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Abstract

Directional fields are important objects in geometry processing with applications ranging
from texture synthesis to non-photorealistic rendering, quadrangular remeshing, and
architectural design. In this thesis, we focus our attention on cross fields — a direction
field in which four unit vectors with 7/2 symmetry are defined at each point on the
surface.

Computing smooth cross fields on triangle meshes is challenging, as the problem
formulation inherently depends on integer variables to encode the invariance of the
crosses to rotations by integer multiples of 7/2. Furthermore, finding the optimal
placement for the cone singularities is essentially a hard combinatorial problem.

We propose a new iterative algorithm for computing smooth cross fields on triangle
meshes that is simple, easily parallelizable on the GPU, and finds solutions with lower
energy and fewer cone singularities than state-of-the-art methods. Furthermore, the
output cross fields are such that there is no relocation of a single +m/2 singularity that
will reduce the energy.

Our approach is based on a formal equivalence, which we prove, between two
formulations of the optimization problem. This equivalence allows us to eliminate the
real variables and design an efficient grid search algorithm for the cone singularities.
We leverage a recent graph-theoretical approximation of the resistance distance matriz
of the triangle mesh to speed up the computation and enable a trade-off between the

computation time and the smoothness of the output.
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Chapter 1

Introduction

Directional fields, and especially cross fields, are important objects in geometry pro-
cessing. They are used in many applications, from quadrangular remeshing to non-
photorealistic rendering [VCD"16]. Computing smooth cross fields on triangle meshes
is challenging, as the problem formulation inherently depends on integer variables to
encode the invariance of the crosses to rotations by integer multiples of /2.

A popular approach, suggested by Bommes el at. [2009], formulates a mixed-integer
optimization problem and solves it greedily to compute the cross field. While highly
efficient and effective, the greedy solution can lead to sub-optimal results, as in Fig. 1.1
(top). Alternatively, Crane et al. [2010] (TCODS) [CDS10] posed the problem in terms
of angle defects due to parallel transport on closed cycles, leading to a sparse linear
least squares problem that is solved efficiently when the defects are known.

We show that if the angle defects are unknown, and there are no directional con-
straints, these two optimization problems are equivalent. Furthermore, by eliminating
the real variables, we remain with an integer only optimization problem. We use this
insight to design a new iterative algorithm for minimizing the energy that is simple, easily
parallelizable on the GPU, and finds solutions with lower energy and fewer singularities
than MIQ, e.g. Fig. 1.1 (bottom). Finally, we show the connection of the minimized
energy to the resistance distance matrixz of the triangle mesh, and leverage a recent
graph theoretical approximation to speed up the computation and allow us to trade-off

the computation time and the quality of the resulting cross field.

1.1 Related Work

Cross field computation, and directional field computation in general, has seen a surge
of research in recent years. A recent review [VCD116] covers the latest developments,

and we therefore focus our literature review on methods closest to our approach.

Angle based representation. A popular formulation of the cross field computation

problem is to represent every cross as an angle with respect to a fixed local orthogonal



MIQ, E = 82.46,|S| = 86

Figure 1.1: Our iterative optimization (bottom) finds a solution with lower energy, and
fewer singularities than MIQ (top).



frame. Since crosses are invariant to rotations by integer multiples of 7/2, such a
representation has an inherent phase ambiguity. Therefore, finding a smooth assignment
of crosses inevitably requires taking into account these unknown integer phases, leading
to optimization problems with integer variables. Bommes et al. [2009] suggested one
of the first efficient methods to tackle these optimization problems in the context of
cross field generation, by greedily rounding to an integer one variable per iteration and
resolving the system. Our approach optimizes the same energy greedily, albeit using
a different algorithm that guarantees that there exists no modification of a single 4-5
singularity’s position that reduces the energy. This leads to lower energy values and
better singularity placement. A different angle based approach, suggested by Crane
et al. [2010], encodes the angle difference per edge instead of an angle per face. This
representation leads to a minimum norm linear least squares optimization problem with
constraints, where the integer variables now arise as the constrained values. Furthermore,
Crane et al. [2013, Sec. 8.4.1] have shown that it is possible to solve this optimization
problem by solving a single Poisson problem when the integer variables are known. We

use this formulation with unknown angle defect values as the basis for our algorithm.

Cartesian representation. An alternative to the angle based representation is to
represent the direction as two coordinate values with respect to a local frame [RLL™06]
or, equivalently, as a complex number [KCPS13]. The explicit encoding of the integer
phase is not required in this representation, albeit, depending on the choice of smoothness
energy, a non-convex pointwise unit-length constraint might be required. Without the
unit-length constraint, this formulation leads to an unconstrained linear least squares
problem that can be efficiently and globally solved [KCPS13]. Our main interest is in
the angle-based energy, as it has various advantages in applications; see [VCD'16]. We
show that for this energy our algorithm achieves lower energy values, with a smaller

number of singularities, compared to competing approaches.

Scalable cross field computation. Recently, new methods have been proposed [JTPSH15]
for efficient cross field computation that are applicable to meshes with millions of trian-
gles. Such approaches often work locally, leading to a very efficient solution at the price
of cross field quality in terms of the number of singularities and field smoothness. Our
approach is at the other end of the spectrum, namely, we invest more computational time
and generate a higher quality cross field. We further allow a trade-off between computa-
tional time and cross field quality using a single parameter. Finally, our time/quality
trade-off is implemented using a simple algebraic approach with random projections,

and does not require constructing multi-resolution hierarchies of the input shape.

Parameterization with cone singularities. Cross field computation is closely
related to mesh parameterization. Specifically, one of the main applications of cross

fields is quadrangular remeshing, where the parameterization gradients are aligned to the



cross directions. Then, the singularities of the cross field become the non-regular vertices
of the quad mesh. Hence, it is in general beneficial to generate smooth cross fields with
a small number of singularities. As an alternative to generating a cross field and using
it for creating a parameterization, it is possible to compute a parameterization with
cone singularities given a holonomy signature. Such conformal parameterizations were
suggested [BCGBO08, SSP08], as well as variants that use other energies [MZ12, MZ13],
guarantee bijectivity [BCW17] or generate a seamless similarity map that can be used
for constructing C? surfaces [CZ17b]. While our approach generates cross fields, it is
based on finding a holonomy signature, and thus can be used to generate inputs for
cone parameterization methods such as [BCW17, CZ17b].

Connectivity Editing. Peng et al. [2001] have proposed a set of edit operations on
a convex region of the quadrangular mesh to improve the placement of irregular vertices
(i.e,. vertices with valence different than four). For example, they show that the global
placement of a single irregular vertex is in some sense rigid, whereas singularity pairs
in close proximity can be locally moved to improve the structure of the quadrangular
mesh. In contrast, our approach guarantees that no movement of a single singularity,
or the global cancellation of a +7/2 singularity pair can improve the energy. It would
be interesting to explore their other suggested edit operations to locally improve the

quadrangular mesh structure after generating the global structure using our method.

