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Abstract

Subdivision surfaces are a common and popular shape representation for 3D modeling

and designing. As so, they are abundantly used in the pipeline of graphics artists.

OpenSubdiv, an open source code package released recently by Pixar Studios, is an

evidence of the usefulness of subdivision surfaces. A common modeling pipeline includes

the design of a simple base mesh, with a small number of control polygons. The base

mesh is subdivided several times, producing a smoother mesh. The smooth model is

then sculpted artistically, yielding a finely detailed shape.

We propose a novel approach for computing correspondences between subdivision

surfaces with different control polygons. Our main observation is that the multi-

resolution spectral basis functions that are often used for computing a functional

correspondence can be compactly represented on subdivision surfaces, and therefore

can be efficiently computed. Furthermore, the reconstruction of a pointwise map

from a functional correspondence also greatly benefits from the subdivision structure.

Leveraging these observations, we suggest a hierarchical pipeline for functional map

inference, allowing us to compute correspondences between surfaces at fine subdivision

levels, with hundreds of thousands of polygons, an order of magnitude faster than existing

correspondence methods. We demonstrate the applicability of our results by transferring

high-resolution sculpting displacement maps and textures between subdivision models.
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Chapter 1

Introduction

Subdivision surfaces are a popular shape representation for 3D modeling, used in the

design pipeline of many artists [ope13]. A common workflow [vG09, pp. 101] entails

designing a polygonal, often a purely quadrangular model with a small number of

polygons, subdividing it multiple times to achieve higher smoothness, and then sculpting

fine details on the subdivided model. If the model is to be used in a low-resource

environment, such as a game or an augmented-reality application, the geometric details

are then “baked” into an image, and only the low resolution geometry is used at runtime.

The details are rendered as normal maps or bump maps, and more recently, by using

hardware tessellation, as displacement maps [NKF+16].

The detailing process, i.e., designing a realistic 3D model starting from a low

resolution polygonal base mesh, is time consuming and expensive. This is evidenced,

for example, by the price differences between a base mesh and a detailed model, that

can reach two orders of magnitude [Tur19]. It is natural then to consider reusing the

detailing of one model as a starting point for the detailing of a similar model. For

example, if one designs a family of digital characters with similar facial details, it would

be useful to design one such model, and then transfer the detailed editing to other

base meshes. Similar paradigms are often used in computer graphics, for example,

deformation transfer [SP04] and style transfer [BHS+17].

To enable such an application, a detailed correspondence is required between two

subdivision surfaces described by different control polygons. Despite a very large body

of work dedicated to computing correspondences between triangle meshes [VKZHCO11],

there exists, to the best of our knowledge, no method that is applicable to subdivision

surfaces. Attempting to compute the correspondence on the subdivided mesh at a

high resolution leads to extremely long run times, as the meshes reach hundreds of

thousands of polygons. Alternatively, computing a correspondence on a low resolution

mesh and subdividing it, is similarly ineffective, since the semantics of the geometry is

not, in general, conserved by the subdivision operation. In other words, a semantically

meaningful high-resolution map, that puts in correspondence related features on both

shapes, is not necessarily the exact refinement of a semantic low-resolution map.
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Target Model

Source Model

Our OutputTextured Input

Textured Input

Our Output

Figure 1.1: We compute a detailed map between subdivision surfaces given by their
control meshes using a set of input landmarks (left), and use it to accurately transport

highly detailed texture images (center, right).

We propose a novel approach for computing a detailed, high resolution correspondence

between two subdivision surfaces given by different control polygons. Our method is

a generalization of the functional map framework [OBCS+12, OCB+17], which is a

flexible approach for inferring correspondences, agnostic to the underlying geometry

representation. The main required components are a basis for scalar functions defined on

the surface, and a set of linear functional constraints, where both are often given in terms

of the spectral decomposition of the Laplace-Beltrami operator (LB). Recently, a novel

approach, denoted as Subdivision Exterior Calculus [dGDMD16], uses the subdivision

structure to compute an accurate discretization of the LB operator on polygonal meshes.

This discretization is a key component in our hierarchical approach.

It is well known, see e.g. [VL08], that the eigenfunctions of the LB operator have a

multi-resolution nature, where functions with higher eigenvalues are more oscillatory than

functions with lower eigenvalues. A similar property holds for an often used functional

descriptor, the Heat Kernel Signature [SOG09] (HKS). This implies a perfect fit between

subdivision surfaces and a hierarchical functional framework: the correspondence at a

low resolution can be represented using a small subset of low eigenfunctions, and as the

mesh resolution increases more basis eigenfunctions and descriptors can be computed

and used.

We design the components for constructing efficiently a hierarchical functional map

inference scheme. These include computing a hierarchical spectral basis, posing linear

constraints and hierarchically optimizing for a functional correspondence. We addition-

ally show how to leverage the subdivision structure to speed up the reconstruction of a

pointwise map from the functional correspondence, an important and time consuming

step. Our scheme computes high quality correspondences between subdivided meshes of

hundreds of thousands of polygons, at computation times that are an order of magnitude

smaller than existing correspondence approaches. We apply our detailed computed

maps for transferring high resolution geometry edits, as well as texture images, showing

the potential of our approach for 3D modeling applications.
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1.1 Related Work

Our main goal is computing a correspondence between two subdivision surfaces, given

by their base polygonal meshes. Despite the abundant amount of work on shape

correspondence, to the best of our knowledge, there does not currently exist an algorithm

that targets this application. Therefore, we focus our literature review on correspondence

in general, on existing approaches for multi-resolution geometry processing, and on

methods targeting our application, namely detail transfer.

Shape Correspondence. The literature on shape correspondence is vast, and a

complete review is beyond our scope. We refer the reader to recent state-of-the-art

reviews [TCL+13, LI15, Lag18] for an introduction to the topic. Most, if not all, of the

shape correspondence approaches use triangle meshes or point clouds as input data,

which is motivated by the need to register scanned 3D data. We, on the contrast, are

interested in matching models designed by artists, which are given as polygonal (often

quad) meshes.

To the best of our knowledge, there exist a very small number of papers that address

the problem of correspondences between quad meshes. Eppstein et al. [EGKT08] have

investigated the exact topological matching of parts of quadrangular meshes. They

show that an exact solution is NP-Hard and provide an approximate greedy approach.

Our goal is different, as we do allow varying quad topology, and rely on the geometry

instead to supply the correspondence information. Alternatively, subdivision surface

fitting can also generally be considered a correspondence method. Classic approaches for

subdivision fitting were suggested by Litke et al. [LLS01] for Catmull-Clark subdivision,

by Marinov et al. [MK05] for Loop subdivision, and many other, more recent, fitting

approaches exist. It is worth noting that for subdivision fitting the base mesh is initially

extrinsically aligned with a target triangular mesh, whereas in our case the input base

meshes are general, and can be extrinsically and intrinsically different. Recently, Estellers

et al. [ESC18b] suggested a robust fitting approach that takes into consideration outliers.

They use a decimated version of the input mesh as the base mesh for the subdivision

surface, which is extrinsically aligned to the input mesh and thus inappropriate for our

application.

While it is possible to triangulate any polygonal mesh, the resulting triangle meshes

will have non-optimal elements, which might degrade the differential operators that are

used in computations. Alternatively, it is possible to remesh a quadrangular mesh using

uniform triangular elements, however, that might lead to loss of prominent features if

the remeshing is too coarse. Furthermore, the triangle meshes have to be very fine to

enable the transport of highly detailed edits or texture. Hence, mapping approaches

that are designed for triangle meshes [AL16] can potentially be used by remeshing the

input quads to a very fine refinement of the subdivision surface, however, this leads to

computation times which are an order of magnitude larger than ours, see Figure 6.2.
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Functional Correspondence. The functional map framework [OBCS+12] is a gen-

eral approach for computing correspondences, which is agnostic to the underlying

geometric representation. As it relies on a reduced basis for scalar functions, it can be

applied to any shape representation where such a basis can be computed, e.g., point

clouds [HCO18]. We are not aware of an existing work that uses functional maps for

mapping between quadrangular meshes. The framework has been used for computing

approximately consistent quadrangulations of triangle meshes [ACBCO17], yet there

the functional map was given as input. Recently, an interactive approach to map com-

putation has been introduced [GBKS18], where a functional map is quickly computed

using user-placed curves. To transfer texture, the authors extract a point-to-point map

in a post-processing slower step, which is not interactive. Our approach, in contrast,

leverages the subdivision structure to efficiently compute both the functional map and

the point-to-point map for meshes refined to hundreds of thousands of polygons, albeit

not at interactive rates. Other recent functional map regularizations, constraints and

priors [NO17, RPWO18] are complementary to our method, as they can be applied at

the coarsest level instead of the basic functional map method that we used. Finally,

the point-to-point reconstruction step has been addressed as a separate problem in the

functional framework [RMC15, EBC17, ESBC18], and some of these methods provide

a vertex-to-point-in-triangle map as output, which can be used for transferring smooth

textures. Note, though, that the meshes still need to be very fine, in order to sup-

port non-linear texture deformation, leading to long running times and large memory

consumption.

Multi Resolution Spectral Geometry Processing. Beyond subdivision surfaces,

other classical approaches include, for example, multi resolution through smooth-

ing [GSS99] and multi resolution through remeshing [BK04]. More recently, Vaxman et

al. [VBCG10] used a multi-resolution remeshing based approach to compute the Heat

Kernel Signature. We, on the other hand, provide a full shape correspondence pipeline

for subdivision surfaces, and in addition, provide bounds on the representation error of

subdivided functions in the refined basis. Our work is based on the recently proposed

Subdivision Exterior Calculus (SEC) [dGDMD16], that builds differential operators

which use the geometry of a refinement of the base mesh for geometry processing on

the base mesh. While they define the discrete operators, such as the Laplacian, the

authors did not provide an analysis of the spectral decomposition of the Laplacian at

different subdivision levels as we do, nor did they address computing spectral descriptors.

Estellers et al. [ESC18b] use the subdivision basis functions and quadrature rules for

computing the eigenfunctions of the Laplacian and spectral descriptors. Our approach,

on the other hand, does not require numerical integration, and we additionally supply

bounds on the representation error using the hierarchically computed eigenvectors.

Recently Nasikun et al. [NBH18] proposed a fast approximation for the lowest part

of the Laplacian spectrum of large meshes. They construct a subspace of local basis
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functions around sampled points and then solve a restricted, simpler, eigenproblem. The

constructed Laplacian basis does not rely on or inherit any property from the subdivision

structure of the shape, and thus is different from our approach. Finally, a few methods

exist for computing a localized basis at different scales, e.g. [Rus11, MRCB18], yet these

are all computed on a single surface, for, e.g., partial shape correspondence. We, on the

other hand, compute global basis functions, at multiple subdivision levels.

