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Abstract

Subdivision surfaces are a common and popular shape representation for 3D modeling
and designing. As so, they are abundantly used in the pipeline of graphics artists.
OpenSubdiv, an open source code package released recently by Pixar Studios, is an
evidence of the usefulness of subdivision surfaces. A common modeling pipeline includes
the design of a simple base mesh, with a small number of control polygons. The base
mesh is subdivided several times, producing a smoother mesh. The smooth model is
then sculpted artistically, yielding a finely detailed shape.

We propose a novel approach for computing correspondences between subdivision
surfaces with different control polygons. Our main observation is that the multi-
resolution spectral basis functions that are often used for computing a functional
correspondence can be compactly represented on subdivision surfaces, and therefore
can be efficiently computed. Furthermore, the reconstruction of a pointwise map
from a functional correspondence also greatly benefits from the subdivision structure.
Leveraging these observations, we suggest a hierarchical pipeline for functional map
inference, allowing us to compute correspondences between surfaces at fine subdivision
levels, with hundreds of thousands of polygons, an order of magnitude faster than existing
correspondence methods. We demonstrate the applicability of our results by transferring

high-resolution sculpting displacement maps and textures between subdivision models.
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Chapter 1

Introduction

Subdivision surfaces are a popular shape representation for 3D modeling, used in the
design pipeline of many artists [opel3]. A common workflow [vG09, pp. 101] entails
designing a polygonal, often a purely quadrangular model with a small number of
polygons, subdividing it multiple times to achieve higher smoothness, and then sculpting
fine details on the subdivided model. If the model is to be used in a low-resource
environment, such as a game or an augmented-reality application, the geometric details
are then “baked” into an image, and only the low resolution geometry is used at runtime.
The details are rendered as normal maps or bump maps, and more recently, by using
hardware tessellation, as displacement maps [NKF*16].

The detailing process, i.e., designing a realistic 3D model starting from a low
resolution polygonal base mesh, is time consuming and expensive. This is evidenced,
for example, by the price differences between a base mesh and a detailed model, that
can reach two orders of magnitude [Turl9]. It is natural then to consider reusing the
detailing of one model as a starting point for the detailing of a similar model. For
example, if one designs a family of digital characters with similar facial details, it would
be useful to design one such model, and then transfer the detailed editing to other
base meshes. Similar paradigms are often used in computer graphics, for example,
deformation transfer [SP04] and style transfer [BHST17].

To enable such an application, a detailed correspondence is required between two
subdivision surfaces described by different control polygons. Despite a very large body
of work dedicated to computing correspondences between triangle meshes [VKZHCO11],
there exists, to the best of our knowledge, no method that is applicable to subdivision
surfaces. Attempting to compute the correspondence on the subdivided mesh at a
high resolution leads to extremely long run times, as the meshes reach hundreds of
thousands of polygons. Alternatively, computing a correspondence on a low resolution
mesh and subdividing it, is similarly ineffective, since the semantics of the geometry is
not, in general, conserved by the subdivision operation. In other words, a semantically
meaningful high-resolution map, that puts in correspondence related features on both

shapes, is not necessarily the exact refinement of a semantic low-resolution map.
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Figure 1.1: We compute a detailed map between subdivision surfaces given by their
control meshes using a set of input landmarks (left), and use it to accurately transport
highly detailed texture images (center, right).

We propose a novel approach for computing a detailed, high resolution correspondence
between two subdivision surfaces given by different control polygons. Our method is
a generalization of the functional map framework [OBCST12, OCB*17], which is a
flexible approach for inferring correspondences, agnostic to the underlying geometry
representation. The main required components are a basis for scalar functions defined on
the surface, and a set of linear functional constraints, where both are often given in terms
of the spectral decomposition of the Laplace-Beltrami operator (LB). Recently, a novel
approach, denoted as Subdivision Exterior Calculus [dGDMD16], uses the subdivision
structure to compute an accurate discretization of the LB operator on polygonal meshes.

This discretization is a key component in our hierarchical approach.

It is well known, see e.g. [VLO08], that the eigenfunctions of the LB operator have a
multi-resolution nature, where functions with higher eigenvalues are more oscillatory than
functions with lower eigenvalues. A similar property holds for an often used functional
descriptor, the Heat Kernel Signature [SOG09] (HKS). This implies a perfect fit between
subdivision surfaces and a hierarchical functional framework: the correspondence at a
low resolution can be represented using a small subset of low eigenfunctions, and as the
mesh resolution increases more basis eigenfunctions and descriptors can be computed

and used.

We design the components for constructing efficiently a hierarchical functional map
inference scheme. These include computing a hierarchical spectral basis, posing linear
constraints and hierarchically optimizing for a functional correspondence. We addition-
ally show how to leverage the subdivision structure to speed up the reconstruction of a
pointwise map from the functional correspondence, an important and time consuming
step. Our scheme computes high quality correspondences between subdivided meshes of
hundreds of thousands of polygons, at computation times that are an order of magnitude
smaller than existing correspondence approaches. We apply our detailed computed
maps for transferring high resolution geometry edits, as well as texture images, showing

the potential of our approach for 3D modeling applications.



1.1 Related Work

Our main goal is computing a correspondence between two subdivision surfaces, given
by their base polygonal meshes. Despite the abundant amount of work on shape
correspondence, to the best of our knowledge, there does not currently exist an algorithm
that targets this application. Therefore, we focus our literature review on correspondence
in general, on existing approaches for multi-resolution geometry processing, and on

methods targeting our application, namely detail transfer.

Shape Correspondence. The literature on shape correspondence is vast, and a
complete review is beyond our scope. We refer the reader to recent state-of-the-art
reviews [TCL*13, LI15, Lagl18] for an introduction to the topic. Most, if not all, of the
shape correspondence approaches use triangle meshes or point clouds as input data,
which is motivated by the need to register scanned 3D data. We, on the contrast, are
interested in matching models designed by artists, which are given as polygonal (often
quad) meshes.

To the best of our knowledge, there exist a very small number of papers that address
the problem of correspondences between quad meshes. Eppstein et al. [EGKTO08] have
investigated the exact topological matching of parts of quadrangular meshes. They
show that an exact solution is NP-Hard and provide an approximate greedy approach.
Our goal is different, as we do allow varying quad topology, and rely on the geometry
instead to supply the correspondence information. Alternatively, subdivision surface
fitting can also generally be considered a correspondence method. Classic approaches for
subdivision fitting were suggested by Litke et al. [LLS01] for Catmull-Clark subdivision,
by Marinov et al. [MKO05] for Loop subdivision, and many other, more recent, fitting
approaches exist. It is worth noting that for subdivision fitting the base mesh is initially
extrinsically aligned with a target triangular mesh, whereas in our case the input base
meshes are general, and can be extrinsically and intrinsically different. Recently, Estellers
et al. [ESC18b] suggested a robust fitting approach that takes into consideration outliers.
They use a decimated version of the input mesh as the base mesh for the subdivision
surface, which is extrinsically aligned to the input mesh and thus inappropriate for our
application.

While it is possible to triangulate any polygonal mesh, the resulting triangle meshes
will have non-optimal elements, which might degrade the differential operators that are
used in computations. Alternatively, it is possible to remesh a quadrangular mesh using
uniform triangular elements, however, that might lead to loss of prominent features if
the remeshing is too coarse. Furthermore, the triangle meshes have to be very fine to
enable the transport of highly detailed edits or texture. Hence, mapping approaches
that are designed for triangle meshes [AL16] can potentially be used by remeshing the
input quads to a very fine refinement of the subdivision surface, however, this leads to

computation times which are an order of magnitude larger than ours, see Figure 6.2.



Functional Correspondence. The functional map framework [OBCS*12] is a gen-
eral approach for computing correspondences, which is agnostic to the underlying
geometric representation. As it relies on a reduced basis for scalar functions, it can be
applied to any shape representation where such a basis can be computed, e.g., point
clouds [HCO18]. We are not aware of an existing work that uses functional maps for
mapping between quadrangular meshes. The framework has been used for computing
approximately consistent quadrangulations of triangle meshes [ACBCO17], yet there
the functional map was given as input. Recently, an interactive approach to map com-
putation has been introduced [GBKS18], where a functional map is quickly computed
using user-placed curves. To transfer texture, the authors extract a point-to-point map
in a post-processing slower step, which is not interactive. Our approach, in contrast,
leverages the subdivision structure to efficiently compute both the functional map and
the point-to-point map for meshes refined to hundreds of thousands of polygons, albeit
not at interactive rates. Other recent functional map regularizations, constraints and
priors [NO17, RPWO18] are complementary to our method, as they can be applied at
the coarsest level instead of the basic functional map method that we used. Finally,
the point-to-point reconstruction step has been addressed as a separate problem in the
functional framework [RMC15, EBC17, ESBC18], and some of these methods provide
a vertex-to-point-in-triangle map as output, which can be used for transferring smooth
textures. Note, though, that the meshes still need to be very fine, in order to sup-
port non-linear texture deformation, leading to long running times and large memory

consumption.