1.2 Contributions

We show the equivalence between computing smooth cross fields and finding optimal
holonomy signatures in the absence of directional constraints, and leverage it to design
a novel algorithm that optimizes the angle-based cross field smoothness energy. Our

approach has the following advantages:

e The algorithm is simple, easily parallelizable and finds cross fields with lower

energy values than existing approaches.

e The output cross fields are such that there is no relocation of a single &5 singularity
that will reduce the energy. This leads to cross fields with fewer singularities, and

singularities that are better placed, compared to existing methods.

e The formulation is based on the resistance distance matrix, which has a well-known
random approximation with theoretical guarantees. We use this approximation to

trade-off between cross field smoothness and computation time.



Chapter 2

Background: Angle-Based Cross
Field Computation

2.1 Notation

Let M= (V,&,F) be a 2-manifold closed orientable triangle mesh, where V are the
vertices, £ are the edges and F are the faces. We denote n=|V|,l=|E|,m=|F]|, the
genus of M by g, and its Euler characteristic by x =2 — 2g. We further denote the dual
mesh by M* = (V* &%, F*) = (F,&*, V). Following existing work, see e.g. [VCD™16,
Sec. 5.1], we represent crosses using angles. Thus, we use 6 € R™ to denote angles
on the faces, which are measured relative to a local frame of reference, i.e., a pair of
orthogonal unit vectors tangent to the face. We further assume that each edge in £ has
a known, arbitrary orientation that also induces an orientation on the corresponding
dual edge. We denote by r € R! the oriented angle difference between the reference
frames on adjacent faces. We slightly abuse notation by addressing elements of r» both
as re and as 7;; where e= (i, j) €E*,i, j € F. Finally, dy € Z*" and dy € Z™*! denote the
edge-vertex and face-edge adjacency matrices, respectively, also known as the discrete
exterior derivatives on 0- and 1-forms [CDGDS13].

A natural way to define the smoothness of an angle-based cross field is to consider
the change in the angle between adjacent faces. Two methods that were suggested in
the literature, MIQ [BZK09] and TC [CDS10], approach this problem using different
formulations. In the following, we first present the two optimization problems as they
were originally suggested. Then, in Section 3 we generalize TC, and show that the new
formulation is equivalent to MIQ, yet simpler to optimize. We provide only a brief
overview of the methods, and refer to specific sections of the survey [VCD*16] and
course [CDGDS13] for basic concepts.



2.2 MIQ: Mixed Integer Quadrangulation

Bommes et al. [2009] represented a cross field by an angle per face, § € R™, relative to a
fixed local orthogonal frame. To account for the symmetry of the crosses with respect to
rotations by 7/2, additional period jumps, p€Z!, were introduced. The MIQ objective

function is given by:

Eyn(0,p) = Z (92‘ +1rij + %pij — 9]')2. (2.1)
(3,5)€€*

We will assume a single directional constraint is given at a face ¢ € F, with 6. =6.
This objective function has multiple minimizers, which can be obtained by modifying
6 and p simultaneously. Therefore, to reduce the search space, Bommes et al. [2009]
used a spanning tree 7 C £* of the dual mesh M*, rooted at the constrained face c,

and defined the optimization problem:
minimize  Fy(0,p)
eR™, peZ!
subject to p. =0, VeeT,
0. = 0y.

(2.2)

Effectively, the constraints can be easily eliminated, leading to an unconstrained mixed-
integer problem in m—1 real-valued variables and |—m+1=n-+2¢g—1 integer-valued

variables.

2.3 TC: Trivial Connections

Alternatively, instead of solving for the angles on the faces, Crane et al. [2010] suggested
to solve for the adjustment angles, or connection on the edges. As these define the
change in the angle when passing on a dual edge [VCD™ 16, Sec.4.3], explicitly encoding
the period jumps is not required. Hence, the real-valued variables z € R! encode the

change in angle, and the objective function is given by:
Er(z) = ||=[l5. (2.3)
The angles 6 are obtained by integrating x along a dual tree T rooted at the constrained

face ¢, such that 0;=0;+r;; + x;; for (i,7)eT C&*.

While this objective function does not depend on integer variables, not every = € R!
is valid, as different integration paths should yield the same angle up to rotation by

7/2. Thus, additional constraints are required, leading to the optimization problem:



minimize Ep(z)
reR! (2.4)
subject to 'z = §s — s4().

Here, I'e Z"+29%! is a matrix whose rows form a spanning set of the dual cycles of M.
Specifically, I'"' = [do, H } , where dy € Z*™ is the oriented edge-vertex incidence matrix,
whose columns form a spanning set of the contractible dual cycles, and H € Z*29 is a
matrix whose columns form a basis for the non-contractible dual cycles (see [CDGDS13,
Sec. 8.2.2] for the construction of H). Further, s,(I') € R"*29 contains the angle
defects [VCDT16, Sec.6.2] around the basis cycles of I'. The angle defects for the
contractible cycles are given by the discrete Gaussian curvature of the vertices, and
thus sum to 2mx by the discrete Gauss-Bonnet formula [MDSBO03].

Finally, s € Z"*29 is a user prescribed integer holonomy signature that defines the
number of integer rotations by m/2 when parallel transporting a vector along the dual
cycles in I'. Since every column of dOT sums to 0, for the constraints to be feasible it is
assumed that > ;s;=4x. Crane et al. [2010] showed that under this assumption the
optimization problem (2.4) always has a solution, and a singularity of the cross field will
arise at a vertex v; €V,i € {1,..,n} if and only if s;#0, i.e., the prescribed holonomy

signature of the corresponding contractible dual cycle is non-zero.
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Chapter 3

Integer-Only Cross Field

Computation

3.1 TCO: Trivial Connections with Optimal Holonomies

A natural generalization of the TC approach is to add the integer holonomies as
optimization variables instead of having the user prescribe them. This generalization

leads to the optimization problem:

minimize Er(x)

zeR, aeZ”, B
Jootl-lal
HT B By(H)

Z?:lozi = 4X.

subject to

Here, for notational convenience, we separate the holonomy signature as s= [a, B] , where
« will denote the cone singularities vector and S the angle defects on non-contractible
cycles. Similarly, o is the discrete Gaussian curvature, and f,(H) the geometric angle
defects of the dual cycles in H, where both are computable from the geometry of the
input mesh (see Figure 3.1).

A main result of this thesis is that the optimization problems in Equations (2.2)

and (3.1) are equivalent. Formally, we have:

Theorem 3.1.

(i) Let (6,p) be a feasible solution of (2.2). Then, for any integral basis of non-
contractible dual cycles H, there exists a feasible solution (x,«, 3) of (3.1) such
that ET(x) = EM(Q,p).

