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Abstract

Directional fields are important objects in geometry processing with applications ranging

from texture synthesis to non-photorealistic rendering, quadrangular remeshing, and

architectural design. In this thesis, we focus our attention on cross fields – a direction

field in which four unit vectors with π/2 symmetry are defined at each point on the

surface.

Computing smooth cross fields on triangle meshes is challenging, as the problem

formulation inherently depends on integer variables to encode the invariance of the

crosses to rotations by integer multiples of π/2. Furthermore, finding the optimal

placement for the cone singularities is essentially a hard combinatorial problem.

We propose a new iterative algorithm for computing smooth cross fields on triangle

meshes that is simple, easily parallelizable on the GPU, and finds solutions with lower

energy and fewer cone singularities than state-of-the-art methods. Furthermore, the

output cross fields are such that there is no relocation of a single ±π/2 singularity that

will reduce the energy.

Our approach is based on a formal equivalence, which we prove, between two

formulations of the optimization problem. This equivalence allows us to eliminate the

real variables and design an efficient grid search algorithm for the cone singularities.

We leverage a recent graph-theoretical approximation of the resistance distance matrix

of the triangle mesh to speed up the computation and enable a trade-off between the

computation time and the smoothness of the output.
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Chapter 1

Introduction

Directional fields, and especially cross fields, are important objects in geometry pro-

cessing. They are used in many applications, from quadrangular remeshing to non-

photorealistic rendering [VCD+16]. Computing smooth cross fields on triangle meshes

is challenging, as the problem formulation inherently depends on integer variables to

encode the invariance of the crosses to rotations by integer multiples of π/2.

A popular approach, suggested by Bommes el at. [2009], formulates a mixed-integer

optimization problem and solves it greedily to compute the cross field. While highly

efficient and effective, the greedy solution can lead to sub-optimal results, as in Fig. 1.1

(top). Alternatively, Crane et al. [2010] (TCODS) [CDS10] posed the problem in terms

of angle defects due to parallel transport on closed cycles, leading to a sparse linear

least squares problem that is solved efficiently when the defects are known.

We show that if the angle defects are unknown, and there are no directional con-

straints, these two optimization problems are equivalent. Furthermore, by eliminating

the real variables, we remain with an integer only optimization problem. We use this

insight to design a new iterative algorithm for minimizing the energy that is simple, easily

parallelizable on the GPU, and finds solutions with lower energy and fewer singularities

than MIQ, e.g. Fig. 1.1 (bottom). Finally, we show the connection of the minimized

energy to the resistance distance matrix of the triangle mesh, and leverage a recent

graph theoretical approximation to speed up the computation and allow us to trade-off

the computation time and the quality of the resulting cross field.

1.1 Related Work

Cross field computation, and directional field computation in general, has seen a surge

of research in recent years. A recent review [VCD+16] covers the latest developments,

and we therefore focus our literature review on methods closest to our approach.

Angle based representation. A popular formulation of the cross field computation

problem is to represent every cross as an angle with respect to a fixed local orthogonal
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Figure 1.1: Our iterative optimization (bottom) finds a solution with lower energy, and
fewer singularities than MIQ (top).
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frame. Since crosses are invariant to rotations by integer multiples of π/2, such a

representation has an inherent phase ambiguity. Therefore, finding a smooth assignment

of crosses inevitably requires taking into account these unknown integer phases, leading

to optimization problems with integer variables. Bommes et al. [2009] suggested one

of the first efficient methods to tackle these optimization problems in the context of

cross field generation, by greedily rounding to an integer one variable per iteration and

resolving the system. Our approach optimizes the same energy greedily, albeit using

a different algorithm that guarantees that there exists no modification of a single ±π
2

singularity’s position that reduces the energy. This leads to lower energy values and

better singularity placement. A different angle based approach, suggested by Crane

et al. [2010], encodes the angle difference per edge instead of an angle per face. This

representation leads to a minimum norm linear least squares optimization problem with

constraints, where the integer variables now arise as the constrained values. Furthermore,

Crane et al. [2013, Sec. 8.4.1] have shown that it is possible to solve this optimization

problem by solving a single Poisson problem when the integer variables are known. We

use this formulation with unknown angle defect values as the basis for our algorithm.

Cartesian representation. An alternative to the angle based representation is to

represent the direction as two coordinate values with respect to a local frame [RLL+06]

or, equivalently, as a complex number [KCPS13]. The explicit encoding of the integer

phase is not required in this representation, albeit, depending on the choice of smoothness

energy, a non-convex pointwise unit-length constraint might be required. Without the

unit-length constraint, this formulation leads to an unconstrained linear least squares

problem that can be efficiently and globally solved [KCPS13]. Our main interest is in

the angle-based energy, as it has various advantages in applications; see [VCD+16]. We

show that for this energy our algorithm achieves lower energy values, with a smaller

number of singularities, compared to competing approaches.

Scalable cross field computation. Recently, new methods have been proposed [JTPSH15]

for efficient cross field computation that are applicable to meshes with millions of trian-

gles. Such approaches often work locally, leading to a very efficient solution at the price

of cross field quality in terms of the number of singularities and field smoothness. Our

approach is at the other end of the spectrum, namely, we invest more computational time

and generate a higher quality cross field. We further allow a trade-off between computa-

tional time and cross field quality using a single parameter. Finally, our time/quality

trade-off is implemented using a simple algebraic approach with random projections,

and does not require constructing multi-resolution hierarchies of the input shape.

Parameterization with cone singularities. Cross field computation is closely

related to mesh parameterization. Specifically, one of the main applications of cross

fields is quadrangular remeshing, where the parameterization gradients are aligned to the
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cross directions. Then, the singularities of the cross field become the non-regular vertices

of the quad mesh. Hence, it is in general beneficial to generate smooth cross fields with

a small number of singularities. As an alternative to generating a cross field and using

it for creating a parameterization, it is possible to compute a parameterization with

cone singularities given a holonomy signature. Such conformal parameterizations were

suggested [BCGB08, SSP08], as well as variants that use other energies [MZ12, MZ13],

guarantee bijectivity [BCW17] or generate a seamless similarity map that can be used

for constructing C2 surfaces [CZ17b]. While our approach generates cross fields, it is

based on finding a holonomy signature, and thus can be used to generate inputs for

cone parameterization methods such as [BCW17, CZ17b].

Connectivity Editing. Peng et al. [2001] have proposed a set of edit operations on

a convex region of the quadrangular mesh to improve the placement of irregular vertices

(i.e,. vertices with valence different than four). For example, they show that the global

placement of a single irregular vertex is in some sense rigid, whereas singularity pairs

in close proximity can be locally moved to improve the structure of the quadrangular

mesh. In contrast, our approach guarantees that no movement of a single singularity,

or the global cancellation of a ±π/2 singularity pair can improve the energy. It would

be interesting to explore their other suggested edit operations to locally improve the

quadrangular mesh structure after generating the global structure using our method.

1.2 Contributions

We show the equivalence between computing smooth cross fields and finding optimal

holonomy signatures in the absence of directional constraints, and leverage it to design

a novel algorithm that optimizes the angle-based cross field smoothness energy. Our

approach has the following advantages:

• The algorithm is simple, easily parallelizable and finds cross fields with lower

energy values than existing approaches.

• The output cross fields are such that there is no relocation of a single ±π
2 singularity

that will reduce the energy. This leads to cross fields with fewer singularities, and

singularities that are better placed, compared to existing methods.

