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This map is easy to compute, and provides a meaningful representation of

the relation between shapes from di�erent collections, for which a point-
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Abstract

Inferring maps between shapes is a long standing problem in geometry processing. The

less similar the shapes are, the harder it is to compute a map, or even de�ne criteria to

evaluate it. In many cases, shapes appear as part of a collection, e.g. an animation or a

series of faces or poses of the same character, where the shapes are similar enough, such

that maps within the collection are easy to obtain.

Our main observation is that given two collections of shapes whose \shape space"

structure is similar, it is possible to �nd a correspondence between the collections, and

then compute a cross-collection map. The cross-map is given as a functional correspon-

dence, and thus it is more appropriate in cases where a bijective point-to-point map is

not well de�ned. Our core idea is to treat each collection as a point-sampling from a

low-dimensional shape-space manifold, and use dimensionality reduction techniques to

�nd a low-dimensional Euclidean embedding of this sampling.

To measure distances on the shape-space manifold, we use the recently introduced shape

di�erences, which lead to a similar low-dimensional structure of the shape spaces, even if

the shapes themselves are quite di�erent. This allows us to use standard a�ne registra-

tion for point-clouds to align the shape-spaces, and then �nd a functional cross-map using

a linear solve. We demonstrate the results of our algorithm on various shape collections

and discuss its properties.
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Abbreviations and Notations

A;B | two shape collections

M;N | two shapes

f :M ! R | a real-valued function de�ned on a surface M

T :M ! N | a bijective map between shapes M and N

F : L2(M)! L2(N) | a map between the function spaces of M and N

VM;N | the area-based shape di�erence between shapes M and N

RM;N | the conformal-based shape di�erence between shapes M and N

�i | the i-th singular value


 | the threshold for the intrinsic dimension estimation

G | the unknown functional map we wish to approximate

PCA | Principle Component Analysis

GMM | Gaussian Mixture Model

ICP | Iterative Closest Point

CPD | Coherent Point Drift

SDD | Shape Di�erence Distance

VDM | Vector Di�usion Maps
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Chapter 1

Introduction

1.1 Background

Shape correspondence and shape collection analysis are fundamental tasks in geometry

processing, at the core of many applications, such as animation, geometric modeling, 3D

scanning and analysis of medical data, to mention just a few. Shape correspondence refers

to the task of, given two shapes, �nding a correspondence between them, while shape

collection analysis refers to the task of, given a shape collection, obtain a meaningful

insight about it, or improve certain aspects of it. A shape collection is set of shapes. In

order to be able to perform a meaningful analysis, we would usually want to have the

maps between the shapes in the collection. The di�erent tasks that we would like to

perform on a shape collection may include: improving the consistency of its maps, shape

matching between two collections, and more.

In many cases, correspondences between shapes are represented as a point-to-point

map, taking points on the �rst shape to points on the second. Such maps are appro-

priate when the shapes are similar, e.g. di�erent poses of the same person. For more

complicated cases, e.g. the same pose of di�erent characters, it is not always clear which

points should be in correspondence. In such cases, it is easier to model a correspondence

as a function-to-function map [19], taking functions on the �rst shape to functions on the

second. This approach is more 
exible and allows us to encode the uncertainty inherent

to the solution of an ill-posed problem.

Often, shapes do not appear in isolation, but in collections of related shapes with

certain structure. For example, a densely sampled animation between two poses has

a di�erent structure than a set of unrelated poses. Extracting such a structure, and

aligning two collections with similar structure, namely �nding a correspondence between

the shapes, is an important task, which can aid, e.g. statistical analysis of medical

imaging data. If the collection is homogeneous, i.e., the shapes are similar to each other,

it is often feasible to obtain a good correspondence between shapes within the collection,

and then leverage this information for further analysis of the collection's structure.

We address the following problem: given two homogeneous shape collections with

5
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intra-collection maps, we seek a correspondence between the shapes (namely which shape

in collection A maps to which shape in collection B), as well as the cross-map between all

the shapes (see Fig. 1.1). While this seems harder than �nding a map between every pair

of shapes in the two collections, we demonstrate that the structure within each collection

can be extracted and represented concisely, such that if the structures are similar, the

collections can be aligned. This allows us to compute only maps between corresponding

shapes, which are easier to obtain.

1.2 Our Approach

To align two collections of shapes whose geometries are di�erent, we need to de�ne a

shape representation such that the similar structure can emerge. Thus, we need a rep-

resentation which can encode relations like \shape A is to B, like C is to D", and allow

us to compare di�erences of di�erences of shapes. Recently, exactly such a representa-

tion was introduced [20], where the di�erence between two shapes, for which we have a

correspondence, can be represented using a linear operator which acts on functions on

one of the shapes. This representation is based on the functional maps framework [19],

which has already been used in various contexts. Comparing two such operators pro-

vides a meaningful measure of the shape di�erence as it can encode not only whether two

shapes are di�erent, but also where they di�er. This brings all the \shape di�erences"

in the same collection to a common ground, and allows us to use standard techniques for

Euclidean point clouds to perform the analysis.

However, our data is usually high-dimensional. In order to achieve an e�ective and

meaningful representation for the distances between the shapes, we would like to trans-

form the data into a lower dimension. Therefore, we assume that each collection includes

shapes which are sampled from a low-dimensional shape space manifold. We then use

di�usion maps [6], a standard non-linear dimensionality reduction technique to �nd a

low-dimensional Euclidean embedding which reproduces as best as possible the original

intrinsic distances on the shape space manifold. We repeat this procedure for both col-

lections and obtain a low-dimensional embedding of both collections. After achieving

these embeddings, a \shape" is simply a point in a low-dimensional point cloud, and the

distances between the shapes are simple Euclidean distances.

After obtaining two point clouds, we would like to align them. This alignment is a

standard registration of point clouds. Our chosen method of registration is using an a�ne

one, which enables the registration algorithm to tolerate a certain error in the distances

between the shapes, since the collections may not be exactly aligned. We also allow

re
ection, to compensate for the isomentries which may arise after the dimensionality

reduction step. Our chosen algorithm for the a�ne registration is coherent point drift [17],

a state-of-the-art cloud registration algorithm which is suitable for a�ne registration.

Once the collections are aligned, we can use the assumption on the common struc-

ture, to specify constraints of the type \A is to B as C is to D" as linear constraints on

6
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a functional map which maps a shape from the �rst collection to a shape in the second.

These constraints are enough to recover the cross-collection functional map without re-

quiring any additional descriptors. After de�ning these constraints, the cross-collection

functional map can be easily computed using a linear solve. We then extend this map

to the rest of the collection, through composition, which puts both collections in corre-

spondence.
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Figure 1.1: Using our method, we can �nd correspondences and map functions de�ned
on shapes from two collections, given only maps within the same collection. This map
is easy to compute, and provides a meaningful representation of the relation between
shapes from di�erent collections, for which a point-to-point map is di�cult to obtain
and is not well de�ned. (a) original collections, (b) collection alignment, (c) functional
map approximation between all shapes in both collections.
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Chapter 2

Previous Work

The concept of registering two shape collections using dimensionality reduction tech-

niques has not (to the best of our knowledge) been proposed before, nor has the task

of �nding a cross-collection functional map. Nevertheless, the tasks of �nding a map

between two shapes and the analysis of shape collections have been widely studied in

di�erent contexts.

