapes and 60 shapes). Some shapes in the dense collection are considered as outliers,
as they do not have compatible matches in the sparse collection. After removing the
outliers, the remaining shapes are matched correctly.

ences, Vs n, and Vi n,, represent linear operators with the same domain and range,
L?(M), even if N1 # N. Hence, the shape difference between M and N; is comparable
to the shape difference between M and Ny, as they are both linear operators acting on
functions on M. As explained in [20], the shape differences matrices encode the map up
to an area preserving, or conformal self-map, therefore they are fully informative up to
the given notion of distortion.

3.4 Discrete Representation

In order to represent a functional map discretely, we need to pick a basis for the space
of discrete functions on meshes. We choose the eigenvectors of the Laplace-Beltrami
operator, as proposed in [20], as it provides a multi-scale basis which allows to represent
smooth functions with a small number of basis functions. As described in [20], given a

15
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Figure 3.3: The shape difference distances (SDDs) between shape pairs in a collection
of 40 blend shapes. The more different the shapes are, the higher the SDD is.

functional map F' we compute the shape differences using:
Vun=F"F, and Ry = (DM)'F'DVF, (3.1)

where DM = diag(—{\M}), AM is the i'! eigenvalue of the Laplacian of M, and similarly
for N. We typically use between 30 and 70 eigenfunctions for the representation.

Finally, the shape difference distance (SDD) between two shapes Ny, No, given a base
shape M is defined as:

dri (N1, No) = [ IVarw, = Varws %+ [ Raew, — Rl (3.2)

Figure 3.3 shows the SDDs between shape pairs in a collection of 40 blend shapes.

3.5 Base Shape Selection

We represent all the shapes in a collection as a shape difference to a chosen base shape
M. Specifically, each shape is represented as a linear operator which takes functions on
M and returns functions on M, therefore, all the shape differences are encoded in the
basis of M (Figure 3.4).

It has been shown in [20], that if there is cycle consistency in the collection (namely,
given any three shapes M, N, K, and functional maps Fyn : L?(M) — L?(N) and
similarly for Fyg, Farx, we have Foyg = FngFyn), then it is possible to transport
shape differences between different base shapes by applying a change of basis. Specifically,
given a functional map G from M; to My we can compute Visn, = G~ 'Vapn, G. If
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Figure 3.4: Given a map between two surfaces, 7': N — M, we obtain a map between
function spaces F : L2(M) — L?(N) using g = F(f) = f oT. Given a choice of basis, it
can be represented as a matrix in the discrete setting.

additionally G is orthogonal (namely, the map is volume preserving), then we have:

VM1N1 - VM1N2 = VMle - VM2N2 (33)

hence the distance between the shape differences as viewed on M; are equivalent to those
viewed on M. The further G is from being orthogonal, the more influence the choice of
base shape will have on the resulting distances, which can potentially be harmful for our
registration process.

Therefore, there are two practical problems. First, since we only use the first &
eigenvectors of the Laplace-Beltrami operator, we lose cycle consistency, and Equation 3.3
does not hold anymore. Second, the distances are “distorted” by G, and therefore there
is a dependence on the choice of base shape in the two collections. For example, if G
has a non-trivial kernel, e.g. if there exists a part on M; which does not exist on My,
then there is loss of information when changing base shapes. Effectively, the difference
between shapes which differ at the missing part cannot be represented using the base
shape Ms.

Therefore, we would like to choose, in both collections, base shapes on which the
differences between all the shapes are well represented. To do that, we search for a shape
M such that Fsn for all the shapes N in the collection is close to an orthogonal matrix.
We define this concept as the shape irreqularity. Specifically, we compute:

k
arg min Z Z lo; — 1)? (3.4)

MEA  NecANAM i—1

where o; is the i-th singular value of the functional map Fy;n from M to N, and k is
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the number of basis vectors we are using for the representation.