Multi Resolution Spectral Geometry Processing. Beyond subdivision surfaces,
other classical approaches include, for example, multi resolution through smooth-
ing [GSS99] and multi resolution through remeshing [BK04]. More recently, Vaxman et
al. [VBCG10] used a multi-resolution remeshing based approach to compute the Heat
Kernel Signature. We, on the other hand, provide a full shape correspondence pipeline
for subdivision surfaces, and in addition, provide bounds on the representation error of
subdivided functions in the refined basis. Our work is based on the recently proposed
Subdivision Exterior Calculus (SEC) [dGDMD16], that builds differential operators
which use the geometry of a refinement of the base mesh for geometry processing on
the base mesh. While they define the discrete operators, such as the Laplacian, the
authors did not provide an analysis of the spectral decomposition of the Laplacian at
different subdivision levels as we do, nor did they address computing spectral descriptors.
Estellers et al. [ESC18b] use the subdivision basis functions and quadrature rules for
computing the eigenfunctions of the Laplacian and spectral descriptors. Our approach,
on the other hand, does not require numerical integration, and we additionally supply
bounds on the representation error using the hierarchically computed eigenvectors.
Recently Nasikun et al. [NBH18] proposed a fast approximation for the lowest part

of the Laplacian spectrum of large meshes. They construct a subspace of local basis



functions around sampled points and then solve a restricted, simpler, eigenproblem. The
constructed Laplacian basis does not rely on or inherit any property from the subdivision
structure of the shape, and thus is different from our approach. Finally, a few methods
exist for computing a localized basis at different scales, e.g. [Rus11l, MRCB18], yet these
are all computed on a single surface, for, e.g., partial shape correspondence. We, on the

other hand, compute global basis functions, at multiple subdivision levels.

Detail transfer. An early example of detail transfer for subdivision surfaces was
presented by Biermann et al. [BMBZ02], where parts of the surface were parametrized to
the plane to allow for copy-paste operations. Other multi resolution modeling approaches
are discussed in the SIGGRAPH course dedicated to the topic [Zor06]. These techniques
were also generalized to triangle meshes [SBSCO06, SS10a, TSS*11], and developed
into a highly successful mesh editing tool, known as MeshMixer [SS10b]. While related,
our approach is different than these methods, in that it aims for a global correspondence
between two subdivision surfaces, that allows to transfer detailed displacement maps

and texture images.

1.2 Contributions

Given two input base polygonal meshes, and a set of user specified landmarks, we
compute a multi-level map between the refinements of the base meshes. The main

contributions of our approach are:

e We show the relation between the eigenfunctions of the SEC Laplace-Beltrami

operator at different subdivision levels.

e We develop a Hierarchical Functional Maps (HFM) scheme for subdivision surfaces
that is efficient and accurate, allowing us to compute maps for refinements with

hundreds of thousands of polygons in a few minutes.

o We apply the computed correspondence for detailed displacement maps and texture

image transfer between subdivision surfaces with different base polygon meshes.
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Chapter 2

Background

2.1 Functional Maps

We give here a brief overview of the functional map framework, to make the paper self con-
tained. More details can be found in the paper that introduced the concept [OBCS™12],
and in the recent SIGGRAPH course dedicated to the topic [OCB*17].

2.1.1 Notation

We work with a polygonal mesh M = (V, F, ), given by its vertices, faces and edges,
respectively. We denote |V| = n and |F| = m, and further denote by X € R"*3
the embedding of its vertices in R3. We consider piecewise linear (PL) functions
g : M — R, given by their values on the vertices V, and thus g € R". The mass-
weighted inner product of functions on M is given by (g,h)yr = g” Mh, with the
corresponding norm ||g||3, = g7 Mg. For matrices G, H with functions as columns we
set (G, H) ) = GT M H. Following the formulation of Alexa and Wardetzky [AW11], the
Laplace-Beltrami operator is discretized by the Laplacian matrix L = M ~'W, where
M is a diagonal mass matrix for the vertices, and W is the integrated Laplacian, e.g.,
the cotangent Laplacian for triangle meshes. Further, A € R*** is a diagonal matrix of
the eigenvalues of L, sorted from small to large, and ® € R"** has the eigenvectors of
L as columns in the same order, such that W® = M®A. The eigenfunctions are M-
orthonormal, namely (®, ®) s = Ixxx. We denote the pseudo-inverse of ® by & ¢ RF*n,
and note that ® = ®T M. When more than one mesh is discussed, we denote it with a

subscript, e.g. L; is the Laplacian matrix of the mesh M;, for i€{1,2}.

2.1.2 Basics

The basic idea of the functional map framework is to generate a map that puts in
correspondence functions instead of points. Specifically, for every map 115 : Vi — Vs,
from the vertices of M to the vertices of Ms, there exists a corresponding functional

map (FMap) Pj2 that maps PL functions on My to PL functions on Mj. It is given by
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Figure 2.1: An illustration of our pipeline, (a) compute a hierarchical basis, (b) set up
linear constraints from spectral descriptors, (c¢) solve hierarchically for the spectral
functional map and the corresponding pointwise map at all levels, and (d) use the final
fine pointwise map for texture image and displacement transfer.

(P12(g2))(v1) = g2(Th2(v1)), for all vertices v1 €V, and functions go € R™2. It is easy to
check that Pjs is a linear operator, and thus can be described by a matrix Pjo € R™1*"2,

The main strength of the functional map framework comes from working with a
spectral basis for functions, usually taken to be ®, namely the lower eigenvectors of the
LB operator. In this setup, the spectral functional map Cio € R¥1**2 maps functions in
the image of @4, represented by their basis coefficients, to functions in the image of @1,
and is thus given by Cio = <I>]£P12(I>2.

2.1.3 Inference

To compute a functional map Ci2 between two meshes M1, Mo, we first design a
set of linear constraints. The map is computed by solving a linear least squares
optimization problem, where the constraints are weakly enforced, i.e., a constraint
Az = b is reformulated into the objective || Az — b||%.

Two often used linear constraints are (1) descriptor constraints of the form CioFy =
F, where F; € RFi*d and (2) commutativity constraints of the form C120 = O1C12,
where O; € RF:*¥i ig a linear operator on M;. Both the descriptors, F}, and the operators,
O;, are given through their projection on the spectral bases ®;. This framework is
quite general, and there are many other ways of computing a functional map, see
e.g. [OCBT17] and citations within. We limit ourselves to these cases as they are most
common.

Descriptors are often defined through a function of the eigenvalues p : Rt — RT,
and can be classified as signatures and landmarks. Signatures, e.g., the Heat Kernel
Signature [SOG09] and the Wave Kernel Signature [ASC11], do not require any prior
knowledge on the correspondence, and can be generally defined as the diagonal of the

matrix ® p(A) 7, where p is applied entry-wise to the diagonal of A. Landmarks, on the

10



other hand, require the knowledge of two corresponding vertices v; € V; per landmark.
Given a vertex vV, these are computed by ® p(A) ®7'6,, where 6, €R" is a vector of
zeros with a single 1 at the vertex v. The descriptors are then projected on ®; to get

the matrices F; that are used in the linear optimization.

Commutativity operators arise as priors on the expected correspondence. For exam-
ple, the Laplacian operators of two surfaces which are nearly isometric are expected to
commute with the output map. Similarly, if the surfaces exhibit intrinsic symmetry, the
symmetry maps are expected to commute with the output map as well. Finally, descrip-
tor constraints can be formulated equivalently as operator commutativity constraints,
leading to better maps [NO17].