2.1 Finding a Map Between Two Shapes

The task of �nding a map between two shapes has been studied from di�erent points of

view, under various assumptions, e.g. in [15, 19]. See [23] for a recent survey. Various

methods have been proposed to recover a map between two shapes. The main disad-

vantages of existing methods is that it requires some prior, e.g. the user must de�ne

a set of corresponding points on both shapes in order for the algorithm to produce a

valid result. In [7], the authors used Classical MDS to construct an invariant signature

for isometric surfaces, which is an embedding of the geodesic structure of the surface

in a small dimension in which geodesic distances are approximated by Euclidean ones,

therefore translating the problem of matching non-rigid objects into a simpler problem

of matching rigid objects. It is worth noting that our method incorporates much more

information, as the whole collection is considered when computing the map.

2.2 Shape Collections and Map Consistency

Considering the entire collection when computing maps within the collection has also

been addressed previously, e.g. in the context of improving the maps inside a shape

collection. In [10{12, 18], the authors add the constraint of global map consistency in

order to improve a set of initial maps, using di�erent optimization methods. In addition,

structural information from the collection is commonly used for co-segmentation, e.g.

in [13,14,26], among others. Another work related to the idea of search engines for shape

models, presented in [2], uses structural descriptors of shapes in order to �nd partial
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correspondences between pairs of shapes, enabling e�cient searching and exploration

within the shape collection. In general, we di�er from these methods by our assumption

of having two homogeneous shape collections, with good maps within the collection,

instead of having a single heterogeneous collection. This allows us to assume there exists

common structure, and use it to align the collections as a whole.

2.3 Dimensionality Reduction of a Shape Collection

Dimensionality reduction of a shape collection is also a technique which has been used in

the past. Spectral analysis of shape collections using dimensionality reduction techniques

has been used in [9,24,25] for shape de-noising. Other related works have been studying

the pre-image problem for a shape collection. In [24], the authors proposed a way to

compute the pre-image of a shape collection using di�usion maps and Karcher Means.

The pre-image was computed using a Nystr�om extension. Another work which used

projection into a shape manifold is [8], where the projection was performed using a

non-linear interpolation according to a Delaunay triangulation of the collection. In [20],

the authors proposed a way to represent the intrinsic shape-space of a collection using

functional operators. This representation allows to represent di�erences between shapes

as comparable objects instead of merely distances, and then to embed the shape-space in

two dimensions, e.g. for visualization. Another related work is [1], in which the authors

used dimensionality reduction on a collection of facial images, in order to both analyze

and synthesize these kind of images. The authors have also dealt with the challenge

of �nding a meaningful comparison method for two such images, and chose the Jacobs,

Belhumeur, and Basri (JBB) method. The dimensionality reduction was performed using

Least-Squares multidimensional scaling. However, we also �nd correspondences between

shapes from the two di�erent collections, a challenge which has not been addressed in [1].

In both [20] and [1], the dimensionality reduction was performed using a linear tech-

nique such as Principal Component Analysis or MDS, which assumes the underlying

shape-space manifold is linear. In many cases, though, such an assumption is too restric-

tive, and projecting the shape-space on a linear manifold might destroy its structure.

We use non-linear dimensionality reduction instead to overcome this di�culty.

2.4 Video Sequence Registration

Another usage for the registration of two collections is in the context of video sequences

[4, 5, 16]. In these studies, the purpose is to align two video sequences using registration

techniques. There, however, the problem is better posed, as there are considerably less

parameters and more available data.
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2.5 Di�erence from Our Approach

To conclude, the main di�erence between previous work and our approach is that none

of the previous approaches attempted to register directly two shape collections. The

main obstacle to doing that is �nding a common representation such that an alignment

is possible. By leveraging the functional approach, namely considering maps and shape

di�erences as linear operators, we can map both shape-spaces to a common space, where

alignment is possible. Furthermore, we can use this alignment to compute a functional

map, which takes into consideration both collections as a whole.

2.5.1 Algorithm Outline

Given two shape collections A and B with internal correspondences, we do the following:

� Choose a base shape in each collection, and use it to calculate the shape di�erences

representation.

� Reduce the dimensionality of the collections using di�usion maps on the shape

di�erences representation to obtain two point clouds, then use a�ne registration

to align the clouds, and �nd corresponding shape pairs.

� De�ne shape-analogies constraints between corresponding pairs and the base shapes,

and obtain an approximated functional map between the base shapes.

The outline of the algorithm is also presented in Figure 2.1.
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Figure 2.1: The pipeline of our algorithm.
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Chapter 3

Collection Representation

Given two shape collections, we assume they are sampled from two low-dimensional

space-shape manifolds. Our goal is to represent each shape as a point in Rn, such that

Euclidean distances in this representation have some intrinsic geometric meaning, and

we can later align the resulting point clouds. If we are given additionally maps between

every two shapes within each collection, we can use these maps to compute a notion of

a shape di�erence. This is a linear operator, which encodes the variation induced by the

map. Assuming that shapes which are corresponding in two collections undergo a similar

transformation under a map from some base shape, e.g. the change from a neutral face

to a frowning face is similar for two di�erent characters, such a shape di�erence would

provide the intrinsic representation we require.

3.1 Assumptions

For our algorithm to be applicable, we must make a few assumptions on the input shape

collections. First, we assume that both collections are homogeneous, e.g. represent the

same character or the same object in di�erent poses, and we are given maps between

all pairs. Next, we assume that the collections have similar structure. Speci�cally, this

means that there is a subset of shapes in both collections which can be paired, such that

the di�erences between them are similar. For example, in Figure 3.1 we show two shapes

(a cat and a lioness) which have di�erent geometries, however the di�erence between the

two cats is similar to the di�erence between the two lionesses. Furthermore, we assume

that for each collection there exists a base shape which can be used to evaluate the shape

di�erences to all the other shapes in the collection. Finally, we assume that the low

dimensional Euclidean embeddings of the two collections are not symmetric, and thus

can be reliably registered.

We emphasize that the two collections can di�er in their number of shapes. In such

cases, some of the shapes in the larger collection are expected to be considered as outliers,

enabling the other shapes to be matched successfully. Figure 3.2 shows an example of

the alignment of two collections with a di�erent number of shapes: a dense and a sparse
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Figure 3.1: Similar structure in two collections. Although the geometry of the cat (left)
di�ers from the geometry of the lioness (right), the di�erence between the cats is similar
to the di�erence between the lionesses.

sampling from an animation sequence.

3.2 Functional Maps

The recently proposed functional maps framework [19] is used to represent maps between

surfaces. We use this framework in order to consider functional map on surface, rather

than the standard bijective point-to-point maps. This is a more general notion of a map

and is more suitable for cases in which a point-to-point map is not always meaningful.