Detail transfer. An early example of detail transfer for subdivision surfaces was

presented by Biermann et al. [BMBZ02], where parts of the surface were parametrized to

the plane to allow for copy-paste operations. Other multi resolution modeling approaches

are discussed in the SIGGRAPH course dedicated to the topic [Zor06]. These techniques

were also generalized to triangle meshes [SBSCO06, SS10a, TSS+11], and developed

into a highly successful mesh editing tool, known as MeshMixer [SS10b]. While related,

our approach is different than these methods, in that it aims for a global correspondence

between two subdivision surfaces, that allows to transfer detailed displacement maps

and texture images.

1.2 Contributions

Given two input base polygonal meshes, and a set of user specified landmarks, we

compute a multi-level map between the refinements of the base meshes. The main

contributions of our approach are:

• We show the relation between the eigenfunctions of the SEC Laplace-Beltrami

operator at different subdivision levels.

• We develop a Hierarchical Functional Maps (HFM) scheme for subdivision surfaces

that is efficient and accurate, allowing us to compute maps for refinements with

hundreds of thousands of polygons in a few minutes.

• We apply the computed correspondence for detailed displacement maps and texture

image transfer between subdivision surfaces with different base polygon meshes.
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Chapter 2

Background

2.1 Functional Maps

We give here a brief overview of the functional map framework, to make the paper self con-

tained. More details can be found in the paper that introduced the concept [OBCS+12],

and in the recent SIGGRAPH course dedicated to the topic [OCB+17].

2.1.1 Notation

We work with a polygonal mesh M = (V,F , E), given by its vertices, faces and edges,

respectively. We denote |V| = n and |F| = m, and further denote by X ∈ Rn×3

the embedding of its vertices in R3. We consider piecewise linear (PL) functions

g : M → R, given by their values on the vertices V, and thus g ∈ Rn. The mass-

weighted inner product of functions on M is given by 〈g, h〉M = gTMh, with the

corresponding norm ‖g‖2M = gTMg. For matrices G,H with functions as columns we

set 〈G,H〉M = GTMH. Following the formulation of Alexa and Wardetzky [AW11], the

Laplace-Beltrami operator is discretized by the Laplacian matrix L = M−1W , where

M is a diagonal mass matrix for the vertices, and W is the integrated Laplacian, e.g.,

the cotangent Laplacian for triangle meshes. Further, Λ∈Rk×k is a diagonal matrix of

the eigenvalues of L, sorted from small to large, and Φ∈Rn×k has the eigenvectors of

L as columns in the same order, such that WΦ = MΦΛ. The eigenfunctions are M -

orthonormal, namely 〈Φ,Φ〉M = Ik×k. We denote the pseudo-inverse of Φ by Φ†∈Rk×n,

and note that Φ† = ΦTM . When more than one mesh is discussed, we denote it with a

subscript, e.g. Li is the Laplacian matrix of the mesh Mi, for i∈{1, 2}.

2.1.2 Basics

The basic idea of the functional map framework is to generate a map that puts in

correspondence functions instead of points. Specifically, for every map T12 : V1 → V2,

from the vertices of M1 to the vertices of M2, there exists a corresponding functional

map (FMap) P12 that maps PL functions on M2 to PL functions on M1. It is given by

9©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



(a) HFM Basis

ex
te

nd
 w

ith
 s

ub
di

vi
si

on
extend with computation

Chapter 3

(b) Descriptors
Chapter 4.1, 4.2

(c) Solve for FMap and PMap
Chapter 4.3, 4.4

spectral map pointwise map

(d) Transfer
Chapter 6 

UV source
texture image

UV Target

textured deformed 
to �t target UV

m
or

e 
sp

ec
tr

al
 c

oe
f�

ci
en

ts

Figure 2.1: An illustration of our pipeline, (a) compute a hierarchical basis, (b) set up
linear constraints from spectral descriptors, (c) solve hierarchically for the spectral

functional map and the corresponding pointwise map at all levels, and (d) use the final
fine pointwise map for texture image and displacement transfer.

(P12(g2))(v1) = g2(T12(v1)), for all vertices v1∈V1, and functions g2∈Rn2 . It is easy to

check that P12 is a linear operator, and thus can be described by a matrix P12∈Rn1×n2 .

The main strength of the functional map framework comes from working with a

spectral basis for functions, usually taken to be Φ, namely the lower eigenvectors of the

LB operator. In this setup, the spectral functional map C12∈Rk1×k2 maps functions in

the image of Φ2, represented by their basis coefficients, to functions in the image of Φ1,

and is thus given by C12 = Φ†1P12Φ2.

2.1.3 Inference

To compute a functional map C12 between two meshes M1,M2, we first design a

set of linear constraints. The map is computed by solving a linear least squares

optimization problem, where the constraints are weakly enforced, i.e., a constraint

Ax = b is reformulated into the objective ‖Ax− b‖2.

Two often used linear constraints are (1) descriptor constraints of the form C12F2 =

F1, where Fi ∈Rki×d and (2) commutativity constraints of the form C12O2 = O1C12,

where Oi∈Rki×ki is a linear operator onMi. Both the descriptors, Fi, and the operators,

Oi, are given through their projection on the spectral bases Φi. This framework is

quite general, and there are many other ways of computing a functional map, see

e.g. [OCB+17] and citations within. We limit ourselves to these cases as they are most

common.

Descriptors are often defined through a function of the eigenvalues ρ : R+ → R+,

and can be classified as signatures and landmarks. Signatures, e.g., the Heat Kernel

Signature [SOG09] and the Wave Kernel Signature [ASC11], do not require any prior

knowledge on the correspondence, and can be generally defined as the diagonal of the

matrix Φ ρ(Λ) ΦT , where ρ is applied entry-wise to the diagonal of Λ. Landmarks, on the
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other hand, require the knowledge of two corresponding vertices vi∈Vi per landmark.

Given a vertex v∈V, these are computed by Φ ρ(Λ) ΦT δv, where δv∈Rn is a vector of

zeros with a single 1 at the vertex v. The descriptors are then projected on Φi to get

the matrices Fi that are used in the linear optimization.

Commutativity operators arise as priors on the expected correspondence. For exam-

ple, the Laplacian operators of two surfaces which are nearly isometric are expected to

commute with the output map. Similarly, if the surfaces exhibit intrinsic symmetry, the

symmetry maps are expected to commute with the output map as well. Finally, descrip-

tor constraints can be formulated equivalently as operator commutativity constraints,

leading to better maps [NO17].

2.1.4 Point-to-point Map Reconstruction

Once a spectral functional map C12 has been computed, it can be used as-is to transfer

functions fromM2 toM1. However, it is often beneficial to extract a full functional map,

represented as a permutation matrix P12∈Rn1×n2 , from which a vertex-to-vertex map,

T12, can be extracted. Quite a few methods exist that achieve this, e.g., [RMC15, EBC17],

yet they are mostly variations on the following approach: use the map C12 as an initial

solution for the ICP algorithm [BM92] for rigid alignment in the spectral domain.

Specifically, the objective ‖C12ΦT
2 − ΦT

1 P12‖2 is alternately minimized for P12 and C12

under the constraints that P12 is a permutation matrix, and C12 is an orthonormal

matrix.

Figure 2.2: An illustration of the construction of the refined geometries (top), and the
SEC discrete differential operators (bottom). We map between geometries at the finest

subdivision level.
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2.2 Subdivision Exterior Calculus

2.2.1 Notation

We work with a polygonal base mesh and its refinements, up to the finest subdivision

level, denoted by f . We distinguish between meshes at different subdivision levels with a

superscript. Thus, we have a set of meshesMl = (V l,F l, E l), with l∈{0, ..f}, whereM0

is the base mesh. Following de Goes et al. [dGDMD16], we define a subdivision matrix

Sl∈Rnl+1×nl
for the vertices at level l. Hence, the embedding of V l+1 is given by Xl+1 =

SlXl, for l > 0, taking X0 = X0. We accumulate the subdivision of multiple levels by

multiplying the corresponding subdivision matrices, namely S fl = S f−1S f−2 · · ·S l+1S l

for 0 ≤ l < f . We use Loop subdivision for triangle meshes, and Catmull-Clark for

quad meshes.

2.2.2 Discrete Differential Operators

The geometry of the subdivided meshes Ml changes significantly from the control mesh

after a few subdivision levels. The methodology proposed in SEC is to use the mass

matrices of the finest subdivision level for computing the differential operators of all

levels, by defining a subdivision operator that commutes with the discrete exterior

derivative. It is straight forward to show that we can compute the SEC unweighted

Laplace-Beltrami operator by Wl = (S fl)TW fS fl. Similarly, the SEC mass matrix for

the vertices is given by Ml = (S fl)TM fS fl. Note, that since the finest subdivision level

f is assumed to be constant, we remove it from the notation for clarity. Figure 2.2

illustrates the construction of the operators at the different levels.
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Chapter 3

Hierarchical Functional Maps

(HFM)

Notation. We use a combined notation of SEC and FMaps, with a superscript

to denote the subdivision level, and a subscript to denote the mesh. For example,

W0
2∈Rn

0
2×n0

2 denotes the unweighted Laplacian of the second base mesh.

Our goal is to compute a correspondence between two subdivision surfaces, given

by their control meshes M0
i , with i∈{1, 2}. To this end, we design an efficient and

accurate functional map inference scheme for subdivision surfaces by leveraging the

subdivision structure. Figure 2.1 illustrates our pipeline.

In the following, we describe our sub-goals for each FMap component, and how we

achieve them.

3.1 Spectral Functional Basis

The spectral functional basis is the main ingredient in the functional map approach,

and it greatly contributes to its effectiveness. To achieve similar effectiveness, we pose

the following requirements on the HFM basis.

3.1.1 Requirements

Multi-scale. The number of basis functions required to represent a function should

be correlated with its oscillatory nature, or, more precisely, with the norm of its gradient.

This property allows us to control the “resolution” of the computed correspondence

through the number of basis functions, and thus the dimensions of the functional map

matrix.

Scalable. The basis should be efficiently computable, even on meshes at high subdivi-

sion levels. As our goal is to transfer detailed displacement and texture maps, we need

the HFM to be applicable to fine mesh resolutions on which detailed displacement maps

can be resolved.
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Complete. As we tailor a spectral basis, it is imperative that our basis fully spans the

space of functions we want to represent, i.e. functions up to some oscillation resolution.

