~

[1"200nN TECHNION
219120 (19N u Israel Institute
TN of Technology

4 A

[1'1200 NIM90
The Technion Libraries

017" XIAI ['1NX "V D'D>NOoIN 'TIN'?77 1901 N'a
Irwin and Joan Jacobs Graduate School

\

©
All rights reserved to the author

This work, in whole or in part, may not be copied (in any media), printed,
translated, stored in a retrieval system, transmitted via the internet or
other electronic means, except for "fair use" of brief quotations for
academic instruction, criticism, or research purposes only.
Commercial use of this material is completely prohibited.

©
n/nann? nnme nrpTm 7

IX N7 112'N ,01702°X2 Y'ON7 ,UT'1 1AXNA [ONX7 ,01IN7 ,0'9TN7 ,('"NW7d N'TN1) 7'NYN7 |'X
IX N7 ,NXIN ,TIA'YZ NN0AY 112NN [N DIX7 D'WOZA "an win'w" oyn? ,11nn j77n 72
.07nNN2a 1IoX AT AN 71750 AN "Non wIN'Y 7NN



Generalized Volumetric Foliation
from Inverted Viscous Flow

David Cohen



Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G



Generalized Volumetric Foliation
from Inverted Viscous Flow

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

David Cohen

Submitted to the Senate
of the Technion — Israel Institute of Technology
Iyar 5779 Haifa May 2019



Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G



This research was carried out under the supervision of Prof. Mirela Ben-Chen, in the

Faculty of Computer Science.

Some results in this thesis have been published as an article by the author and research
collaborators in a conference and a journal during the course of the author’s master’s

research period, the most up-to-date version of which being:

David Cohen and Mirela Ben-Chen. Generalized volumetric foliation from
inverted viscous flow. Computers € Graphics, volume 82, pages 152-162,
August 2019. Shape Modeling International 2019 Best Paper Award Honorable
Mention.

Acknowledgements

I would like to thank Orestis Vantzos and Stefanie Elgeti for the stimulating discussions
and helpful comments. M. Ben-Chen acknowledges funding from the European Research
Council (ERC starting grant No. 714776 OPREP), and the Israel Science Foundation
(grant No. 504/16).

I would like to thank my supervisor for all the help and support along the way.

The generous financial help of the Technion is gratefully acknowledged.



Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G



Contents

List of Figures
Abstract
1 Introduction

2 Preliminaries

3 Method
3.1 Notations . . . . . . . . . e
3.2 Theflow . . . . . . .
3.3 The Inversion Map . . . . . . . . ...
3.4 Discretization . . . . . .. .o
3.5 Interpolating Vg to Vertices of 8T . . . . . . . . ... ... ... ....
3.6 Interpolating Velocity to Vertices of M . . . . .. ... ... .. ....
3.7 Evolving the Surface Boundary . . . . . ... ... ... ... ......
3.8 Reusing Tetrahedral Mesh T . . . . . .. ... ... ... ........
3.9 High Genus . . . . .. .. .
4 Implementation Details

4.1 Introduction . . . . . . . . .. L
4.2 Time Step Interval 7 and Injection Rate @ . . . . . . . . .. ... ...
4.3 Triangular and Tetrahedral Meshes Handling . . . . . .. .. ... ...
4.4 Regularization Factors . . . . . . .. .. .o o oL

44T €1 .o

4.4.2 €2 ..
4.5 Limitations . . . . . . . .. L

4.5.1 Flow Singularities . . . . . . .. .. .. . oL

4.5.2 Layer Intersections . . . . . . .. . .. ... L ..

5 Experimental Results
5.1 Imtroduction . . . . . . . . . . . . ..
5.2 Controlling the Flow . . . . . .. .. .. . . .. ... ...

12
13
13
14
14
15
16

19
19
19
20
20
20
21
22
22
22



5.3 Local Conformality . . . . . . ... ... .. ... .. ... ..
5.4 Volumetric Mapping . . . . . . . . . . ..

6 Conclusion and open questions
6.1 Conclusion . . . . .. ..

6.2 Open questions . . . . . . . . . ..
A Evolution of a Sphere

Hebrew Abstract

33
33
33

35



List of Figures

2.1

3.1

3.2

3.3

3.4
3.5

4.1

4.2

4.3

5.1

Overview of our approach: (top) conformally invert the input mesh,
(bottom, left part, zoomed out) then evolve the boundary using 3D Hele-
Shaw flow, (bottom, right part) and finally invert back to get the foliation
leaves. Every domain and its transformed domain have the same color.
Origin is marked with x. Injection point in the inverted domain, where

the flow is executed, is at the origin. . . . . . . ... ... ... .....

The model geometry. The domain  with its boundary 02 = I', O is
the singularity, placed at the origin. Half of the interior of the model is

transparent for visualization. . . . . . . . ... ... ... ... ... ..

The evolution of a star-like domain. (left) The input surface (orange)
together with the final surface (red), which is a sphere. (right) The full
injection flow, where every layer appears in a different color. We show

the cross-section of 10 sampled layers. . . . . . .. ... ... ... ...

Example of the inversion map, the meshes are color coded such that
corresponding points have the same color. (left) The original mesh. (right)

An inversion of the standing man mesh. . . . . .. ... ... ......
SDF values for different meshes. (left) Eight. (right) Bob the duck. . . .