A functional maps functions de�ned on surfaces. Namely, given two surfaces M and N ,

a map T : N !M between them induces a map between function spaces F : L2(M)!

L2(N), where L2(�) is the set of square integrable real-valued functions on a surface. This

functional map F takes a function f :M ! R and maps it to g : N ! R, and is de�ned

using g = F (f) = f � T . In addition, the original map T can be recovered from F . As

explained in [19], F is a linear transformation between function spaces. Therefore, given

a choice of basis, it can be represented as a matrix in the discrete setting. An example

of such a functional map is presented in Figure 4.3.

3.3 Shape Di�erences

A shape di�erence [20] is a linear operator which encodes the disparity between two

shapes M and N under a given functional map F . We use the two types of shape

di�erences de�ned in [20]. The �rst type is based on the area distortion and the other

is based on the conformal distortion, as induced by the map. Together these two shape

di�erences completely encode the map F .

The area-based shape di�erence is marked VM;N and the conformal-based shape dif-

ference is marked RM;N , where the respective map is usually clear from the context. The

speci�c calculation for the discrete case is demonstrated in Section 3.4. We emphasize

that both VM;N and RM;N are not numbers but operators. Note that two shape di�er-
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Figure 3.2: Two similar animations of di�erent shapes, sampled at di�erent rates (30
shapes and 60 shapes). Some shapes in the dense collection are considered as outliers,
as they do not have compatible matches in the sparse collection. After removing the
outliers, the remaining shapes are matched correctly.

ences, VM;N1
and VM;N2

, represent linear operators with the same domain and range,

L2(M), even if N1 6= N2. Hence, the shape di�erence between M and N1 is comparable

to the shape di�erence between M and N2, as they are both linear operators acting on

functions on M . As explained in [20], the shape di�erences matrices encode the map up

to an area preserving, or conformal self-map, therefore they are fully informative up to

the given notion of distortion.

3.4 Discrete Representation

In order to represent a functional map discretely, we need to pick a basis for the space

of discrete functions on meshes. We choose the eigenvectors of the Laplace-Beltrami

operator, as proposed in [20], as it provides a multi-scale basis which allows to represent

smooth functions with a small number of basis functions. As described in [20], given a
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Figure 3.3: The shape di�erence distances (SDDs) between shape pairs in a collection
of 40 blend shapes. The more di�erent the shapes are, the higher the SDD is.

functional map F we compute the shape di�erences using:

VM;N = F>F; and RM;N = (DM )�1F>DNF; (3.1)

where DM = diag(�f�Mi g), �
M
i is the ith eigenvalue of the Laplacian ofM , and similarly

for N . We typically use between 30 and 70 eigenfunctions for the representation.

Finally, the shape di�erence distance (SDD) between two shapes N1; N2, given a base

shape M is de�ned as:

dM (N1; N2) =
q
kVMN1

� VMN2
k2F + kRMN1

�RMN2
k2F (3.2)

Figure 3.3 shows the SDDs between shape pairs in a collection of 40 blend shapes.

3.5 Base Shape Selection

We represent all the shapes in a collection as a shape di�erence to a chosen base shape

M . Speci�cally, each shape is represented as a linear operator which takes functions on

M and returns functions on M , therefore, all the shape di�erences are encoded in the

basis of M (Figure 3.4).

It has been shown in [20], that if there is cycle consistency in the collection (namely,

given any three shapes M;N;K, and functional maps FMN : L2(M) ! L2(N) and

similarly for FNK ; FMK , we have FMK = FNKFMN ), then it is possible to transport

shape di�erences between di�erent base shapes by applying a change of basis. Speci�cally,

given a functional map G from M1 to M2 we can compute ~VM1N1
= G�1VM2N1

G. If
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Figure 3.4: Given a map between two surfaces, T : N !M , we obtain a map between
function spaces F : L2(M)! L2(N) using g = F (f) = f � T . Given a choice of basis, it
can be represented as a matrix in the discrete setting.

additionally G is orthogonal (namely, the map is volume preserving), then we have:

VM1N1
� VM1N2

= ~VM2N1
� ~VM2N2

(3.3)

hence the distance between the shape di�erences as viewed onM1 are equivalent to those

viewed on M2. The further G is from being orthogonal, the more in
uence the choice of

base shape will have on the resulting distances, which can potentially be harmful for our

registration process.

Therefore, there are two practical problems. First, since we only use the �rst k

eigenvectors of the Laplace-Beltrami operator, we lose cycle consistency, and Equation 3.3

does not hold anymore. Second, the distances are \distorted" by G, and therefore there

is a dependence on the choice of base shape in the two collections. For example, if G

has a non-trivial kernel, e.g. if there exists a part on M1 which does not exist on M2,

then there is loss of information when changing base shapes. E�ectively, the di�erence

between shapes which di�er at the missing part cannot be represented using the base

shape M2.

Therefore, we would like to choose, in both collections, base shapes on which the

di�erences between all the shapes are well represented. To do that, we search for a shape

M such that FMN for all the shapes N in the collection is close to an orthogonal matrix.

We de�ne this concept as the shape irregularity. Speci�cally, we compute:

argmin
M2A

X
N2A;N 6=M

kX
i=1

j�i � 1j2 (3.4)

where �i is the i-th singular value of the functional map FMN from M to N , and k is
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the number of basis vectors we are using for the representation.

Figure 3.5 demonstrates the e�ect the choice of base shape has on our algorithm as

described in Sections 4 and 5. When the worst shapes (b, d) according to the shape

irregularity measure are chosen as base shapes, the resulting approximated functional

map is not satisfactory (e), as can be seen from the density of the matrix, the errors in

transferring a smooth function between the source and target shapes, and the alignment

results (only 18% of the shapes were paired correctly). For a good choice of base shapes

(a,c), the resulting alignment is 90%, and the functional map is close to the ground truth

(f). For a choice of base shapes which is non-optimal, we still get a reasonable, yet

sub-optimal, functional map (g). Hence, while our algorithm is dependent on the choice

of base shapes, this is done automatically in a manner which optimizes the resulting

functional map between the collections. Furthermore, the result is stable under a choice

of sub-optimal base shape.

After choosing the base shapes in the collections, we compute the shape di�erence

representation for every shape, and compute the intrinsic distances between the shapes

using Equation (3.2).
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Figure 3.5: Shape irregularities in two collections, the chosen base shapes, the alignment
results (in percentages) and the approximated map. (a, b) Best and worst base shapes
in collection A. (c, d) Best and worst base shapes in collection B. (e) A bad pair of base
shapes yields a bad map, as can be seen by pushing a coordinate function. (f) Choosing
a good pair results in a good map. (g) Choosing non-optimal base shapes (#19 in A and
#40 in B) yields sub-optimal, yet reasonable, results.
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Chapter 4

Collection Alignment

After obtaining the shape di�erences, we would like to �nd a correspondence between

the two collections. However, the shape di�erences in di�erent collections cannot be

compared directly since di�erent base shapes are used. We therefore assume that each

shape collection is a point sampling from a low-dimensional shape space, and use the

intrinsic shape di�erence distances to embed this point cloud in Euclidean space. We

then align the resulting point clouds.