Orthonormal. An orthonormal basis, with respect to the inner product with the ver-

tex mass matrix, allows for fast inversion of the basis, without requiring the computation

of the pseudo-inverse.

3.1.2 SEC Laplacian Eigenvectors

The SEC Laplacian operator of subdivision level l∈{0, .., f}, given by Ll = (Ml)−1Wl

is positive semi-definite [dGDMD16], and thus we can compute its lowest k eigenvectors

and eigenvalues, given by Φl∈Rnl×k and Λl∈Rk×k, respectively. By definition, these

fulfill:

WlΦl −MlΦlΛl = 0, 〈Φl,Φl〉Ml = I. (3.1)

It is natural to consider the relation between the SEC Laplacian operators on multiple

levels. First, note that for all levels l∈{0, .., f}, the operator Ll depends on the geometry

of the finest level f , given by Mf ,W f , and on the multilevel subdivision operator S fl,
which in turn depends only on the connectivity of the control mesh. Therefore, all

Laplacians derive from the same geometry, and it is expected that there will be a well

defined relation between Φl,Λl and Φl+1,Λl+1. Indeed, we have the following, which

follows directly from the definitions and Equation (3.1):

(Sl)T (Wl+1SlΦl −Ml+1SlΦlΛl) = 0, (3.2)

0 50 100 150 200

0.4

0.6

0.8

1

Figure 3.1: Average representation error for 1000 random functions in the image of Sl,
normalized by the functions’ squared norm, as a function of the number of eigenvectors
k. We compare using the prolonged eigenvectors Φ̂l+1, with the optimal representation
error achieved by using Φl+1. Note that while the exact eigenfunctions achieve a slightly
better representation error for larger k values, the graphs are almost indistinguishable.
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since Wl = (Sl)TWl+1Sl and similarly for Ml+1.

Definition 3.1.1. The prolonged eigenvectors and eigenvalues at level l+1 from level l

are given by:

Φ̂l+1 := SlΦl, Λ̂l+1 := Λl. (3.3)

Using this definition and Equation (3.2) it is straightforward to show the following.

Lemma 3.1.2. The prolonged eigenvectors and eigenvalues Φ̂l+1, Λ̂l+1 are weak eigen-

vectors and eigenvalues of Ll+1 with respect to functions of level l+1 which are in the

image of Sl. Explicitly, for any function gl+1∈Im(Sl) we have:

〈gl+1,Ll+1Φ̂l+1 − Φ̂l+1Λ̂l+1〉Ml+1 = 0, (3.4)

〈Φ̂l+1, Φ̂l+1〉Ml+1 = I. (3.5)

All the proofs, though elementary, are provided in the appendix for completeness.

The important point is that the inner products 〈·, ·〉M and 〈·,L·〉M are invariant to the

subdivision level l when applied to subdivided functions (see Lemma A.0.1).

Intuitively, Lemma 3.1.2 implies that the prolonged eigenvectors and eigenvalues

provide a good approximation of the eigen decomposition of Ll+1, when considering

functions in the image of Sl.

Finally, we can bound the representation error of the projection on the prolonged

eigenvectors, as follows.

Lemma 3.1.3. Let g∈Im(Sl). Then

‖g − Φ̂Φ̂†g‖2M ≤
‖∇g‖2M
λk+1

≤ λmax
λk+1

‖g‖2M, (3.6)

where all quantities are at level l+1, Φ̂ are the first k eigenvectors of Ll prolonged to

l+1, λk+1 is the k+1th eigenvalue of Ll, λmax is the largest eigenvalue of Ll, and ∇g
is a discrete gradient defined such that ‖∇g‖2M = 〈g,L g〉M.

The proof uses a similar technique to the one that is used to show the bound for the

eigenvectors of the Laplacian, see e.g., [CPK18, Eq.(17)], for the first bound, and the

Courant-Fisher Minimax Theorem [ANT09, ANT08] for the second bound. Note that

on triangle meshes ∇g is the gradient field of the subdivision of g to the finest level

f , because Wl = (S fl)TW fS fl. On general meshes ∇g can be defined through the L2

norm of the 1-form d0g subdivided to the finest level, with respect to the edge-based

mass matrix.

Figure 3.1 demonstrates experimentally the result of Lemma 3.1.3. We show the

average representation error, normalized by the functions’ squared norm ‖g‖2M, as a

function of k, the number of computed eigenvectors. We use Φl+1 and Φ̂l+1, for a set of

1000 random functions in the image of Sl. Note that while Φl+1 leads to a better error

after 100 eigenvectors, the difference is smaller than 1%.
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Eigenvectors Φ Prolonged eigenvectors Φ̂

Figure 3.2: A few low eigenvectors and the corresponding prolonged eigenvectors from
a level below. Note the clear visual similarity.

Figure 3.2 visualizes the eigenvectors Φl+1 and the prolonged eigenvectors Φ̂l+1 for a

few low eigenvectors. For visualization purposes, we chose eigenvectors which correspond

to non-repeating eigenvalues. Note, that the sign of the eigenvectors is arbitrary, hence

we show either the eigenvector or its negation, chosen so that the eigenvectors visually

correspond between the sets. The figure demonstrates that in addition to having similar

representation power, the eigenvectors themselves are visually very similar.

Figure 3.3 (left and center left) shows the eigenvalues of Ll at various levels. Note,

that in addition to the eigenvectors, the eigenvalues are also quite similar, and the

similarity breaks at higher eigenvalues for higher levels. This is demonstrated further

in Figure 3.3 (center right and right), which shows the ratio Λl+1/Λl for the different

subdivision levels.

The bound in Lemma 3.1.3 depends on the largest eigenvalue of L. We leave further

investigation of a general bound to future work, noting that similar results for B-Spline

surfaces have been recently researched in Iso-Geometric Analysis [ESC18a].

50 100 150 200 250
0

0.1

0.2

0.3

260 280 300
0.29

0.3

0.31

0.32

0.33

0.34

50 100 150 200 250
0.94

0.95

0.96

0.97

0.98

0.99

1

260 280 300
0.996

0.997

0.998

0.999

1

Figure 3.3: (left and center left) The eigenvalues of Ll at different levels, note the
similar trends. (center right and right) The ratio Λl+1/Λl for the different levels, note

that the similarity breaks later for higher levels, and the ratio is very close to 1.
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Φ
ΛΛ

ΦΦ

Figure 3.4: An illustration of the hierarchical basis construction from Definition 3.1.4.

3.1.3 HFM Basis

We construct our HFM basis by leveraging the representation power of prolonged

eigenvectors.

Definition 3.1.4. Let k̃f be the total number of required basis vectors at the finest

level f . Define {kl ≥ 0, l ∈ 0, .., f}, such that
∑f

l=0 k
l = k̃f . The hierarchical basis is

given by:

Φ̃0 = Φ0, Λ̃0 = Λ0, (3.7)

Φ̃l+1 = [SlΦ̃l, Φ̄l+1], Λ̃l+1 = [Λ̃l, Λ̄l+1], (3.8)

where Φ0,Λ0 are the first k0 eigenvectors and eigenvalues of L0, Φ̄l+1, Λ̄l+1, are the kl+1

eigenvectors and eigenvalues of Ll+1 in the band starting after the largest eigenvalue

of Λ̃l, and the operator [·, ·] denotes either column concatenation, or diagonal matrix

concatenation according to the context.

Figure 3.4 illustrates the hierarchical construction of the basis. We provide further

details on the splitting of the eigenvalue bands in the Implementation Chapter 5.

If we consider the basis at level l as an embedding of the polygonal mesh into Rkl ,
then the HFM basis is given by subdividing this embedding, and adding details using

additional kl+1 dimensions.

3.1.4 Properties

Multi-scale. We have shown that prolonged eigenvectors have similar representation

power to the exact eigenvectors, and the number of required eigenvectors depends on

the norm of the gradient, thus the HFM basis is multi-scale.
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Scalable. For high subdivision levels we only need to compute bands of eigenvectors.

This tactic is a good fit with the common numerical computation of eigenvectors and

eigenvalues, which is done per band [Ste02], leading to an efficient basis computation.

Complete. As we split the eigenspace into multiple bands, and compute each band

separately, it is preferable that no eigenfunction is “lost”, as that will reduce the

basis’ representation power. Completeness depends on the detailed strategy of band

splitting, and we do not have a formal guarantee for its existence, since the splitting

involves a heuristic for the behavior of the eigenvalues. In practice, as we discuss

in the Implementation Chapter 5, we can validate that the bands have a non-trivial

intersection, and discard the overlaps, by leveraging the approximate orthogonality

property. If, however, repeating eigenvalues exist, the HFM basis may not be complete.

Approximately Blockwise Orthonormal. Our basis is computed by concatenating

prolonged eigenvectors from multiple subdivision levels, and thus is not orthonormal by

construction. We have the following, weaker, result.

Lemma 3.1.5. Assume Λ̃l and Λ̄l+1 are distinct, and both have no repeating eigenvalues.

Let Φl+1 be the first
∑l

i=0 k
i = k̃l eigenvectors of Ll+1. Then the HFM basis Φ̃ is

approximately blockwise orthonormal:

〈Φ̃l+1, Φ̃l+1〉Ml+1 =

[
〈Φ̃l, Φ̃l〉Ml E

ET Ikl+1×kl+1

]
, (3.9)

〈Φ̃0, Φ̃0〉M0 = Ik0×k0 , (3.10)

where the error matrix E is controlled by

1

kl+1

∑
ij

|Eij | ≤ ‖SlΦ̃l − Φl+1‖2Ml+1 . (3.11)

Intuitively, the lemma bounds the failure of the basis to be orthonormal by the

failure of the lower eigenvectors of Ll+1 to be prolongations of the basis at level l. As

demonstrated experimentally in Figure 3.2, this error is indeed small, when no repeating

eigenvalues exist. In practice, however, meshes often have repeating eigenvalues, thus

in our computations, we do compute a pseudo-inverse matrix of the HFM basis, as we

further discuss in the Limitations Chapter 5.4.

3.1.5 Computation time

The hierarchical construction of the basis is much faster then the exact computation,

where for each level l all of the
∑l

i=0 k
i = k̃l eigenvectors should be computed, instead

of a band of eigenvectors. Table 3.1 shows a comparison of the basis computation times

18©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



between HFM and the exact approach. It is clear that for very large shapes our method

is much less expensive.