(ii) Let (z,c, B) be a feasible solution of (3.1). Then, for any dual spanning tree T,
there exists a feasible solution (6,p) of (2.2) such that En(0,p) = Ep(z).

11



Trivial
Cycle

ot \ e

Non-trivial
Homology
Cycle

Figure 3.1: Computing the angle defects for (green) trivial and (blue) non-trivial cycles.
For trivial cycles, we take 27 minus the sum of angles, which is the usual discrete
Gaussian curvature. For non-trivial cycles, we take the sum of exterior angles along the
blue curve-adding € whenever the curve turns left, and subtracting 6 whenever the
curve turns right.

(iii) Let (x,a, ) and (0,p) be corresponding solutions as in (i,ii), and let Op be the
integrated values of x. Then O =60 mod /2.

A proof is given in the Appendix. The main building block of the proof is to relate
the variables of the two optimization problems using a linear system of equations. We
show that this system always has a unique solution that is integer-valued for p and
(a, B). The integer solutions are guaranteed by a result from the theory of cycle bases
on graphs [LRO7], stating that a square submatrix of an integral cycle basis matrix,

obtained by removing columns corresponding to edges of a spanning tree, is unimodular.

Corollary 3.2. The optimization problems MIQ and TCO are invariant to the choice

of dual spanning tree T and basis for non-contractible cycles H, respectively. Specifically:

(i) Given a feasible solution (0,p) to MIQ with some spanning tree T, then for any
spanning tree T, there exists a feasible solution (5,]3) such that En(0,p) = Ey (é,ﬁ)

and 6 = 0 modg.

(ii) Given a feasible solution (x,«, 3) to TCO with some choice of basis H, then for
any basis H, there exists a feasible solution (&,@, ), such that Ep(z) = Ep(i)

and §T = 67 mod 7.

This is a straightforward result of Theorem A.1: given a solution (6, p) to MIQ with
some spanning tree 7, we use part (i) of the theorem to construct a solution (z, «, 5) to

TCO, and then use part (ii) with a different spanning tree T to construct another MIQ

12



solution (0, p). The theorem guarantees that Ey(0,p) = En(0,p) and also that 6 = 6
mod 7. A similar argument shows that TCO is invariant to the choice of H. Note that
p and 8 might change, though this is inconsequential to the resulting cross fields, which

are given by 6 and 07 respectively.

As the optimization problems are equivalent, we can devise an algorithm for optimiz-
ing Equation (3.1) instead of Equation (2.2). There are a few advantages to changing
the parameterization of the problem to the variables (z,«, 3). First, we can use the
discrete Hodge decomposition [TLHDO03]| to eliminate the real variables x and remain
with an integer-only problem. Second, the integer variables o have a geometric meaning,
as the cone singularities of the computed cross field, and thus we can devise an efficient
iterative method for optimizing them. Finally, the separation of o and 5 allows us to

relax § while optimizing «, simplifying the algorithm for high genus meshes.

3.2 10Q

The problem in Equation (3.1) has some interesting properties, as was noted in [CDGDS13,
Sec. 8.4.1]. First, recall a fundamental property of the adjacency matrices dy,ds,
namely that didy = 0. Hence, any vector z € R' can be uniquely decomposed as
r=dpa + Bb+ d¥ ¢, where B €R>?9 is a matrix whose columns form a basis for the
linear space ker(d) \ im(dp), and a € R®,b € R?9, c € R™. B is computed from H by
B = H — dy(d¥do)Tdl H and is orthogonal to dy and d; (see [CDGDS13, Sec. 8.2.2]).
Here t indicates the Moore-Penrose pseudo-inverse. This decomposition is also known
as the Hodge decomposition of discrete differential forms [TLHDO03] (we discuss the

metric in Section 6.1). Thus, the constraint in Equation (3.1) can be written as:

dg

HT] [do B dﬂ b| =Zs—s,(I), (3.2)

Cc

yielding the constraint matrix

[dOTdO d'B  dbdr | 53)

HTdy HT"B HTdT

|dfdo 0 0
" |HTdy HTB 0

Here we used the fact that the matrices dy, B are orthogonal, and the fact that the edge
values of the non-contractible dual cycles in H sum to 0 on all triangles; thus H'd? = 0.
Consequently, ¢ is not constrained by Equation (3.3). Due to the orthogonality of
the decomposition, we have Er(x) = ||doal|3 + || Bb||2 + ||d¥ ¢||3, and thus the optimal
solution will always have ¢ = 0. Finally, the constraint on a does not depend on S, and
is given by:

ala) = LT(ga — ay), (3.4)

13



where L = dOTdo is the graph Laplacian. Note that a(«) is defined only up to an additive

constant, since L has co-rank 1. Similarly, the constraint on b is:

b(a,B) = (H'B)™ (38 — B,4(I') — H' dpa(a)), (3.5)

where HT B is non-singular since both H and B are full rank.
Combining these properties allows us to eliminate the real-valued variables a, b and
remain only with the integer-valued variables «, 5. Hence, the part of the objective

function that depends on the cone singularities « is:
Eq(a) = [ldoa()|3 = (5o — ag) 'L (Fa — ay), (3.6)

where we used the fact that L is symmetric, and LTLLY = LT. Finally, the optimization

problem is:
minimize  Ey(a, 8) = Er(a) + | Bb(a, B)I3
VANV (3.7)
subject to Y1 a; = 4x.

The optimization problems TCO and 10Q are equivalent. Formally, we have:

Theorem 3.3. (z,«, ) is an optimal solution to Equation (3.1) if and only if x =
doa(a) + Bb(a, B) and (o, B) is an optimal solution to Equation (3.7).

The proof is a straightforward result of Equations (3.2)-(3.5) and is provided in the
Appendix for completeness. Similar results, albeit not in the context of optimizing the
holonomy signature, appear in [CDGDS13, Sec. 8.4.1] and [CZ17a].

Corollary 3.4. For a closed, oriented triangle mesh, with a single directional constraint,
the optimal cross field for MIQ, i.e., the optimal 6 mod § in Equation (2.2), is fully

determined by the holonomy signature s= [oz, /B}.

This is a straightforward result of Theorem A.1 and Theorem A.2. A solution (6, p)
is optimal for MIQ if and only if there exists a corresponding optimal solution (z, «, 3)
for TCO, where (o, 5) are also optimal for IOQ. Thus optimality can be determined

from the holonomy signature s=|«, 3.

3.3 I0Qr: Relaxation

We will consider a relaxation of Equation (3.7), with the § variables relaxed to be
real-valued. Note that in this case we can always make b(«, ) equal 0 by taking
B*(a) = 2 (B4(H) + HTdya(ex)). Thus, we can eliminate 3 and solve
minimize E(a)
acel" (3.8)
subject to > " a; = 4x.

14



Then, given the solution a* to the above, we further solve:

minimize || Bb(a*, B)]|3.
s )z (3.9)

In the following two sections we first propose an iterative algorithm for minimizing
the energy in Equations (3.8), (3.9) and then show how to devise an approximation that

allows us to trade-off the quality of the cross field and the computational time.