• The formulation is based on the resistance distance matrix, which has a well-known

random approximation with theoretical guarantees. We use this approximation to

trade-off between cross field smoothness and computation time.
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Chapter 2

Background: Angle-Based Cross

Field Computation

2.1 Notation

Let M= (V, E ,F) be a 2-manifold closed orientable triangle mesh, where V are the

vertices, E are the edges and F are the faces. We denote n= |V|, l= |E|,m= |F|, the
genus ofM by g, and its Euler characteristic by χ=2− 2g. We further denote the dual

mesh byM∗ = (V∗, E∗,F∗) = (F , E∗,V). Following existing work, see e.g. [VCD+16,

Sec. 5.1], we represent crosses using angles. Thus, we use θ ∈ R
m to denote angles

on the faces, which are measured relative to a local frame of reference, i.e., a pair of

orthogonal unit vectors tangent to the face. We further assume that each edge in E has

a known, arbitrary orientation that also induces an orientation on the corresponding

dual edge. We denote by r ∈Rl the oriented angle difference between the reference

frames on adjacent faces. We slightly abuse notation by addressing elements of r both

as re and as rij where e=(i, j)∈E∗,i, j∈F . Finally, d0∈Zl×n and d1∈Zm×l denote the

edge-vertex and face-edge adjacency matrices, respectively, also known as the discrete

exterior derivatives on 0- and 1-forms [CDGDS13].

A natural way to define the smoothness of an angle-based cross field is to consider

the change in the angle between adjacent faces. Two methods that were suggested in

the literature, MIQ [BZK09] and TC [CDS10], approach this problem using different

formulations. In the following, we first present the two optimization problems as they

were originally suggested. Then, in Section 3 we generalize TC, and show that the new

formulation is equivalent to MIQ, yet simpler to optimize. We provide only a brief

overview of the methods, and refer to specific sections of the survey [VCD+16] and

course [CDGDS13] for basic concepts.
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2.2 MIQ: Mixed Integer Quadrangulation

Bommes et al. [2009] represented a cross field by an angle per face, θ∈Rm, relative to a

fixed local orthogonal frame. To account for the symmetry of the crosses with respect to

rotations by π/2, additional period jumps , p∈Zl, were introduced. The MIQ objective

function is given by:

EM (θ, p) =
∑

(i,j)∈E∗

(

θi + rij +
π
2 pij − θj

)2
. (2.1)

We will assume a single directional constraint is given at a face c ∈ F , with θc = θ0.

This objective function has multiple minimizers, which can be obtained by modifying

θ and p simultaneously. Therefore, to reduce the search space, Bommes et al. [2009]

used a spanning tree T ⊂ E∗ of the dual meshM∗, rooted at the constrained face c,

and defined the optimization problem:

minimize
θ∈Rm, p∈Zl

EM (θ, p)

subject to pe = 0, ∀e ∈ T ,
θc = θ0.

(2.2)

Effectively, the constraints can be easily eliminated, leading to an unconstrained mixed-

integer problem in m−1 real-valued variables and l−m+1=n+2g−1 integer-valued

variables.

2.3 TC: Trivial Connections

Alternatively, instead of solving for the angles on the faces, Crane et al. [2010] suggested

to solve for the adjustment angles, or connection on the edges. As these define the

change in the angle when passing on a dual edge [VCD+16, Sec.4.3], explicitly encoding

the period jumps is not required. Hence, the real-valued variables x∈Rl encode the

change in angle, and the objective function is given by:

ET (x) = ‖x‖22. (2.3)

The angles θ are obtained by integrating x along a dual tree T rooted at the constrained

face c, such that θj=θi+rij + xij for (i, j)∈T ⊂E∗.

While this objective function does not depend on integer variables, not every x∈Rl

is valid, as different integration paths should yield the same angle up to rotation by

π/2. Thus, additional constraints are required, leading to the optimization problem:
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minimize
x∈Rl

ET (x)

subject to Γx = π
2 s− sg(Γ).

(2.4)

Here, Γ∈Zn+2g×l is a matrix whose rows form a spanning set of the dual cycles ofM.

Specifically, ΓT =
[

d0, H
]

, where d0∈Zl×n is the oriented edge-vertex incidence matrix,

whose columns form a spanning set of the contractible dual cycles, and H ∈ Z
l×2g is a

matrix whose columns form a basis for the non-contractible dual cycles (see [CDGDS13,

Sec. 8.2.2] for the construction of H). Further, sg(Γ) ∈ R
n+2g contains the angle

defects [VCD+16, Sec.6.2] around the basis cycles of Γ. The angle defects for the

contractible cycles are given by the discrete Gaussian curvature of the vertices, and

thus sum to 2πχ by the discrete Gauss-Bonnet formula [MDSB03].

Finally, s∈Zn+2g is a user prescribed integer holonomy signature that defines the

number of integer rotations by π/2 when parallel transporting a vector along the dual

cycles in Γ. Since every column of dT0 sums to 0, for the constraints to be feasible it is

assumed that
∑n

i=1si=4χ. Crane et al. [2010] showed that under this assumption the

optimization problem (2.4) always has a solution, and a singularity of the cross field will

arise at a vertex vi∈V , i ∈ {1, .., n} if and only if si 6=0, i.e., the prescribed holonomy

signature of the corresponding contractible dual cycle is non-zero.

9©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



10©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Chapter 3

Integer-Only Cross Field

Computation

3.1 TCO: Trivial Connections with Optimal Holonomies

A natural generalization of the TC approach is to add the integer holonomies as

optimization variables instead of having the user prescribe them. This generalization

leads to the optimization problem:

minimize
x∈Rl, α∈Zn, β∈Z2g

ET (x)

subject to

[

dT0
HT

]

x− π
2

[

α

β

]

= −
[

αg

βg(H)

]

,

∑n
i=1αi = 4χ.

(3.1)

Here, for notational convenience, we separate the holonomy signature as s=
[

α, β
]

, where

α will denote the cone singularities vector and β the angle defects on non-contractible

cycles. Similarly, αg is the discrete Gaussian curvature, and βg(H) the geometric angle

defects of the dual cycles in H, where both are computable from the geometry of the

input mesh (see Figure 3.1).

A main result of this thesis is that the optimization problems in Equations (2.2)

and (3.1) are equivalent. Formally, we have:

Theorem 3.1.

(i) Let (θ, p) be a feasible solution of (2.2). Then, for any integral basis of non-

contractible dual cycles H, there exists a feasible solution (x, α, β) of (3.1) such

that ET (x) = EM (θ, p).

(ii) Let (x, α, β) be a feasible solution of (3.1). Then, for any dual spanning tree T ,
there exists a feasible solution (θ, p) of (2.2) such that EM (θ, p) = ET (x).
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Figure 3.1: Computing the angle defects for (green) trivial and (blue) non-trivial cycles.
For trivial cycles, we take 2π minus the sum of angles, which is the usual discrete

Gaussian curvature. For non-trivial cycles, we take the sum of exterior angles along the
blue curve–adding θ whenever the curve turns left, and subtracting θ whenever the

curve turns right.

(iii) Let (x, α, β) and (θ, p) be corresponding solutions as in (i,ii), and let θT be the

integrated values of x. Then θT =θ modπ/2.

A proof is given in the Appendix. The main building block of the proof is to relate

the variables of the two optimization problems using a linear system of equations. We

show that this system always has a unique solution that is integer-valued for p and

(α, β). The integer solutions are guaranteed by a result from the theory of cycle bases

on graphs [LR07], stating that a square submatrix of an integral cycle basis matrix,

obtained by removing columns corresponding to edges of a spanning tree, is unimodular.

Corollary 3.2. The optimization problems MIQ and TCO are invariant to the choice

of dual spanning tree T and basis for non-contractible cycles H, respectively. Specifically:

(i) Given a feasible solution (θ, p) to MIQ with some spanning tree T , then for any

spanning tree T̃ , there exists a feasible solution (θ̃, p̃) such that EM (θ, p) = EM (θ̃, p̃)

and θ̃ = θ mod π
2 .

(ii) Given a feasible solution (x, α, β) to TCO with some choice of basis H, then for

any basis H̃, there exists a feasible solution (x̃, α̃, β̃), such that ET (x) = ET (x̃)

and θ̃T = θT mod π
2 .

This is a straightforward result of Theorem A.1: given a solution (θ, p) to MIQ with

some spanning tree T , we use part (i) of the theorem to construct a solution (x, α, β) to

TCO, and then use part (ii) with a different spanning tree T̃ to construct another MIQ
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solution (θ̃, p̃). The theorem guarantees that EM (θ, p) = EM (θ̃, p̃) and also that θ̃ = θ

mod π
2 . A similar argument shows that TCO is invariant to the choice of H. Note that

p and β might change, though this is inconsequential to the resulting cross fields, which

are given by θ and θT respectively.