Figure Shape n0 f n f k̃l Exact HFM
Fig. 6.2 woman 1.3k 3 85k (100, 50, 50, 50) 26.4 12.5
Fig. 6.2 man 1.3k 3 85k (100, 50, 50, 50) 26.6 12.9
Fig. 1.1 tiger 7.1k 3 454k (100, 100, 50, 50) 226.3 83.1
Fig. 1.1 cat 1.2k 4 317k (100, 50, 50, 50, 50) 156.2 57.4
Fig. 6.6 zebra 9.8k 3 629k (100, 100, 50, 50) 322.5 127.7
Fig. 6.6 horse 1.7k 4 439k (100, 50, 50, 50, 50) 227.5 80.8
Fig. 6.7 elephant 6.0k 3 385k (100, 100, 50, 50) 194.5 72.9
Fig. 6.7 mammoth 1.7k 4 442k (100, 50, 50, 50, 50) 227.4 81.1
Fig. 6.8 troll TEX 4.2k 3 272k (100, 50, 50, 50) 104.5 47.8
Fig. 6.8 troll 2.2k 3 145k (100, 50, 50, 50) 49.0 23.7
Fig. 6.8 orc 2.2k 3 142k (100, 50, 50, 50) 48.7 23.5

Table 3.1: Timing statistics (in seconds). From left to right: (n0) number of vertices at
the coarse level; (f) finest subdivision level; (n f ) number of vertices at the finest level;
(k̃l) The number of eigenvectors computed per level. Timing (in seconds) for: exact

basis computation; HFM basis computation.
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Chapter 4

Inference

To formulate an optimization problem we first define a set of linear constraints per

hierarchy level l, which are either descriptor preservation or operator commutativity

constraints. We then iteratively solve a linear optimization problem at every level,

which is bootstrapped by the solution at the previous level. Finally, we propose a novel

improvement on the pointwise map extraction that leverages the subdivision structure

and yields our output: a map between fine refinements of the subdivision surfaces.

4.1 Descriptors Constraints

A spectral descriptor is given in terms of a 1-parameter family of functions ρt : R+ → R+,

where t ∈ R+, and acts as a filter on the eigenvalues. For example, the heat kernel

map [SOG09] of a vertex v∈V is given by Φ ρt(Λ) ΦT δv, with ρt(λ) = exp(−λt). As we

do not compute a full eigen-decomposition of the Laplacian, we would like to use the

HFM basis in a similar way for computing spectral descriptors.

Definition 4.1.1. The Hierarchical Spectral Descriptior Matrix (HSD) is given by

K̃ρ,t = Φ̃ ρt(Λ̃) Φ̃T . We remove the level notation, as all the quantities are at the same

subdivision level.

We additionally define a hierarchical landmark descriptor using K̃ρ,t,v = K̃ρ,tδv for a

vertex v∈V, and a hierarchical signature descriptor using K̃ρ,t,• = diag(K̃ρ,t).

The heat kernel and other spectral descriptors have beneficial properties which

we would like to preserve. Indeed, we have the following, which is a straightforward

consequence of the definition:

Lemma 4.1.2. Let K̃ l+1
ρ,t be the HSD at level l+1, then:

K̃ l+1
ρ,t = SlK̃ l

ρ,t(S
l)T + Φ̄l+1 ρt(Λ̄

l+1) (Φ̄l+1)T . (4.1)

Namely, the HSD at level l+1 is given by subdividing the HSD from level l, and

adding the contribution of the new basis functions from level l+1. Thus, the difference
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Figure 4.1: Quantitative and qualitative evidence to the Hierarchical HKS
approximation quality. (left) The ratio of the HHKS and the HKS for a few vertices as
a function of t, (right) the exact and hierarchical HKS for two times t as a function on
the mesh. Note that as t increases the error decreases, and that even for small t the

error is less than 2 percent, and visually indistinguishable. tmin and tmax as
recommended by [SOG09].

between, e.g., the heat kernel and the hierarchical heat kernel again depends on how

much the eigenvectors at level l+1 are similar to the subdivided eigenvectors from

level l, and similarly for the eigenvalues. In fact, since for the heat kernel we have that

the contribution of higher eigenvectors decays exponentially with t, the larger t is, the

better the hierarchical heat kernel approximates the exact heat kernel.

Figure 4.1 shows an example of the ratio of the hierarchical heat kernel signature

and the exact heat kernel signature for a few vertices as a function of t (left), and for

two t values for all vertices (right). Note that as t increases the error decreases, however

even for small t the error is below 2 percent, and invisible to qualitative inspection of

the function.

In practice, we do not compute the full matrix K̃ρ,t, but only the landmark descriptors

K̃ρ,t,v for a given set of input landmarks, and the signature descriptor K̃ρ,t,•, which is

given by the diagonal. The landmark descriptors can be efficiently computed directly in

the spectral domain, see Chapter 5.2.2, and the signatures are projected onto the HFM

basis Φ̃l
i. This process yields the descriptor matrices F li ∈Rk̃

l×d, where d is the total

number of descriptors, which is kept fixed for all levels.

4.2 Commuting Operators Constraints

We provide as building blocks hierarchical commuting operators for commutativity with

the Laplacian and with a given intrinsic symmetry map, which are most commonly used,

and additionally are sparse in the spectral basis. We discuss later how dense operators
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can be incorporated in our framework.

Laplacian. Isometric maps commute with the Laplacian operator. Therefore, as a

regularization, a common constraint is given by C12O2 = O1C12, where Oi = Φ†iLiΦi =

ΦT
i Mi(ΦiΛiΦ

T
i Mi)Φi = Λi. We therefore leverage the approximate orthogonality prop-

erty of the HFM basis and set the Laplacian commutativity operator accordingly, taking:

Õli = Λ̃li.

Symmetry. In many cases, especially if designed by artists, the input surfaces have

intrinsic self-symmetry given as input self-maps, or permutations, S0
i ∈ Rn0

i×n0
i . Note

that if the control polygon mesh is symmetric, then for symmetric schemes, such as

Catmull-Clark, the subdivided meshes at all levels will be symmetric as well. Thus,

given the symmetry at level l, we perform a nearest neighbor search between the vertices

of the subdivided mesh at level l+1, namely X l+1 = SlX l and the subdivided symmetric

embedding at level l+1, given by SlS lX l, to find the symmetry map S l+1. Since

the symmetry map is combinatoric this process is applicable to intrinsic as well as

extrinsic symmetries. Finally, we use the given symmetry as a commutation constraint

by projecting it on the HFM basis, namely we set: Õli = (Φ̃l
i)
†S liΦ̃l

i.

If the mesh is exactly symmetric, the symmetry operator commutes with the

Laplacian, namely SL = LS, and its spectral representation is diagonal. Since the

symmetry is often not exact, we restrict the operator to the main 3 diagonals of Õi.

4.3 Optimization

Given the hierarchical construction of the basis Φ̃l
i, the descriptors F̃ li , and the commu-

tativity operators Õli, we proceed to optimize for the Hierarchical Functional Map C̃ l12,

as follows.

4.3.1 Coarse level 0

Solve for C̃0
12 using the standard functional map optimization scheme, by minimizing:

C̃0
12 = arg min

C
‖CF l2 − F l1‖2F +

∑
O
α(O)‖CO0

2 −O0
1C‖2F , (4.2)

where the sum goes over all available commutativity operators, either Laplacian, or

symmetry or both, α is the weight assigned to each operator, and the norm is the

Frobenius norm. The parameter values are fixed for all experiments and provided in

the Implementation Chapter 5.
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4.3.2 Level l+1

Given the solution C̃ l12 from level l, we compute the functional map at the next level as

follows. We define the solution as the matrix:

C̃h =

[
C̃ l C̄ l�h

C̄h�l C̄h

]
, (4.3)

where h= l+1 and for clarity we removed the subscript notation. The matrix block

C̄ l�h ∈Rk̃l× kh , for example, transfers high frequencies on M2 to low frequencies on

M1.

Now we reformulate the descriptor and commutativity constraints to solve for the

three unknown matrix blocks C̄. To this end, we decompose the constraints as block

matrices using:

F̃ l+1 =

[
F̃ l

F̄ h

]
, Õl+1 =

[
Õl 0

0 Ōh

]
, (4.4)

where, e.g., F̃ l ∈ Rk̃l×d contains the coefficients of the descriptors in the low eigen-

vectors of the basis, and similarly for the other matrices. The constraint matrices

F̃ l+1
i , Õl+1

i are computed in terms of coefficients of Φ̃l+1 when possible, e.g. for land-

mark spectral constraints, and Laplacian commutativity constraints, or computed as

full operators/functions and projected to the HFM basis.

With the constraints in hand, we solve for the partial matrix C̄ l�h, independently of

the other two unknown blocks:

C̄ l�h12 = arg min
C

‖CF̄ h2 − F̃ l1 + C̃ l12F̃
l
2‖2F +

∑
O
α(O)‖CŌh2 − Õl1C‖2F . (4.5)

The equations for C̄h�l and C̄h are similarly formulated in terms of the block

matrices of the linear constraints, leading to a linear least squares optimization, which

is coupled in these two blocks.

At the coarsest level we solve for (k0)2 variables, whereas at the level h we solve two

systems, with k̃lkh and khk̃h variables, respectively. Since the linear solve scales cubicly

in the number of variables, these reductions are significant. Dense operators will break

the block diagonal structure of Õl, and then all the three unknown matrix blocks will

be coupled. Nevertheless, solving for k̃lkh + khk̃h variables is still much more efficient

than solving for (k̃h)2 variables. Some sample timings can be seen in Table 6.2, where

we report the timing for all our results.

4.4 P2P recovery

While the functional map can be used as is for transporting functions, our final goal

is to obtain fine pointwise maps. A standard way [OCB+17] to extract a permutation
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Figure 4.2: Illustration of the hierarchical nearest neighbor search. (top) Two matching
vertices at level 0. (bottom) The only candidates considered for a match of a refined

vertex of M1
1 (bottom left) are the non-zero entries in S0

2 , in the column that
corresponds to the vertex from level 0 (bottom right).

matrix P12 from the computed spectral functional map C12, is to solve the optimization

problem: arg minP,C ‖CΦT
2 −ΦT

1 P‖2 alternatingly for P and C, starting from the inferred

functional map C12. Optimizing for P while keeping C fixed is implemented using a

nearest neighbor search. Optimizing for an orthogonal C while keeping P fixed, is done

using a linear solve and an SVD decomposition.

It is not feasible to use this approach directly at the finest subdivision level, as it

may contain hundreds of thousands of polygons and hundreds of dimensions, making the

nearest neighbors search computationally intractable. Thus, we leverage our hierarchical

scheme to generalize this P2P recovery approach as follows.

Coarse level 0. We use the standard approach to compute P 0
12 from C0

12, using ICP

in the spectral domain.