High genus. Result obtained after allowing the flow to progress beyond

the flow singularities, with the heuristic described at Section 3.9.

€1 effectiveness demonstrated on a teddy mesh foliation result. Meshes

are clipped using 3 planes. (left) e; = 0.09. (right) e, =0.9. . . . . . ..

ez effectiveness demonstrated on a teddy mesh foliation result. (left)
€ = 6e—7. (right) ea =06e—5. . . . . . . ...

Spring mesh, genus-zero failure case. (left) Layers obtained until flow
singularity reached. (right) The mesh in time of flow singularity. The

mesh is a one component mesh with degenerate triangles. . . . . . . ..

Controlling the flow. Showing the same mesh with different singular

poInts. . . Lo

17

21



5.2 Conformal distortion for 3 different results obtained using the same input
mesh, and different injection point positions. The distortion is measured
between the input mesh and the innermost layer. (top) The input mesh
colored by the conformal distortion values, dark-blue faces are faces with
distortion value smaller than 1.5. (bottom) The corresponding foliations

of the input domain, the injection point is in the center of the innermost

5.3 Teddy meshes volume mapping. . . . . . . . . . ... ...
5.4 Ant meshes volume mapping. . . . . . . . ... ...
5.5 Bird meshes volume mapping. . . . . . ... ... L oL
5.6 Closely related meshes, with the singular point being located in similar

positions along the meshes. . . . . . .. ... ... ... 0 ..
5.7 Same meshes at different poses. . . . . . ... oo
5.8 Horse. (left) side view. (right) bottom view. . . . . .. . ... ... ...
5.9 High genus. (left) genus 5. (right) genus 3. . . .. ... ... ... ...
5.10 Applying texture. (left) The result of our flow. (middle) Initial mesh

textured. (right) Final mesh textured, zoomed in.. . . . . .. ... ...



Abstract

The theory of foliations emerged as a distinct field in the 1940’s. Since then, it has
seen a major progress and a rapid development. This field has it origins in the study of
the solution curves of ordinary differential equations, and of vector fields on surfaces.
Intuitively speaking, a regular foliation is the decomposition of a manifold into immersed
submanifolds, namely leaves, of the same dimension that ”fit together nicely”.

In this work we propose a controllable geometric flow that decomposes the interior
volume bounded by a triangular mesh into a collection of encapsulating layers, which
we denote by a generalized foliation. For star-like genus zero surfaces we show that
our formulation leads to a foliation of the volume with leaves that are closed genus
zero surfaces, where the inner most leaves are spherical. Our method is based on the
three-dimensional Hele-Shaw free-surface injection flow, which is applied to a conformally
inverted domain. Every time iteration of the flow leads to a new free surface, which,
after inversion, forms a foliation leaf of the input domain. Our approach is simple to
implement, and versatile, as different foliations of the same domain can be generated
by modifying the injection point of the simulated three-dimensional Hele-Shaw flow in
the inverted domain. We demonstrate the applicability of our method on a variety of

shapes, including high-genus surfaces and collections of semantically similar shapes.
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Chapter 1

Introduction

In the last few decades, the field of geometric flows has seen great progress. As a
consequence, these flows have emerged as an essential tool in diverse disciplines such as
material science, geometry analysis, topology, quantum field theory and the solution of
partial differential equations, among many others [Bak05]. In this work, we propose a
geometric flow for closed surfaces, which is based on the three-dimensional Hele-Shaw
injection flow [RT00].

Our flow has three main properties: (1) If the surface remains a single component
during the flow, then it experimentally converges to a sphere; (2) The free surfaces,
at each time-step of the flow, form a collection of encapsulating layers, which yield a
generalized foliation; (3) The flow is controllable, as the center of innermost spherical
layer can be positioned at various points interior to the input surface. Hence, it is
possible to influence the speed of the deformation of different parts of the surface,
and the progress of the flow. In addition, our flow can handle high-genus surfaces,
by allowing the surface topology to change during the flow, thus enabling the flow to

progress beyond flow singularities.

Even though there exist other geometric flows with similar properties, such as: Ricci
Flow [Ham88|, Mean Curvature Flow (MCF) [Bra78|, conformalized MCF [KSBC12],
Yamabe Flow [Y194] and many others, to the best of our knowledge none of these
possess all of the properties mentioned above. In other words, either these flows do not
converge to a sphere, or they do not generate encapsulating layers, and most of them, if

not all, are not controllable.

We show experimentally that our formulation generates a foliation of the input
domain when the input surface is a star-like genus zero surface with respect to the
injection point. Furthermore, we demonstrate our flow on a variety of surfaces, showing
controllability, similar foliations for semantically similar shapes, and interesting general-
ized foliations of high-genus surfaces. These results can potentially be used for further
geometric processing, such as computing volumetric maps, and transferring volumetric

textures.



Related Work

At the core of our method lies the three-dimensional Hele-Shaw flow with an injection
singular point. The Computational Fluid Dynamics (CFD) literature is rich with
analytical, numerical and experimental studies of the Hele-Shaw flow as well as other
related flow types. A full review is beyond the scope of this work. Our literature
review is thus limited to the most relevant results and methods related to our suggested
method.