2.1.4 Point-to-point Map Reconstruction

Once a spectral functional map Cio has been computed, it can be used as-is to transfer
functions from My to M. However, it is often beneficial to extract a full functional map,
represented as a permutation matrix Pjo € R™*"2  from which a vertex-to-vertex map,
Ti2, can be extracted. Quite a few methods exist that achieve this, e.g., [RMC15, EBC17],
yet they are mostly variations on the following approach: use the map C'o as an initial
solution for the ICP algorithm [BM92] for rigid alignment in the spectral domain.
Specifically, the objective ||C1o®2 — ®T Py||? is alternately minimized for Pjo and Ciz
under the constraints that Pjo is a permutation matrix, and C1g is an orthonormal

matrix.

st S0
Xee— @ o Xl X

Xi e [ ]
(Sl)T . Sl (SO)T . SO
W2 /\‘Wl/\‘ WO

I (T —

SO

Sl

|

WZ Sl

Figure 2.2: An illustration of the construction of the refined geometries (top), and the
SEC discrete differential operators (bottom). We map between geometries at the finest
subdivision level.
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2.2 Subdivision Exterior Calculus

2.2.1 Notation

We work with a polygonal base mesh and its refinements, up to the finest subdivision
level, denoted by f. We distinguish between meshes at different subdivision levels with a
superscript. Thus, we have a set of meshes M! = (V!, F, £"), with 1€{0,..f}, where M°
is the base mesh. Following de Goes et al. [dGDMD16], we define a subdivision matrix
Stern'™
SIX! for 1 > 0, taking X0 = X9 We accumulate the subdivision of multiple levels by

xn' for the vertices at level I. Hence, the embedding of V11 is given by X! =

multiplying the corresponding subdivision matrices, namely S = §f-1§/=2... gi+lgl
for 0 <1 < f. We use Loop subdivision for triangle meshes, and Catmull-Clark for

quad meshes.

2.2.2 Discrete Differential Operators

The geometry of the subdivided meshes M! changes significantly from the control mesh
after a few subdivision levels. The methodology proposed in SEC is to use the mass
matrices of the finest subdivision level for computing the differential operators of all
levels, by defining a subdivision operator that commutes with the discrete exterior
derivative. It is straight forward to show that we can compute the SEC unweighted
Laplace-Beltrami operator by W! = (S/)TW /Sf!. Similarly, the SEC mass matrix for
the vertices is given by M! = (ST)TM FS#!. Note, that since the finest subdivision level
f is assumed to be constant, we remove it from the notation for clarity. Figure 2.2

illustrates the construction of the operators at the different levels.
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Chapter 3

Hierarchical Functional Maps
(HFM)

Notation. We use a combined notation of SEC and FMaps, with a superscript
to denote the subdivision level, and a subscript to denote the mesh. For example,
W9 €R"2*"2 denotes the unweighted Laplacian of the second base mesh.

Our goal is to compute a correspondence between two subdivision surfaces, given
by their control meshes ./\/l?, with ¢ € {1,2}. To this end, we design an efficient and
accurate functional map inference scheme for subdivision surfaces by leveraging the
subdivision structure. Figure 2.1 illustrates our pipeline.

In the following, we describe our sub-goals for each FMap component, and how we

achieve them.

3.1 Spectral Functional Basis

The spectral functional basis is the main ingredient in the functional map approach,
and it greatly contributes to its effectiveness. To achieve similar effectiveness, we pose

the following requirements on the HFM basis.

3.1.1 Requirements

Multi-scale. The number of basis functions required to represent a function should
be correlated with its oscillatory nature, or, more precisely, with the norm of its gradient.
This property allows us to control the “resolution” of the computed correspondence
through the number of basis functions, and thus the dimensions of the functional map

matrix.

Scalable. The basis should be efficiently computable, even on meshes at high subdivi-
sion levels. As our goal is to transfer detailed displacement and texture maps, we need
the HFM to be applicable to fine mesh resolutions on which detailed displacement maps

can be resolved.

13



Complete. As we tailor a spectral basis, it is imperative that our basis fully spans the

space of functions we want to represent, i.e. functions up to some oscillation resolution.

Orthonormal. An orthonormal basis, with respect to the inner product with the ver-
tex mass matrix, allows for fast inversion of the basis, without requiring the computation

of the pseudo-inverse.

3.1.2 SEC Laplacian Eigenvectors

The SEC Laplacian operator of subdivision level 1€ {0, .., f}, given by L' = (M!)~1W!
is positive semi-definite [dGDMD16], and thus we can compute its lowest k eigenvectors
and eigenvalues, given by &' eR" >k and Al €RF*k | respectively. By definition, these
fulfill:

wWiol - M'IA =0, (@ o)y =1 (3.1)

It is natural to consider the relation between the SEC Laplacian operators on multiple
levels. First, note that for all levels [ € {0, .., f}, the operator ! depends on the geometry
of the finest level f, given by M/, W/, and on the multilevel subdivision operator S/,
which in turn depends only on the connectivity of the control mesh. Therefore, all
Laplacians derive from the same geometry, and it is expected that there will be a well
defined relation between ®', A’ and ®+1, Al Indeed, we have the following, which

follows directly from the definitions and Equation (3.1):

(SZ)T(WlJrlsl(Dl o MlJrlslcplAl) =0, (32)

= —
z —— Prolonged Basis ¢!
5 Optimal Basis ®'*!
N 08¢
o]
S
—
2
5 067
o0
2]
2
< 0.4 : : :

0 50 100 150 200

k

Figure 3.1: Average representation error for 1000 random functions in the image of S,
normalized by the functions’ squared norm, as a function of the number of eigenvectors
k. We compare using the prolonged eigenvectors 1 with the optimal representation
error achieved by using ®*1. Note that while the exact eigenfunctions achieve a slightly
better representation error for larger k values, the graphs are almost indistinguishable.

14



since W' = (SH)TW!H1S! and similarly for M*1.

Definition 3.1.1. The prolonged eigenvectors and eigenvalues at level [+1 from level [
are given by:
L= §lapl, AL .= Al (3.3)

Using this definition and Equation (3.2) it is straightforward to show the following.

Lemma 3.1.2. The prolonged eigenvectors and eigenvalues @H, A gre weak eigen-
vectors and eigenvalues of L' with respect to functions of level 1+1 which are in the

image of S'. Eaxplicitly, for any function g1 € Im(S') we have:

(g LRI — SIFIATY Ly =0, (3.4)
(M Y i =1 (3.5)

All the proofs, though elementary, are provided in the appendix for completeness.
The important point is that the inner products (-, )y and (-, L-)p are invariant to the
subdivision level | when applied to subdivided functions (see Lemma A.0.1).

Intuitively, Lemma 3.1.2 implies that the prolonged eigenvectors and eigenvalues
provide a good approximation of the eigen decomposition of L!*!, when considering
functions in the image of S'.

Finally, we can bound the representation error of the projection on the prolonged

eigenvectors, as follows.

Lemma 3.1.3. Let g€ Im(S"). Then

1VallZ < Amaz
A+l Akt

lg — 2®g]lfy < gz, (3.6)
where all quantities are at level [+1, d are the first k eigenvectors of L' prolonged to
141, A1 is the k+1" eigenvalue of LY, Anaz is the largest eigenvalue of !, and Vg
is a discrete gradient defined such that || Vg3 = (g, L g)m.

The proof uses a similar technique to the one that is used to show the bound for the
eigenvectors of the Laplacian, see e.g., [CPK18, Eq.(17)], for the first bound, and the
Courant-Fisher Minimax Theorem [ANT09, ANTO08] for the second bound. Note that
on triangle meshes Vg is the gradient field of the subdivision of g to the finest level
f, because W! = (S/H)TW IS/, On general meshes Vg can be defined through the L2
norm of the 1-form dopg subdivided to the finest level, with respect to the edge-based
mass matrix.

Figure 3.1 demonstrates experimentally the result of Lemma 3.1.3. We show the
average representation error, normalized by the functions’ squared norm ||g|3;, as a
function of k, the number of computed eigenvectors. We use ®*1 and &1, for a set of
1000 random functions in the image of S'. Note that while ®*1 leads to a better error

after 100 eigenvectors, the difference is smaller than 1%.
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Figure 3.2: A few low eigenvectors and the corresponding prolonged eigenvectors from
a level below. Note the clear visual similarity.

.

Figure 3.2 visualizes the eigenvectors ®*1 and the prolonged eigenvectors ®'*1 for a
few low eigenvectors. For visualization purposes, we chose eigenvectors which correspond
to non-repeating eigenvalues. Note, that the sign of the eigenvectors is arbitrary, hence
we show either the eigenvector or its negation, chosen so that the eigenvectors visually
correspond between the sets. The figure demonstrates that in addition to having similar

representation power, the eigenvectors themselves are visually very similar.

Figure 3.3 (left and center left) shows the eigenvalues of ! at various levels. Note,
that in addition to the eigenvectors, the eigenvalues are also quite similar, and the
similarity breaks at higher eigenvalues for higher levels. This is demonstrated further
in Figure 3.3 (center right and right), which shows the ratio A"*'/A! for the different

subdivision levels.

The bound in Lemma 3.1.3 depends on the largest eigenvalue of L. We leave further
investigation of a general bound to future work, noting that similar results for B-Spline

surfaces have been recently researched in Iso-Geometric Analysis [ESC18a].