4.1 Di�usion Maps

The \di�usion maps" algorithm [6] is a widely known method for non-linear dimension-

ality reduction which has been used in many diverse �elds, such as computer vision,

medical imaging and shape analysis. It has also been used for the analysis of shape

collections [25].

In di�usion maps, we �rst construct a symmetric weighted graph where each node

corresponds to a data point. The weights of the edges represent the similarities between

the data points. In our setting, these weights are determined according to the SDD

between the shapes, as de�ned in Equation (3.2). Then, we calculate the di�usion matrix

by normalizing the rows of the matrix of the graph. Taking powers of the di�usion matrix

allows us to observe the data at di�erent scales and see the global connectivity of the

data set.

We mark our data set by X and its dimension by n. We �rst construct a symmetric

weighted graph where each node xi corresponds to a data point. We use the Gaussian

kernel: k(xi; xj) = exp(�kxi � xjk
2=(2�2)), where � is a user-de�ned parameter. This

function is called the di�usion kernel. It is symmetric: w(xi; xj) = w(xj ; xi); and non-

negative: w(xi; xi) � 0 for all xi; xj . We denote the kernel matrix by K such that:

Kij = k(xi; xj).

We now have a symmetric matrix where each row and column corresponds to a

data point. Then, we calculate the row-normalized di�usion matrix P , with entries

Pij = p(xi; xj), by: P = D�1K, where D is the diagonal matrix consisting of the row
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sums of K. If we think of a random walk, then this matrix contains the probability of

jumping from i to j in a single step.

Calculating the probabilities P t for increasing values of t enables us to observe the

data set at di�erent scales. This process is often called the di�usion process, where we

can see the global connectivity of the data set. With increased values of t, the probability

of following a path along the intrinsic structure of the data increases.

Next, we de�ne a di�usion metric based di�usion matrix. It is related to the di�usion

matrix P and is given by:

Dt(xi; xj)
2 =

X
u2X

jpt(xi; u)� pt(u; xj)j
2 =

X
k

jP t
ik � P t

kj j
2

Finally, we map points in the data set into an Euclidean space according to the

di�usion metric. Such a map is called a di�usion map. After this mapping, the di�usion

distance in the data space becomes the Euclidean distance in this new di�usion space,

denoted by Y . Since this map maps points into an Euclidean space derived from the

geometric structure of the data set, we expect that its dimension will be smaller than

the original dimension of the data set. As proven in [6], the di�usion distances can be

expressed using the following map:

ydi =

0
BBBB@

�t
1
 1(i)

�t
2
 2(i)
...

�td d(i)

1
CCCCA

Where  1(i) indicates the i-th element of the �rst eigenvector of P , etc. For this

map, the Euclidean distance between ydi and ydj is the di�usion distance between the

original data points xi and xj . We choose d such that d � n and thus we achieve the

dimensionality reduction.

4.2 Symmetries in the Di�usion Space

A core trait of the Di�usion Maps method, is that its output is not immune to symmetries.

Namely, if we take two similar collections A and B and reduce their dimensionality using

di�usion maps, we will receive two low-dimensional point clouds which are similar up to

re
ections along the axes in the di�usion space. We approach this challenge in Section

4.5.

Figure 4.1 shows the energy in each dimension after embedding a shape collection

using di�usion maps and using a linear method (PCA). While PCA �nds a hyperplane in

the embedding space, which is a linear embedding, di�usion maps �nds a hyper surface

which is not necessarily linear. A shape collection is usually embedded on a nonlinear

manifold. Therefore, a nonlinear method such as di�usion maps is able to recover its
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Figure 4.1: Dimensionality reduction allows us to reveal the intrinsic dimension of
a shape collection. Here we can see the cumulative energy (E in Equation 4.1) of a
collection of 40 blend shapes when applying PCA or di�usion maps and the estimated
dimension of the data. Choosing a higher value for 
 would yield a higher estimated
dimension. Since di�usion maps is a non-linear technique, it is capable of recovering the
true, non-linear structure of the data (9-dimensional). PCA, on the other hand, assumes
a linear structure and therefore identi�es an higher intrinsic dimension of 19.

true dimension more accurately than a linear method.

4.3 Coherent Point Drift

When aligning two point clouds we need to assume some prior on the allowed transfor-

mations between them. In general, since our sampling is relatively sparse compared to

the dimension (e.g. 40 shapes in dimension 9), we need to assume a somewhat restrictive

prior to avoid over-�tting. Assuming the transformation between the point clouds is

rigid (i.e. rotation and translation) is too restrictive, as is uniform scaling. Allowing an

a�ne map between the point clouds allows the algorithm to tolerate some error in the

SDDs between the shapes (e.g. because the collections are not exactly aligned, or the
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choice of base shape is not optimal), while still avoiding over-�tting. In addition, we

allow re
ection, as the di�usion map embedding is only de�ned up to isometries. We use

\coherent point drift" (CPD) for the alignment, which is a state-of-the-art registration

algorithm that supports a�ne registration.

The CPD algorithm enables both rigid and non-rigid registration of two point clouds.

The registration is not symmetric, namely, cloud B is registered to cloud A or vice-versa,

but not both. We have chosen the CPD algorithm for several reasons. First, unlike other

methods, CPD is speci�cally capable of handling d-dimensional clouds, where d > 3.

Our dimensionality reduction usually outputs a cloud which is not 3-dimensional (can

be 10-dimensional, for example). Second, it is suitable for both a�ne and non-rigid

registration. In our setting, the points in the embedding domain are subject to a�ne

transformations with re
ections, caused by the transformation of the shape di�erences

and the dimensionality reduction.

The main idea of CPD is as follows. Given two point sets, a Gaussian Mixture Model

(GMM) is �tted to the �rst point set, whose Gaussian centroids are initialized from the

points in the second set. Then, a process in which the Guassian centroids move from the

initial position to their �nal position is considered. In order to keep the structure of the

point set, a motion coherence constraint is imposed over the velocity �eld.

Fig. 4.2 (right) shows the cloud of collection A after aligning it to the cloud of

collection B using the resulting a�ne transformation.

4.4 Intrinsic Dimension Estimation

In many cases, we do not know the intrinsic dimension d in advance. In such cases, we

can estimate d from the data. We use a method similar to the one proposed in the VDM

algorithm [21]. We set a threshold 
 between 0 and 1. Then, we sum the energy along

increasing dimensions until the ratio to the total energy exceeds the chosen threshold.

Namely, we choose the minimal d such that:

E (d) =

P
u2Y d kukP
u2Y n kuk

> 
 (4.1)

where Y d and Y n are the result of reducing Y to d or n dimensions (no reduction),

respectively. For example, 
 = 0:9 indicates that the chosen dimension consists at least

90% of the total energy of the data set. In our setting, given two shape collections A and

B with estimated intrinsic dimensions dA and dB, we choose d = max fdA; dBg. This

way, we do not lose information about either collections.