Level l+1. Our assumption is that corresponding points at level l+1 should be close

to subdivided corresponding points from level l. Therefore, when optimizing for a

permutation P l+1
12 using nearest neighbors search, we only consider matching candidates

that correspond to the top r nearest neighbor matches from level l, see Figure 4.2.

Namely, we consider candidates that have non-zero entries in the corresponding r

columns of Sl2. This considerably narrows down the search space, and reduces the

computation time by orders of magnitude.

Refinement beyond the finest level. As the goal is to match between subdivision

surfaces, we allow the matched points on M2 to be arbitrary points on the subdivision
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Source = 0l = 1l

= 2l = 3l = 3, re�nedl

Figure 4.3: Visualization of the map during the hierarchical process. Notice how the
map improves as the resolution increases.

surface, and not necessarily vertices of the finest level V f2 . This is achieved by optimizing

for a permutation P as follows:

P f+1
12 = arg min

P
‖C f

12(S f
2 Φ f

2 )T − (Φ f
1 )TP‖2, (4.6)

where the dimensions of P f+1
12 are n f1 × n

f+1
2 , again using only the r nearest neighbors

from the level below as matching candidates. The final output map is then given by the

matrix P f
12 = P f+1

12 S f
2 , whose dimensions are, as required, nf1 × n

f
2 .

Note that P f
12 is no longer a permutation matrix, but a general row stochastic matrix,

that we use to transport functions on the vertices of M2 to functions on the vertices of

M1. Effectively, it encodes a vertex-to-vertex map, from V f1 to V f+1
2 .

Figure 4.3 demonstrates this process, by visualizing the maps for levels l = [0, .., f ],

as well as the final finest map after the refinement on the last level. Note the improvement

of the map as the subdivision level increases, and the smooth map achieved after the

last refinement step.
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Chapter 5

Implementation Details

5.1 Splitting the eigenspace

The computation of the HFM basis requires splitting the eigenspace into f+1 bands,

given the required band widths {kl ≥ 0, l∈ 0, .., f}, such that
∑f

l=0 k
l = k̃f . For each

band we employ Matlab’s eigs solver [Mat18, LSY98, Ste02], that computes eigenvalues

and eigenvectors near a given σ that is close to an eigenvalue.

We rely on Weyl’s law, that predicts a linear growth of the eigenvalues as a function

of their index [Ivr16] to estimate an eigenvalue in the “center” of the band of level l+1.

Weyl’s law applies to the asymptotic behavior for the continuous operator as λ→+∞,

and our operator is discrete. However, a recent similar result exists for finite element

discretization of elliptical PDEs [XZZ17, Thm 4.3], and indeed, the empirical behavior

is close to linear, see Figure 3.3. Thus, we iteratively compute the bands as follows.

Level 0. Compute k0 smallest generalized eigenpairs of W0,M0, yielding Φ̃0, Λ̃0.

Level l+1.

• Estimate a linear function λb(i) of the k̃l eigenvalues in Λ̃l as a function of their

index.

• Set σ = λb(k̃
l+1

2k
l+1), and compute kl+1+h generalized eigenvalues and eigenvectors

of Wl+1,Ml+1 near σ, yielding Φ̄l+1, Λ̄l+1.

• Remove eigenvectors ϕ̄l+1 for which ‖〈Φ̃l, ϕ̄l+1〉‖∞ > ε.

As the eigenvalues are not exactly linear, we allow some leeway in the computation

of the bands, by computing h eigenpairs more than what is required. Then, we leverage

the approximate orthogonality property from Lemma 3.1.5, to remove eigenvectors that

are already well represented in the basis Φ̃l, where we filter eigenvectors with a maximal

projection norm larger than ε. In all our experiments we used h = 15, and ε = 0.4.

Note that since repeating eigenvalues often do exist, we cannot guarantee that the

HFM basis is complete. For example, if the band in level l is computed such that the
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last eigenvector is one of a pair of eigenvectors with similar eigenvalues, the computation

at level l+1 may return the same pair rotated in eigenspace, in which case the projection

on Φ̃ may be above the threshold and the eigenvector will be discarded. In practice, we

have not experienced problems due to this limitation.

5.2 Landmark Descriptors

5.2.1 Landmarks at fine levels

The input base meshes are often coarse, and therefore it is possible that semantic

landmark points, e.g., an elbow, do not land on vertices, see e.g., Figure 5.1 (left). Thus,

it is imperative to allow the user to place landmarks on any subdivision level l.

Due to the subdivision structure, the embedding of a vertex v f ∈V f of the refined

mesh is a convex combination of the embeddings of base mesh vertices. Specifically, the

convex combination weights are the non-zero elements of the v f -th row of S f0. Therefore,

we compute the fine landmark descriptor as the corresponding convex combination of

the coarse landmark descriptors, using K̃0
ρ,t(S f0)T δ fv . The same applies for placing

landmarks at any level h ≤ f , and computing descriptors at any level 0 ≤ l < h, by

taking K̃ l
ρ,t and Shl. Figure 5.1 (right) shows the resulting coarse descriptors for the

fine landmarks shown.

5.2.2 Efficient basis coefficients computation

A landmark descriptor of a vertex v∈V is given by Definition 4.1.1:

K̃ l
ρ,t,v=Φ̃l ρt(Λ̃

l) (Φ̃l)T δv.

Figure 5.1: (left) Corresponding landmark points do not land on vertices of the coarsest
level V0, therefore landmark on fine vertices are required. (center, right) Coarse

landmark descriptors on both meses for the fine vertices showed on the left.
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For the functional map optimization we only need the basis coefficients of these de-

scriptors, which are given by (Φ̃l)†K̃ l
ρ,t,v = ρt(Λ̃

l) (Φ̃l)T δv. Denoting the v-th row of Φ̃l

by ϕ̃lv we therefore have that the coefficients of the landmark descriptor are ρt(Λ̃
l)ϕ̃lv,

which is a vector of size k̃l. Thus, we can compute the coefficients directly, without

computing the full descriptor first.

The same applies for descriptors of landmarks vh at finer levels h > l, where the

basis coefficients are ρt(Λ̃
l) (ShlΦ̃l)T δvh .

5.3 Parameters

Hierarchy. The finest subdivision level f is set according to the required number of

vertices in the finest level. In our examples we used meshes with up to 629K vertices at

the finest subdivision level. For flexibility, we allow for different f levels for M1 and

M2.

HFM Basis. In all the experiments, we set k0 = 100, and kl = 50 or 100 for the

other levels. We additionally do not demand that kl1 = kl2, and allow for rectangular

functional maps, see Table 3.1.

Linear Constraints. We choose between 7− 21 landmarks per shape for the land-

mark descriptors, depending the deviation from isometry of the expected map, with

more landmarks required for less isometric shapes. We use WKS and WKM descrip-

tors [ASC11], taking 100 energy levels distributed as recommended by the authors. We

normalize each shape to unit area and normalize each descriptor to unit norm. Our

models are extrinsically symmetric, thus we search for this symmetry explicitly, and use

it as an operator commutativity constraint.

Inference. The α weights are set to 10−2 and 104 for the Laplacian commutation and

symmetry commutation respectively. We use Matlab’s direct solver to solve the linear

system.

P2P Recovery. We use fixed parameters for the P2P reconstruction, using s = 5

alternating ICP iterations at the coarse level, s = 3 at the finer levels, and r = 3 for the

hierarchical nearest neighbors search. At the last level of refinement we use only one

ICP iteration.

5.4 Limitations

The HFM basis is not guaranteed to be complete in the presence of repeating eigenvalues.

In practice we have not seen ill effects due to this, but a more principled approach for

preventing missing eigenvectors is an interesting avenue for future work.
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We currently do not handle dense commutation operator constraints, such as [NO17].

Technically it is possible to incorporate them, however for high subdivision levels they

slow down the process. Using an iterative solver with warm start, e.g. as has been done

in [GBKS18], could improve our performance further.

Our approach inherits the existing problems of functional map based approaches

that rely on WKS descriptors. In some cases, the map might have bad regions, e.g.

the right tusk of the mammoth in Figure 6.7, and the nose of the troll in Figure 6.8.

However, we do believe that our framework provides an excellent platform for improving

the functional map machinery further.

We do not handle shapes with multiple components, which are common in models

designed by artists, where there are often different components for the eyes, teeth, and

others. Thus we pre-clean each shape from any small connected components and remove

duplicate vertices if they exist.
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Chapter 6

Results

All the computations were performed on a machine with an i7 CPU and 64GB RAM.

The code was written in Matlab except for the Catmull-Clark subdivision for quads

which was written in C++ and used as a MEX file.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 6.1: Conformal distortion of the maps for all our experiment pairs.

6.1 Timing and map quality

Table 6.1 shows statistics and timings for all our experiments. The longest computation

time is 13.6 minutes for the zebra and horse pair (Figure 6.6), where the models at the

finest level have 629k and 439k vertices. Timings for the each step per level are given

in Table 6.2. The most time-consuming step in our approach is the P2P reconstruction

step, in average close to 70% of the total computation time. Yet, this is a considerable
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Figure n02, n
0
1 f2, f1 n f

2 , n
f
1 pts T (m)

Fig. 1.1, tiger � cat 7.1k, 1.2k 3, 4 454k, 317k 15 9.5
Fig. 6.6, zebra � horse 9.8k, 1.7k 3, 4 629k, 439k 16 13.6
Fig. 6.7, eleph. � mam. 1.7k, 6.0k 3, 4 385k, 442k 16 9.9
Fig. 6.8, troll tex � troll 4.2k, 2.2k 3, 3 272k, 145k 21 4.3
Fig. 6.8, troll tex � orc 4.2k, 2.2k 3, 3 272k, 142k 21 4.3
Fig. 6.2, woman � man 1.3k, 1.3k 3, 3 85k, 85k 7 1.6
Fig. 6.9, troll � orc 1.3k, 1.3k 3, 3 145k, 142k 21 2.9

Table 6.1: Statistics and timing. From left to right: (n0
2, n

0
1) number of vertices at the

coarse level; (f2, f1) finest subdivision level of source and target models; (n f2 , n
f
1 )

number of vertices at the finest levels; (pts) number of landmarks; (T) total time in
minutes.

speedup over the same computations in the non-hierarchical setup, where this step is

the most time consuming one. We measure map quality by the conformal distortion

induced by the map (Figure 6.1). The distortion of our maps are of the same order of

magnitude as existing approaches.