Figure 3.5 demonstrates the effect the choice of base shape has on our algorithm as
described in Sections 4 and 5. When the worst shapes (b, d) according to the shape
irregularity measure are chosen as base shapes, the resulting approximated functional
map is not satisfactory (e), as can be seen from the density of the matrix, the errors in
transferring a smooth function between the source and target shapes, and the alignment
results (only 18% of the shapes were paired correctly). For a good choice of base shapes
(a,c), the resulting alignment is 90%, and the functional map is close to the ground truth
(f). For a choice of base shapes which is non-optimal, we still get a reasonable, yet
sub-optimal, functional map (g). Hence, while our algorithm is dependent on the choice
of base shapes, this is done automatically in a manner which optimizes the resulting
functional map between the collections. Furthermore, the result is stable under a choice
of sub-optimal base shape.

After choosing the base shapes in the collections, we compute the shape difference
representation for every shape, and compute the intrinsic distances between the shapes
using Equation (3.2).
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Figure 3.5: Shape irregularities in two collections, the chosen base shapes, the alignment
results (in percentages) and the approximated map. (a, b) Best and worst base shapes
in collection A. (c, d) Best and worst base shapes in collection B. (e) A bad pair of base
shapes yields a bad map, as can be seen by pushing a coordinate function. (f) Choosing
a good pair results in a good map. (g) Choosing non-optimal base shapes (#19 in A and
#40 in B) yields sub-optimal, yet reasonable, results.
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Chapter 4

Collection Alignment

After obtaining the shape differences, we would like to find a correspondence between
the two collections. However, the shape differences in different collections cannot be
compared directly since different base shapes are used. We therefore assume that each
shape collection is a point sampling from a low-dimensional shape space, and use the
intrinsic shape difference distances to embed this point cloud in Euclidean space. We
then align the resulting point clouds.

4.1 Diffusion Maps

The “diffusion maps” algorithm [6] is a widely known method for non-linear dimension-
ality reduction which has been used in many diverse fields, such as computer vision,
medical imaging and shape analysis. It has also been used for the analysis of shape
collections [25].

In diffusion maps, we first construct a symmetric weighted graph where each node
corresponds to a data point. The weights of the edges represent the similarities between
the data points. In our setting, these weights are determined according to the SDD
between the shapes, as defined in Equation (3.2). Then, we calculate the diffusion matrix
by normalizing the rows of the matrix of the graph. Taking powers of the diffusion matrix
allows us to observe the data at different scales and see the global connectivity of the
data set.

We mark our data set by X and its dimension by n. We first construct a symmetric
weighted graph where each node z; corresponds to a data point. We use the Gaussian
kernel: k(z;,z;) = exp(—|lz; — z;]|?/(20%)), where o is a user-defined parameter. This
function is called the diffusion kernel. It is symmetric: w(z;,z;) = w(z;,2;); and non-
negative: w(z;,x;) > 0 for all z;,2;. We denote the kernel matriz by K such that:
Kij = k(:l,’z', $J’).

We now have a symmetric matrix where each row and column corresponds to a
data point. Then, we calculate the row-normalized diffusion matriz P, with entries
Pj = p(z;,1;), by: P = D7'K, where D is the diagonal matrix consisting of the row
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sums of K. If we think of a random walk, then this matrix contains the probability of
jumping from ¢ to j in a single step.

Calculating the probabilities P! for increasing values of ¢ enables us to observe the
data set at different scales. This process is often called the diffusion process, where we
can see the global connectivity of the data set. With increased values of ¢, the probability
of following a path along the intrinsic structure of the data increases.

Next, we define a diffusion metric based diffusion matrix. It is related to the diffusion
matrix P and is given by:

Dt(ﬂ?z‘awj)2 = Z e (i, u) —pt(u,xj)|2 = Z |Pitk: - Pkt:j|2
ueX k

Finally, we map points in the data set into an Euclidean space according to the
diffusion metric. Such a map is called a diffusion map. After this mapping, the diffusion
distance in the data space becomes the Euclidean distance in this new diffusion space,
denoted by Y. Since this map maps points into an FKuclidean space derived from the
geometric structure of the data set, we expect that its dimension will be smaller than
the original dimension of the data set. As proven in [6], the diffusion distances can be
expressed using the following map:

Al (7)
Abpa(4)

Where (i) indicates the i-th element of the first eigenvector of P, etc. For this
map, the Euclidean distance between ygi and y? is the diffusion distance between the
original data points z; and z;. We choose d such that d < n and thus we achieve the
dimensionality reduction.