15
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Chapter 4
Optimization

4.1 Solving for «

The optimization problem in Equation (3.8) is an instance of the closest vector problem
(CVP) [Mic01], known to be NP-hard in the general setting. While there exist instances
of the problem that are polynomially solvable [SG17], to the best of our knowledge such
an algorithm is not currently known for matrices of the form of L. Furthermore, our
problem has an additional complication due to the sum constraint on «. We therefore
opt for an iterative approach that has some favorable properties: (i) the constraint
holds by construction, (ii) it is easily parallelizable, and (iii) it is closely related to the
resistance distance and thus admits a graph-theoretic approximation.

Assume oY) € Z" is a feasible solution for Equation (3.8), and consider the update
atth) = 4 hij, where h;; = h; — hj, and h; €Z" is a vector that is all zeros except
for a single 1 at the i-th entry. Note that a(*t1) sums to 4y. Thus, to minimize (3.8),
we start with a random feasible a(?) € Z", and iteratively update it by adding the best

hi; over all possible choices of i, j, i#j as follows:

(i*,5%) = argmin E(a¥) + hyj),
1<, j<n,i#j

O[(H_l) = Oé(t) + hi*j*'

We continue this process as long as there exists a choice of (i, j) that reduces the energy.

While global optimality cannot be guaranteed, we have some partial guarantees
since there is no h;; that reduces the energy. Specifically, it is easy to see that there is
no relocation of a single cone singularity of magnitude 7, and no cancellation of two

such singularities that reduces the energy.

4.2 Solving for

The optimization problem in Equation (3.9) is also a CVP, of dimension 2g, with
the matrix ZB(HTB)™! and the target vector B(HT B)~'(8, + H dpa). For low

17
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Figure 4.1: Comparison between direct rounding and an exact CVP solver [AEVZ02]
for some low resolution meshes sorted by genus. Note that in most cases direct
rounding yielded an optimal solution. Notable exceptions are the ball and heptoroid
meshes, of genus 5 and 22 respectively, where CVP did improve the solution
considerably. We also show the resulting cross fields for the ball mesh with 5 computed
by rounding (left) and CVP (right).

dimensional lattices, and low resolution meshes, i.e. when g,n are small, finding the
optimal solution is still computationally feasible [AEVZ02]. However, we found that
direct rounding yields excellent results, and in many cases the exact CVP solution
did not considerably improve the energy. This is demonstrated in Figure 4.1, which
shows the energy || Bb(a, B)||3 computed using direct rounding and using the exact CVP
solution. Thus, in our experiments we use 5 = round(S*(a*)). A large improvement
in the energy did occur for some of the higher genus meshes, implying an interesting

future research direction.

4.3 Initialization

To initialize a(?), we pick a set of random indices S C {1,...,n} and set a(?) at these
locations to £1 such that ), az(»o) = 4x holds.

To check the stability of our algorithm to this initialization, we ran it on the Bunny
mesh with a varying number of initial singularities, N = 30 times for each |S| value.
For each run, we measured the resulting final energy, and the resulting number of cone
singularities. As is evident in Figure 4.2, both the energy (left) and the final number of
singularities (right) are stable under the choice of initial random input, even when the
number of initial singularities is far larger than their final number. For reference, we
also show the energy value and the number of singularities of MIQ for this mesh. Note
that for all runs our results yield a lower number of singularities and a lower energy.

As the figure shows, there is a larger variability in the final number of singularities

than in the energy. We believe this is because there are multiple solutions that lead
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Figure 4.2: Final energy value (left) and final number of cone singularities (right) as we

increase the number of initial singularities. We also show the energy value and number

of singularities of MIQ [BZK09]. Note that our method is stable to the initialization,
and in all cases yields a better energy than MIQ with fewer singularities.

to similar energy values. To demonstrate this, we additionally show in Figure 4.3
the average of a across all N experiments for the initial (a) and final (b) iterations.
Note that while the singularities concentrate at specific locations, there might be
multiple equivalent configurations, e.g. on the tail, leading to a greater variation in the
singularities than in the energy. We additionally show one of our results (c), and the
MIQ result (d).

4.4 Convergence.

Our algorithm converges in a relatively small number of iterations. Figure 5.2 (left)
shows the energy values during the iterations, for different numbers of initial singularities,
additional to the minimal number required to fulfill the constraints on «. Note that
starting from more singularities leads to slower conversion; thus, in our experiments we

always use for initialization the minimal number possible of &7 singularities.

4.5 Parallelization

Our iterative update for « is computationally demanding, yet easily parallelizable. To

devise a practical algorithm, we note the change in energy due to the addition of h;;:

T Br(a+ hij) = T (Er(e) + hhu(a) + Ryj)

where

Rij = hg;-LThij, u(a) = QLT(O[ — %ag),

19



Note that the matrix R, whose (i, j)-th entries are given by R;j, is independent of «

and can be precomputed. Furthermore, we have:
U(Od + hZJ) = 2LT(04 — %Oég + hz]) = u(oz) + QLThw

Thus we can compute u(®) = u(a(o)) and update it at every iteration. Hence, at each
iteration we do the following;:
(i*,7%) = argmin Wl — ) 4 R;;,

co o B Ty
1<6,j<n,i#j

o = a® 4 nye — hye,
Wt = o 4 orf, —orl

where L}L is the i-th column of L. The resulting algorithm, denoted I0Qr, is given in
Algorithm 4.1.

The algorithm is highly parallel, since the computation for every (i, j) is independent,
and thus it is naturally amenable to a GPU implementation. It does, however, require the

precomputation of LT, which may be prohibitive for large meshes. In our experiments,

this algorithm was adequate for meshes with up to 40K faces (see Figure 3 in the
supplemental material) on an NVIDIA GeForce GTX 1080 Ti GPU. For larger meshes,

we propose an approximation scheme described in the next section.

(d) MIQ
E =16.45,ns = 28 FE =21.34,ns = 36

Figure 4.3: The average of « across N random initializations for the initial (a) and
final (b) iterations. Note that the singularities concentrate at specific locations, yet
there might be multiple equivalent configurations, e.g. on the tail. We also show one of
our results (c¢) and the MIQ result (d).
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Algorithm 4.1 10Qr, I0Qe

®

10:
11:
12:
13:

Input: V,F,&,dy, H, LT, R, R.