Figure 4.1 demonstrates the e�ect of 
 on the resulting estimated dimension, as well

as the advantage of a non-linear dimensionality reduction technique over a linear one

(PCA), using the discussed dimension estimation technique.
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4.5 Shape Pairing

An important observation is that CPD is an asymmetric registration method. Namely,

cloud B is registered to cloud A or vice-versa. However, in our setting, we do wish for

a symmetric registration. Therefore, we perform the registration in the following way:

�rst, we do not allow a point in the source cloud to match more than one point in the

target cloud. If a source point matches more than one target point, we choose the target

point which is closer as the match. Second, we match both A to B and B to A, and then

choose the direction which yields more matching points. Finally, a point which does not

match any other point after the described process is considered to be an outlier. A result

of this symmetric alignment is presented in Figure 4.4.
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Figure 4.2: Two collections of 40 blend shapes after reducing their dimensionality using
di�usion maps and projecting the resulting 9-dimensional cloud into 2D: (a) collection A
cloud, (b) collection B cloud, (c) A to B alignment using an a�ne transformation with
re
ection. Even though additional energy is contained in higher dimensions, some of the
similarities can be seen in 2D, such as the corresponding shapes (in matching colors)
along the edges of the marked polygon.

26

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Figure 4.3: Functional map approximation: (a) source shape in collection A (b)
\ground-truth" map to the target shape in collection B, used for comparison and com-
puted from a manually created point-to-point map, (c) least-squares solution G to the
map between the base shapes, (d) approximated functional map using iterative re�ne-
ment and map composition as described in Section 5.2.
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Figure 4.4: Aligning two collections of 40 blend shapes: (a) identi�ed outliers, (b)
correct matches. See also Figure 6.2.
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Chapter 5

Functional Map Inference

5.1 Shape Analogies Constraints

So far we have used the shape di�erences for computing distances between shapes within

the same collection. However, shape di�erences encode more information, which can be

leveraged for computing a functional map between the collections.

Speci�cally, if we know that two shapes MA; NA 2 A correspond to two shapes

MB; NB 2 B, and we assume that the collections have similar structure, we can addi-

tionally assume that the shape di�erences correspond. Namely that VMANA
is similar

to VMBNB
, and similarly for R. In the previous section we computed a pairing between

shapes in both collections, hence, given such pairs we can pose constraints which enforce

this similarity.

Speci�cally, let Mi 2 A and Ni 2 B be such that (Mi; Ni) are a corresponding shape

pair. Further, let MA be the base shape on A, and NA its corresponding shape on in

B. Finally let G be the unknown functional map between MA and NA. Since we cannot

compare VMAMi
with VNANi

directly as they are de�ned on di�erent function spaces, we

apply G on the left and on the right such that all operators take functions on MA and

return functions on NA. This is demonstrated in Figure 5.1. This leads to the following

equations:
kGVMAMi

� VNANi
GkF = 0;

kGRMAMi
�RNANi

GkF = 0:
(5.1)

This leads to the following energy:

argmin
G

KX
i=1

�
kGVMAMi

� VNANi
Gk2F + kGRMAMi

�RNANi
Gk2F

�
(5.2)

where K is the number of matching pairs. In order to minimize this energy, we solve a set

of equations which are linear in the elements of G. This is a homogeneous problem and

thus it can be solved using SVD. Intuitively, these constraints enforce shape analogies,

namely, MA is to Mi as NA is to Ni. Note, that in [20] similar constraints were used for
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Figure 5.1: When posing the shape analogies constraints, the internal shape di�erences
are operators which are de�ned on di�erent domains. Therefore, we apply G on both
sides in order to get operators which are de�ned on the same domain and thus are
comparable.

�nding corresponding shapes given the map G, whereas we solve for the map given the

corresponding shapes. Note that these constraints are completely automatic, as the only

input they require is the shape pairing between Mi and Ni and between MA and NA.

5.2 Iterative Re�nement

In general, the matrix G which minimizes the energy in Equation (5.2) does not cor-

respond to a bijection, as we did not enforce any additional constraints beyond the

shape analogies. However, we can proceed using a post-processing iterative re�nement

algorithm, as proposed in [19], used to re�ne a given matrix to make it closer to a point-

to-point map. We refer to G0 as an initial estimate to G and denote the Laplacian

eigenvectors matrices of A and B by 'A and 'B. As noted in [19], if G0 : M ! N is

a functional map corresponding to a volume preserving map, then G0 should be such

that each column of G0'
M coincides with some column of 'N . We treat 'A and 'B as

two point clouds with dimensionality equal to the number of eigenvalues which we used.

In addition, for a volume preserving map we also expect the mapping matrix G0 to be

orthonormal, thus we can perform a rigid alignment between 'A and 'B by the following

iterative algorithm:

1. For each column v of G0'
M �nd its closest ~v in 'N .

2. Find the orthonormal G which minimizes
P

kGv � ~vk.

3. Set G0 = G and iterate for a �xed number of iterations.

This algorithm is e�ectively ICP in eigenspace, using the minimizer of Equation (5.2) as

the initial solution.

Using this method, we are able to reconstruct an approximated functional map.

Note that since this is a homogeneous problem the solution will be up to a constant
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Figure 5.2: Pushing coordinates functions (left! right) and Gaussians (top! bottom)
through approximated functional maps between collections A and B: (a) A base shape
to B base shape, (b) A arbitrary shape to B arbitrary shape, (c) B arbitrary shape to
A arbitrary shape, (d) B outlier to A outlier. Notice that a functional map between two
outliers is approximated successfully.

multiplication (positive or negative). We can ignore the scaling factor { the functional

map is a linear operator and we normalize every function pushed through it. However, the

sign of this constant does a�ect the resulting G. Therefore, we apply iterative re�nement

separately for G0 and (�G0) and choose the solution which minimizes the noted sum of

distances.

We note again that G is a functional map between the base shape in A and its

corresponding shape in B. In order to get the functional map between two arbitrary

shapes Mi 2 A and Nj 2 B, we compose the functional maps to the base shape MA

and to its corresponding shape NA. We mark FMiMA
: L2(Mi) ! L2(MA) and FNANj

:

L2(NA)! L2(Nj) and compose them with G:

FMiNj
= FNANj

�G � FMiMA
(5.3)

Note that using Equation (5.3) we can compute a functional map between any two

shapes in the collections, including shapes which were considered outliers or were not

matched during the registration step. Figure 4.3 demonstrates the process of approxi-

mating a map between two shapes using the algorithm described above.

In order to calculate the functional maps in the opposite direction (namely, from B to

A), we simply produce the corresponding equations by swapping A and B, and proceed
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as described above. Figure 5.2 shows approximated maps between various shapes in both

collections. The maps are evaluated between shapes which belong to a matching pair, as

well as between shapes which were classi�ed as outliers or were a part of wrong match.
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Chapter 6

Experimental Results

We tested our algorithm on di�erent data sets. We present the results and compare them

to \ground-truth" results:

� A known point-to-point map between the two collections, if such exists, is used

to compute a \ground-truth" functional map for comparison purposes only. We

compare our results to this map.