4.2 Symmetries in the Diffusion Space

A core trait of the Diffusion Maps method, is that its output is not immune to symmetries.
Namely, if we take two similar collections A and B and reduce their dimensionality using
diffusion maps, we will receive two low-dimensional point clouds which are similar up to
reflections along the axes in the diffusion space. We approach this challenge in Section
4.5.

Figure 4.1 shows the energy in each dimension after embedding a shape collection
using diffusion maps and using a linear method (PCA). While PCA finds a hyperplane in
the embedding space, which is a linear embedding, diffusion maps finds a hyper surface
which is not necessarily linear. A shape collection is usually embedded on a nonlinear
manifold. Therefore, a nonlinear method such as diffusion maps is able to recover its
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Figure 4.1: Dimensionality reduction allows us to reveal the intrinsic dimension of
a shape collection. Here we can see the cumulative energy (E in Equation 4.1) of a
collection of 40 blend shapes when applying PCA or diffusion maps and the estimated
dimension of the data. Choosing a higher value for v would yield a higher estimated
dimension. Since diffusion maps is a non-linear technique, it is capable of recovering the
true, non-linear structure of the data (9-dimensional). PCA, on the other hand, assumes
a linear structure and therefore identifies an higher intrinsic dimension of 19.

true dimension more accurately than a linear method.

4.3 Coherent Point Drift

When aligning two point clouds we need to assume some prior on the allowed transfor-
mations between them. In general, since our sampling is relatively sparse compared to
the dimension (e.g. 40 shapes in dimension 9), we need to assume a somewhat restrictive
prior to avoid over-fitting. Assuming the transformation between the point clouds is
rigid (i.e. rotation and translation) is too restrictive, as is uniform scaling. Allowing an
affine map between the point clouds allows the algorithm to tolerate some error in the
SDDs between the shapes (e.g. because the collections are not exactly aligned, or the
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choice of base shape is not optimal), while still avoiding over-fitting. In addition, we
allow reflection, as the diffusion map embedding is only defined up to isometries. We use
“coherent point drift” (CPD) for the alignment, which is a state-of-the-art registration
algorithm that supports affine registration.

The CPD algorithm enables both rigid and non-rigid registration of two point clouds.
The registration is not symmetric, namely, cloud B is registered to cloud A or vice-versa,
but not both. We have chosen the CPD algorithm for several reasons. First, unlike other
methods, CPD is specifically capable of handling d-dimensional clouds, where d > 3.
Our dimensionality reduction usually outputs a cloud which is not 3-dimensional (can
be 10-dimensional, for example). Second, it is suitable for both affine and non-rigid
registration. In our setting, the points in the embedding domain are subject to affine
transformations with reflections, caused by the transformation of the shape differences
and the dimensionality reduction.

The main idea of CPD is as follows. Given two point sets, a Gaussian Mixture Model
(GMM) is fitted to the first point set, whose Gaussian centroids are initialized from the
points in the second set. Then, a process in which the Guassian centroids move from the
initial position to their final position is considered. In order to keep the structure of the
point set, a motion coherence constraint is imposed over the velocity field.

Fig. 4.2 (right) shows the cloud of collection A after aligning it to the cloud of
collection B using the resulting affine transformation.

4.4 Intrinsic Dimension Estimation

In many cases, we do not know the intrinsic dimension d in advance. In such cases, we
can estimate d from the data. We use a method similar to the one proposed in the VDM
algorithm [21]. We set a threshold 7y between 0 and 1. Then, we sum the energy along
increasing dimensions until the ratio to the total energy exceeds the chosen threshold.
Namely, we choose the minimal d such that:

2y |[ul

B =S Tl

>y (4.1)

where Y% and Y are the result of reducing Y to d or n dimensions (no reduction),
respectively. For example, v = 0.9 indicates that the chosen dimension consists at least
90% of the total energy of the data set. In our setting, given two shape collections A and
B with estimated intrinsic dimensions d4 and dp, we choose d = max{da,dp}. This
way, we do not lose information about either collections.