Geometric Flows Geometric flows are abundant in the mathematical literature,
e.g. flows such as the Ricci flow [Ham88|, Willmore flow [KS02] and mean curvature
flow [Bra78], to mention just a few. In the geometry processing literature, corresponding
discrete flows have been developed, where some examples include discrete Ricci flow
[YGL*09], discrete Willmore flow [BS05], conformal Willmore flow [CPS13] and con-
formalized mean curvature flow [KSBC12]. While all these flows converge to a sphere,
they do not have the property that we require for generating a foliation, namely that
the resulting surfaces are encapsulating. Furthermore, these flows are fully defined by
the initial surface, leaving no room for controllability. Our flow, on the other hand, has

both these properties.

Hele-Shaw flows Our method is based on the three-dimensional model of the Hele-
Shaw flow with an injection singular point. A mathematical treatment of Hele-Shaw
flows from the point of view of geometric function theory and potential theory, including
a complex analytic approach can be found in [GV06]. The model equations we use
are based on Darcy’s equations, which were derived from the Navier-Stokes equations
via homogenization [Whi86]. The same model, with suction instead of injection, is
known to be unstable in some cases, yielding the viscous fingering phenomenon [ST58].
A two-dimensional Computer Graphics simulation of this model, both its stable and
unstable versions and including two-phase flow and interactive control, was presented
in [SVBC16]. Viscous fingering is closely related to other pattern formation phenomena
such as bacterial growth and snowflake formation ([BJ97] and [GKCBJ98]), among
others, all of which are examples of Laplacian growth. A thorough investigation of this
topic can be found in [GTV14]. We focus on a specific setting of 3D Hele-Shaw flow,

which leads to a geometric flow that has the properties that we require.

Foliations The field of foliations has emerged as a distinct field with the publication
by Ehresmann and Reeb [ER44]. Being a well established mathematical field, many
introductory texts are available. A summarized introduction to the topic is given in
[LJ74], while a more recent and thorough introduction to the theory of foliations can be
found in [MMO03]. Another book presenting the basic concepts in the theory of foliations
together with some more advanced topics such as aspects of the spectral theory for

Riemannian foliations as well as applications of the heat equation method to Riemannian



foliations appears in [Tonl2|. In the context of Computer Graphics, a recent work
[CSZ16] has presented an algorithm for constructing foliations in a discrete setting
which are then used for the bijective parametrization of two and three-dimensional
objects, over canonical domains. In that work though, the authors handle foliations
with one-dimensional leaves, i.e. any such foliation is a decomposition of a domain
into disjoint curves. The volumetric bijective parameterization is then generated by
the transversal sections of the the one-dimensional foliation. We, on the other hand,
generate directly the two-dimensional leaves, of which the inner-most is a sphere. Our
work can be considered complimentary as it provides an alternative solution using

two-dimensional foliations which can spur further work on this topic.
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Chapter 2

Preliminaries

The decomposition of a manifold into immersed sub-manifolds, namely leaves, is called a
foliation. These leaves are of the same dimension, and “fit together nicely” (see [LJ74],
[MMO3] for a rigorous definition). We propose a method for computing the foliation
of the interior of a triangular mesh M by leaves which are closed surfaces, using a
three dimensional Hele-Shaw flow in a conformally inverted domain. Our algorithm is

composed of the following steps (see Figure 2.1):
1. Normalize the initial input mesh M such that it resides inside the unit sphere.

2. Conformally invert M using a Mobius inversion through the unit sphere to get

M.

3. Evolve M using a 3D Hele-Shaw flow until it converges to a sphere, leading to a

series of surfaces M™.

4. Conformally invert M" using a Mdbius inversion through the unit sphere, to get
the final foliation M™.

The Flow The 3D Hele-Shaw flow that we use is a normal flow, where the normal
velocity is determined by the gradient of a volumetric harmonic function which is 0 on
the boundary of the domain, and negative in the interior. One important property of
this flow, is that it is positive by definition, i.e. the inner product of the gradient of the
harmonic function with the normal direction will be non-negative, hence, the domain
that is occupied by the fluid at some instant encapsulates the domain occupied by the
fluid in each of the previous times, leading to a foliation structure.

Further, our flow is derived from a physical model, where the existence of a solution
globally in time was proven under the assumption that the initial domain is star-shaped
with respect to the injection point [GTV14, Theorem 4.5.2]. In addition, initial domains
that are perturbations of balls converge to balls under this flow [Von06, Von10]. In our

experiments, we demonstrate that even for initial domains that are not perturbations
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Figure 2.1: Overview of our approach: (top) conformally invert the input mesh, (bottom,
left part, zoomed out) then evolve the boundary using 3D Hele-Shaw flow, (bottom,
right part) and finally invert back to get the foliation leaves. Every domain and its
transformed domain have the same color. Origin is marked with x. Injection point in
the inverted domain, where the flow is executed, is at the origin.

of balls, nor necessarily adhere to the star-likeness requirement, the resulting domain

indeed converges to a ball.

The Inversion Map The inversion map that we use maps the family of spheres
centered at the origin to itself, so that a sphere is mapped to another sphere under
this map, and the unit sphere remains unchanged. Furthermore, under this map, the
interior of the unit sphere is mapped to be the exterior of the unit sphere, and vice-versa.
Finally, this inversion map is conformal [ABW13], hence the normal flow in the inverted
domain is mapped to a normal flow in the original domain bounded by the initial input
mesh. Since the inversion map is its own inverse, our method then finds the foliation
leaves by applying the inversion map again on each of the resulting domains after each

step of the viscous flow evolution.