As the optimization problems are equivalent, we can devise an algorithm for optimiz-

ing Equation (3.1) instead of Equation (2.2). There are a few advantages to changing

the parameterization of the problem to the variables (x, α, β). First, we can use the

discrete Hodge decomposition [TLHD03] to eliminate the real variables x and remain

with an integer-only problem. Second, the integer variables α have a geometric meaning,

as the cone singularities of the computed cross field, and thus we can devise an efficient

iterative method for optimizing them. Finally, the separation of α and β allows us to

relax β while optimizing α, simplifying the algorithm for high genus meshes.

3.2 IOQ

The problem in Equation (3.1) has some interesting properties, as was noted in [CDGDS13,

Sec. 8.4.1]. First, recall a fundamental property of the adjacency matrices d0, d1,

namely that d1d0 = 0. Hence, any vector x ∈ R
l can be uniquely decomposed as

x=d0a + Bb+ dT1 c, where B∈Rl×2g is a matrix whose columns form a basis for the

linear space ker(d1) \ im(d0), and a∈Rn, b∈R2g, c∈Rm. B is computed from H by

B = H − d0(d
T
0 d0)

†dT0 H and is orthogonal to d0 and d1 (see [CDGDS13, Sec. 8.2.2]).

Here † indicates the Moore-Penrose pseudo-inverse. This decomposition is also known

as the Hodge decomposition of discrete differential forms [TLHD03] (we discuss the

metric in Section 6.1). Thus, the constraint in Equation (3.1) can be written as:

[

dT0
HT

]

[

d0 B dT1

]







a

b

c






= π

2 s− sg(Γ), (3.2)

yielding the constraint matrix

[

dT0 d0 dT0 B dT0 d
T
1

HTd0 HTB HTdT1

]

=

[

dT0 d0 0 0

HTd0 HTB 0

]

. (3.3)

Here we used the fact that the matrices d0, B are orthogonal, and the fact that the edge

values of the non-contractible dual cycles in H sum to 0 on all triangles; thus HTdT1 = 0.

Consequently, c is not constrained by Equation (3.3). Due to the orthogonality of

the decomposition, we have ET (x) = ‖d0a‖22 + ‖Bb‖22 + ‖dT1 c‖22, and thus the optimal

solution will always have c = 0. Finally, the constraint on a does not depend on β, and

is given by:

a(α) = L†(π2α− αg), (3.4)
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where L = dT0 d0 is the graph Laplacian. Note that a(α) is defined only up to an additive

constant, since L has co-rank 1. Similarly, the constraint on b is:

b(α, β) = (HTB)−1
(

π
2β − βg(Γ)−HTd0a(α)

)

, (3.5)

where HTB is non-singular since both H and B are full rank.

Combining these properties allows us to eliminate the real-valued variables a, b and

remain only with the integer-valued variables α, β. Hence, the part of the objective

function that depends on the cone singularities α is:

EI(α) = ‖d0a(α)‖22 = (π2α− αg)
TL†(π2α− αg), (3.6)

where we used the fact that L† is symmetric, and L†LL† = L†. Finally, the optimization

problem is:

minimize
α∈Zn, β∈Z2g

EI(α, β) = EI(α) + ‖Bb(α, β)‖22

subject to
∑n

i=1αi = 4χ.

(3.7)

The optimization problems TCO and IOQ are equivalent. Formally, we have:

Theorem 3.3. (x, α, β) is an optimal solution to Equation (3.1) if and only if x =

d0a(α) +Bb(α, β) and (α, β) is an optimal solution to Equation (3.7).

The proof is a straightforward result of Equations (3.2)-(3.5) and is provided in the

Appendix for completeness. Similar results, albeit not in the context of optimizing the

holonomy signature, appear in [CDGDS13, Sec. 8.4.1] and [CZ17a].

Corollary 3.4. For a closed, oriented triangle mesh, with a single directional constraint,

the optimal cross field for MIQ, i.e., the optimal θ mod π
2 in Equation (2.2), is fully

determined by the holonomy signature s=
[

α, β
]

.

This is a straightforward result of Theorem A.1 and Theorem A.2. A solution (θ, p)

is optimal for MIQ if and only if there exists a corresponding optimal solution (x, α, β)

for TCO, where (α, β) are also optimal for IOQ. Thus optimality can be determined

from the holonomy signature s=
[

α, β
]

.

3.3 IOQr: Relaxation

We will consider a relaxation of Equation (3.7), with the β variables relaxed to be

real-valued. Note that in this case we can always make b(α, β) equal 0 by taking

β∗(α) = 2
π

(

βg(H) +HTd0a(α)
)

. Thus, we can eliminate β and solve

minimize
α∈Zn

EI(α)

subject to
∑n

i=1αi = 4χ.

(3.8)
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Then, given the solution α∗ to the above, we further solve:

minimize
β∈Zn

‖Bb(α∗, β)‖22. (3.9)

In the following two sections we first propose an iterative algorithm for minimizing

the energy in Equations (3.8), (3.9) and then show how to devise an approximation that

allows us to trade-off the quality of the cross field and the computational time.
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Chapter 4

Optimization

4.1 Solving for α

The optimization problem in Equation (3.8) is an instance of the closest vector problem

(CVP) [Mic01], known to be NP-hard in the general setting. While there exist instances

of the problem that are polynomially solvable [SG17], to the best of our knowledge such

an algorithm is not currently known for matrices of the form of L†. Furthermore, our

problem has an additional complication due to the sum constraint on α. We therefore

opt for an iterative approach that has some favorable properties: (i) the constraint

holds by construction, (ii) it is easily parallelizable, and (iii) it is closely related to the

resistance distance and thus admits a graph-theoretic approximation.

Assume α(t)∈Zn is a feasible solution for Equation (3.8), and consider the update

α(t+1)=α(t) + hij , where hij = hi − hj , and hi∈Zn is a vector that is all zeros except

for a single 1 at the i-th entry. Note that α(t+1) sums to 4χ. Thus, to minimize (3.8),

we start with a random feasible α(0) ∈ Z
n, and iteratively update it by adding the best

hij over all possible choices of i, j, i 6=j as follows:

(i∗, j∗) = argmin
1≤i,j≤n,i 6=j

E(α(t) + hij),

α(t+1) = α(t) + hi∗j∗ .

We continue this process as long as there exists a choice of (i, j) that reduces the energy.

While global optimality cannot be guaranteed, we have some partial guarantees

since there is no hij that reduces the energy. Specifically, it is easy to see that there is

no relocation of a single cone singularity of magnitude ±π
2 , and no cancellation of two

such singularities that reduces the energy.

4.2 Solving for β

The optimization problem in Equation (3.9) is also a CVP, of dimension 2g, with

the matrix π
2B(HTB)−1 and the target vector B(HTB)−1(βg + HTd0a). For low
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Figure 4.1: Comparison between direct rounding and an exact CVP solver [AEVZ02]
for some low resolution meshes sorted by genus. Note that in most cases direct

rounding yielded an optimal solution. Notable exceptions are the ball and heptoroid
meshes, of genus 5 and 22 respectively, where CVP did improve the solution

considerably. We also show the resulting cross fields for the ball mesh with β computed
by rounding (left) and CVP (right).

dimensional lattices, and low resolution meshes, i.e. when g, n are small, finding the

optimal solution is still computationally feasible [AEVZ02]. However, we found that

direct rounding yields excellent results, and in many cases the exact CVP solution

did not considerably improve the energy. This is demonstrated in Figure 4.1, which

shows the energy ‖Bb(α, β)‖22 computed using direct rounding and using the exact CVP

solution. Thus, in our experiments we use β = round(β∗(α∗)). A large improvement

in the energy did occur for some of the higher genus meshes, implying an interesting

future research direction.