Figure 4.1 demonstrates the effect of v on the resulting estimated dimension, as well
as the advantage of a non-linear dimensionality reduction technique over a linear one
(PCA), using the discussed dimension estimation technique.
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4.5 Shape Pairing

An important observation is that CPD is an asymmetric registration method. Namely,
cloud B is registered to cloud A or vice-versa. However, in our setting, we do wish for
a symmetric registration. Therefore, we perform the registration in the following way:
first, we do not allow a point in the source cloud to match more than one point in the
target cloud. If a source point matches more than one target point, we choose the target
point which is closer as the match. Second, we match both A to B and B to A, and then
choose the direction which yields more matching points. Finally, a point which does not
match any other point after the described process is considered to be an outlier. A result
of this symmetric alignment is presented in Figure 4.4.
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Figure 4.2: Two collections of 40 blend shapes after reducing their dimensionality using
diffusion maps and projecting the resulting 9-dimensional cloud into 2D: (a) collection A
cloud, (b) collection B cloud, (c¢) A to B alignment using an affine transformation with
reflection. Even though additional energy is contained in higher dimensions, some of the
similarities can be seen in 2D, such as the corresponding shapes (in matching colors)
along the edges of the marked polygon.
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Figure 4.3: Functional map approximation: (a) source shape in collection A (b)
“ground-truth” map to the target shape in collection B, used for comparison and com-
puted from a manually created point-to-point map, (c) least-squares solution G to the
map between the base shapes, (d) approximated functional map using iterative refine-
ment and map composition as described in Section 5.2.
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(a) (b)

Figure 4.4: Aligning two collections of 40 blend shapes: (a) identified outliers, (b)
correct matches. See also Figure 6.2.
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Chapter 5

Functional Map Inference

5.1 Shape Analogies Constraints

So far we have used the shape differences for computing distances between shapes within
the same collection. However, shape differences encode more information, which can be
leveraged for computing a functional map between the collections.

Specifically, if we know that two shapes Ma, N4 € A correspond to two shapes
Mp,Np € B, and we assume that the collections have similar structure, we can addi-
tionally assume that the shape differences correspond. Namely that Vi, v, is similar
to Varp Ny, and similarly for R. In the previous section we computed a pairing between
shapes in both collections, hence, given such pairs we can pose constraints which enforce
this similarity.

Specifically, let M; € A and N; € B be such that (M;, N;) are a corresponding shape
pair. Further, let M4 be the base shape on A, and N4 its corresponding shape on in
B. Finally let G be the unknown functional map between M 4 and N 4. Since we cannot
compare Vjs,ps; with Vi, N, directly as they are defined on different function spaces, we
apply G on the left and on the right such that all operators take functions on M4 and
return functions on N4. This is demonstrated in Figure 5.1. This leads to the following

equations:
||GVMAM7; - VNANiGHF =0, (5 1)
”GRMAMi - RNANiGnF =0.
This leads to the following energy:
K
argGminZ (HGVMAMi - VNANiG“%‘ + | GRuy v — RNANiGH%‘) (5.2)
i=1

where K is the number of matching pairs. In order to minimize this energy, we solve a set
of equations which are linear in the elements of G. This is a homogeneous problem and
thus it can be solved using SVD. Intuitively, these constraints enforce shape analogies,
namely, M4 is to M; as N4 is to N;. Note, that in [20] similar constraints were used for
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Figure 5.1: When posing the shape analogies constraints, the internal shape differences
are operators which are defined on different domains. Therefore, we apply G on both
sides in order to get operators which are defined on the same domain and thus are
comparable.

finding corresponding shapes given the map G, whereas we solve for the map given the
corresponding shapes. Note that these constraints are completely automatic, as the only
input they require is the shape pairing between M; and N; and between M4 and N 4.