0.3

A° Al
" 0.34 It
A2 A3 0.999
0.2 A3 0.33 =
=
< < 032 — 0998
o1 0.31 =
0.997
0.3 AZ/Al
AS/AZ
0 0.29 0.996
50 100 150 200 250 260 280 300 50 100 150 200 250 260 280 300

Figure 3.3: (left and center left) The eigenvalues of L! at different levels, note the
similar trends. (center right and right) The ratio A"*!/A! for the different levels, note
that the similarity breaks later for higher levels, and the ratio is very close to 1.
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__________________

Figure 3.4: An illustration of the hierarchical basis construction from Definition 3.1.4.

3.1.3 HFM Basis

We construct our HFM basis by leveraging the representation power of prolonged

eigenvectors.

Definition 3.1.4. Let &/ be the total number of required basis vectors at the finest

level f. Define {k! > 0,1€0,.., f}, such that Zlf:o k! =k/. The hierarchical basis is
given by:

¥ =" A0 =A0, (3.7)
(i)l—l-l — [Sl(i)l &)H-l] Al—l—l — [Al AH—I] (38)

where ®°, A? are the first k0 eigenvectors and eigenvalues of L0, @1 A1 are the kl+!
eigenvectors and eigenvalues of L't in the band starting after the largest eigenvalue
of Al, and the operator [-,-] denotes either column concatenation, or diagonal matrix

concatenation according to the context.

Figure 3.4 illustrates the hierarchical construction of the basis. We provide further
details on the splitting of the eigenvalue bands in the Implementation Chapter 5.

If we consider the basis at level [ as an embedding of the polygonal mesh into Rkl,
then the HFM basis is given by subdividing this embedding, and adding details using

additional k1 dimensions.

3.1.4 Properties

Multi-scale. We have shown that prolonged eigenvectors have similar representation
power to the exact eigenvectors, and the number of required eigenvectors depends on

the norm of the gradient, thus the HFM basis is multi-scale.
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Scalable. For high subdivision levels we only need to compute bands of eigenvectors.
This tactic is a good fit with the common numerical computation of eigenvectors and

eigenvalues, which is done per band [Ste02], leading to an efficient basis computation.

Complete. As we split the eigenspace into multiple bands, and compute each band
separately, it is preferable that no eigenfunction is “lost”, as that will reduce the
basis’ representation power. Completeness depends on the detailed strategy of band
splitting, and we do not have a formal guarantee for its existence, since the splitting
involves a heuristic for the behavior of the eigenvalues. In practice, as we discuss
in the Implementation Chapter 5, we can validate that the bands have a non-trivial
intersection, and discard the overlaps, by leveraging the approximate orthogonality

property. If, however, repeating eigenvalues exist, the HFM basis may not be complete.

Approximately Blockwise Orthonormal. Our basis is computed by concatenating
prolonged eigenvectors from multiple subdivision levels, and thus is not orthonormal by

construction. We have the following, weaker, result.

Lemma 3.1.5. Assume Al and A" are distinet, and both have no repeating eigenvalues.
Let ®*1 be the first Zé:o ki = k' eigenvectors of LY. Then the HFM basis ® is

approximately blockwise orthonormal:

<(i)l7 &)Z>MZ E

Pl it _ ’ 3.9
< >Ml+1 ET Ikl+1><kl+1 ( )
(@2, 0% 10 = Toypo, (3.10)
where the error matriz E is controlled by
1 -
WZ%\ < ||S'eh — @12, (3.11)

]

Intuitively, the lemma bounds the failure of the basis to be orthonormal by the
failure of the lower eigenvectors of L'*! to be prolongations of the basis at level . As
demonstrated experimentally in Figure 3.2, this error is indeed small, when no repeating
eigenvalues exist. In practice, however, meshes often have repeating eigenvalues, thus

in our computations, we do compute a pseudo-inverse matrix of the HFM basis, as we

further discuss in the Limitations Chapter 5.4.

3.1.5 Computation time

The hierarchical construction of the basis is much faster then the exact computation,
where for each level [ all of the Zli:O ki =k eigenvectors should be computed, instead

of a band of eigenvectors. Table 3.1 shows a comparison of the basis computation times
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between HFM and the exact approach. It is clear that for very large shapes our method

is much less expensive.

Figure Shape n f nf k! Exact HFM
Fig. 6.2 woman 1.3k 3 85k (100,50, 50, 50) 26.4 125
Fig. 6.2 man 1.3k 3 85k (100,50, 50,50) 26.6 12.9
Fig. 1.1 tiger 7.1k 3 454k (100,100, 50,50) 226.3 83.1
Fig. 1.1 cat 1.2k 4 317k (100,50, 50,50,50) 156.2 57.4

Fig. 6.6 zebra 9.8k 3 629k (100,100,50,50) 322.5 127.7
Fig. 6.6 horse 1.7k 4 439k (100,50,50,50,50) 227.5 80.8
Fig. 6.7 elephant 6.0k 3 385k (100,100,50,50) 194.5 72.9
Fig. 6.7 mammoth 1.7k 4 442k (100,50,50,50,50) 227.4 81.1
Fig. 6.8 troll TEX 4.2k 3 272k (100,50,50,50) 104.5 47.8
Fig. 6.8 troll 2.2k 3 145k  (100,50,50,50)  49.0 23.7
Fig. 6.8 orc 2.2k 3 142k  (100,50,50,50)  48.7 23.5

Table 3.1: Timing statistics (in seconds). From left to right: (n®) number of vertices at
the coarse level; (f) finest subdivision level; (nf) number of vertices at the finest level;
(l;:l) The number of eigenvectors computed per level. Timing (in seconds) for: exact
basis computation; HFM basis computation.
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Chapter 4

Inference

To formulate an optimization problem we first define a set of linear constraints per
hierarchy level [, which are either descriptor preservation or operator commutativity
constraints. We then iteratively solve a linear optimization problem at every level,
which is bootstrapped by the solution at the previous level. Finally, we propose a novel
improvement on the pointwise map extraction that leverages the subdivision structure

and yields our output: a map between fine refinements of the subdivision surfaces.

4.1 Descriptors Constraints

A spectral descriptor is given in terms of a 1-parameter family of functions p; : RT™ — R™T,
where t € RT, and acts as a filter on the eigenvalues. For example, the heat kernel
map [SOGO09] of a vertex v€V is given by ® p,(A) @76, with p;(\) = exp(—At). As we
do not compute a full eigen-decomposition of the Laplacian, we would like to use the

HFM basis in a similar way for computing spectral descriptors.

Definition 4.1.1. The Hierarchical Spectral Descriptior Matriz (HSD) is given by
K ot = ® pi(A) ®T. We remove the level notation, as all the quantities are at the same

subdivision level.

We additionally define a hierarchical landmark descriptor using K ot = K p,t0y for a
vertex v €V, and a hierarchical signature descriptor using f(p,t’. = diag([%m).

The heat kernel and other spectral descriptors have beneficial properties which
we would like to preserve. Indeed, we have the following, which is a straightforward

consequence of the definition:

Lemma 4.1.2. Let f(ﬁ:@l be the HSD at level 41, then:

K= S'K (8D + @7 py (A (@ (4.1)

Namely, the HSD at level [41 is given by subdividing the HSD from level [, and

adding the contribution of the new basis functions from level [+1. Thus, the difference
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Figure 4.1: Quantitative and qualitative evidence to the Hierarchical HKS
approximation quality. (left) The ratio of the HHKS and the HKS for a few vertices as
a function of ¢, (right) the exact and hierarchical HKS for two times ¢ as a function on

the mesh. Note that as t increases the error decreases, and that even for small £ the
error is less than 2 percent, and visually indistinguishable. t,,;, and ¢4, as
recommended by [SOGO09].

between, e.g., the heat kernel and the hierarchical heat kernel again depends on how
much the eigenvectors at level [+ 1 are similar to the subdivided eigenvectors from
level [, and similarly for the eigenvalues. In fact, since for the heat kernel we have that
the contribution of higher eigenvectors decays exponentially with ¢, the larger ¢ is, the
better the hierarchical heat kernel approximates the exact heat kernel.

Figure 4.1 shows an example of the ratio of the hierarchical heat kernel signature
and the exact heat kernel signature for a few vertices as a function of ¢ (left), and for
two ¢ values for all vertices (right). Note that as t increases the error decreases, however
even for small ¢ the error is below 2 percent, and invisible to qualitative inspection of
the function.

In practice, we do not compute the full matrix K p,t, but only the landmark descriptors
K it for a given set of input landmarks, and the signature descriptor K pt,e, Which is
given by the diagonal. The landmark descriptors can be efficiently computed directly in
the spectral domain, see Chapter 5.2.2, and the signatures are projected onto the HFM
basis CH This process yields the descriptor matrices Fll ER%le, where d is the total

number of descriptors, which is kept fixed for all levels.