4.3 Initialization

To initialize α(0), we pick a set of random indices S ⊆ {1, ..., n} and set α(0) at these

locations to ±1 such that
∑

i α
(0)
i = 4χ holds.

To check the stability of our algorithm to this initialization, we ran it on the Bunny

mesh with a varying number of initial singularities, N = 30 times for each |S| value.
For each run, we measured the resulting final energy, and the resulting number of cone

singularities. As is evident in Figure 4.2, both the energy (left) and the final number of

singularities (right) are stable under the choice of initial random input, even when the

number of initial singularities is far larger than their final number. For reference, we

also show the energy value and the number of singularities of MIQ for this mesh. Note

that for all runs our results yield a lower number of singularities and a lower energy.

As the figure shows, there is a larger variability in the final number of singularities

than in the energy. We believe this is because there are multiple solutions that lead
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Figure 4.2: Final energy value (left) and final number of cone singularities (right) as we
increase the number of initial singularities. We also show the energy value and number
of singularities of MIQ [BZK09]. Note that our method is stable to the initialization,

and in all cases yields a better energy than MIQ with fewer singularities.

to similar energy values. To demonstrate this, we additionally show in Figure 4.3

the average of α across all N experiments for the initial (a) and final (b) iterations.

Note that while the singularities concentrate at specific locations, there might be

multiple equivalent configurations, e.g. on the tail, leading to a greater variation in the

singularities than in the energy. We additionally show one of our results (c), and the

MIQ result (d).

4.4 Convergence.

Our algorithm converges in a relatively small number of iterations. Figure 5.2 (left)

shows the energy values during the iterations, for different numbers of initial singularities,

additional to the minimal number required to fulfill the constraints on α. Note that

starting from more singularities leads to slower conversion; thus, in our experiments we

always use for initialization the minimal number possible of ±π
2 singularities.

4.5 Parallelization

Our iterative update for α is computationally demanding, yet easily parallelizable. To

devise a practical algorithm, we note the change in energy due to the addition of hij :

π2

4 EI(α+ hij) =
π2

4

(

EI(α) + hTiju(α) +Rij

)

,

where

Rij = hTijL
†hij , u(α) = 2L†(α− 2

π
αg).
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Note that the matrix R, whose (i, j)-th entries are given by Rij , is independent of α

and can be precomputed. Furthermore, we have:

u(α+ hij) = 2L†(α− 2
π
αg + hij) = u(α) + 2L†hij .

Thus we can compute u(0) = u(α(0)) and update it at every iteration. Hence, at each

iteration we do the following:

(i∗, j∗) = argmin
1≤i,j≤n,i 6=j

u
(t)
i − u

(t)
j +Rij ,

α(t+1) = α(t) + hi∗ − hj∗ ,

u(t+1) = u(t) + 2L†
i∗ − 2L†

j∗ ,

where L†
i is the i-th column of L†. The resulting algorithm, denoted IOQr, is given in

Algorithm 4.1.

The algorithm is highly parallel, since the computation for every (i, j) is independent,

and thus it is naturally amenable to a GPU implementation. It does, however, require the

precomputation of L†, which may be prohibitive for large meshes. In our experiments,

this algorithm was adequate for meshes with up to 40K faces (see Figure 3 in the

supplemental material) on an NVIDIA GeForce GTX 1080 Ti GPU. For larger meshes,

we propose an approximation scheme described in the next section.

Figure 4.3: The average of α across N random initializations for the initial (a) and
final (b) iterations. Note that the singularities concentrate at specific locations, yet

there might be multiple equivalent configurations, e.g. on the tail. We also show one of
our results (c) and the MIQ result (d).
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Algorithm 4.1 IOQr, IOQǫ

Input: V,F , E , d0, H, L†, R, R̃ǫ

Output: α, β

1: n,m, l← number of vertices, faces, and edges respectively

2: α(0) ← random placement of ±1 such that
∑

iα
(0)
i = 4χ, α(0)∈Zn

3: m(0) ← −∞; t← 0
4: u(0) ← 2L†(α(0) − 2

π
αg); u(0) = solve(L, 2α(0) − 4

π
αg)

5: while m(t) < 0 do
6: i, j ← argmin

1≤i,j≤n,i 6=j

u
(t)
i − u

(t)
j +Rij ; ... +(R̃ǫ)ij

7: α(t+1) ← α(t) + hi − hj
8: u(t+1) ← u(t) + 2L†

i − 2L†
j ; u(t+1) = solve(L, 2α(t+1) − 4

π
αg)

9: m(t+1) ← u
(t)
i − u

(t)
j +Rij ; ... +(R̃ǫ)ij

10: t← t+ 1
11: end while
12: a = solve(L, π2α

(t) − αg)
13: β = round

(

2
π
(βg(H) +HTd0a)

)
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Chapter 5

Approximation

5.1 Background: The Resistance Distance

The matrix R that appears in Algorithm 4.1 has a geometric meaning, and is known as

the graph resistance distance matrix. It encodes graph-theoretical distances originally

used in the theory of electrical networks [Kir58]. On an edge, it is equal to the potential

difference when we inject a unit current at one end of the edge and extract it at

the other end. It can also be thought of as the commute time between two vertices

[CRR+96], or the probability that an edge appears in a random spanning tree of the

graph [DS84, Bol13]. The resistance distance, also known as the commute time distance,

has been used in geometry processing for various applications; see e.g. [PS13]. It can be

computed explicitly by:

Rij = hTijL
†hij = L†

ii + L†
jj − 2L†

ij ,

yet this requires the matrix L†, which is computationally prohibitive to compute for

large meshes. To overcome this, we use an efficient random approximation of R.

Algorithm 5.1 Approximate resistance distance

Input: V, E , ǫ
Output: R̃ǫ

1: k ← round(24 log n/ǫ2)
2: Q← random k × l matrix with entries ±1/

√
k

3: Y ← Qd0
4: ZT = solve(L, Y T )
5: (R̃ǫ)ij = ‖Zi − Zj‖22

5.2 Random Approximation

Spielman and Srivastava [2011] proposed a method, based on random projections, to

approximate the resistance distance of a given graph. Calculating R is equivalent to
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Figure 5.1: The results of our exact and approximated algorithms (IOQ and IOQe),
compared with MIQ [BZK09] and GO [KCPS13], on two symmetric models. See the

text for details.

computing the pair-wise Euclidean distances between points in
{

d0L
†hi

}

vi∈V
, which are

the columns of d0L
†. This is true since

Rij = hTijL
†hij = hTijL

†LL†hij

=
(

hTijL
†dT0

)(

d0L
†hij

)

= ‖d0L†hij‖22.

To efficiently and accurately approximate these, Spielman and Srivastava [2011] projected

the columns of d0L
† onto a subspace spanned by O(log n) random vectors and calculate

the distances in the projected space. Let Qk×l be a random Bernoulli matrix with

entries of ±1/
√
k, where k ≥ 24 log n/ǫ2, for some ǫ>0. They computed Y = Qd0 and

solve ZL = Y for Z. The n columns of Z are the projected points of dimension k, and

we can use the Euclidean distances between them to approximate the resistance distance

by:

(R̃ǫ)ij = ‖Zi − Zj‖22,

where Zi is the i-th column of Z. The algorithm for computing R̃ǫ is provided in

Algorithm 5.1.

Implementation. Spielman and Srivastava [2011] in fact further speed up the theo-

retical running time by approximating Z using [ST04, ST14], but we found this step to

be unnecessary since the computation time was dominated by computing R̃ij for all

i, j ∈ V, whereas in Spielman and Srivastava [2011] they compute it only for eij ∈ E .
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Figure 5.2: Left: Energy values during the iterations for different numbers of initial
singularities, for both the exact (IOQ) and approximated (IOQe) methods. Right:

Close-up of the same graph. Note that the energy plot of the approximated method is
nearly indistinguishable from the exact method.