5.2 TIterative Refinement

In general, the matrix G which minimizes the energy in Equation (5.2) does not cor-
respond to a bijection, as we did not enforce any additional constraints beyond the
shape analogies. However, we can proceed using a post-processing iterative refinement
algorithm, as proposed in [19], used to refine a given matrix to make it closer to a point-
to-point map. We refer to Gy as an initial estimate to G and denote the Laplacian
eigenvectors matrices of A and B by ¢4 and ¢p. As noted in [19], if Gy : M — N is
a functional map corresponding to a volume preserving map, then Gg should be such
that each column of Goe™ coincides with some column of . We treat ¢4 and ¢p as
two point clouds with dimensionality equal to the number of eigenvalues which we used.
In addition, for a volume preserving map we also expect the mapping matrix Gg to be
orthonormal, thus we can perform a rigid alignment between ¢ 4 and @p by the following
iterative algorithm:

1. For each column v of Gop™ find its closest @ in *.
2. Find the orthonormal G which minimizes ) ||Gv — 7||.
3. Set Gy = G and iterate for a fixed number of iterations.

This algorithm is effectively ICP in eigenspace, using the minimizer of Equation (5.2) as
the initial solution.

Using this method, we are able to reconstruct an approximated functional map.
Note that since this is a homogeneous problem the solution will be up to a constant
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Figure 5.2: Pushing coordinates functions (left — right) and Gaussians (top — bottom)
through approximated functional maps between collections A and B: (a) A base shape
to B base shape, (b) A arbitrary shape to B arbitrary shape, (c) B arbitrary shape to
A arbitrary shape, (d) B outlier to A outlier. Notice that a functional map between two
outliers is approximated successfully.

multiplication (positive or negative). We can ignore the scaling factor — the functional
map is a linear operator and we normalize every function pushed through it. However, the
sign of this constant does affect the resulting G. Therefore, we apply iterative refinement
separately for Gy and (—Gp) and choose the solution which minimizes the noted sum of
distances.

We note again that G is a functional map between the base shape in A and its
corresponding shape in B. In order to get the functional map between two arbitrary
shapes M; € A and N; € B, we compose the functional maps to the base shape M4
and to its corresponding shape N4. We mark Fygar, @ L?(M;) — L?(M4) and Fnyn; -
L*(N4) — L?(N;) and compose them with G:

FMiNj:FNANj‘G'FMiMA (5.3)

Note that using Equation (5.3) we can compute a functional map between any two
shapes in the collections, including shapes which were considered outliers or were not
matched during the registration step. Figure 4.3 demonstrates the process of approxi-
mating a map between two shapes using the algorithm described above.

In order to calculate the functional maps in the opposite direction (namely, from B to
A), we simply produce the corresponding equations by swapping A and B, and proceed
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as described above. Figure 5.2 shows approximated maps between various shapes in both
collections. The maps are evaluated between shapes which belong to a matching pair, as
well as between shapes which were classified as outliers or were a part of wrong match.
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Chapter 6

Experimental Results

We tested our algorithm on different data sets. We present the results and compare them
to “ground-truth” results:

e A known point-to-point map between the two collections, if such exists, is used
to compute a “ground-truth” functional map for comparison purposes only. We
compare our results to this map.

e If the correspondence between the two collections is known (for example, corre-
sponding facial expressions), we demonstrate our registration results with respect
to this known correspondence: correct matches, wrong matches, outliers (shapes
which were not matched at all) and the corresponding percentages.

Our parameters setting was as follows. We used 32 eigenvalues of the Laplacian for
the computation of functional maps and shape differences. The parameters for diffusion
maps were t = 1, 0 = 1 and v = 0.9 for the intrinsic dimension estimation. For CPD we
used w = 0.1 and default values for the other parameters, as described in [17].

6.1 Limitations

First, our algorithm assumes a similar structure in both collections — if the two given
collections do not have a similar structure we will not be able to align them. Second, as
explained in [20], the shape differences are based on externally supplied maps between
shapes, and they therefore depend on the quality of these maps. Another requirement
is for the collection to contain a minimum amount of shapes (e.g. at least 30). Given a
smaller amount of shapes, the collection alignment is not feasible, since the point cloud
is too sparse compared to its dimension. In addition, a small collection means that the
number of terms in Equation (5.2) will be smaller, leading to a larger approximation
error. Finally, the algorithm depends on several parameters which must be chosen in
advance.
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Figure 6.1: Two collections of 40 blend shapes which have been used in the experiments.