Output: «,

n, m,l < number of vertices, faces, and edges respectively

a@® « random placement of 1 such that ZiOzEO) =4y, a0 ezn
m©) < —oo; t + 0

u® 201 (a® — 2q);  u® =solve(L, 20" — 2q,)

while m®) < 0 do

1,7 < argmin u
1<i,j<n,i#j

a(t+1) < a(t) + hl — h]
D) — o® 4 2LZ - 2L;L-; w1 = solve(L, 2o+ — Lag)

mttD) ul(t) — uﬁt) JrRij; +(R€)ij
t—t+1

end while

a = solve(L, ga(t) — ay)

B =round (2(8,(H) + H dya))

® —ug.t) +Rij; - +(R)ij
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Chapter 5

Approximation

5.1 Background: The Resistance Distance

The matrix R that appears in Algorithm 4.1 has a geometric meaning, and is known as
the graph resistance distance matrix. It encodes graph-theoretical distances originally
used in the theory of electrical networks [Kir58]. On an edge, it is equal to the potential
difference when we inject a unit current at one end of the edge and extract it at
the other end. It can also be thought of as the commute time between two vertices
[CRR196], or the probability that an edge appears in a random spanning tree of the
graph [DS84, Bol13]. The resistance distance, also known as the commute time distance,
has been used in geometry processing for various applications; see e.g. [PS13]. It can be
computed explicitly by:

Rij=hlLthy = LI+ LT, —2L],
yet this requires the matrix LT, which is computationally prohibitive to compute for

large meshes. To overcome this, we use an efficient random approximation of R.

Algorithm 5.1 Approximate resistance distance

Input: V., & ¢
Output: R,
1: k + round(24logn/e?)
2: Q < random k x [ matrix with entries +1/v/k
3: Y + Qdy
4: ZT = solve(L,YT)
5: (Re)ij = 1Zi — Z;13

5.2 Random Approximation

Spielman and Srivastava [2011] proposed a method, based on random projections, to

approximate the resistance distance of a given graph. Calculating R is equivalent to
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MIQ, E = 9.68,|S| = 12

GO, E =12.49,|S| = 12

Figure 5.1: The results of our exact and approximated algorithms (I0Q and IOQe),
compared with MIQ [BZK09] and GO [KCPS13], on two symmetric models. See the
text for details.

computing the pair-wise Euclidean distances between points in {dgLThi}U e which are

the columns of dyL!. This is true since

Rij = hj;L'hij = h;L'LL h;;
— (n5etdf) (doLinis) = oL hi 3.

To efficiently and accurately approximate these, Spielman and Srivastava [2011] projected
the columns of doL! onto a subspace spanned by O(logn) random vectors and calculate
the distances in the projected space. Let Qrx; be a random Bernoulli matrix with
entries of £1/v/k, where k > 24logn/e2, for some €>0. They computed Y = Qdy and
solve ZL =Y for Z. The n columns of Z are the projected points of dimension k, and
we can use the Euclidean distances between them to approximate the resistance distance
by:
(Ro)ij = 11Zi = 713,

where Z; is the i-th column of Z. The algorithm for computing R, is provided in
Algorithm 5.1.

Implementation. Spielman and Srivastava [2011] in fact further speed up the theo-
retical running time by approximating Z using [ST04, ST14], but we found this step to
be unnecessary since the computation time was dominated by computing fm’ij for all

i,j € V, whereas in Spielman and Srivastava [2011] they compute it only for e;; € £.
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Figure 5.2: Left: Energy values during the iterations for different numbers of initial
singularities, for both the exact (I0Q) and approximated (I0Qe) methods. Right:
Close-up of the same graph. Note that the energy plot of the approximated method is
nearly indistinguishable from the exact method.

To compute Z we first factorize L, and then use back-substitution, using [Dav13]|. The
pair-wise distances between all the columns in Z are then computed efficiently on the
GPU using the built-in Matlab function “pdist”. The algorithmic modifications required
in order to work with the approximate resistances instead of R and L are minor. The
only difference is that instead of using LT for updating u, we need to solve a sparse
linear system at every iteration, yet we can do that efficiently using the factorization of
L. The changes are highlighted in Algorithm 4.1, where green lines replace blue lines
when using approximate resistances. Note that when using approximate resistances,
the energy is no longer guaranteed to monotonically decrease; thus, we stop when we
identify a cycle in the solutions.

Figure 5.2 shows the energy values during the iterations for the approximated
and exact algorithms with the same initialization. Note that the graphs are almost
indistinguishable. Indeed, in practice the approximated algorithm yields energy values
that are very close to the result of the exact algorithm. Figure 5.1 shows the output of
the approximated algorithm with € = 0.5 compared with MIQ [BZK09], GO [KCPS13]
and our exact algorithm I0Q, on two symmetric models. Note that compared to
MIQ and GO on the torus, IOQ finds a lower energy solution with fewer singularities.
Furthermore, for both the cube and the torus, the singularities’ locations are close to
symmetric. I0Qe yields very similar results to I0Q, at the expense of a slightly higher
energy. Note that the GO result on the cube is very similar to ours, up to a global

rotation of all the crosses, which does not affect the energy.

Approximation quality. The Johnson-Lindenstrauss Lemma guarantees that with
high probability the Euclidean distances will not be distorted by more than a multi-
plicative factor of 1 & € [JL84, Ach01, DGO03|. In practice, we found that for graphs
that come from triangle meshes, the distortion is empirically less than the theoretical
guarantee. Figure 5.3 (left) shows the distortion ratio of R;;/(R.); for different values
of e. For example, for n=55,000 and €~0.5, the reduced dimension is k=1000. In this
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Figure 5.3: Left: Histogram of the pair-wise distortions R;;/(R.);; for three values of e.
Right: Percentage of pairs with distortion greater than 10% as we increase the
projected dimension k. See the text for details.

case, the expected distortion is 50%, yet the actual observed maximal distortion is only
around 15%. In Figure 5.3 (right) we show the trend for a growing k, i.e. a decreasing e,
of the percentage of pairs with distortion higher than 10%, again for n = 55,000. Note
that the distortion quickly decreases, with less that 5% of such pairs for k& = 1000.

To give some insight into the behavior of the approximation, we visualize in Figure 5.4
the exact resistance distance R, and its approximation R, for different values of e. We
show these as color coded functions, where the function is the resistance distance of
all mesh vertices from a single marked vertex. Note that, as expected, the functions
become noisier as € grows, yet qualitatively, they are similar to the exact resistance

distance.