4.2 Commuting Operators Constraints

We provide as building blocks hierarchical commuting operators for commutativity with
the Laplacian and with a given intrinsic symmetry map, which are most commonly used,

and additionally are sparse in the spectral basis. We discuss later how dense operators
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can be incorporated in our framework.

Laplacian. Isometric maps commute with the Laplacian operator. Therefore, as a
regularization, a common constraint is given by C1209 = O1C12, where O; = <I>;[Li<l>i =
(IJZ.TMi(@iAZ-(I)Z-TMi)(I)i = A;. We therefore leverage the approximate orthogonality prop-
erty of the HFM basis and set the Laplacian commutativity operator accordingly, taking;:
Ol = AL,

Symmetry. In many cases, especially if designed by artists, the input surfaces have
intrinsic self-symmetry given as input self-maps, or permutations, S € R™ %" Note
that if the control polygon mesh is symmetric, then for symmetric schemes, such as
Catmull-Clark, the subdivided meshes at all levels will be symmetric as well. Thus,
given the symmetry at level [, we perform a nearest neighbor search between the vertices
of the subdivided mesh at level [+1, namely X'*! = S' X! and the subdivided symmetric
embedding at level [+1, given by S'S!X! to find the symmetry map S, Since
the symmetry map is combinatoric this process is applicable to intrinsic as well as
extrinsic symmetries. Finally, we use the given symmetry as a commutation constraint
by projecting it on the HFM basis, namely we set: O} = (®})TS!®L.

If the mesh is exactly symmetric, the symmetry operator commutes with the
Laplacian, namely S = LS, and its spectral representation is diagonal. Since the

symmetry is often not exact, we restrict the operator to the main 3 diagonals of O;.

4.3 Optimization

Given the hierarchical construction of the basis éé, the descriptors Fil, and the commu-
tativity operators @g, we proceed to optimize for the Hierarchical Functional Map C’{Q,

as follows.

4.3.1 Coarse level 0

Solve for CN% using the standard functional map optimization scheme, by minimizing;:

Ct = argmin |CF; — Fi|[% + Y a(0)|CO8 - OIC|7, (4.2)

¢ 0
where the sum goes over all available commutativity operators, either Laplacian, or
symmetry or both, « is the weight assigned to each operator, and the norm is the
Frobenius norm. The parameter values are fixed for all experiments and provided in

the Implementation Chapter 5.
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4.3.2 Level [+1

Given the solution C!, from level I, we compute the functional map at the next level as

follows. We define the solution as the matrix:

“h C‘fl Cfl<—h
" = Ohl Oh

, (4.3)

where h=1I[+1 and for clarity we removed the subscript notation. The matrix block
Cleh ¢ RF X kh, for example, transfers high frequencies on My to low frequencies on
M.

Now we reformulate the descriptor and commutativity constraints to solve for the

three unknown matrix blocks C. To this end, we decompose the constraints as block

o0

matrices using:
£l
Fh

ﬁvl-i—l _ @H—l —

9

where, e.g., F! € R¥'*d contains the coefficients of the descriptors in the low eigen-
vectors of the basis, and similarly for the other matrices. The constraint matrices
Ff“, (’jﬁﬂ are computed in terms of coefficients of 1 when possible, e.g. for land-
mark spectral constraints, and Laplacian commutativity constraints, or computed as
full operators/functions and projected to the HFM basis.

With the constraints in hand, we solve for the partial matrix C*", independently of

the other two unknown blocks:

Cpp" = arg min ICF — Fi + CLB3||% + Y a(O)|COF — O1CIF. (4.5)
(@

The equations for C"! and C" are similarly formulated in terms of the block
matrices of the linear constraints, leading to a linear least squares optimization, which
is coupled in these two blocks.

At the coarsest level we solve for (k°)? variables, whereas at the level h we solve two
systems, with K'k" and k"D variables, respectively. Since the linear solve scales cubicly
in the number of variables, these reductions are significant. Dense operators will break
the block diagonal structure of O, and then all the three unknown matrix blocks will
be coupled. Nevertheless, solving for E'kM 4 kM EM variables is still much more efficient
than solving for (k")? variables. Some sample timings can be seen in Table 6.2, where

we report the timing for all our results.

4.4 P2P recovery

While the functional map can be used as is for transporting functions, our final goal

is to obtain fine pointwise maps. A standard way [OCB™17] to extract a permutation
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M

Figure 4.2: Illustration of the hierarchical nearest neighbor search. (top) Two matching
vertices at level 0. (bottom) The only candidates considered for a match of a refined
vertex of M1 (bottom left) are the non-zero entries in S, in the column that
corresponds to the vertex from level 0 (bottom right).

matrix Pjo from the computed spectral functional map C1o, is to solve the optimization
problem: arg minp ¢ ||C ®1'— T P||? alternatingly for P and C, starting from the inferred
functional map Ci2. Optimizing for P while keeping C fixed is implemented using a
nearest neighbor search. Optimizing for an orthogonal C' while keeping P fixed, is done
using a linear solve and an SVD decomposition.

It is not feasible to use this approach directly at the finest subdivision level, as it
may contain hundreds of thousands of polygons and hundreds of dimensions, making the
nearest neighbors search computationally intractable. Thus, we leverage our hierarchical

scheme to generalize this P2P recovery approach as follows.

Coarse level 0. We use the standard approach to compute P from C,, using ICP

in the spectral domain.

Level [4+1. Our assumption is that corresponding points at level [4+1 should be close
to subdivided corresponding points from level [. Therefore, when optimizing for a
permutation Pllgl using nearest neighbors search, we only consider matching candidates
that correspond to the top r nearest neighbor matches from level [, see Figure 4.2.
Namely, we consider candidates that have non-zero entries in the corresponding r
columns of Sé. This considerably narrows down the search space, and reduces the

computation time by orders of magnitude.

Refinement beyond the finest level. As the goal is to match between subdivision

surfaces, we allow the matched points on My to be arbitrary points on the subdivision
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Figure 4.3: Visualization of the map during the hierarchical process. Notice how the
map improves as the resolution increases.

surface, and not necessarily vertices of the finest level V2f . This is achieved by optimizing
for a permutation P as follows:

P = argmin | Ch(55 0f)" — (@) PP, (46)
where the dimensions of P1];+1 are nlf X an +1, again using only the r nearest neighbors
from the level below as matching candidates. The final output map is then given by the
matrix Plf = P1];+152f , whose dimensions are, as required, n{ X ng

Note that Plj; is no longer a permutation matrix, but a general row stochastic matrix,
that we use to transport functions on the vertices of Ms to functions on the vertices of
M. Effectively, it encodes a vertex-to-vertex map, from Vlf to V2f )

Figure 4.3 demonstrates this process, by visualizing the maps for levels [ = [0, .., f],
as well as the final finest map after the refinement on the last level. Note the improvement
of the map as the subdivision level increases, and the smooth map achieved after the

last refinement step.
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Chapter 5

Implementation Detalils

5.1 Splitting the eigenspace

The computation of the HFM basis requires splitting the eigenspace into f+1 bands,
given the required band widths {k! > 0,1€0, .., f}, such that Z{:o k' =kf. For each
band we employ Matlab’s eigs solver [Mat18, LSY98, Ste02], that computes eigenvalues
and eigenvectors near a given ¢ that is close to an eigenvalue.

We rely on Weyl’s law, that predicts a linear growth of the eigenvalues as a function
of their index [Ivr16] to estimate an eigenvalue in the “center” of the band of level [+1.
Weyl’s law applies to the asymptotic behavior for the continuous operator as A — 400,
and our operator is discrete. However, a recent similar result exists for finite element
discretization of elliptical PDEs [XZZ17, Thm 4.3], and indeed, the empirical behavior

is close to linear, see Figure 3.3. Thus, we iteratively compute the bands as follows.
Level 0. Compute k° smallest generalized eigenpairs of WO MO, yielding ®°, A°.

Level [+1.

e Estimate a linear function Ay(i) of the k! eigenvalues in Al as a function of their

index.

e Set o = )\b(lzil+%kl+1), and compute kH+h generalized eigenvalues and eigenvectors
of WHL MH! near o, yielding ®H*, AHL,

e Remove eigenvectors @' for which |[(®!, @) > .

As the eigenvalues are not exactly linear, we allow some leeway in the computation
of the bands, by computing h eigenpairs more than what is required. Then, we leverage
the approximate orthogonality property from Lemma 3.1.5, to remove eigenvectors that
are already well represented in the basis ®, where we filter eigenvectors with a maximal
projection norm larger than e. In all our experiments we used h = 15, and € = 0.4.