6.2 Blend Shape Collections

As presented throughout the paper, we tested our method on two collections of 40 blend
shapes each (Figure 6.1).

e Diffusion maps produced two 9-dimensional point clouds.

e Registering the two collections resulted in 36 correct matching pairs (90%), no
wrong matches and 4 outliers in each collection (10%). The results are shown in
Figure 4.4.

e A functional map approximation was recovered and successfully extended to all the
shape pairs, including the non-matching shapes in each collection. The results are
presented in Figure 5.2.

6.3 FaceWarehouse Database

FaceWarehouse [3] is a database of 150 individual testers. Each collection consists of
47 different facial expressions and the collections are in correspondence. As mentioned
before, we used this known correspondence only for comparison purposes. We tested our
algorithm on four different pairs of testers. The results for these pairs are presented in
Figures 6.3.
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6.3.1 Testers Pair 1

The results are presented in Figure 6.2 and Figure 6.3. Diffusion maps produced two
11-dimensional point clouds. Our algorithm identified correctly 30 matching facial ex-
pressions (64%), 8 outliers (17%) and 9 pairs were wrong matches (19%). As can be seen
in Figure 6.2, most pairs which were wrong matches are indeed similar. The functional
map was approximated successfully. The shape irregularities of the two collections are
very similar, which explains the successful map approximation.

6.3.2 Testers Pair 2

The results are presented in Figure 6.4. Diffusion maps produced two 11-dimensional
point clouds. Our algorithm identified correctly 28 matching facial expressions (60%),
6 outliers (13%) and 13 pairs were wrong matches (27%). The functional map was
approximated successfully. The shape irregularities of the two collections are similar,
but less than testers pair 1. This yields in a lower matching percentage, but the map
approximation is still successful in this case.

6.3.3 Testers Pair 3

The results are presented in Figure 6.5. Diffusion maps produced two 11-dimensional
point clouds. Our algorithm identified correctly 17 matching facial expressions (36%),
18 outliers (38%) and 12 pairs were wrong matches (26%). The functional map was
approximated successfully The shape irregularities of the two collections are similar, but
less than testers pair 1. In this case, the matching percentage is low, but the map
approximation is still successful.

6.3.4 Testers Pair 4

The results are presented in Figure 6.6. Diffusion maps produced two 13-dimensional
point clouds. Our algorithm identified correctly 22 matching facial expressions (47%),
11 outliers (23%) and 14 pairs were wrong matches (30%). In this case, the shape
irregularities graph shows that the two collections have quite a different structure. This
fact leads to a functional map approximation with errors.

6.3.5 FaceWarehouse Summary

We discuss the performance of our algorithm according to the irregularity of its shapes
as defined in Section 3.5. As we can see in the corresponding figures, when considering
two collections after alignment, the shape irregularities graph provides a measure of the
similarity between their structures. According to our experiments, we can see that corre-
spondence in the shape irregularities graph predicts successful alignment and functional

map approximation.
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To summarize, we were able to align the collections of different testers with various
percentage rates and functional map approximations were successful for all the tester
pairs. Dissimilarities in the shape irregularities graph lead to a higher approximation
error, as can be seen in the case of testers pair 4.

6.4 Varying Collection Size

This experiment is intended to measure the effect of the size of the collections on registra-
tion and map approximation. We used the blend shape collections presented throughout
the article, but took only a subset of the shapes (the same subset in both collections).
The alignments results were as follows:

e Using 20 shapes: 35% correct matches.
e Using 25 shapes: 36% correct matches.
e Using 35 shapes: 63% correct matches.
e Using 40 shapes: 90% correct matches.

The approximated maps corresponding to the size of the collections are presented in
Figure 6.7. As we can see, using small collections leads to poor alignment, since the
clouds are very sparse compared to their dimension. As we increase the number of
shapes, alignment becomes feasible and thus the approximated map improves.

6.5 Small Collections With Perfect Alignment

This experiment is intended to test the approximated map in a rough setting when using
small collections with perfect alignment (namely, we provided the matching shape pairs in
advance). We used collections of 10 shapes from the Sumner and Popovi¢ database [22].
The resulting map was noisy but was still able to capture some of the information. The
results are presented in Figure 6.8.
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Figure 6.2: Correspondence and maps between two testers from the FaceWarehouse
database [3]. Functional maps were approximated correctly for all shapes. (a) identified
outliers (17%), (b) wrong matches (19%), (c) correct matches (64%), (d) maps between
shapes which are part of a correct match, (e) maps between shapes which are outliers or
part of a wrong match.