Time/quality tradeoff. Fig. 5.5 shows the robustness of this approximation when
combined with our algorithm, and the resulting trade-off between the quality of the
output and the computational time. We first compute N = 300 different R, for various
¢ values, by running Algorithm 5.1. Then, for a fixed initial &(?), we run Algorithm 4.1

with the different R.. We show in (b-d) the average optimal o after convergence, where

A

n=25000,T =037 k=2271,e=03T=0.11 k=818,e=05T=004 k=204¢=10,T=0.01

Figure 5.4: The resistance distance and its approximations as we increase €, with
respect to the red point. Here we show the running time in seconds, 7', and the original
and projected dimension, n and k respectively.
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Figure 5.5: Time/quality tradeoff of IOQe with different e values. We show the average
across N = 300 experiments of « after convergence, using (a) the exact resistance
distance with different initial random «; and (b-d) the approximate resistance, with
different random projections and the same initial a. Note that for ¢ = 0.5 we get a
dimensionality reduction of more than 90%, yet the algorithm yields excellent cone
positions.

we average across the NV experiments for matrices with the same €. In addition, we show
in (a) the average optimal «, when using the exact resistance distance, and starting
from N random initializations, for comparison. As the figure shows, while the locations
of the singularities degrade for very large €, for ¢ = 0.5 we achieve a dimensionality
reduction of more than 90%, and still get an excellent distribution of the locations of

the singularities. In all our experiments, unless mentioned otherwise, we used € = 0.5.
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Chapter 6
Implementation

We implemented our algorithm in Matlab, using its built-in support for GPU paralleliza-
tion with “gpuArray”. For the inner loop that minimizes over all (i, j) pairs, we used a
CUDA kernel. For the exact algorithm, we first attempt to compute L' on the GPU,
and if that fails due to memory requirements, we attempt a blockwise GPU inversion. If
that also fails, we invert LT on the CPU. For large meshes, where L cannot be inverted
on the GPU, the exact algorithm is therefore computationally very expensive. For
the approximate algorithm, we factorize L on the CPU, and use the factorization to
compute Z. Then R, is computed from Z on the GPU. On our machine, with an
NVIDIA GeForce GTX 1080 Ti GPU and an Intel Core i7-7820X CPU @ 3.60GHz with
8 cores, the exact algorithm takes a few minutes for a mesh with 50K faces, and the
approximate algorithm with € = 0.5 takes around 20 seconds. The full timing details

are provided in Figure 3 of the supplemental material.

6.1 Limitations

The main limitation of our algorithm is the heavy computational load. Because we have
to fit LT or R on the GPU, the memory requirement is O(n?/2), which on our hardware
(12 GB RAM) was feasible for meshes with up to 100K faces. This could potentially be
reduced to O(nlog(n)) by holding Z instead on the GPU and computing R, on the fly.

Another limitation is that we do not handle directional constraints. In many
scenarios, especially quadrangular remeshing, it is beneficial if the cross field is aligned
with the curvature directions of the surface. We leave the generalization of our approach
to directional constraints for future work.

Finally, the geometry of the surface is not incorporated in the system matrix L, since
we use L = dOTdo, and not a weighted Laplacian. The T'C formulation allows for adding
weights on the edges, [CDS10, Section 2.5], and a similar approach could be applied
to MIQ as well. We did not attempt that, as we wished to compare to a non-modified
MIQ. As the approach of Spielman and Srivastava [2011] can be applied to a weighted

graph, we believe a suitable adaptation of our algorithm that incorporates the geometry
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Figure 6.1: An example of our method with the graph Laplacian (left) and the
cotangent Laplacian (middle) compared to MIQ (right). Note that in both cases our
method finds a better solution in terms of smoothness energy and singularity placement.

in L can be devised. See Figure 6.1 for a preliminary result in which we replaced L
by the cotangent Laplacian and no approximation was used. Note that the resulting

cross-field has fewer singularities and a lower smoothness energy than the MIQ result.

6.2 Results

6.2.1 Comparisons

Quantitative, with MIQ [BZK09] We compared our exact method (10Q), our
approximated method (I0Qe with € = 0.5) and MIQ [BZK09]. For 10Q, I0Qe and
MIQ we used the same single directional constraint on an arbitrary face. GO can be
computed without any directional constraints. To evaluate the methods, we assessed the
angle-based energy of the output fields E = Ej/(6,p) from Equation (2.2), the number
of singularities |S|, i.e. the number of vertices v; €V such that «; #0, and the timing,
on the models from the benchmark provided by [MPZ14]. We implemented our method
in Matlab and CUDA, while for MIQ we used the Libigl [JP*16] implementation.
Figure 6.2 shows the ratio of improvement of our methods vs. the MIQ result, i.e.
(Erm1Q/Eours)((|S|m1@ + 1) /(|S|ours + 1)). As the figure shows, the product of these
ratios is always greater than 1 (the vertical black line); thus, for all models we improve

upon MIQ. Also note that the approximate method (I0OQe) yields comparable, and
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Figure 6.2: The improvement in energy and singularities of our exact (I0Q) and
approximate (I0Qe) methods relative to MIQ, computed by
(Enr1Q/ Eours)(|S|mrg +1)/(|S|ours + 1)) on the meshes from [MPZ14], where |S] is
the number of singularities. Note that for all meshes our result is bigger than 1, and
thus improves on MIQ. Furthermore, the results of IOQ and I0OQe are comparable for
most meshes.

sometimes better, results than I0Q. The median improvement ratio over all models is
1.71 for 10Q and 1.86 for IOQe.

Quantitative, with GO [KCPS13] The cross field generation method suggested
by Knoppel et al. [2013] optimizes a different energy than MIQ, yet is very efficient
and has global optimality guarantees (for their energy). We compared our method with
GO as well, using a Matlab implementation with a face-based discretization as done in
[DVPSH14]. The results are shown in Figure 6.3, using the same quantitative measures
as in Figure 6.2. Since we are measuring an energy that GO is not optimizing for, our
method outperforms GO in terms of energy. Note, however, that we also outperform
GO in terms of the number of singularities. The median improvement rate over all
models was 2.99 for IOQ and 3.3 for IOQe. All the quantitative results, i.e. E, |S| for
all the methods and all the models are provided in Figures 1 and 2 in the supplemental

material.

Timing. Our approach is considerably slower than both MIQ and GO. For example,
MIQ completed for all the models within a few seconds, whereas GO is even faster,
finishing in less than a second for all models. Our approximated method with € = 0.5
takes around 20 seconds on models of size 50K faces. Our exact method can take

around 5 minutes for such models and around 20 minutes for models of 100K faces.
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Figure 6.3: The improvement in energy and singularities of our exact (I0Q) and
approximate (I0Qe) methods relative to GO [KCPS13], using the same protocol as in
Figure 6.2. Here, again, for all meshes our result is bigger than 1, and thus improves on

GO. Furthermore, the results of IOQ and IOQe are comparable for most meshes.

However, it is efficient for models whose L matrix can be inverted on the GPU. All the

timing results for I0OQ and 1I0Qe are provided in Figure 3 in the supplemental material.

Qualitative. Figure 6.4 shows a few example models from the benchmark with their
corresponding cross fields for the different methods. Note that for the I0Q approach
there are considerably fewer singularities, with a smaller energy, and the singularities
are well distributed when compared with the MIQ and GO results.

6.2.2 Scalability

To compare the scalability of our approach with respect to the energy, number of
singularities and timing, we ran our methods and MIQ on a series of meshes with the
same geometry and varying resolution of the Bunny mesh. As Figure 6.5 shows, our
energy remains the same order of magnitude when increasing the mesh size, and the
number of singularities remains largely the same. In terms of timing, both I0Q and
10Qe are slower than MIQ, yet IOQe is considerably faster than 10Q.