Note that since repeating eigenvalues often do exist, we cannot guarantee that the

HFM basis is complete. For example, if the band in level [ is computed such that the
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last eigenvector is one of a pair of eigenvectors with similar eigenvalues, the computation
at level [+1 may return the same pair rotated in eigenspace, in which case the projection
on ® may be above the threshold and the eigenvector will be discarded. In practice, we

have not experienced problems due to this limitation.

5.2 Landmark Descriptors

5.2.1 Landmarks at fine levels

The input base meshes are often coarse, and therefore it is possible that semantic
landmark points, e.g., an elbow, do not land on vertices, see e.g., Figure 5.1 (left). Thus,

it is imperative to allow the user to place landmarks on any subdivision level .

Due to the subdivision structure, the embedding of a vertex v/ €V / of the refined
mesh is a convex combination of the embeddings of base mesh vertices. Specifically, the
convex combination weights are the non-zero elements of the v /-th row of S/°. Therefore,
we compute the fine landmark descriptor as the corresponding convex combination of
the coarse landmark descriptors, using f(g}t(Sf O)Tévf . The same applies for placing
landmarks at any level h < f, and computing descriptors at any level 0 <[ < h, by
taking K ,ljyt and S™. Figure 5.1 (right) shows the resulting coarse descriptors for the

fine landmarks shown.

5.2.2 Efficient basis coefficients computation

A landmark descriptor of a vertex v €V is given by Definition 4.1.1:

Figure 5.1: (left) Corresponding landmark points do not land on vertices of the coarsest
level VO, therefore landmark on fine vertices are required. (center, right) Coarse
landmark descriptors on both meses for the fine vertices showed on the left.
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For the functional map optimization we only need the basis coeflicients of these de-
scriptors, which are given by (il)TR',lD’t’U = pi(AY) (81)75,. Denoting the v-th row of !
by @' we therefore have that the coefficients of the landmark descriptor are pe(ADYGE
which is a vector of size k'. Thus, we can compute the coefficients directly, without
computing the full descriptor first.

The same applies for descriptors of landmarks v” at finer levels h > [, where the
basis coefficients are p;(A!) (SH®)T6,1.

5.3 Parameters

Hierarchy. The finest subdivision level f is set according to the required number of
vertices in the finest level. In our examples we used meshes with up to 629K vertices at
the finest subdivision level. For flexibility, we allow for different f levels for M; and

Ma.

HFM Basis. In all the experiments, we set k¥ = 100, and k' = 50 or 100 for the
other levels. We additionally do not demand that k) = kb, and allow for rectangular

functional maps, see Table 3.1.

Linear Constraints. We choose between 7 — 21 landmarks per shape for the land-
mark descriptors, depending the deviation from isometry of the expected map, with
more landmarks required for less isometric shapes. We use WKS and WKM descrip-
tors [ASC11], taking 100 energy levels distributed as recommended by the authors. We
normalize each shape to unit area and normalize each descriptor to unit norm. Our
models are extrinsically symmetric, thus we search for this symmetry explicitly, and use

it as an operator commutativity constraint.

Inference. The a weights are set to 1072 and 10* for the Laplacian commutation and
symmetry commutation respectively. We use Matlab’s direct solver to solve the linear

system.

P2P Recovery. We use fixed parameters for the P2P reconstruction, using s = 5
alternating ICP iterations at the coarse level, s = 3 at the finer levels, and r = 3 for the
hierarchical nearest neighbors search. At the last level of refinement we use only one
ICP iteration.

5.4 Limitations

The HFM basis is not guaranteed to be complete in the presence of repeating eigenvalues.
In practice we have not seen ill effects due to this, but a more principled approach for

preventing missing eigenvectors is an interesting avenue for future work.
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We currently do not handle dense commutation operator constraints, such as [NO17].
Technically it is possible to incorporate them, however for high subdivision levels they
slow down the process. Using an iterative solver with warm start, e.g. as has been done
in [GBKS18], could improve our performance further.

Our approach inherits the existing problems of functional map based approaches
that rely on WKS descriptors. In some cases, the map might have bad regions, e.g.
the right tusk of the mammoth in Figure 6.7, and the nose of the troll in Figure 6.8.
However, we do believe that our framework provides an excellent platform for improving
the functional map machinery further.

We do not handle shapes with multiple components, which are common in models
designed by artists, where there are often different components for the eyes, teeth, and
others. Thus we pre-clean each shape from any small connected components and remove

duplicate vertices if they exist.
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Chapter 6

Results

All the computations were performed on a machine with an i7 CPU and 64GB RAM.

The code was written in Matlab except for the Catmull-Clark subdivision for quads
which was written in C++ and used as a MEX file.

6.1

100
90 -
80
70 |
$ e0r
oD
=
.g 50 [
= E— WOINAN21NAN
X 40 mm Zebra2horse
30 m tiger2cat
s cleph2mamm
20 [ s troll Tex2troll
trollTex2orc
R | mm t10]1201C
0 T 1 1 1 1 1 1 1 1 1 I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Conformal Distortion

Figure 6.1: Conformal distortion of the maps for all our experiment pairs.

Timing and map quality

Table 6.1 shows statistics and timings for all our experiments. The longest computation

time is 13.6 minutes for the zebra and horse pair (Figure 6.6), where the models at the

finest level have 629k and 439k vertices. Timings for the each step per level are given

in Table 6.2. The most time-consuming step in our approach is the P2P reconstruction

step, in average close to 70% of the total computation time. Yet, this is a considerable
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Figure nd,nd  fo,f1 nd,n/ pts T (m)
Fig. 1.1, tiger — cat 71k, 1.2k 3,4 454k 317k 15 9.5
Fig. 6.6, zebra — horse 9.8k,1.7k 3,4 629,439k 16 13.6

Fig. 6.7, eleph. — mam. 1.7k,6.0k 3,4 385k,442k 16 9.9
Fig. 6.8, troll tex — troll 4.2k,2.2k 3,3 272k,145k 21 4.3
Fig. 6.8, troll tex — orc  4.2k,2.2k 3,3 272k,142k 21 4.3
Fig. 6.2, woman - man 1.3k,1.3k 3,3  85k,85k 7 1.6
Fig. 6.9, troll — orc 1.3k, 1.3k 3,3 145k, 142k 21 2.9

Table 6.1: Statistics and timing. From left to right: (n9,n{) number of vertices at the

coarse level; (fa, f1) finest subdivision level of source and target models; (an , nlf )

number of vertices at the finest levels; (pts) number of landmarks; (T) total time in
minutes.

speedup over the same computations in the non-hierarchical setup, where this step is
the most time consuming one. We measure map quality by the conformal distortion
induced by the map (Figure 6.1). The distortion of our maps are of the same order of

magnitude as existing approaches.

6.2 Comparisons

We compare our method to HOT [AL16], INF [NO17] and BCICP [RPWO18] using
code supplied by the authors. For all the methods, we triangulated the meshes, and used
the same constraints as ours, when possible with the provided code. Specifically, for
HOT we used only the landmark descriptors, and for INF and BCICP we used landmark
and Laplacian commutativity constraints. We additionally compared to a functional
maps setup without the hierarchy (FMAPS), where we used landmarks, Laplacian and

symmetry constraints.

The timings in minutes were: FMAPS: 27, INF: 33 and HOT: 52. BCICP failed to
complete the computation due to memory issues. Our timings are given in Table 6.1,
where the total time was under 2 minutes, and thus an order of magnitude faster than
the other approaches. More detailed timings, including each step in the pipeline for

each level in the hierarchy, are given in Table 6.2.