6.2 Comparisons

We compare our method to HOT [AL16], INF [NO17] and BCICP [RPWO18] using

code supplied by the authors. For all the methods, we triangulated the meshes, and used

the same constraints as ours, when possible with the provided code. Specifically, for

HOT we used only the landmark descriptors, and for INF and BCICP we used landmark

and Laplacian commutativity constraints. We additionally compared to a functional

maps setup without the hierarchy (FMAPS), where we used landmarks, Laplacian and

symmetry constraints.

The timings in minutes were: FMAPS: 27, INF: 33 and HOT: 52. BCICP failed to

complete the computation due to memory issues. Our timings are given in Table 6.1,

where the total time was under 2 minutes, and thus an order of magnitude faster than

the other approaches. More detailed timings, including each step in the pipeline for

each level in the hierarchy, are given in Table 6.2.

The visual results are summarized in Figure 6.2. We show the source and target

meshes, with the corresponding landmarks, the deformed source mesh, and the resulting

deformed target mesh after displacement transfer using the computed map. We also

show a visualization of the map by transferring a checkerboard pattern texture. Note

that our result provides the best visual map for transporting the deformation. The

quantitative results (Figure 6.3) show that our approach is better than state-of-the-art

methods for all methods except of HOT, which is 25× slower than our approach.
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Fig. 1.1, tiger � cat

l = 0 l = 1 l = 2 l = 3 l = 4 Total

Basis 2.8 13.9 32.6 66.6 33.4 149.3
Desc 0.2 0.4 1.4 5.6 2.2 9.8
Fmap 0.4 0.4 1.5 1.6 2.2 6.1
P2P 0.8 2.0 9.2 37.8 186.0 235.8
Refine 172.5 172.5
Total 4.2 16.7 44.7 111.6 396.3 9.5m

Fig. 6.6, zebra � horse

l = 0 l = 1 l = 2 l = 3 l = 4 Total

Basis 3.3 17.5 45.8 89.5 44.6 200.8
Desc 0.1 0.5 1.9 7.5 4.4 14.6
Fmap 0.3 0.3 1.4 1.5 2.1 5.7
P2P 1.4 2.4 11.8 50.1 263.9 329.6
Refine 265.0 265.0
Total 5.2 20.8 61.0 148.8 580.1 13.6m

Fig. 6.7, eleph. � mam.

l = 0 l = 1 l = 2 l = 3 l = 4 Total

Basis 2.7 12.8 31.8 68.5 47.0 163.6
Desc 0.1 0.4 1.4 5.2 4.7 11.9
Fmap 0.4 0.3 1.5 1.6 2.1 6.0
P2P 0.9 2.4 11.5 47.3 225.4 287.7
Refine 124.3 124.3
Total 4.1 16.0 46.3 122.7 404.2 9.9m

Fig. 6.8, troll tex � troll

l = 0 l = 1 l = 2 l = 3 Total

Basis 2.4 6.5 22.5 44.3 75.9
Desc 0.1 0.3 1.4 4.2 5.7
Fmap 0.4 0.8 1.2 1.8 4.1
P2P 0.9 3.8 17.1 85.1 107.1
Refine 66.9 66.9
Total 3.7 11.5 42.0 202.4 4.3m

Fig. 6.8, troll tex � orc

l = 0 l = 1 l = 2 l = 3 Total

Basis 1.8 6.4 22.6 44.3 75.3
Desc 0.1 0.3 1.1 4.2 5.6
Fmap 0.3 0.8 1.2 1.7 4.0
P2P 0.8 3.9 17.2 85.0 106.8
Refine 66.4 66.4
Total 3.1 11.3 42.0 201.5 4.3m

Fig. 6.2, woman � man

l = 0 l = 1 l = 2 l = 3 Total

Basis 0.5 2.1 7.8 15.2 25.7
Desc 0.02 0.07 0.3 1.2 1.6
Fmap 0.3 0.5 0.9 1.3 3.0
P2P 0.2 2.3 8.9 34.7 46.0
Refine 21.6 21.6
Total 1.1 5.0 17.9 74.0 1.6m

Fig. 6.9, troll � orc

l = 0 l = 1 l = 2 l = 3 Total

Basis 1.2 4.0 14.8 30.5 50.7
Desc 0.07 0.2 0.7 2.9 3.9
Fmap 0.4 0.8 1.2 1.7 3.9
P2P 0.5 3.5 14.5 32.7 81.1
Refine 37.8 37.8
Total 2.1 8.5 31.2 135.6 2.9m

Table 6.2: Timing statistics (in seconds) for each step in each level of the hierarchy.
Basis: subdividing and computing the HFM basis; Desc: computing the descriptors and
symmetry operators; Fmap: computing the functional map; P2P: extracting a point to

point map; Refine: the last refinement step on the finest level.
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Target Model

Source Model

Source Model HFM (Ours), 2 min FMAPS12, 27 min INFORM, 33 min HOT, 52 min

Source Model HFM (Ours) FMAPS12 INFORM HOT

Figure 6.2: Comparison of our method (HFM) with the non hierarchical functional
maps scheme FMAPS12 [OBCS+12], INFORM [NO17] and HOT [AL16] for

displacement transfer. Note that our map correctly transfers displacements at both low
resolution (around neck) and high resolution (face and head). The original FMAPS
approach does not handle well the fine details on the face, INFORM gives a result
comparable to ours, and HOT produces a mostly good result, yet causes the head

displacements to slide. All methods took an order of magnitude longer than ours to
compute. The bottom row visualizes the map by transporting a checkerboard texture.
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Figure 6.3: Quantitative comparison of the conformal distortion of the maps. We
compare our method (HFM), the non heirarchical functional maps scheme

FMAPS12 [OBCS+12], INFORM [NO17] and HOT [AL16]. HOT achieves the best
conformal distortion, at a 25× higher computational cost, our method is second.

6.3 Application: Transferring textures

Given a pointwise map P f
12 between the finest subdivision levels we can transfer texture

images.

Assuming both models have texture coordinates Ufi that are subdivided to the

finest level, and given a texture image for M2, we construct a new texture image for

M1. This is done by first computing the deformed texture coordinates of M1, given

by Ũ1 = (P u�x
1 )P12(P x�u)2U2, where all the quantities are at the finest level. Here,

P x�u maps texture vertices to model vertices, and vice versa for P u�x. Next, the model

is saved and rendered, with coordinate locations given by U1 and texture coordinates

given by Ũ1. The resulting image is the new texture image for M1.

A technical issue remains—the texture seams of M2 do not necessarily correspond

to texture seams of M1, leading to visible artifacts in the new texture. To remedy this,

we identify quads of M1 that are mapped to vertices in the 1-ring neighborhood of the

texture seams of M2, and remove them from the rendering, leading to missing texture

regions. Finally, we use an off-the-shelf image inpainting tool [Inp18] for recovering

the missing regions, where we use the removed quads as the inpainting mask. This

process does not require user intervention, and is demonstrated in Figure 6.4. Another

possibility is to use a seam erasure as was recently introduced by [LFJG17].

Combined with our high quality maps at the finest levels, this approach is highly

effective for texturing base objects using a detailed high resolution texture of a different
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Figure 6.4: The texture transfer process. (left) the input texture image, (center) the
transported image with the missing data along the texture seams of the source model,

(right) the final inpainted results. The textured model appears in Figure 1.1.

Source Model Target Model

Figure 6.5: Map visualization with checkerboard texture transfer for the tiger and cat
pair from Figure 1.1.

model. Figures 1.1, 6.5, 6.6, 6.7, 6.8 demonstrate our results, with statistics and timings

given in Table 6.1 and Table 6.2. Note that the transported texture closely follows

the semantic correspondence between the shapes. To the best of our knowledge, such

detailed transfer was difficult to achieve before.

6.4 Application: Transferring displacement maps

Another common workflow with subdivision surfaces is sculpting on a refined mesh,

and then baking the resulting displacements into a displacement map. Transferring

displacement maps created this way is in fact simpler than transferring texture images,

since the displacement map can be reproduced with linear interpolation of vertex values

at the finest level (as opposed to texture images, where the pixel data is denser than

the vertex data). Therefore, we render the new displacement image using linear vertex

colors instead of a texture image. Since texture vertices have the same displacement

value even if they are on a texture seam, no texture discontinuities are introduced, and
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Target Model

Source Model Input Texture

Output Texture

Textured Input Our Output

Textured Input

Our Output

Our OutputTextured Input

Source Model

Target Model

Figure 6.6: Texture transfer of a zebra to a horse. (left to right): input source and
target models with corresponding landmarks, input and output texture image, pairs of

textured inputs and textured outputs from multiple views, map visualization with
checkerboard texture transfer.

thus this application does not require inpainting. If a low level polygonal model is not

required, we can skip the baking step, and simply transport the displacement function

directly, as a function on the surface.

Figure 6.9 demonstrates this approach. We deformed one of the troll models from

Figure 6.8 using Blender’s multi-resolution sculpting [vG09, pp. 101], and computed

the resulting displacement map as a function on the surface. Then, we computed a

map to a different troll model, transported the displacement function with the map

and applied the displacement. Note the similar semantic locations of the ornaments

on the two trolls. Figure 6.2 used the computed map in the same way, to transport

displacement functions. We show our results, and the results of other map computation

Target Model

Source Model Input Texture

Output Texture

Textured Input Our Output

Textured InputOur Output

Source Model

Target Model

Figure 6.7: Texture transfer of an elephant to a mammoth. (left to right): input source
and target models with corresponding landmarks, input and output texture image,

pairs of textured inputs and textured outputs from multiple views, map visualization
with checkerboard texture.
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Target Models Output Textures

Textured Input

Our OutputOur Output

Source Model
Input Texture

Source ModelTarget Model Target Model

Figure 6.8: Troll family. Texture transfer from a troll to two other troll models. (left to
right) input source and target models with corresponding landmarks, input and output
texture images, the textured input and our textured output results, map visualization

with checkerboard texture.

approaches on the same model, leading to inferior or similar results with an order of

magnitude longer computation times. Note that the map we computed was accurate

enough to transport the details in a semantic way to the correct locations on the face

and head of the target model.

Input: Model + Displacement

Output: Transported Displacement Input: Model + Displacement

Output: Transported Displacement

Input: Model + Displacement

Output: Transported 
Displacement

Source Model Target Model

Figure 6.9: Displacement transfer from a troll to an orc model. We show the input and
output models with the displaced geometry, from multiple views, and map visualization

with checkerboard texture.