� If the correspondence between the two collections is known (for example, corre-

sponding facial expressions), we demonstrate our registration results with respect

to this known correspondence: correct matches, wrong matches, outliers (shapes

which were not matched at all) and the corresponding percentages.

Our parameters setting was as follows. We used 32 eigenvalues of the Laplacian for

the computation of functional maps and shape di�erences. The parameters for di�usion

maps were t = 1, � = 1 and 
 = 0:9 for the intrinsic dimension estimation. For CPD we

used ! = 0:1 and default values for the other parameters, as described in [17].

6.1 Limitations

First, our algorithm assumes a similar structure in both collections { if the two given

collections do not have a similar structure we will not be able to align them. Second, as

explained in [20], the shape di�erences are based on externally supplied maps between

shapes, and they therefore depend on the quality of these maps. Another requirement

is for the collection to contain a minimum amount of shapes (e.g. at least 30). Given a

smaller amount of shapes, the collection alignment is not feasible, since the point cloud

is too sparse compared to its dimension. In addition, a small collection means that the

number of terms in Equation (5.2) will be smaller, leading to a larger approximation

error. Finally, the algorithm depends on several parameters which must be chosen in

advance.
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Figure 6.1: Two collections of 40 blend shapes which have been used in the experiments.

6.2 Blend Shape Collections

As presented throughout the paper, we tested our method on two collections of 40 blend

shapes each (Figure 6.1).

� Di�usion maps produced two 9-dimensional point clouds.

� Registering the two collections resulted in 36 correct matching pairs (90%), no

wrong matches and 4 outliers in each collection (10%). The results are shown in

Figure 4.4.

� A functional map approximation was recovered and successfully extended to all the

shape pairs, including the non-matching shapes in each collection. The results are

presented in Figure 5.2.

6.3 FaceWarehouse Database

FaceWarehouse [3] is a database of 150 individual testers. Each collection consists of

47 di�erent facial expressions and the collections are in correspondence. As mentioned

before, we used this known correspondence only for comparison purposes. We tested our

algorithm on four di�erent pairs of testers. The results for these pairs are presented in

Figures 6.3.
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6.3.1 Testers Pair 1

The results are presented in Figure 6.2 and Figure 6.3. Di�usion maps produced two

11-dimensional point clouds. Our algorithm identi�ed correctly 30 matching facial ex-

pressions (64%), 8 outliers (17%) and 9 pairs were wrong matches (19%). As can be seen

in Figure 6.2, most pairs which were wrong matches are indeed similar. The functional

map was approximated successfully. The shape irregularities of the two collections are

very similar, which explains the successful map approximation.

6.3.2 Testers Pair 2

The results are presented in Figure 6.4. Di�usion maps produced two 11-dimensional

point clouds. Our algorithm identi�ed correctly 28 matching facial expressions (60%),

6 outliers (13%) and 13 pairs were wrong matches (27%). The functional map was

approximated successfully. The shape irregularities of the two collections are similar,

but less than testers pair 1. This yields in a lower matching percentage, but the map

approximation is still successful in this case.

6.3.3 Testers Pair 3

The results are presented in Figure 6.5. Di�usion maps produced two 11-dimensional

point clouds. Our algorithm identi�ed correctly 17 matching facial expressions (36%),

18 outliers (38%) and 12 pairs were wrong matches (26%). The functional map was

approximated successfully The shape irregularities of the two collections are similar, but

less than testers pair 1. In this case, the matching percentage is low, but the map

approximation is still successful.

6.3.4 Testers Pair 4

The results are presented in Figure 6.6. Di�usion maps produced two 13-dimensional

point clouds. Our algorithm identi�ed correctly 22 matching facial expressions (47%),

11 outliers (23%) and 14 pairs were wrong matches (30%). In this case, the shape

irregularities graph shows that the two collections have quite a di�erent structure. This

fact leads to a functional map approximation with errors.

6.3.5 FaceWarehouse Summary

We discuss the performance of our algorithm according to the irregularity of its shapes

as de�ned in Section 3.5. As we can see in the corresponding �gures, when considering

two collections after alignment, the shape irregularities graph provides a measure of the

similarity between their structures. According to our experiments, we can see that corre-

spondence in the shape irregularities graph predicts successful alignment and functional

map approximation.
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To summarize, we were able to align the collections of di�erent testers with various

percentage rates and functional map approximations were successful for all the tester

pairs. Dissimilarities in the shape irregularities graph lead to a higher approximation

error, as can be seen in the case of testers pair 4.

6.4 Varying Collection Size

This experiment is intended to measure the e�ect of the size of the collections on registra-

tion and map approximation. We used the blend shape collections presented throughout

the article, but took only a subset of the shapes (the same subset in both collections).

The alignments results were as follows:

� Using 20 shapes: 35% correct matches.

� Using 25 shapes: 36% correct matches.

� Using 35 shapes: 63% correct matches.

� Using 40 shapes: 90% correct matches.

The approximated maps corresponding to the size of the collections are presented in

Figure 6.7. As we can see, using small collections leads to poor alignment, since the

clouds are very sparse compared to their dimension. As we increase the number of

shapes, alignment becomes feasible and thus the approximated map improves.

6.5 Small Collections With Perfect Alignment

This experiment is intended to test the approximated map in a rough setting when using

small collections with perfect alignment (namely, we provided the matching shape pairs in

advance). We used collections of 10 shapes from the Sumner and Popovi�c database [22].

The resulting map was noisy but was still able to capture some of the information. The

results are presented in Figure 6.8.
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Figure 6.2: Correspondence and maps between two testers from the FaceWarehouse
database [3]. Functional maps were approximated correctly for all shapes. (a) identi�ed
outliers (17%), (b) wrong matches (19%), (c) correct matches (64%), (d) maps between
shapes which are part of a correct match, (e) maps between shapes which are outliers or
part of a wrong match.
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Figure 6.3: Map approximations between testers pair 1 of the FaceWarehouse database.
Two maps between arbitrary shapes are shown, the true functional map matrix (left)
and the approximated one (right), and the shape irregularities when the two collections
are aligned perfectly.
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Figure 6.4: Map approximations between testers pair 2 of the FaceWarehouse database.
Two maps between arbitrary shapes are shown, the true functional map matrix (left)
and the approximated one (right), and the shape irregularities when the two collections
are aligned perfectly.
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Figure 6.5: Map approximations between testers pair 1 of the FaceWarehouse database.
Two maps between arbitrary shapes are shown, the true functional map matrix (left)
and the approximated one (right), and the shape irregularities when the two collections
are aligned perfectly.
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Figure 6.6: Map approximations between testers pair 1 of the FaceWarehouse database.
Two maps between arbitrary shapes are shown, the true functional map matrix (left)
and the approximated one (right), and the shape irregularities when the two collections
are aligned perfectly.
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Figure 6.7: Alignment and map approximations for di�erent subsets of the 40 blend
shapes collections. We show the maps between the base shapes (collection A to collection
B). (a) source shape in A, (b) \ground-truth" map, (c) using 20 shapes, 35% correct
matches, (d) using 25 shapes, 36% correct matches, (e) using 35 shapes, 63% correct
matches, (f) using 40 shapes, 90% correct matches.
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Figure 6.8: Functional map approximation for small collections (10 shapes) from the
Sumner and Popovi�c database [22]. Since the collections are small, registering them as
point clouds is not feasible. However, given an optimal registration, a rough functional
map can still be approximated. This functional map captures a certain amount of the
data, but is noisy due to the small size of the collections.
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Chapter 7