Chapter 3

Method

3.1 Notations

1 inversion map, a Mobius transformation.

MOVp, Far) triangular surface mesh, faces are triangles.

TVr, Fr) tetrahedral volumetric mesh, elements are tetrahedrons.
M triangular surface mesh after applying inversion I.

T the mesh generated after tetrahedralizing the volume whose

boundary surface is M.

oT the triangular mesh which is the boundary of the tetrahe-
dral mesh 7.

Ly € ]R’Vf [x[vzl the Laplacian operator matrix of the tetrahedral mesh 7.

Ly € RVl [Vl the Laplacian operator matrix of the triangular mesh M.

Gs € R31F7[x[V7| the gradient operator matrix of the tetrahedral mesh 7.

Gy € R3[Fwr [Vl the gradient operator matrix of the triangular mesh M.

Our goal is to compute a series of encapsulating surfaces in the interior of our input
domain M. Since injection flow is stable and converges to a ball, we first invert the
input mesh through the unit sphere, then run the flow to get the layers, and then invert
back.

3.2 The flow

We assume the model of the Hele-Shaw problem in R3. We consider the evolution of

an incompressible (i.e. with negligible effect of pressure on density) three-dimensional



an=r

Figure 3.1: The model geometry. The domain §2 with its boundary 02 =T', O is the
singularity, placed at the origin. Half of the interior of the model is transparent for
visualization.

viscous fluid, under the influence of injection through a singular point x( internal to
the fluid domain Q. The velocity is divergence free everywhere except at the singular
point xg. See Figure 3.1 for an illustration of the model geometry. We follow the model
equations (1.1)-(1.3) from [RT00], with two minor modifications. First, we define the
injection rate with an opposite sign, and second, we denote the pressure as the velocity
potential ® : 2 — R, so that the velocity u is defined by,

u=—-Vo. (3.1)

We get:
AD = Qdyy (), z, z0 € Q(t) (3.2)
® =0H, on T(t), (3.3)

where A is the Laplacian, @ a constant indicating a rate of injection (@ < 0 for a
source) or suction (@ > 0 for a sink), d,,(z) is the three-dimensional Dirac distribution
centered at zo, Q C R? is the fluid domain, Q = T is the domain boundary, o is the
surface tension and H is the mean curvature. The solution for ® determines the velocity

of the boundary:

up, = (—=VoO(z),n(x)) z eI(t) (3.4)

where 7 (x) is the outward unit normal direction to the boundary I" and w,, is the normal

component of the velocity at the boundary I'. A solution to the partial differential

10



Figure 3.2: The evolution of a star-like domain. (left) The input surface (orange)
together with the final surface (red), which is a sphere. (right) The full injection flow,
where every layer appears in a different color. We show the cross-section of 10 sampled
layers.

equation in (3.2) is of the form:
® = QG(z,z0) + g(x) x, 1z € € (3.5)

where G(z,7¢) is the Green’s function for the Laplacian in R3, given by G(x,z) =
—m, and g(x) is a harmonic function necessary for fulfilling the boundary con-
ditions. Also, for the purpose of our method we assume a flow with a constant rate

of injection < 0 and without surface tension. Hence, the following are our model

equations,
®(z) = QG(x,x0) + g(x) zeq (3.6)
®(z) =0 zel (3.7
u, = (=Vo&(x),n(x)) zel (3.8)

This derivation is similar to the derivation presented in [GV06] which was also used in
[SVBC16] to model the one-phase two-dimensional Hele-Shaw flow. We refer the reader
to [RT00], [GV06] as well as [GTV14] for further details.

Since we consider a viscous flow with injection (i.e. @ < 0), the potential ® in all
the domain € is positive and the velocity at the boundary I' points outwards such that
the boundary expands. Figure 3.2 shows an example of the evolution of a star-like

domain which shows the expanding boundary.
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3.3 The Inversion Map

Given an input initial triangular mesh M, which we consider as the boundary of
an initial domain 9Q(0) = I'(0), our goal is to efficiently find a family of domains
Q(t) which fulfill the model equations (3.6)-(3.8). €©(0) is the domain bounded by the
inverted input mesh M, i.e. the domain obtained after applying a Mobius transform

I:x— %, x,%¢cR3tothe given input mesh M as follows,

o/ ||lz||* if @ # 0,00
=40 if v = o0 (3.9)

00 ifz=0

The map I is the inversion of R3 U {oo} with respect to the unit sphere, such that for
x ¢ {0,00}, & is on the ray with an endpoint at the origin which passes through x, with
|z| =1/ |z|. It is easy to see that the map is continuous and is its own inverse. Once
the family of domains () is obtained, the volumetric foliation of the volume bounded
by the initial input mesh M is computed by applying the map I to each domain and
taking its boundary, i.e. the foliation leaves are 9Q(t). Figure 3.3 shows an example of

the application of the inversion map.

Figure 3.3: Example of the inversion map, the meshes are color coded such that
corresponding points have the same color. (left) The original mesh. (right) An inversion
of the standing man mesh.