To compute Z we first factorize L, and then use back-substitution, using [Dav13]. The

pair-wise distances between all the columns in Z are then computed efficiently on the

GPU using the built-in Matlab function “pdist”. The algorithmic modifications required

in order to work with the approximate resistances instead of R and L† are minor. The

only difference is that instead of using L† for updating u, we need to solve a sparse

linear system at every iteration, yet we can do that efficiently using the factorization of

L. The changes are highlighted in Algorithm 4.1, where green lines replace blue lines

when using approximate resistances. Note that when using approximate resistances,

the energy is no longer guaranteed to monotonically decrease; thus, we stop when we

identify a cycle in the solutions.

Figure 5.2 shows the energy values during the iterations for the approximated

and exact algorithms with the same initialization. Note that the graphs are almost

indistinguishable. Indeed, in practice the approximated algorithm yields energy values

that are very close to the result of the exact algorithm. Figure 5.1 shows the output of

the approximated algorithm with ǫ = 0.5 compared with MIQ [BZK09], GO [KCPS13]

and our exact algorithm IOQ, on two symmetric models. Note that compared to

MIQ and GO on the torus, IOQ finds a lower energy solution with fewer singularities.

Furthermore, for both the cube and the torus, the singularities’ locations are close to

symmetric. IOQe yields very similar results to IOQ, at the expense of a slightly higher

energy. Note that the GO result on the cube is very similar to ours, up to a global

rotation of all the crosses, which does not affect the energy.

Approximation quality. The Johnson-Lindenstrauss Lemma guarantees that with

high probability the Euclidean distances will not be distorted by more than a multi-

plicative factor of 1 ± ǫ [JL84, Ach01, DG03]. In practice, we found that for graphs

that come from triangle meshes, the distortion is empirically less than the theoretical

guarantee. Figure 5.3 (left) shows the distortion ratio of Rij/(R̃ǫ)ij for different values

of ǫ. For example, for n=55,000 and ǫ≈0.5, the reduced dimension is k=1000. In this
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Figure 5.3: Left: Histogram of the pair-wise distortions Rij/(R̃ǫ)ij for three values of ǫ.
Right: Percentage of pairs with distortion greater than 10% as we increase the

projected dimension k. See the text for details.

case, the expected distortion is 50%, yet the actual observed maximal distortion is only

around 15%. In Figure 5.3 (right) we show the trend for a growing k, i.e. a decreasing ǫ,

of the percentage of pairs with distortion higher than 10%, again for n = 55,000. Note

that the distortion quickly decreases, with less that 5% of such pairs for k = 1000.

To give some insight into the behavior of the approximation, we visualize in Figure 5.4

the exact resistance distance R, and its approximation R̃ǫ for different values of ǫ. We

show these as color coded functions, where the function is the resistance distance of

all mesh vertices from a single marked vertex. Note that, as expected, the functions

become noisier as ǫ grows, yet qualitatively, they are similar to the exact resistance

distance.

Time/quality tradeoff. Fig. 5.5 shows the robustness of this approximation when

combined with our algorithm, and the resulting trade-off between the quality of the

output and the computational time. We first compute N = 300 different R̃ǫ for various

ǫ values, by running Algorithm 5.1. Then, for a fixed initial α(0), we run Algorithm 4.1

with the different R̃ǫ. We show in (b-d) the average optimal α after convergence, where

0

0.5

1

1.5

2

Figure 5.4: The resistance distance and its approximations as we increase ǫ, with
respect to the red point. Here we show the running time in seconds, T , and the original

and projected dimension, n and k respectively.
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0.06
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0.1

0.12

Figure 5.5: Time/quality tradeoff of IOQǫ with different ǫ values. We show the average
across N = 300 experiments of α after convergence, using (a) the exact resistance
distance with different initial random α; and (b-d) the approximate resistance, with
different random projections and the same initial α. Note that for ǫ = 0.5 we get a
dimensionality reduction of more than 90%, yet the algorithm yields excellent cone

positions.

we average across the N experiments for matrices with the same ǫ. In addition, we show

in (a) the average optimal α, when using the exact resistance distance, and starting

from N random initializations, for comparison. As the figure shows, while the locations

of the singularities degrade for very large ǫ, for ǫ = 0.5 we achieve a dimensionality

reduction of more than 90%, and still get an excellent distribution of the locations of

the singularities. In all our experiments, unless mentioned otherwise, we used ǫ = 0.5.
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Chapter 6

Implementation

We implemented our algorithm in Matlab, using its built-in support for GPU paralleliza-

tion with “gpuArray”. For the inner loop that minimizes over all (i, j) pairs, we used a

CUDA kernel. For the exact algorithm, we first attempt to compute L† on the GPU,

and if that fails due to memory requirements, we attempt a blockwise GPU inversion. If

that also fails, we invert L† on the CPU. For large meshes, where L cannot be inverted

on the GPU, the exact algorithm is therefore computationally very expensive. For

the approximate algorithm, we factorize L on the CPU, and use the factorization to

compute Z. Then R̃ǫ is computed from Z on the GPU. On our machine, with an

NVIDIA GeForce GTX 1080 Ti GPU and an Intel Core i7-7820X CPU @ 3.60GHz with

8 cores, the exact algorithm takes a few minutes for a mesh with 50K faces, and the

approximate algorithm with ǫ = 0.5 takes around 20 seconds. The full timing details

are provided in Figure 3 of the supplemental material.

6.1 Limitations

The main limitation of our algorithm is the heavy computational load. Because we have

to fit L† or R on the GPU, the memory requirement is O(n2/2), which on our hardware

(12 GB RAM) was feasible for meshes with up to 100K faces. This could potentially be

reduced to O(nlog(n)) by holding Z instead on the GPU and computing R̃ǫ on the fly.

Another limitation is that we do not handle directional constraints. In many

scenarios, especially quadrangular remeshing, it is beneficial if the cross field is aligned

with the curvature directions of the surface. We leave the generalization of our approach

to directional constraints for future work.

Finally, the geometry of the surface is not incorporated in the system matrix L, since

we use L = dT0 d0, and not a weighted Laplacian. The TC formulation allows for adding

weights on the edges, [CDS10, Section 2.5], and a similar approach could be applied

to MIQ as well. We did not attempt that, as we wished to compare to a non-modified

MIQ. As the approach of Spielman and Srivastava [2011] can be applied to a weighted

graph, we believe a suitable adaptation of our algorithm that incorporates the geometry
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Figure 6.1: An example of our method with the graph Laplacian (left) and the
cotangent Laplacian (middle) compared to MIQ (right). Note that in both cases our
method finds a better solution in terms of smoothness energy and singularity placement.

in L can be devised. See Figure 6.1 for a preliminary result in which we replaced L

by the cotangent Laplacian and no approximation was used. Note that the resulting

cross-field has fewer singularities and a lower smoothness energy than the MIQ result.

6.2 Results

6.2.1 Comparisons

Quantitative, with MIQ [BZK09] We compared our exact method (IOQ), our

approximated method (IOQe with ǫ = 0.5) and MIQ [BZK09]. For IOQ, IOQe and

MIQ we used the same single directional constraint on an arbitrary face. GO can be

computed without any directional constraints. To evaluate the methods, we assessed the

angle-based energy of the output fields E = EM (θ, p) from Equation (2.2), the number

of singularities |S|, i.e. the number of vertices vi∈V such that αi 6=0, and the timing,

on the models from the benchmark provided by [MPZ14]. We implemented our method

in Matlab and CUDA, while for MIQ we used the Libigl [JP+16] implementation.

Figure 6.2 shows the ratio of improvement of our methods vs. the MIQ result, i.e.

(EMIQ/Eours)((|S|MIQ + 1)/(|S|ours + 1)). As the figure shows, the product of these

ratios is always greater than 1 (the vertical black line); thus, for all models we improve

upon MIQ. Also note that the approximate method (IOQe) yields comparable, and
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Figure 6.2: The improvement in energy and singularities of our exact (IOQ) and
approximate (IOQe) methods relative to MIQ, computed by

(EMIQ/Eours)((|S|MIQ + 1)/(|S|ours + 1)) on the meshes from [MPZ14], where |S| is
the number of singularities. Note that for all meshes our result is bigger than 1, and
thus improves on MIQ. Furthermore, the results of IOQ and IOQe are comparable for

most meshes.

sometimes better, results than IOQ. The median improvement ratio over all models is

1.71 for IOQ and 1.86 for IOQe.