Conclusion and Future Work

We presented a novel approach for aligning two shape collections and approximating

the functional cross-collection map, using only the maps within the collection as prior

knowledge. We use shape di�erences to assess the distances between shapes intrinsically

and generate a low-dimensional shape-space embedding. Then, we use a�ne registration

in order to align the two point clouds. The shape di�erences framework is also used for

posing shape analogies constraints for recovering the cross-collection functional map. We

discussed the special cases in our method, such as the base shape selection, estimating

the intrinsic dimension of the data and the signi�cance of the size of the collections. We

demonstrated the e�ectiveness of our algorithm on various collections and presented the

success rate of the shape matching process as percentages of correct matches, as well as

the approximated functional map, compared to a ground-truth map and presented on

the shape themselves. Our method achieved smooth informative functional maps.

Our work provides a glimpse at the possibility of using existing shape analysis tools,

such as dimensionality reduction and point registration, for analysing shape-space man-

ifolds. The key to making the leap from shapes to shape spaces is having an intrinsic

way to represent di�erences between shapes, which we achieved by using the shape dif-

ference linear operator. It is interesting to consider other functional operators for this

task, as well as consider applying other common geometry processing tools directly to the

shape-space manifold. An interesting future work will be to try our method on existing

shape collections, and �nd a cross-map between them. Our method may also be used

in order to �nd correspondences between shape collections which do not appear similar,

but, in fact, do have a similar structure. Finally, as research progressed from analysing

shapes in isolation to analysing collections of shapes, it is possible that the next layer of

abstraction is analysing collections of collections. This can serve as a convenient way to

model heterogeneous shape collections, simply as a collection of shape-spaces.
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 coherent. האלגוריתם בו אנו משתמשים עבור ההתאמה הוא ביטוי בענני הנקודות שהתקבלו

point drift.אלגוריתם אשר מתאים בין היתר גם להתאמה אפינית , 

בהנחה שלשני האוספים קיים מבנה  משתמשיםלאחר מציאת ההתאמה בין ענני הנקודות, אנו 

", בתור Dהיא עבור  Cכמו שצורה  Bהיא עבור  Aמנת להגדיר אילוצים מהצורה "צורה -דומה, על

מנת -בין שני האוספים. אילוצים אלה מספיקים על אילוצים לינאריים על המיפוי הפונקציונלי

, על זוגות לשחזר את המיפוי הפונקציונלי מבלי לדרוש כלל מידע נוסף. לאחר הגדרת אילוצים אלה

אשר לוקחת בחשבון  ידי פתרון בעיה לינארית-, המיפוי מחושב בקלות עלהצורות המתאימות בלבד

אחר מכן, אנו מרחיבים את המיפוי המחושב . לאת כלל הזוגות התואמים שהתקבלו מההתאמה

הרכבה של המיפויים הפונקציונליים שהתקבלו, כאשר במקרה ידי -לכל הצורות בשני האוספים על

 זה מדובר בהרכבת פונקציות פשוטה.

אנו מדגימים את האלגוריתם שלנו על מגוון מקרי קלט אפשריים, הלקוחים ממספר לבסוף, 

, אנו מריצים את כל שלבי האלגוריתם ומציגים הן את ה קלטמקרמקורות שונים. עבור כל 

ההתאמה בין האוספים כאחוזי הצלחה לעומת ההתאמה האמיתית, אשר ידועה לנו ואנו 

משתמשים בה רק לצורך ההשוואה, וכן את המיפוי הפונקציונלי המחושב בין צורות שונות בשני 

וגם אז, אנו משתמשים בו  –אם הוא ידוע  גם את המיפוי אנו משווים למיפוי האמיתי,האוספים. 

רק לצורך ההשוואה. אנו מראים גם דוגמאות קלט נוספות, כגון ניסויים על אוספים אשר גודלם 

גודל הבנת ההשפעה של לצורך בין ההרצות השונות משתנה מהרצה להרצה, והשוואת התוצאות 

 האוסף על טיב האלגוריתם.
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וספי צורות בעלי מנת למצוא צורות מתאימות בין שני א-על אלגוריתם לפתרון הבעיה.

גיאומטריה שונה, עלינו לבחור ייצוג עבור הצורות אשר מאפשר לזהות מבנים דומים בתוך 

, כמו שצורה Bהיא עבור  Aהאוספים. כלומר, נרצה לבחור ייצוג אשר מתאים ליחסים כגון "צורה 

C  עבור עבורD ה )בין צורות. ייצוג כז הפרשים של הפרשים", ויאפשר לנו למעשה להשוותshape 

differences הוצג לאחרונה, כאשר השוני בין שתי צורות אשר ידוע לנו המיפוי ביניהן, ניתן לייצוג )

אשר פועל על פונקציות המוגדרות על אחת מן הצורות. ייצוג זה מתבסס  אופרטור לינאריידי -על

שני אופרטורים אשר כבר הוצג השימוש בה במגוון הקשרים. השוואת שיטה , functional mapsעל 

כאלה מספק מדד אינפורמטיבי עבור השוני בין הצורות, כיוון שהוא מאפשר לדעת לא רק האם שתי 

 הן שונות. היכןצורות הן שונות זו מזו, אלא בנוסף, 

מנת לאפשר ייצוג -. עלצורת הבסיס בחירת אתגר משמעותי אשר אליו התייחסנו בעבודה הוא נושא

, נדרש לבחור בתוך כל אחד מהאוספים צורת בסיס, אשר shape differencesשל צורות באמצעות 

תשמש כנקודת ייחוס עבור כל שאר הצורות וההפרשים יחושבו ביחס אליה. באופן אידאלי, בחירה 

של המיפויים בתוך  cycle consistencyזו יכולה להיות שרירותית. מצב זה מתקבל כאשר קיים 

, וכן כאשר ניתן להגיע הרכבות מיפויים מובילים למיפוי היחידה כלומר, כאשר מעגלים של –האוסף 

במקרים  .של צורה אחת לשנייה באמצעות מטריצה אורתוגונלית shape differencesמכל ייצוג 

אנו משתמשים בייצוג דיסקרטי )הן של הצורות והן של המיפויים( בנוסף,  . זה אינו המצבפרקטיים, 

ב האידאלי. לכן, יש חשיבות לבחירת צורת הבסיס. אנו מציגים שיטה ועובדה זו גם היא שונה מהמצ

אינה , אשר מציין כמה צורה זו shape irregularityלחישוב מדד עבור כל צורה באוסף, לו קראנו 