37



Shape Irregularity - Testers Pair 1

T

¢ (ollection A
¢ (ollection B

AN
S

()
S

>
=
=
=
=
2 207 . I
-
e
L

o B o e
Stoomnstmmete'tios’ 0 g8 €750, oo
O ! | ! |
0 10 20 30 40 50
Shape Index

S .."h 0.15 o 0.15
|
- -
& 0.1 = 0.1
10 - 10 -
o 0.05 o 0.05
15 "= 15 "
‘ 0 0
20 ...'- 20 ...'-
-_.. -0.05 -... -0.05
25 .I. 01 25 .I.. -0.1
L |
30 [ 20.15 30 - 0.15
10 20 30 10 20 30

[
O

- 0.15 0.15
sh - 5 " "y
0.1 0.1
10 L 10 -,
LL 0.05 o 0.05
" 15 .
| 15 ..I 0 ..- 0
I. ..
20 N 00s 2 o 0.05
n
25 p 8 01 25 " 0.1
I. '] =
30 - 015 30 "a -0.15
10 20 30 10 20 30

Figure 6.3: Map approximations between testers pair 1 of the FaceWarehouse database.
Two maps between arbitrary shapes are shown, the true functional map matrix (left)
and the approximated one (right), and the shape irregularities when the two collections
are aligned perfectly.
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Figure 6.4: Map approximations between testers pair 2 of the FaceWarehouse database.
Two maps between arbitrary shapes are shown, the true functional map matrix (left)
and the approximated one (right), and the shape irregularities when the two collections
are aligned perfectly.
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Figure 6.7: Alignment and map approximations for different subsets of the 40 blend
shapes collections. We show the maps between the base shapes (collection A to collection
(a) source shape in A, (b) “ground-truth” map, (c) using 20 shapes, 35% correct
matches, (d) using 25 shapes, 36% correct matches, (e) using 35 shapes, 63% correct
matches, (f) using 40 shapes, 90% correct matches.
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Figure 6.8: Functional map approximation for small collections (10 shapes) from the
Sumner and Popovi¢ database [22]. Since the collections are small, registering them as
point clouds is not feasible. However, given an optimal registration, a rough functional

map can still be approximated. This functional map captures a certain amount of the
data, but is noisy due to the small size of the collections.
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Chapter 7

Conclusion and Future Work

We presented a novel approach for aligning two shape collections and approximating
the functional cross-collection map, using only the maps within the collection as prior
knowledge. We use shape differences to assess the distances between shapes intrinsically
and generate a low-dimensional shape-space embedding. Then, we use affine registration
in order to align the two point clouds. The shape differences framework is also used for
posing shape analogies constraints for recovering the cross-collection functional map. We
discussed the special cases in our method, such as the base shape selection, estimating
the intrinsic dimension of the data and the significance of the size of the collections. We
demonstrated the effectiveness of our algorithm on various collections and presented the
success rate of the shape matching process as percentages of correct matches, as well as
the approximated functional map, compared to a ground-truth map and presented on
the shape themselves. Our method achieved smooth informative functional maps.

Our work provides a glimpse at the possibility of using existing shape analysis tools,
such as dimensionality reduction and point registration, for analysing shape-space man-
ifolds. The key to making the leap from shapes to shape spaces is having an intrinsic
way to represent differences between shapes, which we achieved by using the shape dif-
ference linear operator. It is interesting to consider other functional operators for this
task, as well as consider applying other common geometry processing tools directly to the
shape-space manifold. An interesting future work will be to try our method on existing
shape collections, and find a cross-map between them. Our method may also be used
in order to find correspondences between shape collections which do not appear similar,
but, in fact, do have a similar structure. Finally, as research progressed from analysing
shapes in isolation to analysing collections of shapes, it is possible that the next layer of
abstraction is analysing collections of collections. This can serve as a convenient way to
model heterogeneous shape collections, simply as a collection of shape-spaces.
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