Quantitative, with GO [KCPS13] The cross field generation method suggested

by Knöppel et al. [2013] optimizes a different energy than MIQ, yet is very efficient

and has global optimality guarantees (for their energy). We compared our method with

GO as well, using a Matlab implementation with a face-based discretization as done in

[DVPSH14]. The results are shown in Figure 6.3, using the same quantitative measures

as in Figure 6.2. Since we are measuring an energy that GO is not optimizing for, our

method outperforms GO in terms of energy. Note, however, that we also outperform

GO in terms of the number of singularities. The median improvement rate over all

models was 2.99 for IOQ and 3.3 for IOQe. All the quantitative results, i.e. E, |S| for
all the methods and all the models are provided in Figures 1 and 2 in the supplemental

material.

Timing. Our approach is considerably slower than both MIQ and GO. For example,

MIQ completed for all the models within a few seconds, whereas GO is even faster,

finishing in less than a second for all models. Our approximated method with ǫ = 0.5

takes around 20 seconds on models of size 50K faces. Our exact method can take

around 5 minutes for such models and around 20 minutes for models of 100K faces.
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Figure 6.3: The improvement in energy and singularities of our exact (IOQ) and
approximate (IOQe) methods relative to GO [KCPS13], using the same protocol as in
Figure 6.2. Here, again, for all meshes our result is bigger than 1, and thus improves on

GO. Furthermore, the results of IOQ and IOQe are comparable for most meshes.

However, it is efficient for models whose L matrix can be inverted on the GPU. All the

timing results for IOQ and IOQe are provided in Figure 3 in the supplemental material.

Qualitative. Figure 6.4 shows a few example models from the benchmark with their

corresponding cross fields for the different methods. Note that for the IOQ approach

there are considerably fewer singularities, with a smaller energy, and the singularities

are well distributed when compared with the MIQ and GO results.

6.2.2 Scalability

To compare the scalability of our approach with respect to the energy, number of

singularities and timing, we ran our methods and MIQ on a series of meshes with the

same geometry and varying resolution of the Bunny mesh. As Figure 6.5 shows, our

energy remains the same order of magnitude when increasing the mesh size, and the

number of singularities remains largely the same. In terms of timing, both IOQ and

IOQe are slower than MIQ, yet IOQe is considerably faster than IOQ.

6.2.3 Varying ǫ

Figure 6.6 shows our results on a model with sharp features as we increase ǫ, the

approximation parameter. Note that with ǫ = 1, which reduces the dimension to a mere

3% of the original dimension, IOQe still finds a similar singularity placement, albeit
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with a somewhat higher energy. For the best trade-off between the resulting smoothness

energy and the reduced dimension, we have found that taking ǫ = 0.5 is appropriate.

6.2.4 Stability to Noise

To measure the stability of our approach to geometric noise, we added random Gaussian

noise in the normal direction to the kitten model, with standard deviation of 10 and

15 percent of the average edge length. The results are shown in Figure 6.7, for IOQe

with ǫ = 0.5 (first three from the left) and MIQ (last three from the right). Note that

for the 10 percent noise level the number of singularities remains almost the same for

our approach. Even for the higher noise level, our algorithm yields considerably fewer

singularities than MIQ, as well as a lower energy.

In another experiment, we randomly flipped the edges of a mesh to get a non-

uniform triangulation. While the geometry is not encoded in the system matrix L, it

does contribute to the right hand side of the system through the angle defects αg, βg.

Therefore, the results are, at least to some extent, robust to changes in the triangulation,

as is shown in Figure 6.8.

6.2.5 Application to Quadrangulation

The cross fields we generate can be used for computing quadrangular meshes, by creating

a parameterization whose gradients align with the cross directions, and then extracting

the quads. We used off-the-shelf approaches for these steps: the parameterization part

of MIQ [BZK09, Sec. 5] as implemented in libigl [JP+16], and the quad extraction

method QEx [EBCK13] that receives as input a parameterization. While in general

curvature direction alignment is often required for quad meshing, it seems that in some

cases good cone point locations can lead to high quality quadrangular meshes even

without alignment. Figure 6.9 shows some examples of quad meshes computed using

our cross fields, and using the cross field generated by MIQ. Note that the better placed

singularities and lower energy of our approach lead to smoother, more symmetric quad

meshes with better shaped quads.
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Figure 6.4: Some meshes from the benchmark and their cross fields. Note that our
method yields considerably fewer singularities with lower energy values.
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Figure 6.5: Energy, number of singularities and timing scalability, on a series of meshes
with varying resolutions. See the text for details.

Figure 6.6: Varying the approximation parameter, ǫ, has little effect on the final
singularity placement. Note in particular that even with a projected dimension of
k = 213, our method still places most of the singularities on the corners as desired,

albeit with a somewhat higher energy.

Figure 6.7: Stability of our method (left) compared to MIQ (right) with increasing
levels of normal noise added to the vertex positions.
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Figure 6.8: The results of our method (left) compared to MIQ (right) on a uniform and
non-uniform triangulation. Note that while our method does not incorporate the

geometry in the system matrix L, it is, at least to some extent, robust to changes in the
triangulation.

IOQ IOQe ǫ = 0.5 MIQ

Figure 6.9: Quadrangular meshes generated from our cross fields (left,center),
compared to quad meshes generated from MIQ cross fields (right).
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Chapter 7

Conclusion

We showed an equivalence between two existing methods for generating cross fields,

which we then used to formulate a new iterative algorithm that finds better solutions than

state-of-the-art results in terms of the angle-based energy and number of singularities.

Using a recent approximation of the resistance distance, based on random projections,

we allow a trade-off between the computation time and the smoothness of the produced

field using a single tunable parameter, ǫ.

A natural generalization of our approach is to add support for directional constraints.

In addition, we believe that a similar iterative approach could be useful for computing

a parameterization with integer cone locations that is aligned with a given cross field.

Finally, to the best of our knowledge, this approximation of the resistance distance has

not been used in geometry processing, but we posit that it is of independent interest

and could be useful in other applications.
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Appendix A

Appendix - Proofs.

Let H ∈ Z
l×2g be any integral basis for the non-contractible dual cycles ofM, e.g. as

obtained by computing the tree-cotree decomposition [Epp03, Lemma 3.2] and orienting

the edges [CDS10, Sec 2.1], and let d1∈Zm×l be the signed face-edge adjacency matrix.

Further, let T ⊂E∗ be a dual spanning tree ofM.

First, we relate an MIQ solution (θ, p) and a TC solution (x, α, β) through the

following system of linear equations:

π
2 (Γp+ s) = sg(Γ)− Γr, (A.1)

π
2 p+ dT1 θ + x = −r, (A.2)

where ΓT =
[

d0, H
]

, s=
[

α, β
]

, and sg=sg(Γ)=
[

αg, βg(H)
]

.

Lemma A.0.1. For any choice of H, we have that I0(Γ) =
2
π
(sg(Γ) − Γr) ∈ Z, and

∑n
i=1 I0(Γ)(i)=4χ.

Proof. By definition, sg(Γ) are the geometric angle defects around the cycles of Γ,

and Γr is the holonomy of the local reference frame field along the cycles of Γ (see,

e.g. [CDS10, Sec. 3.2]). Hence, their difference is a multiple integer of π
2 and thus I0∈Z.

Furthermore, for i = 1..n we have that I0(i) is the index of the reference frame field at

the vertex vi∈V, and thus
∑n

i=1 I0(Γ)(i)=4χ [RVLL08, Theorem 2.3].