 המהווה בחירה טובה עבורלהיות צורת בסיס. מדד זה מתבסס על הדרישה שעבור צורה  מתאימה

קרוב למטריצה אורתוגונלית.  ממנה לצורות האחרות יהיה נליבסיס, המיפוי הפונקציוהצורת 

יות צורת הבסיס בכל אחד בהתבסס על מדד זה אנו בוחרים את הצורה המתאימה ביותר לה

 תלוי באוסף האחר. באופן בלתימהאוספים, 

מנת שנוכל להשיג ייצוג אינפורמטיבי של המרחקים בין הצורות וכיוון שהאוספים הם בדרך -על

מימד גבוה, נרצה להמיר את האוסף למימד נמוך יותר. לכן, אנו מניחים כי כל אחד מכלל 

ממימד נמוך. לאחר מכן, אנו משתמשים בשיטה  יריעהידי דגימה של -מהאוספים התקבל על

מימדים במרחב אוקלידי. -, כדי להשיג שיכון נמוךdiffusion mapsסטנדרטית להורדת מימדים, 

זו. אנו חוזרים על תהליך זה  יריעהיטבית את המרחקים בין הצורות על ייצוג זה משמר בצורה המ

עבור שני האוספים כדי להציג ייצוג במימד נמוך עבור שניהם. לאחר מציאת שיכונים אלה, 

. בסופו של שלב זה ם אוקלידיים במרחב ממימד נמוך זההמרחקים בין הצורות הם למעשה מרחקי

 לעומת המימד המקורי. מוךדינו שני ענני נקודות ממימד נבי

נקודות אלה, נרצה למצוא את ההתאמה ביניהם. אנו מוצאים התאמה זו ע"י -לאחר חישוב שני ענני

התאמה אפינית רגילה. הבחירה בטרנספורמציה אפינית היא משום שטרנספורמציה כזאת מאפשר 

ניתן למצוא  לאלגוריתם ההתאמה לספוג שגיאה מסוימת במרחקים בין הצורות, שכן לא תמיד

התאמה מושלמת בין ענני הנקודות. בנוסף, אנו מאפשרים שיקופים, שכן אלגוריתם הורדת 

ולכן הם אינם יבואו לידי  אינו רגיש לשיקופים , diffusion maps, המימדים בו אנו משתמשים
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 תקציר

 
 

מחקר זה עוסק במציאת התאמה ומיפוי בין אוספים של צורות. מציאת מיפוי וניתוח  רקע.

אוספים של צורות הם נושאים בסיסיים בתחומי הגרפיקה והגיאומטריה, אשר בשימוש במגוון 

וניתוח מידע רפואי, וקיימים  מימדית-תחומים, כגון אנימציה, מידול גיאומטרי, סריקה תלת

שימושים רבים נוספים. מציאת מיפוי בין צורות מתייחס לבעיה של, בהינתן שתי צורות, מציאת 

ההתאמה ביניהן, בעוד שניתוח אוספים של צורות מתייחס לבעיה של, בהינתן אוסף של צורות, 

מיפויים בתוך האוסף,  הסקת מסקנה כלשהי עליו או שיפור היבטים מסוימים שלו, כגון: שיפור

 מציאת התאמות בתוך האוסף ועוד.

-כאשר רוצים לייצג התאמה בין שתי צורות, במקרים רבים התאמה זו מיוצגת ע"י מיפוי נקודה

לנקודה, אשר ממפה נקודה על הצורה הראשונה לנקודה על הצורה השנייה. מיפוי מסוג זה מתאים 

. , או הבעות פנים שונות של אותו אדםשל אותו אדם כאשר הצורות דומות, לדוגמא: תנוחות שונות

עבור מקרים מסובכים יותר, כגון תנוחה דומה של שני אנשים שונים, לא תמיד ברור כיצד ניתן 

לנקודה כזה, שכן הצורות עשויות להיות שונות זו מזו. במקרים כאלה, קל -להגדיר מיפוי נקודה

ממפה פונקציה על הצורה הראשונה לפונקציה על לפונקציה, אשר -יותר להגדיר מיפוי פונקציה

, ומאפשר לנו הוא ייצוג גמיש וכללי יותר של מיפויכזה  מיפוי פונקציונליהצורה השנייה. מציאת 

 לנקודה.-לייצג מידע אשר לעיתים קשה לייצג באמצעות מיפוי נקודה

מוגדר. לדוגמא,  נהמבבמקרים רבים, צורות אינן מופיעות לבדן אלא הן חלק מאוסף כלשהו בעל 

לסריקה בתדירות גבוהה של אנימציה בין שתי תנוחות של אדם כלשהו יש מבנה שונה מאשר אוסף 

של צורות שאינן קשורות זו לזו. מציאת מבנה פנימי זה, וסידור שני אוספים בעלי מבנה דומה זה 

סייע במגוון מציאת התאמה בין האוספים, הוא משימה חשובה אשר יכולה ל –מול זה, כלומר 

של תמונות רפואיות. אם האוספים הם הומוגניים, כלומר, הצורות  סטיתחומים, כגון ניתוח סטטי

בתוך האוסף הן דומות זו לזו, אז לעיתים קרובות ניתן למצוא מיפוי בין צורות בתוך כל אחד 

 למנף מידע זה לצורך ניתוח של מבנה האוסף. ולאחר מכןמהאוספים, 

מתייחסים לבעיה הבאה. בהינתן שני אוספי צורות הומוגניים והמיפויים בתוך  אנו הצגת הבעיה.

כל אחד מהאוספים, אנו מעוניינים למצוא התאמה בין הצורות בשני האוספים )כלומר, עבור צורה 

(, וכן למצוא מיפוי בין כל הצורות בשני האוספים. בעיה Bלמצוא צורה מתאימה באוסף  Aבאוסף 

זו אמנם עלולה להיראות קשה יותר מהבעיה המקורית של מציאת מיפוי בין שתי צורות 

אנו מראים שניתן למצוא את המבנה הפנימי של כל אחד מהאוספים ולייצגו בצורה אך שרירותיות, 

ר את שני האוספים ולהתאים צורות בין שני יעילה, כך שכאשר מבנים אלה הם דומים, ניתן לסד

האוספים השונים. באופן זה, אנו יכולים לחשב את המיפוי רק בין צורות אשר דומות )מתאימות( 

 זו לו, ומיפוי זה הוא קל יותר לחישוב מאשר המיפוי בין שתי צורות שרירותיות.
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 חן, בפקולטה למדעי המחשב.-המחקר בוצע בהנחייתה של פרופסור מירלה בן

 

 

 תודות

 
 חן, על העבודה המשותפת המוצלחת.-מירלה בןאני מודה למנחה שלי, פרופ' 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 אני מודה לטכניון על התמיכה הכספית הנדיבה.
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מציאת מיפוי בין אוספים של צורות 
 באמצעות שיטות להורדת מימדים

 

 
 חיבור על מחקר

 
 הדרישות לקבלת התוארלשם מילוי חלקי של 

 מגיסטר למדעים במדעי המחשב

 

 

 

 

 ניצן שפירא

 

 

 

 

 

 
 מכון טכנולוגי לישראל –הוגש לסנט הטכניון 

 1024 ספטמבר         חיפה      תשרי התשע"ד
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