12



3.4 Discretization

For solving model equations (3.6)-(3.8), we take the inverted initial input mesh M (V o F )
which we refer to as 9Q(0), and discretize the domain it bounds, i.e. €(0), using a
tetrahedral mesh T(V:r, Fi). We denote by 8’?()/87-,.7: 57) the triangular mesh which
is the boundary of 7', which should be exactly M, but as tetrahedralization procedures
tend to generate meshes with boundaries that do not perfectly fit the mesh that was
used to define their boundary, we will need to refer to this surface as well. Solving the
model means finding the harmonic ¢g(z), as implied from equation (3.2). We chose to
work with FEM as our discretization, hence we consider a scalar function as a piecewise
linear function defined over the vertices. Therefore, we seek a discretized harmonic

function g which satisfies
Lsg=0, (3.10)

where L+ is the Laplacian operator matrix defined for a tetrahedral mesh 7. Writing

our discretized model (3.10), including the boundary conditions, in matrix form we get

,,&Tlxlﬁiﬂlfﬁx&, ,,‘?{Zﬂ = ,,,0,,, , (3.11)
0 Ip Xz 98

where 7 and B are the sets of indices of the interior and boundary vertices, respectively,
and Ip is the identity matrix of the appropriate size. We evaluate the boundary values

gB =9 ‘87’ using equations (3.6) and (3.7),

98 =-Q-G, (3.12)

where G is the vector of Green’s function G(v,v) values evaluated at every vertex

v e dT. Since g7 is what we seek, the system is simplified to be,

(L7 )Xz =[-Ls 98] (3.13)

which gives the values of gz, and together with the values g obtained in (3.12) we have
the values of the discretized harmonic function g for all v € V#. Using the discrete
gradient operator matrix defined for a tetrahedron-mesh, we can calculate G_gFf =Gsyg
defined over the tetrahedrons t € Fis-.

3.5 Interpolating Vg to Vertices of 97T

We use the barycentric volume (adapted from barycentric area defined in [MDSBO03]) in
order to interpolate Gg_-% values from the tetrahedrons to the mesh vertices. Denoting
Volz(tj), tj € Fs as the tetrahedral volume of ¢;, then Voly(v;) = theNli Volr(tj)/4
is the vertex volume of v;, where Ny, is vertex v; 1—ring neighborhood of tetrahedrons.

We define an interpolation operator I{j € RIVAIF7 to interpolate values from the

13



tetrahedrons to the vertices, in order to get the values G]g)% defined over the vertices

v € V. Practically, If(i,j) = %

of vertex i and 0 otherwise, so that,

iff face j belongs to the 1—ring neighborhood
Gy, = L - G%. (3.14)

3.6 Interpolating Velocity to Vertices of M

Having Gf’,f, we can easily calculate the gradient of the discretized potential defined
over the vertices v € V+, denoted G?}f. Though, what we would actually like to find

are the values G{’iM - the gradient values of the discretized potential defined over the
vertices v € V,~, since this is our surface mesh of interest. Finding the velocity of those
vertices is then merely u = —G{’iM, as equation (3.1) suggests. Though, for finding
G%M we project the vertices that belong to the boundary surface of T, i.e. v € 9T,
on the closest face of the triangular surface M. We denote those projected vertices
positions by P. We have Vp € P, 3f € F; s.t. pis on the plane defined by f (the
positions p are somewhere on the faces of M) As a side note we will mention that a
tetrahedral mesh can be generated in such a way that it can be guaranteed that the
vertices that belong to its boundary surface are on the faces of the mesh used as an
input for the generation process, meaning the projection step described above is not
needed. Nevertheless, as we do not generate a tetrahedral mesh every step for a better
performance, but rather evolve it as well for a few iterations, therefore this projection
step can not be discarded. Refer to Section 3.8 for further details. We assume the
gradient values of the discretized potential evaluated at the vertices v € 9T are the
same as the values evaluated at the positions P after projection, denoted G‘;;. Defining
B e RIP X[Val as the matrix of barycentric coordinates of the projected positions p

relative to the faces F,, and solving, in the Least Squares (LS) sense, the regularized

[ X }|VM|><1 - [Gf] (315)

gives the desired values of Gf;M, where Gy is the gradient operator matrix of the

System,

surface mesh M and ¢; is a factor determining how effective the regularization will be.

3.7 Evolving the Surface Boundary

As noted earlier, applying equation (3.1) we get the Veloc~ities u = —G@M of the vertices
v € V4, and we can evolve the surface boundary mesh M. We project the velocity u of
each vertex v € V on the appropriate surface normal at each vertex to get the normal

velocities u,. Finding the new locations of the vertices v € V is then being done by

14



solving the system, in the LS sense,

vror “Un_ ] , (3.16)

Here Inj\;1 is the identity matrix of the appropriate size, L \; is the Laplacian operator
matrix of M, 07 is the time interval length, v being the vector of the vertices v € V-,
p being the smallest eigenvalue (which is not 0) of L ; that acts as a regularizer, and e
is a factor determining how effective the regularization will be. Denoting the resulting
set of vertices as VH&, the mesh defined by (VHE)T, F x) is set to be the surface mesh
M"(VX;[, ]:j\Lh) which is the boundary of the domain for the next iteration. Once in a few
iterations the mesh defined by (VHaT, F yz) is first being remeshed and only then set to
be M"(V/’\L;l,f/’a). The current foliation leaf is the surface mesh defined by the faces

/’\‘;[ and by the vertices obtained by applying the inversion map (3.9) to the vertices V/"\;l.
In cases where we want to have all the foliation leaves with the same triangulation as
the original manifold, then a post process operation of iteratively projecting on each leaf,
from outermost to innermost, the set of vertices projected on the previous leaf, where
initially this set is V7. This processing can also be done in parallel to the evolution, at

the end of each step, and not necessarily as a post process step.