6.2.3 Varying ¢

Figure 6.6 shows our results on a model with sharp features as we increase €, the
approximation parameter. Note that with ¢ = 1, which reduces the dimension to a mere

3% of the original dimension, IOQe still finds a similar singularity placement, albeit
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with a somewhat higher energy. For the best trade-off between the resulting smoothness

energy and the reduced dimension, we have found that taking € = 0.5 is appropriate.

6.2.4 Stability to Noise

To measure the stability of our approach to geometric noise, we added random Gaussian
noise in the normal direction to the kitten model, with standard deviation of 10 and
15 percent of the average edge length. The results are shown in Figure 6.7, for IOQe
with € = 0.5 (first three from the left) and MIQ (last three from the right). Note that
for the 10 percent noise level the number of singularities remains almost the same for
our approach. Even for the higher noise level, our algorithm yields considerably fewer
singularities than MIQ, as well as a lower energy.

In another experiment, we randomly flipped the edges of a mesh to get a non-
uniform triangulation. While the geometry is not encoded in the system matrix L, it
does contribute to the right hand side of the system through the angle defects ay, 3,.
Therefore, the results are, at least to some extent, robust to changes in the triangulation,

as is shown in Figure 6.8.

6.2.5 Application to Quadrangulation

The cross fields we generate can be used for computing quadrangular meshes, by creating
a parameterization whose gradients align with the cross directions, and then extracting
the quads. We used off-the-shelf approaches for these steps: the parameterization part
of MIQ [BZKO09, Sec. 5] as implemented in libigl [JPT16], and the quad extraction
method QEx [EBCK13] that receives as input a parameterization. While in general
curvature direction alignment is often required for quad meshing, it seems that in some
cases good cone point locations can lead to high quality quadrangular meshes even
without alignment. Figure 6.9 shows some examples of quad meshes computed using
our cross fields, and using the cross field generated by MIQ. Note that the better placed
singularities and lower energy of our approach lead to smoother, more symmetric quad

meshes with better shaped quads.
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Figure 6.4: Some meshes from the benchmark and their cross fields. Note that our
method yields considerably fewer singularities with lower energy values.
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Figure 6.6: Varying the approximation parameter, €, has little effect on the final
singularity placement. Note in particular that even with a projected dimension of
k = 213, our method still places most of the singularities on the corners as desired,

albeit with a somewhat higher energy.
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Figure 6.7: Stability of our method (left) compared to MIQ (right) with increasing
levels of normal noise added to the vertex positions.
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Chapter 7

Conclusion

We showed an equivalence between two existing methods for generating cross fields,
which we then used to formulate a new iterative algorithm that finds better solutions than
state-of-the-art results in terms of the angle-based energy and number of singularities.
Using a recent approximation of the resistance distance, based on random projections,
we allow a trade-off between the computation time and the smoothness of the produced
field using a single tunable parameter, €.

A natural generalization of our approach is to add support for directional constraints.
In addition, we believe that a similar iterative approach could be useful for computing
a parameterization with integer cone locations that is aligned with a given cross field.
Finally, to the best of our knowledge, this approximation of the resistance distance has
not been used in geometry processing, but we posit that it is of independent interest

and could be useful in other applications.
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Appendix A

Appendix - Proofs.

Let H € 7?9 be any integral basis for the non-contractible dual cycles of M, e.g. as
obtained by computing the tree-cotree decomposition [Epp03, Lemma 3.2] and orienting
the edges [CDS10, Sec 2.1], and let di € Z™*! be the signed face-edge adjacency matrix.
Further, let 7 C&* be a dual spanning tree of M.

First, we relate an MIQ solution (#,p) and a TC solution (z,«, 3) through the

following system of linear equations:

g(I’p +5) = s4(I') = T'r, (A.1)

5P+ At + o= —r, (A.2)
where I'T' = [do,H} , 8= [a,ﬂ}, and ngsg(r): [agvﬂg(H)]

Lemma A.0.1. For any choice of H, we have that Io(T') = 2(s4(T') — I'r) € Z, and
>im Lo(T) (1) =4x.

Proof. By definition, s4(I") are the geometric angle defects around the cycles of T',
and I'r is the holonomy of the local reference frame field along the cycles of T' (see,
e.g. [CDS10, Sec. 3.2]). Hence, their difference is a multiple integer of 5 and thus /o € Z.
Furthermore, for i = 1..n we have that Iy(i) is the index of the reference frame field at
the vertex v; €V, and thus Y ;" | Io(T')(¢) =4x [RVLLO8, Theorem 2.3].

Lemma A.0.2. Given a dual spanning tree T C E*, let I'y be the matriz formed by
the columns of T' corresponding to £\ T, i.e. dual edges not in T. In addition, let
s€Z"29 such that Yo ysi=4x. Then the linear system

Dypp = —s+ (D) (A.3)
has a unique integer solution.
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Proof. Every column of dg sums to 0, thus we can remove its first row and it will
still span all the dual cycles. Given a matrix M, let M denote the matrix with the first
row removed. Hence, I is an integral basis for the dual cycles, with independent rows.
Using [LRO7, Lemma 27], we have that the matrix ' is a non-singular unimodular
matrix. Furthermore, the right hand side of Equation (A.3) is integer, since s is integer
and due to Lemma A.0.1. Thus the system ffpf =—-5+ Io(f) has a unique integer
solution. Finally, we have that > ,Io(I")(i) =4x from Lemma A.0.1, and > ;s;=4y.
Thus > (=s; + Io(I')(i)) =0. Furthermore, > " T'¢(i,:)ps =0, thus, py fulfills the
first linear constraint as well, and is thus a unique integer solution of Equation (A.3) as

required.

Lemma A.0.3. Let (0,p) be a feasible solution of Equation (2.2) and let H be an
integral basis of non-contractible dual cycles. Then there exists a unique solution (x,s)
of the system of equations (A.1), (A.2) such that s = [a,ﬁ] and (x,«, ) is feasible
for (3.1).

Proof Let s = Iy(I") — I'p, then Equation (A.1) holds for (s,p). Note that Ip(T") is
integer due to Lemma A.0.1, and I'p is integer since I" and p are both integer. Thus,
s is integer. Let [a,ﬁ} = s, with a € Z", B € Z?9. Then, a:IO(dg) — dgp, namely «
is a vector containing the indices of the cross field (0,p) [BZK09, Sec 4.1], and thus
Yo 0 =4x [RVLLO8, Theorem 2.3].

Let v = —r — 5p— d¥6, then Equation (A.2) holds for (z,6,p). Now, we have that
lz=-Tr—5Ip— I’d{@. Note that diT'7 =0, since d1dy=0, and the columns of H are
closed discrete one-forms (see e.g. [CDGDS13, Sec. 8.2.2]). From Equation (A.1) we
have that —I'r — SI'p=Fs — 54(I'), thus 'z — §s=—s5,(I') and (z, s) is feasible for the
problem (3.1).