Lemma A.0.2. Given a dual spanning tree T ⊂ E∗, let Γf be the matrix formed by

the columns of Γ corresponding to E∗ \ T , i.e. dual edges not in T . In addition, let

s∈Zn+2g such that
∑n

i=1si=4χ. Then the linear system

Γfpf = −s+ I0(Γ) (A.3)

has a unique integer solution.
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Proof. Every column of dT0 sums to 0, thus we can remove its first row and it will

still span all the dual cycles. Given a matrix M , let M̂ denote the matrix with the first

row removed. Hence, Γ̂ is an integral basis for the dual cycles, with independent rows.

Using [LR07, Lemma 27], we have that the matrix Γ̂f is a non-singular unimodular

matrix. Furthermore, the right hand side of Equation (A.3) is integer, since s is integer

and due to Lemma A.0.1. Thus the system Γ̂fpf =−ŝ + I0(Γ̂) has a unique integer

solution. Finally, we have that
∑n

i=1I0(Γ)(i)=4χ from Lemma A.0.1, and
∑n

i=1si=4χ.

Thus
∑n

i=1(−si + I0(Γ)(i))= 0. Furthermore,
∑n

i=1Γf (i, :)pf =0, thus, pf fulfills the

first linear constraint as well, and is thus a unique integer solution of Equation (A.3) as

required.

Lemma A.0.3. Let (θ, p) be a feasible solution of Equation (2.2) and let H be an

integral basis of non-contractible dual cycles. Then there exists a unique solution (x, s)

of the system of equations (A.1), (A.2) such that s =
[

α, β
]

and (x, α, β) is feasible

for (3.1).

Proof Let s = I0(Γ) − Γp, then Equation (A.1) holds for (s, p). Note that I0(Γ) is

integer due to Lemma A.0.1, and Γp is integer since Γ and p are both integer. Thus,

s is integer. Let
[

α, β
]

= s, with α∈Zn, β ∈Z2g. Then, α= I0(d
T
0 ) − dT0 p, namely α

is a vector containing the indices of the cross field (θ, p) [BZK09, Sec 4.1], and thus
∑n

i=1αi=4χ [RVLL08, Theorem 2.3].

Let x = −r − π
2 p− dT1 θ, then Equation (A.2) holds for (x, θ, p). Now, we have that

Γx=−Γr − π
2Γp− ΓdT1 θ. Note that d1Γ

T =0, since d1d0=0, and the columns of H are

closed discrete one-forms (see e.g. [CDGDS13, Sec. 8.2.2]). From Equation (A.1) we

have that −Γr − π
2Γp=

π
2 s− sg(Γ), thus Γx− π

2 s=−sg(Γ) and (x, s) is feasible for the

problem (3.1).

Lemma A.0.4. Let (x, α, β) be a feasible solution of Equation (3.1) with cycle basis

H, and let T be a dual spanning tree. Then there exists a unique solution (p, θ) of the

system of equations (A.1) and (A.2) such that (p, θ) is feasible for (2.2).

Proof. Let s =
[

α, β
]

. Since (x, α, β) is feasible for Equation (3.1),
∑n

i=1si=4χ. Now,

let pf be the unique integer solution of Equation (A.3), guaranteed by Lemma A.0.2.

Define the vector p ∈ Z
l, such that p(e) = 0, ∀e ∈ T and p(e) = pf (e), ∀e ∈ E∗ \ T .

Then, p is the unique integer solution to Equation (A.1) that is also feasible for

Equation (2.2). Let ω = −r − π
2 p− x, then ω has a unique decomposition (up to two

constants) as ω = d0ω0 + dT1 ω2 +Bω1. Since (x, α, β) is feasible for TC, we have that

Γx = π
2 s − sg. Furthermore, we have that π

2 s − sg = −Γr − π
2Γp, due to Equation

(A.1) . Hence −Γx − Γr − π
2Γp = Γω = 0, and thus ω is in the kernel of dT0 and HT .

Since BT = HT −HTd0(d
T
0 d0)

†dT0 , we have that ω is also in the kernel of B, and thus

ω is orthogonal to the image of d0 and the image of B. Hence, ω0 = 0, ω1 = 0. Let

c ∈ F be the constrained face, and θ0 the constrained value in Equation (2.2). Now,
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set θ = ω2 − (ω2(c) + θ0)✶, where ✶ is a constant vector with all ones. Then, θ(c) = θ0

and dT1 θ = dT1 ω2 = ω, because dT1 ✶ = 0. Furthermore, θ is defined uniquely, since ω2 is

unique up to a constant shift. Thus (p, θ) is the unique solution of Equations (A.1), (A.2)

that is also feasible for (2.2).

Theorem A.1.

(i) Let (θ, p) be a feasible solution of (2.2). Then, for any integral basis of non-

contractible dual cycles H, there exists a feasible solution (x, α, β) of (3.1) such

that ET (x) = EM (θ, p).

(ii) Let (x, α, β) be a feasible solution of (3.1). Then, for any dual spanning tree T ,
there exists a feasible solution (θ, p) of (2.2) such that EM (θ, p) = ET (x).

(iii) Let (x, α, β) and (θ, p) be corresponding solutions as in (i,ii), and let θT be the

integrated values of x. Then θT =θ modπ/2.

Proof

(i) Let (θ, p) be a feasible solution of (2.2), and let (x, α, β) be the feasible solution

of Equation (3.1) guaranteed by Lemma A.0.3. Then −x = dT1 θ + r + π
2 p, due to

Equation (A.2). Thus EM (θ, p) = ‖dT1 θ + r + π
2 p‖22 = ‖−x‖22 = ET (x).

(ii) Let (x, α, β) be a feasible solution of (3.1), and let (p, θ) be the feasible solution

of Equation (2.2) guaranteed by Lemma A.0.4. Then, Equation (A.1) again leads

to EM (θ, p) = ET (x).

(iii) Let (x, α, β) and (θ, p) be corresponding feasible solutions given by Equations (A.1), (A.2).

Then, θT , the integrated angle values, are computed by dT1 θT = −x− r. Further-

more, from Equation (A.2) we have that dT1 θ = −x− r− π
2 p. Thus, d

T
1 (θT − θ) =

π
2 p = 0 mod π

2 . Since on the constrained face c∈F we have that θT (c) = θc = θ0,

we get that θT − θ = 0 mod π
2 .

Lemma A.0.5.

(i) If (x, α, β) is an optimal solution to Equation (3.1) then x = d0a(α) +Bb(α, β).

(ii) If x = d0a(α) +Bb(α, β) then ET (x) = EI(α, β).

(iii) If (x, α, β) is an optimal solution to Equation (3.1) then (α, β) is a feasible solution

to Equation (3.7).

(iv) If (α, β) is a feasible solution to Equation (3.7), then for x = d0a(α) +Bb(α, β),

we have that (x, α, β) is a feasible solution to Equation (3.1).
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Proof.

(i) Let (x, α, β) be an optimal solution of Equation (3.1). Then there exists a unique

decomposition (up to two constants) x = d0a+Bb+ dT1 c. Since x is optimal, the

matrices d0, B, d1 are mutually orthogonal and c is not constrained, then c = 0.

Due to the constraints in (3.1) we have that dT0 d0a = π
2α−αg, thus a = a(α)+ c✶

for some constant c∈R. Hence, d0a = d0a(α), since ✶ is in the kernel of d0. In

addition, also due to the constraints in (3.1), we haveHTd0a+HTBb = π
2β−βg(Γ),

thus b = b(α, β).

(ii) This is trivial, since d0, B are orthogonal.

(iii) This is trivial, since the constraints of (3.7) are a subset of the constraints of (3.1).

(iv) Let (α, β) be an optimal solution of Equation (3.7). Then αT
✶ = 4χ, and

(π2α−αg)
T
✶ = 0. Therefore, we have: dT0 d0a(α) = LL†(π2α−αg) =

π
2α−αg, since

LL†m = m for any m orthogonal to the kernel of L. Furthermore, HTd0a(α) +

HTBb(α, β) = HTd0a(α)+
π
2β−βg(Γ)−HTd0a(α) =

π
2β−βg(Γ). Therefore, if we

set x = d0a(α) +Bb(α, β), then (x, α, β) fulfills the constraints in Equation (3.1).