3.8 Reusing Tetrahedral Mesh T

In order to speed up execution time, we reduce the number of tetrahedral mesh
generations and reuse results from previous i‘Eerations. Since we know G%{ﬁ for the
vertices on the boundary surface of the mesh 07, we therefore can calculate the velocity
of those vertices, denoted by wg, and we can evolve the boundary of the tetrahedral
mesh. As for updating the locations of the interior vertices of T, since we do not need
those vertices to move according to the model equations (3.6)-(3.8) we rather use the

velocity of the boundary vertices and find a smooth solution for the interior vertices, i.e.

Xr |10
EIRC I

Similar to before, simplifying of the system yields,

solve in the LS sense the following system,

[ Lzv1 Lzxp

0 | Ipxs

L;

Trxz

[[Xz] = [-Lz

TIXB

- wg| (3.18)

and we get wz. With the complete velocity vector w for the vertices of the tetrahedral
mesh we then advance the vertices V; locations by 97 - w to get their new locations.

We still regenerate a new tetrahedral mesh but only once in a few iterations.
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3.9 High Genus

Our method is capable of handling high genus meshes without boundaries, if we allow
the flow to change the topology of the evolved surface by continuing beyond a flow
singularity, when such occurs. Our method handles flow singularities by using the

following rather simple heuristic:

e Find the number of degenerate triangular faces (see below for further details),

let’s call this number d.

e If d > t1, where t; is the minimal number of degenerate triangles that we would

like to remove at once, then:

— If d has increased from the previous evolution iteration, and d < to then
continue, where ¢, is the maximal number of degenerate triangles that allowed

to exist unhandled.

— If d > to, or d has remained the same as in the previous evolution iteration
(but d > t1), then all the degenerate triangles are being marked to be removed

from the surface.

e Apply removal of faces marked to be removed, only if the genus after the removal

will decrease.

Whenever such faces are removed, our method executes a holes filling procedure to fill
up the holes that were created due the faces removal, so that the resulted mesh is again
without boundaries. The evolution continues with this new surface of lower order genus,
until a convergence to a sphere is reached.

We tried two methods to determine whether a triangular face is considered degenerate

for the heuristic above:

e A face whose area is less than a threshold 0, where 6 < 1.

o A face whose Shape Diameter Function (SDF) value is less than a threshold p,

where p < 1.

SDF SDF
9.960e-01 9.437e-01
0.747 0.708
0.498 0.472
0.249 0.236
5.100e-05 '7.270e-04

Figure 3.4: SDF values for different meshes. (left) Eight. (right) Bob the duck.
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Figure 3.5: High genus. Result obtained after allowing the flow to progress beyond the
flow singularities, with the heuristic described at Section 3.9.

The SDF, as appeared in [SSCO08], is a scalar function defined on the mesh surface. It
expresses an estimate of the diameter of the object’s volume in the neighborhood of
each point on the surface. The SDF values remain almost the same for different poses of
the same object. Figure 3.4 shows examples for SDF values of two meshes, after a few
evaluations of our flow, and before reaching a flow singularity. It is noticeable in both of
the examples that the areas where flow singularity is about to occur are areas of low SDF
values. In our tests we used values of § € (1le—7,1le—5) and u € (5e—3,2e—2). Although
the method that designates degenerate faces according to their area is simpler to
implement, the method that uses the SDF values seems to perform better, and operates
as expected on a larger number of high-genus objects. We used the implementation
of the SDF values calculation provided as part of CGAL [Thel8]. Figures 3.5 and 5.9

show results of our method when running on high-genus meshes.

17
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Chapter 4

Implementation Details

4.1 Introduction

In our experiments we executed our method on surfaces that are bounded by the unit
sphere. That way, after applying the inversion, the inverted surface is then completely
outside the unit sphere. Working in that manner is not obligatory, but rather it
helped in keeping each parameter used in our method of the same order of magnitude
when running on different surfaces. In the following subsections we will describe the

parameters we used when executing our method and how we set their values.

4.2 Time Step Interval 07 and Injection Rate ()

In our experiment we kept the time interval constant and used the value of 97 = 0.1.
Since the evolution happens in the inverted domain, and is executed as a flow of
injection from a singular point, therefore as the boundary expands at every iteration
of the simulation, the injection rate affects less and less, since the distance from the
singularity to the boundary increases. In other words, the relative progress of the
simulation is reduced along the execution. This behaviour can be demonstrated when
considering the evolution of a sphere according to our model. It can easily be shown that
when the initial domain is a sphere, then when applying our model equations (3.6)-(3.8)
in that domain gives rise to the following equation for the radius of the sphere,