Lemma A.0.4. Let (x,«, ) be a feasible solution of Equation (3.1) with cycle basis
H, and let T be a dual spanning tree. Then there exists a unique solution (p,0) of the
system of equations (A.1) and (A.2) such that (p,0) is feasible for (2.2).

Proof. Lets = [a, B]. Since (z, o, ) is feasible for Equation (3.1), > ;s;=4x. Now,
let py be the unique integer solution of Equation (A.3), guaranteed by Lemma A.0.2.
Define the vector p € Z!, such that p(e) = 0,Ve € T and p(e) = pg(e),Ve € E*\ T.
Then, p is the unique integer solution to Equation (A.1) that is also feasible for
Equation (2.2). Let w = —r — §p — x, then w has a unique decomposition (up to two
constants) as w = dowo + d} we + Bwy. Since (x,a, B) is feasible for TC, we have that
'z = §s — sy. Furthermore, we have that §s — s, = —I'r — 5I'p, due to Equation
(A.1) . Hence —T'z —T'r — 3I'p = T'w = 0, and thus w is in the kernel of df and H”.
Since BT = HT — HTdy(dE'dy)Td]’, we have that w is also in the kernel of B, and thus
w is orthogonal to the image of dy and the image of B. Hence, wy = 0,w; = 0. Let

¢ € F be the constrained face, and 6y the constrained value in Equation (2.2). Now,
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set 0 = wy — (wa(c) + 0p)1, where 1 is a constant vector with all ones. Then, 0(c) = 6

and d{ﬁ = lewg = w, because d{]l = 0. Furthermore, 0 is defined uniquely, since ws is

unique up to a constant shift. Thus (p, €) is the unique solution of Equations (A.1), (A.2)
that is also feasible for (2.2).

Theorem A.l.

(i) Let (6,p) be a feasible solution of (2.2). Then, for any integral basis of non-

contractible dual cycles H, there exists a feasible solution (x,c, ) of (3.1) such
that Ep(x) = Ep(0,p).

(ii) Let (z,c, B) be a feasible solution of (3.1). Then, for any dual spanning tree T,

there exists a feasible solution (0,p) of (2.2) such that Ep(0,p) = Ep(x).

(iii) Let (xz,a, ) and (0,p) be corresponding solutions as in (i,ii), and let O be the

integrated values of x. Then 07 =0 mod /2.

Proof

(i)

(i)

(iii)

Let (0, p) be a feasible solution of (2.2), and let (z, a, B) be the feasible solution
of Equation (3.1) guaranteed by Lemma A.0.3. Then —z = d¥ 0 +r + 5D, due to
Equation (A.2). Thus Ey(6,p) = [|[d1 0+ r+ Zp|3 = || —z|3 = Er(z).

Let (x, v, B) be a feasible solution of (3.1), and let (p, #) be the feasible solution
of Equation (2.2) guaranteed by Lemma A.0.4. Then, Equation (A.1) again leads

to EM(G,p) = ET(:C)

Let (x, a, 8) and (6, p) be corresponding feasible solutions given by Equations (A.1), (A.2).
Then, 67, the integrated angle values, are computed by d{HT = —x — r. Further-
more, from Equation (A.2) we have that d{ § = —z — r — p. Thus, d{ (67 — 0) =

Zp =0 mod 5. Since on the constrained face c€ F we have that 67(c) = 6. = 6y,

we get that 7 — 6 =0 mod 3.

Lemma A.0.5.

(i) If (x,c, B) is an optimal solution to Equation (3.1) then x = dypa(a) + Bb(«, 3).

(ii) If x = dpa(a) + Bb(, B) then Er(x) = Er(a, B).

(ii3) If (x,c, B) is an optimal solution to Equation (3.1) then (a, ) is a feasible solution

to Equation (3.7).

(iv) If (o, B) is a feasible solution to Equation (3.7), then for x = dpa(a) + Bb(«, ),

we have that (x,a, 5) is a feasible solution to Equation (3.1).
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Proof.

(i) Let (z,a, ) be an optimal solution of Equation (3.1). Then there exists a unique
decomposition (up to two constants) = = dpa + Bb + d1 c. Since x is optimal, the
matrices dy, B, d; are mutually orthogonal and c is not constrained, then ¢ = 0.
Due to the constraints in (3.1) we have that df doa = o — a, thus a = a(@) +cl
for some constant ¢ €R. Hence, dpa = dpa(a), since 1 is in the kernel of dy. In
addition, also due to the constraints in (3.1), we have H” dya+H" Bb = 58—PBy(I),
thus b = b(«a, ).

(ii) This is trivial, since dp, B are orthogonal.
(iii) This is trivial, since the constraints of (3.7) are a subset of the constraints of (3.1).

(iv) Let (a,3) be an optimal solution of Equation (3.7). Then a’1 = 4y, and
(2a—ay)T1 = 0. Therefore, we have: dj dya(e) = LLT(Za— ) = o —ay, since
LL'm = m for any m orthogonal to the kernel of L. Furthermore, H  dya(c) +
HTBb(a, B) = H dpa(a)+Z8—B4(T) — H dpa(a) = 58— B4(T). Therefore, if we
set x = dpa(a) + Bb(«, ), then (x, «, §) fulfills the constraints in Equation (3.1).

Theorem A.2. (z,«, () is an optimal solution to Equation (3.1) if and only if x =
doa(a) + Bb(a, B) and («, B) is an optimal solution to Equation (3.7).

Proof.

= Let (x, o, 8) be an optimal solution of Equation (3.1). Then z = dypa(«) + Bb(«, 3)
by Lemma A.0.5 (i). Assume that («, 3) is not optimal for Equation (3.7). Then,
there exists an optimal solution (&, B) such that Ej(a, B) < Er(a, ). But then,
take & = doa(a) + Bb(@, B). According to Lemma A.0.5 we have that i is feasible,
and Er(Z) = Ei(&,B8) < Er(a,B) = Er(z), contradicting the optimality of

(z,a, B).

<« Let (o, 8) be an optimal solution to Equation (3.7), and set x = dpa(a)) + Bb(«, ),
then according to Lemma A.0.5, (x, «, ) is feasible for Equation (3.1). Assume
that it is not optimal, then there exists an optimal solution (Z, &, B) such that
Er(#, &, ) < Erp(z,a, 8). But since (, &, 3) is optimal, we have that & = doa(&)+
Bb(d,B), and therefore ET(aE,d,B) = E](d,B). Hence, we have El(d,B) =
Er(#,&,8) < BEp(z, o, B) = Er(a, ), contradicting the optimality of («, 3).
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Appendix B

Appendix - Supplementary
Material.

We provide here the full quantitative results on the
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