The visual results are summarized in Figure 6.2. We show the source and target
meshes, with the corresponding landmarks, the deformed source mesh, and the resulting
deformed target mesh after displacement transfer using the computed map. We also
show a visualization of the map by transferring a checkerboard pattern texture. Note
that our result provides the best visual map for transporting the deformation. The
quantitative results (Figure 6.3) show that our approach is better than state-of-the-art

methods for all methods except of HOT, which is 25x slower than our approach.
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Fig. 1.1, tiger — cat
=0 I=1 I=2 1=3 1=4 Total

Basis 2.8 13.9 32.6 66.6 33.4 149.3
Desc 0.2 0.4 1.4 5.6 2.2 9.8
Fmap 0.4 0.4 1.5 1.6 2.2 6.1
P2P 0.8 2.0 9.2 37.8 186.0 235.8
Refine 172.5 172.5
Total 4.2 16.7 447 111.6  396.3 9.5m

Fig. 6.6, zebra — horse

=0 [=1 [1=2 1=3 1=4 Total

Basis 3.3 17.5 45.8 89.5 44.6 200.8
Desc 0.1 0.5 1.9 7.5 4.4 14.6
Fmap 0.3 0.3 1.4 1.5 2.1 5.7
P2P 1.4 2.4 11.8 50.1  263.9 329.6
Refine 265.0 265.0
Total 5.2 20.8 61.0 148.8 580.1 13.6m

Fig. 6.7, eleph. — mam.
=0 [I=1 [1=2 1[=3 1[=4 Total

Basis 2.7 12.8 31.8 68.5 47.0 163.6
Desc 0.1 0.4 1.4 5.2 4.7 11.9
Fmap 0.4 0.3 1.5 1.6 2.1 6.0
P2P 0.9 2.4 11.5 47.3 2254 287.7
Refine 124.3 124.3
Total 4.1 16.0 46.3  122.7 404.2 9.9m

Fig. 6.8, troll tex — troll

=0 I=1 1=2 1=3 Total
Basis 2.4 6.5 22.5 44.3 75.9
Desc 0.1 0.3 1.4 4.2 5.7
Fmap 0.4 0.8 1.2 1.8 4.1
P2P 0.9 3.8 17.1 85.1 107.1
Refine 66.9 66.9
Total 3.7 11.5 42.0 2024 4.3m

Fig. 6.8, troll tex — orc

[=0 [I=1 [1=2 =3 Total
Basis 1.8 6.4 22.6 44.3 75.3
Desc 0.1 0.3 1.1 4.2 5.6
Fmap 0.3 0.8 1.2 1.7 4.0
P2P 0.8 3.9 17.2 85.0 106.8
Refine 66.4 66.4
Total 3.1 11.3 42.0 201.5 4.3m

Fig. 6.2, woman — man

=0 [I=1 =2 1=3 Total
Basis 0.5 2.1 7.8 15.2 25.7
Desc 0.02 0.07 0.3 1.2 1.6
Fmap 0.3 0.5 0.9 1.3 3.0
P2pP 0.2 2.3 8.9 34.7 46.0
Refine 21.6 21.6
Total 1.1 5.0 17.9 74.0 1.6m

Fig. 6.9, troll — orc

=0 [I=1 [=2 =3 Total
Basis 1.2 4.0 14.8 30.5 50.7
Desc 0.07 0.2 0.7 2.9 3.9
Fmap 0.4 0.8 1.2 1.7 3.9
P2P 0.5 3.5 14.5 32.7 81.1
Refine 37.8 37.8
Total 2.1 8.5 31.2 135.6 2.9m

Table 6.2: Timing statistics (in seconds) for each step in each level of the hierarchy.
Basis: subdividing and computing the HFMSbasis; Desc: computing the descriptors and
symmetry operators; Fmap: computing the functional map; P2P: extracting a point to

point map; Refine: the last refinement step on the finest level.



Source Model HFM (Ours), 2 min FMAPS12, 27 min INFORM, 33 min HOT, 52 min

Source Model

Target Model

Source Model HFM (Ours) FMAPS12 INFORM HOT

Figure 6.2: Comparison of our method (HFM) with the non hierarchical functional
maps scheme FMAPS12 [OBCS*12], INFORM [NO17] and HOT [AL16] for
displacement transfer. Note that our map correctly transfers displacements at both low
resolution (around neck) and high resolution (face and head). The original FMAPS
approach does not handle well the fine details on the face, INFORM gives a result
comparable to ours, and HOT produces a mostly good result, yet causes the head
displacements to slide. All methods took an order of magnitude longer than ours to
compute. The bottom row visualizes the map by transporting a checkerboard texture.
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Figure 6.3: Quantitative comparison of the conformal distortion of the maps. We
compare our method (HFM), the non heirarchical functional maps scheme
FMAPS12 [OBCS'12], INFORM [NO17] and HOT [AL16]. HOT achieves the best
conformal distortion, at a 25x higher computational cost, our method is second.

6.3 Application: Transferring textures

Given a pointwise map Plé between the finest subdivision levels we can transfer texture
images.

Assuming both models have texture coordinates Uif that are subdivided to the
finest level, and given a texture image for Ms, we construct a new texture image for
M. This is done by first computing the deformed texture coordinates of M1, given
by U, = (P{®)Pro(P*")qUs, where all the quantities are at the finest level. Here,
P*" maps texture vertices to model vertices, and vice versa for P“~*. Next, the model
is saved and rendered, with coordinate locations given by U; and texture coordinates
given by U;. The resulting image is the new texture image for Mj.

A technical issue remains—the texture seams of My do not necessarily correspond
to texture seams of My, leading to visible artifacts in the new texture. To remedy this,
we identify quads of M that are mapped to vertices in the 1-ring neighborhood of the
texture seams of My, and remove them from the rendering, leading to missing texture
regions. Finally, we use an off-the-shelf image inpainting tool [Inp18] for recovering
the missing regions, where we use the removed quads as the inpainting mask. This
process does not require user intervention, and is demonstrated in Figure 6.4. Another
possibility is to use a seam erasure as was recently introduced by [LFJG17].

Combined with our high quality maps at the finest levels, this approach is highly

effective for texturing base objects using a detailed high resolution texture of a different
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Figure 6.4: The texture transfer process. (left) the input texture image, (center) the
transported image with the missing data along the texture seams of the source model,
(right) the final inpainted results. The textured model appears in Figure 1.1.

Source Model Target Model

Figure 6.5: Map visualization with checkerboard texture transfer for the tiger and cat
pair from Figure 1.1.

model. Figures 1.1, 6.5, 6.6, 6.7, 6.8 demonstrate our results, with statistics and timings
given in Table 6.1 and Table 6.2. Note that the transported texture closely follows
the semantic correspondence between the shapes. To the best of our knowledge, such

detailed transfer was difficult to achieve before.

6.4 Application: Transferring displacement maps

Another common workflow with subdivision surfaces is sculpting on a refined mesh,
and then baking the resulting displacements into a displacement map. Transferring
displacement maps created this way is in fact simpler than transferring texture images,
since the displacement map can be reproduced with linear interpolation of vertex values
at the finest level (as opposed to texture images, where the pixel data is denser than
the vertex data). Therefore, we render the new displacement image using linear vertex
colors instead of a texture image. Since texture vertices have the same displacement

value even if they are on a texture seam, no texture discontinuities are introduced, and
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Source Model Input Texture Textured Input Our Output Source Model

Textured Input Our Output

Target Model Output Texture Textured Input

Our Output Target Model

Figure 6.6: Texture transfer of a zebra to a horse. (left to right): input source and
target models with corresponding landmarks, input and output texture image, pairs of
textured inputs and textured outputs from multiple views, map visualization with
checkerboard texture transfer.

thus this application does not require inpainting. If a low level polygonal model is not
required, we can skip the baking step, and simply transport the displacement function

directly, as a function on the surface.

Figure 6.9 demonstrates this approach. We deformed one of the troll models from
Figure 6.8 using Blender’s multi-resolution sculpting [vG09, pp. 101}, and computed
the resulting displacement map as a function on the surface. Then, we computed a
map to a different troll model, transported the displacement function with the map
and applied the displacement. Note the similar semantic locations of the ornaments
on the two trolls. Figure 6.2 used the computed map in the same way, to transport

displacement functions. We show our results, and the results of other map computation

Source Model Input Texture Textured Input Our Output Source Model

Target Model Output Texture Our Output Textured Input Target Model

Figure 6.7: Texture transfer of an elephant to a mammoth. (left to right): input source
and target models with corresponding landmarks, input and output texture image,
pairs of textured inputs and textured outputs from multiple views, map visualization
with checkerboard texture.
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Source Model
Input Texture

Textured Input

Target Models Output Textures Our Output Our Output

Target Model Source Model Target Model

Figure 6.8: Troll family. Texture transfer from a troll to two other troll models. (left to

right) input source and target models with corresponding landmarks, input and output

texture images, the textured input and our textured output results, map visualization
with checkerboard texture.

approaches on the same model, leading to inferior or similar results with an order of
magnitude longer computation times. Note that the map we computed was accurate
enough to transport the details in a semantic way to the correct locations on the face

and head of the target model.