: 3Qt
R(t) = \| R} - I

(4.1)
which supports our claim on the slowing in the simulation progress. Reminder: we
handle a flow of injection, i.e. @ < 0. See Appendix A for a derivation of equation (4.1).
In order to tackle this problem, we use a heuristic for adaptively changing the value of the
injection rate ). The main idea is that we have a predefined parameter o determining
the requested movement of the closest point to the singularity in percentage from its

distance to the singularity. Notice that the closest point to the singularity, denoted by p,
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can change between iterations. In other words, we would like the movement of p to be
of size o+ p. At every iteration we check the actual movement that we achieved, denoted
Op. According to the difference (a - p — dp), we increase or decrease (by a constant
factor) yet another parameter «y, where if the current time is 7 then - should take the
value as in the following relation (vp(7))® = p(7 — 07)% — p(7)3. The new value of Q is

then (in the spirit of equation (4.1), as if the domain is spherical),

73-477

@= 3-01

(4.2)

4.3 Triangular and Tetrahedral Meshes Handling

In our implementation we chose to use the Finite Element Method (FEM). Alternative
approaches can be taken for implementing the method described in Chapter 3. For
instance, in [WBCPS18] the authors used the Boundary Element Method (BEM) for
addressing a model closely related to the model we use for simulating the 3D Hele-Shaw
flow. In our experiments we also tried to utilize a method suggested in [BCWG09] which
is another BEM alternative for solving our model. However, since we did not experience
any performance benefit, we decided to choose FEM. For discretizing the volumetric
domain, we tried using two alternatives, CGAL [Thel8] and TetWild [HZG"18]. We
used TetWild while it was still in development, and though it gave results that seem
to be better for our needs (for example, controlling the deviation of the generated
tetrahedral mesh boundary surface from the triangular surface that was given as an
input is much easier than CGAL), we eventually chose to use CGAL for tetrahedral
mesh generation due its better performance, and since it is easier to work with it as it
has a C/C++ API, while TetWild is black box utility. We also used CGAL capabilities
for triangular mesh remeshing and hole filling. In our implementation, after evolving
the boundary and applying the inversion map I, we remesh the resulting surface to get
the current foliation leaf. As for the tetrahedral mesh generation, we execute it once
in every 20 iterations, while in the other iterations we update the tetrahedral mesh

vertices as described in Section 3.8.

4.4 Regularization Factors

4.4.1 ¢

The purpose of €; is to prevent the system in equation (3.15) from being rank deficient.
As we would like to interpolate values from the projected positions P which are on the
faces F ), to the vertices V, it is not guaranteed that for every face f € F; there
exists a point p € P which is on the face f. Therefore, there might be vertices which all
the faces they belong to have no points in P placed on them. Meaning, no interpolation

of the velocity can be done for those vertices when solving equation (3.15). That is
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Figure 4.1: €; effectiveness demonstrated on a teddy mesh foliation result. Meshes are
clipped using 3 planes. (left) e; = 0.09. (right) e; = 0.9.

where the regularization factor €; comes in, as it causes the velocity to be smooth.
Figure 4.1 shows how ¢; affects the flow. The value of ¢; needs not to be too big as it
causes aggressive smoothing to the velocity of the boundary mesh vertices, which slows
down the evolution. Furthermore, it can be seen that for larger values of €; features
(such as the hands, legs, ears, etc.) disappear at a later stage in the flow. We should
note that the result on the right in Figure 4.1, that shows an evolution with larger ¢;
value, does not converge to a sphere only because the simulation was halted, due to
very long running time. We found that the value of € = 0.09 works fine for the desired

results, and used it in all of our experiments.

4.4.2 ¢

The purpose of €2 is to smooth the new positions of the vertices V. Having this factor
helps to obtain better evolution results. A value too big of €5 is problematic though.
In Figure 4.2, the result on the right, which matches an evolution with a rather large
value of €5, demonstrates the problems with a smoothing of the new positions which is
too aggressive. Besides having the features (such as the hands, legs, ears, etc.) taking
spherical shapes, the bigger problem is that it causes intersections between the layers,
as can be clearly seen happens in the right leg. We used the value of 3 = 6e—7 in all of

our experiments.
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Figure 4.2: €y effectiveness demonstrated on a teddy mesh foliation result. (left)
€3 = 6e—T7. (right) e3 = 6e—5.

4.5 Limitations

4.5.1 Flow Singularities

As indicated already in Chapter 2, the Hele-Shaw flow with injection is in principle well
posed. Though, when requiring a solution that is not allowed to change topology, a
flow singularity will be encountered for an initial geometry sufficiently entangled (see
[GTV14], Chapter 4 section 4.2 and Theorem 4.5.2). High-genus meshes are a typical
example for such a geometry where the flow will reach a singularity. Such singularities,
however, can also arise in from genus zero meshes as well. See Figure 4.3 for such an

example.

4.5.2 Layer Intersections

Results obtained using our implementation might encounter intersections of the layers,

that should be non-intersecting in general. Two typical reasons for this to happen:

e The parameter ey, described in Subsection 4.4.2 in detail, might cause such layer

intersections if not tuned properly, as demonstrated in Figure 4.2.

e An inherent flaw in our implementation due to relying on remeshes. In general,
our method remeshes the currently evolved mesh after the new positions for the

vertices were calculated.

— In areas of low to no velocity such a remesh means essentially the effective
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Figure 4.3: Spring mesh, genus-zero failure case. (left) Layers obtained until flow
singularity reached. (right) The mesh in time of flow singularity. The mesh is a one
component mesh with degenerate triangles.

velocity would differ from the original one not only in magnitude, but even in
its direction. Therefore, areas that are almost static in a rather long period

of the evolution might suffer intersections of their appropriate layers.