38©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Chapter 7

Conclusions and Future Work

We presented a method for computing correspondences between subdivision surfaces,

which to the best of our knowledge was not possible before. We investigated the spectral

structure of the SEC Laplace Beltrami operator at different subdivision levels, and

leveraged the results to construct a hierarchical spectral basis. Using this basis, we

designed a hierarchical functional map inference scheme that given input landmarks

generates very detailed maps, an order of magnitude faster than existing approaches

for triangle meshes. Finally, we showed how our maps can be used for texturing

and detailing subdivision models, by transferring highly detailed texture images and

displacement maps.

Our approach has many avenues for future work. From the technical standpoint, a

wavelet based hierarchical basis [Ber04] seems most appropriate for subdivision surfaces,

and will additionally enable partial matching. From the application standpoint, once

our map is computed it can potentially be incorporated into 3D modeling environments,

e.g., Blender, for simultaneous sculpting on two shapes, much like symmetry is used for

sculpting today. Finally, generalizing our approach to collections of subdivision surfaces

would enable tasks such as joint shape analysis on the abundant datasets of open 3D

movies.
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Appendix A

Appendix - Proofs.

Lemma A.0.1. Let gl+1 = Slgl and hl+1 = Slhl. Then we have that

〈gl+1,Ll+1hl+1〉Ml+1 = 〈gl,Llhl〉Ml ,

〈gl+1, hl+1〉Ml+1 = 〈gl, hl〉Ml .
(A.1)

Proof.

〈gl+1,Ll+1hl+1〉Ml+1 =

(gl+1)TWl+1hl+1 = (since L = M−1W)

(Slgl)TWl+1Slhl = (since gl+1 = Slgland same for h)

(gl)TWlhl = (since Wl = (Sl)TWl+1Sl)

= 〈gl,Llhl〉Ml . (since L = M−1W)

(A.2)

And similarly,

〈gl+1, hl+1〉Ml+1 =

(Slgl)TMl+1Slhl = (since gl+1 = Slgland same for h)

(gl)TMlhl = (since Ml = (Sl)TMl+1Sl)

= 〈gl, hl〉Ml ,

(A.3)

which completes the proof. Note that the same reasoning holds for inner product of

matrices.

Lemma 3.1.2. The prolonged eigenvectors and eigenvalues Φ̂l+1, Λ̂l+1 are weak eigen-

vectors and eigenvalues of Ll+1 with respect to functions of level l+1 which are in the

image of Sl. Explicitly, for any function gl+1∈Im(Sl) we have:

〈gl+1,Ll+1Φ̂l+1 − Φ̂l+1Λ̂l+1〉Ml+1 = 0, (3.4)

〈Φ̂l+1, Φ̂l+1〉Ml+1 = I. (3.5)
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Proof. Since gl+1 ∈ Im(Sl) there exists a function gl ∈Rnl
such that gl+1 = Slgl.

Then, we have:

〈gl+1,Ll+1Φ̂l+1 − Φ̂l+1Λ̂l+1〉Ml+1 =

〈gl,LlΦl〉Ml − 〈gl,ΦlΛl〉Ml = (from Lemma A.0.1, Def. 3.1.1)

(gl)T (WlΦl −MlΦlΛl) = 0, (from Eq. 3.1)

(A.4)

which completes the proof of the first part. For the second part, note that

〈Φ̂l+1, Φ̂l+1〉Ml+1 = 〈SlΦl, SlΦl〉Ml+1 = 〈Φl,Φl〉Ml = I, (A.5)

where we again used Definition 3.1.1, Lemma A.0.1 and Equation 3.1, in this order.

Lemma 3.1.3. Let g∈Im(Sl). Then

‖g − Φ̂Φ̂†g‖2M ≤
‖∇g‖2M
λk+1

≤ λmax
λk+1

‖g‖2M, (3.6)

where all quantities are at level l+1, Φ̂ are the first k eigenvectors of Ll prolonged to

l+1, λk+1 is the k+1th eigenvalue of Ll, λmax is the largest eigenvalue of Ll, and ∇g
is a discrete gradient defined such that ‖∇g‖2M = 〈g,L g〉M.

Proof. Set Φl,Λl to be the first k eigenvectors and eigenvalues of Ll, and Φ̄l, Λ̄l the

remaining nl − k eigenvectors and eigenvalues. Thus, we have:

Ll =
(
ΦlΛl(Φl)T + Φ̄lΛ̄l(Φ̄l)T

)
Ml. (A.6)

Since gl+1∈Im(Sl) there exists a function gl∈Rnl
such that gl+1 = Slgl. Now, using

Lemma A.0.1 we get:

〈gl+1,Ll+1gl+1〉Ml+1 = 〈gl,Llgl〉Ml . (A.7)

Plugging in Equation A.6 leads to:

〈gl,Llgl〉Ml = (gl)TMl
(
ΦlΛl(Φl)T + Φ̄lΛ̄l(Φ̄l)T

)
Mlgl

≥ (gl)TMlΦ̄lΛ̄l(Φ̄l)TMlgl

≥ λk+1(gl)TMlΦ̄l(Φ̄l)TMlgl,

(A.8)

where in the last step we used Λ̄l ≥ λk+1I entrywise, since λk+1 is the smallest eigenvalue

in Λ̄.
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Now we have:

‖gl − Φl(Φl)†gl‖2Ml =

= ‖Φ̄l(Φ̄l)†gl‖2Ml (since [Φ, Φ̄] is a full basis)

= ‖Φ̄l(Φ̄l)TMlgl‖2Ml (since Φ̄lis ortho wrt Ml)

= (gl)TMlΦ̄l(Φ̄l)TMlΦ̄l(Φ̄l)TMlgl

= (gl)TMlΦ̄l(Φ̄l)TMlgl (since Φ̄lis ortho wrt Ml).

(A.9)

On the other hand, we have:

‖gl − Φl(Φl)†gl‖2Ml =

= ‖Sl(gl − Φl(Φl)†gl)‖2Ml+1 (from Lemma A.0.1)

= ‖gl+1 − Φ̂l+1(Φl)TMlgl‖2Ml+1 =

= ‖gl+1 − Φ̂l+1(Φ̂l+1)TMl+1gl+1‖2Ml+1 =

= ‖gl+1 − Φ̂l+1(Φ̂l+1)†gl+1‖2Ml+1 ,

(A.10)

where the last step is due to Lemma 3.1.2 which implies that Φ̂l+1 is orthonormal with

respect to Ml+1.

Combining all the results we get:

‖gl+1 − Φ̂l+1(Φ̂l+1)†gl+1‖2Ml+1 =

= ‖gl − Φl(Φl)†gl‖2Ml =

= (gl)TMlΦ̄l(Φ̄l)TMlgl ≤

≤ 1
λk+1
〈gl,Llgl〉Ml =

= 1
λk+1
〈gl+1,Ll+1gl+1〉Ml+1 ,

(A.11)

which completes the proof of the first bound.

Using the generalized Courant-Fisher Minimax Theorem [ANT09, Thm 3.4] we

further have that 〈gl,Llgl〉lM ≤ λmax‖gl‖2Ml , where λmax is the largest eigenvalue of Ll,
completing the proof of the second bound.

Lemma 3.1.5. Assume Λ̃l and Λ̄l+1 are distinct, and both have no repeating eigenvalues.

Let Φl+1 be the first
∑l

i=0 k
i = k̃l eigenvectors of Ll+1. Then the HFM basis Φ̃ is

approximately blockwise orthonormal:

〈Φ̃l+1, Φ̃l+1〉Ml+1 =

[
〈Φ̃l, Φ̃l〉Ml E

ET Ikl+1×kl+1

]
, (3.9)

〈Φ̃0, Φ̃0〉M0 = Ik0×k0 , (3.10)
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where the error matrix E is controlled by

1

kl+1

∑
ij

|Eij | ≤ ‖SlΦ̃l − Φl+1‖2Ml+1 . (3.11)

Proof. According to Definition 3.1.4 we have that Φ̃l+1 = [SlΦ̃l, Φ̄l+1], therefore we

get that 〈Φ̃l+1, Φ̃l+1〉Ml+1 is a blockwise matrix of inner products

[
A E

ET B

]
. Where,

A = 〈SlΦ̃l, SlΦ̃l〉Ml+1 = 〈Φ̃l, Φ̃l〉Ml ,

B = 〈Φ̄l+1, Φ̄l+1〉Ml+1 = I

E = 〈SlΦ̃l, Φ̄l+1〉Ml+1 .

(A.12)

To obtain the bound on E, note that 〈Φl+1, Φ̄l+1〉Ml+1 = 0, since their corresponding

eigenvalues are distinct. Hence we have:

E = 〈SlΦ̃l, Φ̄l+1〉Ml+1 = 〈SlΦ̃l − Φl+1, Φ̄l+1〉Ml+1 . (A.13)

Denote A = SlΦ̃l − Φl+1, B = Φ̄l+1,M = Ml+1, thus E = 〈A,B〉M , and let Ai be the

i-th column of A. We have:∑
ij

|Eij | =
∑
ij

|〈Ai, Bj〉M | ≤
∑
ij

‖Ai‖2M‖Bj‖2M , (A.14)

where for the last step we used the Cauchy-Schwarz inequality. Set ā to be the diagonal

of the matrix 〈A,A〉M , namely ā(i) = ‖Ai‖2M , and similarly set b̄ to the diagonal of

〈B,B〉M . In addition, let 1 be a column vector of ones. We get:∑
ij

‖Ai‖2M‖Bj‖2M = 1T (āb̄T )1 = ‖A‖2M‖B‖2M , (A.15)

since b̄T1 = tr(BTMB) = ‖B‖2M , and similarly for A.

Finally, note that ‖B‖2M = tr(〈Φ̄l+1, Φ̄l+1〉Ml+1) = tr(Ikl+1), and therefore ‖B‖2M =

kl+1. Combining all the results, and plugging back the definition of A we have:∑
ij

|Eij | ≤ ‖A‖2M‖B‖2M = ‖SlΦ̃l − Φl+1‖2Mkl+1, (A.16)

as required.

If the first k̃l eigenvalues at level l and at level l+1 include no repeating eigenvalues,

then the basis vectors in Φl+1 are expected to correspond (up to sign) to the prolonged

eigenvectors (see Figures 3.2, 3.3), reducing the error on the right hand side.
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Lemma 4.1.2. Let K̃ l+1
ρ,t be the HSD at level l+1, then:

K̃ l+1
ρ,t = SlK̃ l

ρ,t(S
l)T + Φ̄l+1 ρt(Λ̄

l+1) (Φ̄l+1)T . (4.1)

Proof. By definition, we have that

K̃ l+1
ρ,t = Φ̃l+1 ρt(Λ̃

l+1) (Φ̃l+1)T .