Theorem A.2. (x, α, β) is an optimal solution to Equation (3.1) if and only if x =

d0a(α) +Bb(α, β) and (α, β) is an optimal solution to Equation (3.7).

Proof.

⇒ Let (x, α, β) be an optimal solution of Equation (3.1). Then x = d0a(α)+Bb(α, β)

by Lemma A.0.5 (i). Assume that (α, β) is not optimal for Equation (3.7). Then,

there exists an optimal solution (α̃, β̃) such that EI(α̃, β̃) < EI(α, β). But then,

take x̃ = d0a(α̃) +Bb(α̃, β̃). According to Lemma A.0.5 we have that x̃ is feasible,

and ET (x̃) = EI(α̃, β̃) < EI(α, β) = ET (x), contradicting the optimality of

(x, α, β).

⇐ Let (α, β) be an optimal solution to Equation (3.7), and set x = d0a(α)+Bb(α, β),

then according to Lemma A.0.5, (x, α, β) is feasible for Equation (3.1). Assume

that it is not optimal, then there exists an optimal solution (x̃, α̃, β̃) such that

ET (x̃, α̃, β̃) < ET (x, α, β). But since (x̃, α̃, β̃) is optimal, we have that x̃ = d0a(α̃)+

Bb(α̃, β̃), and therefore ET (x̃, α̃, β̃) = EI(α̃, β̃). Hence, we have EI(α̃, β̃) =

ET (x̃, α̃, β̃) < ET (x, α, β) = EI(α, β), contradicting the optimality of (α, β).
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Appendix B

Appendix - Supplementary

Material.

We provide here the full quantitative results on the benchmark from Chapter 6.
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Figure B.1: Number of singularities.
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Figure B.2: Energy.
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Figure B.3: Timing in seconds.
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המידה. על יתר ישתנה לא הנקודות בין האוקלידי המרחק גבוהה בהסתברות אזי אקראי, באופן נמוך

המטריצה של קירוב לקבל ניתן אוקלידים, מרחקים לחישוב שקול ההתנגדויות מטריצת שחישוב מכיוון

זו גישה של נוסף יתרון מוצלח. יהיה הקירוב גבוהה ובהסתברות זה, מסוג מימד בהורדת שימוש ידי על

דבר גרפי, מעבד על מקבילי באופן לחשב ניתן הנמוך במימד האוקלידים המרחקים חישוב את שגם הוא

מעשית. מבחינה בביצועים ניכר שיפור המאפשר

ומדגימים המטריצה, של מדויק חישוב באמצעות וכן בקירוב שימוש תוך שיטתנו את מציגים אנו זו בתזה

נקודות ומספר חלקות מדד לפי קודמות משיטות יותר טובות תוצאות מקבלים אנו המקרים בשני כי

כאשר גם מיטבי לפתרון מתכנסת שהשיטה וכמותי איכותי באופן מראים אנו כן, כמו הסינגולריות.

המתוארות. הגישות שתי בין השקילות את מוכיחים אנו לבסוף, בבסיסו. אקראי שהינו בקירוב, משתמשים

ii©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



תקציר

של מגוון עם ספרתית גיאומטריה בעיבוד רבה חשיבות בעלי אובייקטים הם כיווניים וקטורים שדות

דיסקרטי למשטח משולשי דיסקרטי ממשטח מעבר מסוגנן, רינדור מרקמים, של סינתזה כגון יישומים

דיסקרטי למשטח משולשי דיסקרטי ממשטח למעבר הגישות אחת למשל, אדריכלי. ותכנון ריבועי,

שאוריינטציית הדרישה תוך ,Ω ⊆ R2ל־ מהמשטח מיפוי כלומר, פרמטריזציה, חישוב ידי על היא ריבועי

בכדי השדה של בכיוונים להשתמש ניתן נוספת, כדוגמה השדה. כיווני עם מיושרת תהיה הפרמטריזציה

המשטח. את מסוגנן באופן לרנדר רוצים כאשר מכחול״ ״כיווני להגדיר

מוגדרים המשטח על נקודה בכל בהם כיוונים שדות – מצטלבים וקטורים בשדות מתמקדת זו עבודה

שכן מורכבת, בעיה הינה מצטלבים וקטורים שדות חישוב .π/2 של סימטריה עם יחידה וקטורי ארבעה

של שלמות בכפולות לסיבוב האינווריאנטיות לייצוג משמשים אשר שלמים במשתנים תלוי הבעיה ניסוח

קומבינטורית בעיה במהותה היא הסינגולריות נקודות עבור האופטימלי המיקום מציאת כן, כמו .π/2

קשה.

דיסקרטי משטח פני על מצטלבים וקטורים שדות לחישוב חדש איטרטיבי אלגוריתם מציגים אנו זו בתזה

נמוכה אנרגיה עם פתרונות ומוצא גרפי, מעבד על מקבילי באופן לחישוב ניתן פשוט, האלגוריתם משולשי.

נקודת מחדש למקם ניתן לא כי מובטח בנוסף, קודמות. שיטות מאשר סינגולריות נקודות ופחות יותר

האנרגיה. את שיקטין באופן ±π/2 של אחת סינגולריות

בגישה הבעיה. של שונים ניסוחים שני בין מוכיחים, אנו אותה פורמלית, שקילות על מבוססת שלנו הגישה

אותה של במישור שרירותית צירים למערכת המיוחסת פאה, כל עבור זווית ידי על מיוצג השדה הראשונה,

.π/2 של בסימטריה להתחשב יש כאשר המינימאלית, דריכלה אנרגית שלו השדה הוא והפתרון פאה,

אילוצים של אוסף נוצר בכך, שכנה. לפאה מפאה במעבר בזווית השינוי בתור מיוצג השדה השנייה בגישה

חלק להיות במקום לאילוצים עוברים השלמים והמשתנים המשטח, פני על מעגליים ממסלולים הנובעים

המטרה. מפונקציית

עבור יעילה חיפוש שיטת ולפתח הבעיה מניסוח הממשיים המשתנים את להסיר לנו מאפשרת זו שקילות

של ההתנגדויות מטריצת הנקראת הגרפים מתורת במטריצה משתמש שלנו הניסוח הסינגולריות. נקודות

הפוטנציאלים להפרש שווה הגרף של קשת עבור ערכה שם החשמל, בתורת זו מטריצה מקור הגרף.

משך כעל זה ערך על לחשוב גם ניתן אחת. זרם יחידת דרכה זורמת כאשר הקשת קצוות בין המתפתח

באקראי. הנבחר הגרף של פורש בעץ תופיע שקשת ההסתברות כעל או הגרף, על קדקודים שני בין הנסיעה

משתמשים אנו התוצאה, חלקות פני על החישוב זמן קיצור של תעדוף ולאפשר החישוב את להאיץ בכדי

מסתמכת זו שיטה אקראית. הטלה על המבוססת הגרף של ההתנגדויות מטריצת לקירוב מוכרת בשיטה

למימד גבוה מימד בעל אוקלידי ממרחב נקודות אוסף מטילים כאשר לפיה ג׳ונסון־לינדנשטראוס, למת על
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המחשב. למדעי בפקולטה בן־חן, מירלה פרופסור של בהנחייתה בוצע המחקר

במהלך ובכתבי־עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של המאסטר מחקר תקופת

Nahum Farchi and Mirela Ben-Chen. Integer-only cross field computation. ACM Transactions
on Graphics (TOG), 37(4), 2018.

תודות

מודה אני כן, כמו התזה. כתיבת בעת רבה וסבלנות במקצועיות אותי שהנחתה למירלה להודות ברצוני

הדרך. לאורך והעידוד התמיכה על ולחברי למשפחתי

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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שלמים במספרים מצטלבים שדות תכנון

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

פרחי נחום

לישראל טכנולוגי מכון ־־־ הטכניון לסנט הוגש

2018 מאי חיפה התשע״ח סיוון
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שלמים במספרים מצטלבים שדות תכנון

פרחי נחום
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