Output: Transported Displacement Input: Model + Displacement Input: Model + Displacement Source Model Target Model

t: Transported

Input: Model + Displacement Output: Transported Displacement Displacement

Figure 6.9: Displacement transfer from a troll to an orc model. We show the input and
output models with the displaced geometry, from multiple views, and map visualization
with checkerboard texture.
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Chapter 7

Conclusions and Future Work

We presented a method for computing correspondences between subdivision surfaces,
which to the best of our knowledge was not possible before. We investigated the spectral
structure of the SEC Laplace Beltrami operator at different subdivision levels, and
leveraged the results to construct a hierarchical spectral basis. Using this basis, we
designed a hierarchical functional map inference scheme that given input landmarks
generates very detailed maps, an order of magnitude faster than existing approaches
for triangle meshes. Finally, we showed how our maps can be used for texturing
and detailing subdivision models, by transferring highly detailed texture images and
displacement maps.

Our approach has many avenues for future work. From the technical standpoint, a
wavelet based hierarchical basis [Ber04] seems most appropriate for subdivision surfaces,
and will additionally enable partial matching. From the application standpoint, once
our map is computed it can potentially be incorporated into 3D modeling environments,
e.g., Blender, for simultaneous sculpting on two shapes, much like symmetry is used for
sculpting today. Finally, generalizing our approach to collections of subdivision surfaces
would enable tasks such as joint shape analysis on the abundant datasets of open 3D

movies.
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Appendix A

Appendix - Proofs.

Lemma A.0.1. Let ¢!t = S'g! and B!t = S'Al. Then we have that

<gl+l7 Ll+lhl+l>MH‘l = <gl7 Llhl>Mla

(A1)
<gl+17 hl+1>Ml+1 = <gl7 hl>Ml'

Proof.
<gl+1’Ll+1hl+1>Ml+1 _
(GFHTWHIRHL = (since L = MT'W)
(S'HTWHISIL = (since g+ = Slgland same for h) (A.2)
(HITWR = (since W' = (SHTWIHLSH
= (¢, L'hyyp.  (since L = M™1W)

And similarly,

(g R e =

(S'HTMIHLSIRL = (since ¢ttt = S'¢land same for h) A3
(gl)TMlhl = (since M = (SZ)TMHISZ) (A-3)
= <gl’ hl>Mlv

which completes the proof. Note that the same reasoning holds for inner product of

matrices.

Lemma 3.1.2. The prolonged eigenvectors and eigenvalues 1, A1 are weak eigen-
vectors and eigenvalues of L1 with respect to functions of level I+1 which are in the

image of S'. Eaxplicitly, for any function g+ € Im(S") we have:

(gt LML — LAY Ly =0, (3.4)
<(i>l+1,<i>l+1)Mz+1 - T (3.5)
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Proof. Since gt € Im(S') there exists a function ¢! €R™ such that gt = Sigt.

Then, we have:

(g LG _ A
<9l,]Ll‘I)l>Mz - (gl,q)lAl>Mz = (from Lemma A.0.1, Def. 3.1.1) (A.4)
(HT (Wl — MDA =0,  (from Eq. 3.1)

which completes the proof of the first part. For the second part, note that
(@M Y = (81!, S1eY) e = (@, )y =1, (A.5)

where we again used Definition 3.1.1, Lemma A.0.1 and Equation 3.1, in this order.

Lemma 3.1.3. Let g€ Im(S'). Then

19912 _ Amar

g— ddig|3 < <
| i Ak41 Ak+1

(78 (3.6)

where all quantities are at level 1+1, ® are the first k eigenvectors of L! prolonged to
41, Apy1 is the k41" eigenvalue of Lt, Anag is the largest eigenvalue of Lt, and Vg
is a discrete gradient defined such that |[Vg|2; = (g,L g)m-

Proof. Set ®!, Al to be the first k eigenvectors and eigenvalues of L!, and ®!, Al the

remaining n' — k eigenvectors and eigenvalues. Thus, we have:

L' = (@'Al@hT + o'Al(@H)T) M. (A.6)

Since ¢g!T! € Im(S') there exists a function g €R™ such that gt = Sl'¢!. Now, using
Lemma A.0.1 we get:

(g L gty = (gh Ligh. (A.7)

Plugging in Equation A.6 leads to:

<gl7]ngl>Ml

(gl)TMl (q)lAl(q>l)T + (i)lAl((i)l)T)Mlgl

> (gl)TMl(ilAl((i)l)TMlgl (AS)
> )\k+1(gl)TMl<i>l(§>l)TMlgl,

where in the last step we used Al > Ak+11 entrywise, since A\p 1 is the smallest eigenvalue

in A.
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Now we have:

lg' — @'(2)'q' |5 =

= H@l(@ﬂglﬂiﬂl (since [®,®] is a full basis)

= H@l(@)TMlngﬁ,ﬁl (since ®lis ortho wrt MY) (A.9)
_ (gl)TMlél((i)l)TMl(i)l(él)TMlgl

= (HTM'd (DT M'g!  (since Blis ortho wrt M').

On the other hand, we have:

lg' — @' (@)1 g =
= ||SY(g" - @l(tI)l)Tgl)||§4[l+1 (from Lemma A.0.1)

— Hgl+1 o Ci)lJrl((I)l)TMlngg/HHl — (A.l())
_ Hgl+1 _ ci)lJrl (i)l+1)TMl+lgl+1

=g

( HI%AII-H =
+1 _ (i)l+l((i)l+1)Tgl+l”§/ﬂl+1
where the last step is due to Lemma 3.1.2 which implies that !+ is orthonormal with
respect to M‘H1,

Combining all the results we get:

Hgl-i-l _ (i)l+1((i)l+1)Tgl+1“§/ﬂl+1 _

= |lg" — @' (&g IIfp =
= (¢")"'M'd"(®")TM'g' < (A.11)
< 5 (6 L =

1

41 7 4 141
= 5 (g LT

Mi+1,

which completes the proof of the first bound.

Using the generalized Courant-Fisher Minimax Theorem [ANT09, Thm 3.4] we
further have that (g, ! gl>fMI < Anaz| ngﬁ/ﬂl, where \pnqz is the largest eigenvalue of !,
completing the proof of the second bound.

Lemma 3.1.5. Assume Al and A" are distinet, and both have no repeating eigenvalues.
Let ®'F1 be the first Zé:o k' = k! eigenvectors of LY. Then the HFM basis ® is

approximately blockwise orthonormal:

~ ~ <él, él>Ml E
<(pl+1’ (Dl+1>MH-1 = ET I s (39)
Kl fl+1
(B%, 8% o = 00, (3.10)
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where the error matriz E is controlled by

1 -
T 2 1Byl < [15'9! = @ . (3.11)
ij

Proof.  According to Definition 3.1.4 we have that ®*+! = [S'®! &!*1], therefore we

E

get that (@1 1), 111 is a blockwise matrix of inner products 5l Where,

ET

A= (S'®! S0y = (D, D)y,
B = (@ oty =T (A.12)
E = (S'®! oty .

To obtain the bound on E, note that (®!T! &!*1) .1 = 0, since their corresponding

eigenvalues are distinct. Hence we have:
E = (S'®!, ) pi = (SID! — @I @Iy (A.13)

Denote A = '@l — d!*1 B = !+ M = M, thus E = (A, B)yy, and let A; be the
i-th column of A. We have:

Yo 1Eil =Y 1AL Bl < Y 1Al B s (A.14)
i i i

where for the last step we used the Cauchy-Schwarz inequality. Set @ to be the diagonal
of the matrix (A, A)ys, namely a(i) = ||A;]|3,, and similarly set b to the diagonal of

(B, B)ps- In addition, let 1 be a column vector of ones. We get:
D IARAB I, = 17 (@' )1 = [|All3 1 Br, (A.15)
j

since b1'1 = tr(BT M B) = || B||?,, and similarly for A.

Finally, note that || B||2, = tr((®!*1, ®+1) 1) = tr(Iu41), and therefore ||B||2, =
k!*1. Combining all the results, and plugging back the definition of A we have:

> " 1Eijl < AIIIBIG, = [|S'® — &35, (A.16)
]
as required.

If the first & eigenvalues at level [ and at level [+1 include no repeating eigenvalues,
then the basis vectors in ®'*! are expected to correspond (up to sign) to the prolonged

eigenvectors (see Figures 3.2, 3.3), reducing the error on the right hand side.
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Lemma 4.1.2. Let f(f,;l be the HSD at level 41, then:

K5t =S, (8)T 4+ @1 py (A (27T (4.1)

Proof. By definition, we have that
RIGE = 8141 (R141) (@141)7.
Plugging in the definition of the hierarchical basis
U1 = [SIP!, B, AL = [AL A
we get:

L — [Sl(i)l @l—i—l}

pt

p(A) 0 [(S@)T

0 p(AFH] [(@HHT
= S'®p (ADY(DYT(SHT + DMt py (A1) (SHHT =
= S'RL,(B)T(SHT + 1 (A (@17,

(A.17)

which completes the proof.
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