Plugging in the definition of the hierarchical basis

Φ̃l+1 = [SlΦ̃l, Φ̄l+1], Λ̃l+1 = [Λ̃l, Λ̄l+1],

we get:

K̃ l+1
ρ,t =

[
SlΦ̃l Φ̄l+1

] [ρt(Λ̃l) 0

0 ρt(Λ̄
l+1)

][
(SlΦ̃l)T

(Φ̄l+1)T

]
=

= SlΦ̃lρt(Λ̃
l)(Φ̃l)T (Sl)T + Φ̄l+1ρt(Λ̄

l+1)(Φ̄l+1)T =

= SlK̃ l
ρ,t(Φ̃

l)T (Sl)T + Φ̄l+1ρt(Λ̄
l+1)(Φ̄l+1)T ,

(A.17)

which completes the proof.
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[VL08] Bruno Vallet and Bruno Lévy. Spectral geometry processing with

manifold harmonics. In Computer Graphics Forum, volume 27,

pages 251–260, 2008.

51©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



[XZZ17] Jinchao Xu, Hongxuan Zhang, and Ludmil Zikatanov. On

the weyl’s law for discretized elliptic operators. arXiv preprint

arXiv:1705.07803, 2017.

[Zor06] Denis Zorin. Modeling with multiresolution subdivision surfaces.

In ACM SIGGRAPH 2006 Courses, pages 30–50. ACM, 2006.

52©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



משטחים על לפלס־בלטראמי אופרטור של מדויק דיסקרטי לחישוב החלוקה במבנה משתמשת חיצוני,

שלנו. ההיררכית בגישה מרכזי מרכיב היא זו דיסקרטיזציה מצולעים.

עם פונקציות כאשר רב־רזולוציה, אופי יש לפלס־בלטארמי אופרטור של העצמיות לפונקציות כי ידוע

דומה תכונה נמוכים. עצמיים ערכים עם מפונקציות יותר מהר מתנודדות יותר גבוהים עצמיים ערכים

חתימת עבור למשל, שימושיים, פונקציונאליים (דסקריפטורים) צורות מתארי עבור גם מתקיימת

המבנה לבין תת־חלוקה משטחי בין מושלמת התאמה היא הדבר משמעות החום. אופרטור גרעין

פונקציות של קטנה קבוצה תת באמצעות מיוצגת להיות יכולה נמוכה ברזולוציה התאמה ההיררכי:

בעוד ולהשתמש לחשב ניתן כך גדלה המודל שרזולוציית וככל נמוכים, עצמיים ערכים עם עצמיות

אלה היררכי. פונקציונלי מיפוי להסקת הרכיבים את מעצבים אנו ודסקריפטורים. עצמיות פונקציות

מיפוי עבור היררכית ואופטימיזציה ליניאריים אילוצים הצבת היררכי, ספקטרלי בסיס חישוב כוללים

של השחזור את להאיץ בכדי תת־החלוקה מבנה את למנף כיצד מראים אנו בנוסף, פונקציונלי.

שלנו הסכמה רב. חישוב זמן גוזל אשר חשוב צעד הפונקציונלי, המיפוי מתוך הנקודה־לנקודה מיפוי

אלפי מאות של לגודל מגיעים אשר מאוד, מעודנים תת־חלוקה משטחי בין איכותיות התאמות מחשבת

משתמשים אנו קיימות. התאמה גישות מאשר יותר נמוכים גודל בסדר שהם חישוב בזמני מצולעים,

גם כמו גבוהה, ברזולוציה גיאומטריים ופירוט עריכות העברת לצורך שלנו ובמיפויים בהתאמות

ממדיים. תלת מודלים ליישומי שלנו הגישה של הפוטנציאל את מראים ובכך טקסטורה, תמונות
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תקציר

במהלך בסיס כאבן משמשים הם מימדים, תלת מודלים עבור פופולרי ייצוג הנם תת־חלוקה משטחי

קרובות לעתים דיסקרטי, משטח עיצוב כוללת נפוצה עבודה שיטת רבים. גרפיים אמנים של העבודה

פעמים מספר ומעודן מחולק אשר שליטה, מצולעי של קטן מספר עם טהור ריבועי דיסקרטי מודל

ועדינים. מורכבים פרטים לקבלת מפוסל המוחלק המשטח מכן לאחר יותר. גבוהה חלקות להשיג בכדי

רבודה, מציאות יישום או משחק כגון משאבים, נמוכת בסביבה בשימוש נמצא המפוסל המודל אם

ריצה. בזמן משמשת הנמוכה ברזולוציה הגיאומטריה ורק לתמונה, "נאפים" גיאומטרים הפרטים אז

גבשושיות, מפות או רגילות כמפות כתמונה) המחשב ידי על (מוצגים מרונדרים העדינים הפרטים

תזוזה. כמפות בחומרה שימוש באמצעות ולאחרונה,

דיסקרטי מצולעי ממשטח החל ריאליסטי תלת־ממדי מודל עיצוב כלומר, והפיסול, הפירוט תהליך

הבדלי ידי על ניתנת למשל, לכך, עדות חישובית. ויקר רב זמן דורש נמוכה, ברזולוציה בסיסי

לשקול לכן טבעי זה גודל. סדרי לשני להגיע שיכולים מפורט, מודל לבין בסיס מודל בין המחירים

לדוגמה, דומה. מודל של ועיצוב לפירוט מוצא כנקודת אחד מודל של ועיצוב בפירוט חוזר שימוש

אחד מודל לעצב שימושי יהיה דומים, פנים פרטי עם דיגיטליות דמויות של משפחה מעצב אמן אם

לעתים משמשות דומות פרדיגמות האחרים. למודלים העיצוב עריכת את להעביר מכן ולאחר כזה,

סגנון. והעברת דפורמציה העברת לדוגמה, ממוחשבת, בגרפיקה קרובות

ידי על שמתוארים תת־חלוקה משטחי שני בין מפורטת התאמה נדרשת כזה, יישום לאפשר כדי

משטחים בין התאמה לחישוב המוקדשת מאוד רבה עבודה שישנה למרות שונים. שליטה מצולעי

את לחשב ניסיון תת־חלוקה. משטחי עבור כזו שיטה אין ידיעתנו, למיטב משולשיים, דיסקרטיים

שהמשטחים כיוון רב, זמן אורך גבוהה לרזולוציה וחולק עודן אשר תת־חלוקה משטח של ההתאמה

נמוכה ברזולוציה המשטחים של ההתאמה חישוב לחלופין, מצולעים. אלפי מאות של לכמות מגיעים

אינה, הגיאומטריה של הסמנטיקה שכן דומה, באופן יעיל אינו ההתאמה, של ועידון חלוקה ביצוע ואז

סמנטית משמעות בעלת התאמה מפת אחרות, במילים העידון. פעולת ידי על נשמרת כללי, באופן

בהכרח אינה היא הצורות, שתי בין סמנטית הקשורים המאפיינים את שמתאימה גבוהה, ברזולוציה

נמוכה. ברזולוציה הסמנטית המפה של העידון

תת־חלוקה משטחי שני בין גבוהה ברזולוציה מפורטת, התאמה לחישוב חדשנית גישה מציעים אנו

הפונקציונלי, המיפוי מסגרת של הכללה היא שלנו השיטה שונים. שליטה מצולעי ידי על המוגדרים

המרכיבים הגיאומטריה. ייצוג לשיטת אגנוסטית והינה ההתאמה, להסקת גמישה גישה שהיא

אילוצים של וקבוצה המשטח, פני על המוגדרות סקלריות לפונקציות בסיס הם הדרושים העיקריים

אופרטור של הספקטראלי הפירוק של במונחים לעיתים ניתנים שניהם כאשר ליניאריים, פונקציונליים

בחדוו"א דיסקרטיים תת־חלוקה אופרטורי הנקראת חדשנית, גישה לאחרונה, לפלס־בלטראמי.
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המחשב. למדעי בפקולטה בן־חן, מירלה פרופסור של בהנחייתה בוצע המחקר

בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של המחקר תקופת במהלך ובכתבי־עת

Meged Shoham, Amir Vaxman, and Mirela Ben-Chen. Hierarchical functional maps between
subdivision surfaces. In Computer Graphics Forum, volume 38. Wiley Online Library, 2019.

תודות

תודה הזו. התיזה וכתיבת המחקר לאורך שלה ההנחייה על למירי להודות רוצה אני

על תודה שלי. והמחשבות לרעיונות ולהקשיב לשמוע שהוקדש הזמן ועל הסובלנות על

בעיקר בזכותך. שרכשתי הכלים על תודה במחקר. המועילה וההדרכה החכמות העצות

רוצה אני בנוסף קצר. סיור בו לבצע לי ועזרת לי שהכרת המרתק התחום על תודה

כך ועל חיוך, עם המחקר תקופת את ששרדת כך על רחלי, האהובה לאשתי להודות

כל לאורך והעידוד התמיכה על למשפחתי מודה אני כן, כמו להצלחה. בי תמכת שתמיד

הדרך.

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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משטחי בין היררכי פונקציונלי מיפוי
תת־חלוקה

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

חשמל בהנדסת למדעים מגיסטר

שוהם מגד

לישראל טכנולוגי מכון – הטכניון לסנט הוגש

2019 מאי חיפה התשע"ט אייר
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משטחי בין היררכי פונקציונלי מיפוי
תת־חלוקה

שוהם מגד

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry


	List of Figures
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Background
	2.1 Functional Maps
	2.1.1 Notation
	2.1.2 Basics
	2.1.3 Inference
	2.1.4 Point-to-point Map Reconstruction

	2.2 Subdivision Exterior Calculus
	2.2.1 Notation
	2.2.2 Discrete Differential Operators


	3 Hierarchical Functional Maps (HFM)
	3.1 Spectral Functional Basis
	3.1.1 Requirements
	3.1.2 SEC Laplacian Eigenvectors
	3.1.3 HFM Basis
	3.1.4 Properties
	3.1.5 Computation time


	4 Inference
	4.1 Descriptors Constraints
	4.2 Commuting Operators Constraints
	4.3 Optimization
	4.3.1 Coarse level 0
	4.3.2 Level l +1

	4.4 P2P recovery

	5 Implementation Details
	5.1 Splitting the eigenspace
	5.2 Landmark Descriptors
	5.2.1 Landmarks at fine levels
	5.2.2 Efficient basis coefficients computation

	5.3 Parameters
	5.4 Limitations

	6 Results
	6.1 Timing and map quality
	6.2 Comparisons
	6.3 Application: Transferring textures
	6.4 Application: Transferring displacement maps

	7 Conclusions and Future Work
	A Appendix - Proofs.
	Bibliography