— In a similar manner, areas of high curvature are more likely to suffer inter-
sections of their appropriate layers, as easily can be seen in our results for

high-genus meshes, in areas forming the holes.
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Chapter 5

Experimental Results

5.1 Introduction

We demonstrate our method on various genus-zero meshes as well higher-genus meshes.
In Figures 5.6a, 5.6b and 5.6¢ we show the results of our method applied on inputs of
closely related meshes, with the singular point being located in similar positions along
the meshes. In Figures 5.7a, 5.7b and 5.7¢ we show results after applying our method on
inputs of the same mesh at different poses. In both of these sets of results it is noticeable
that similar meshes produce similar layers, or phrasing it differently, the convergence to
a sphere looks similar for similar meshes. In Figure 5.9 we show some more results of
our method when applied on high-genus meshes. In Figure 5.10 we demonstrate the
use of the texture of the object. We show results for 3 meshes and present only the
initial mesh given as an input and the final mesh obtained at the end of the evolution,
though all the intermediate surface meshes from all the evolution steps have a texture.
We use the same texture coordinates of the initial mesh given as an input for all the
layers obtained during the evolution, meaning we need the same triangulation for all

the layers, which is accomplished by the method described in Section 3.7.

5.2 Controlling the Flow

One of the novelties of our method is that it introduces a flow that is controllable, and
this control is achieved by choosing the location of the injection point, when simulating
the 3D Hele-Shaw flow in the inverted domain. Choosing a location that the domain is
starshaped with respect to it, results in a flow that is guaranteed to converge, but as our
results show, convergence can be achieved even for non starshaped configurations. In our
implementation, we chose to always use the origin as the injection point, and translated
the domain according to the desired location of the singularity inside the domain. This
choice was taken only for the ease of implementation. Figure 5.1 demonstrates the
ability of our flow to be controlled. We present 2 different meshes, each one with 3

different positions of the singular point. By changing the position of the singular point
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Figure 5.1: Controlling the flow. Showing the same mesh with different singular points.

we affect the way the layers are being formed, i.e. the way the mesh converges to a

sphere - the areas that will be the first and the last to move during the evolution.

5.3 Local Conformality

Since our flow involves inverting the input domain, and then simulating the 3D Hele-
Shaw flow in that inverted domain, it has the effect of triangles farther from the position
of the injection point in the input domain being shrunk at earlier stages of the flow.
When having the same triangulation for all the resulting layers, which is accomplished
by the method described in Section 3.7, those triangles are usually degenerated in the
innermost layers. As for triangles closer to the position of the injection point in the
input domain, not only they do not become degenerate, but also the mapping between
those triangles in the input mesh and their corresponding triangles in each of the layers
is conformal. Figure 5.2 shows three results of the conformal distortion for the mapping
between the innermost spherical layer and the input mesh. The input mesh is the same
for all the results, the only difference is the position of the injection point used for
the 3D Hele-Shaw simulation in the domain bounded by the inverted input mesh. For
the conformal distortion, we used Eq.(3) from [HGO00] (with the minor modification of
subtracting 2), i.e. for a single triangle t € F the conformal distortion is as follows
k(t) = 2L + 22 — 2, where o1 and o3 are the singular values of the affine transformation
which maps the triangle ¢ in the innermost layer and its corresponding triangle in the
input mesh. We can clearly see in the results the local conformality property of our
flow. Figures 5.3, 5.4 and 5.5 which demonstrate the Volumetric Mapping that can
be achieved using our method, as described in Section 5.4, also demonstrate the local

conformality of our method. This property is also noticeable in Figure 5.10.
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Figure 5.2: Conformal distortion for 3 different results obtained using the same input
mesh, and different injection point positions. The distortion is measured between the
input mesh and the innermost layer. (top) The input mesh colored by the conformal
distortion values, dark-blue faces are faces with distortion value smaller than 1.5.
(bottom) The corresponding foliations of the input domain, the injection point is in the
center of the innermost layer.

5.4 Volumetric Mapping

Using our method, we can easily find a volumetric mapping, between two meshes,
assuming we know a correspondence of a rather small set of point landmarks between
those meshes. For building the volumetric map we utilize the method presented in
[ESB18] to get a mapping between the two initial input meshes. We then apply our
method to each of the meshes until each of the meshes converges to a sphere, assuming
the flow indeed converges, and having each layer in each of the evolutions with the
same triangulation as the input meshes, using the method mentioned in Section 3.7.
The mapping we got for the initial input meshes is then being used to map all the
matching layers of the volumes. Furthermore, with this method we actually get a
mapping between each of the layers of the volumes, rather than only the matching
ones. Figures 5.3, 5.4 and 5.5 demonstrate the volumetric mapping obtained using our
method.
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Figure 5.3: Teddy meshes volume mapping.

Figure 5.4: Ant meshes volume mapping.

28



Figure 5.5: Bird meshes volume mapping.
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(a) Hands. In each row two different
views of the same result.

Figure 5.6: Closely related meshes, with the singular point being located in similar
positions along the meshes.

(a) Teddy meshes in different poses.

(¢) Ant meshes in different poses.

Figure 5.7: Same meshes at different poses.
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Figure 5.8: Horse. (left) side view. (right) bottom view.

V <

Figure 5.9: High genus. (left) genus 5. (right) genus 3.

Figure 5.10: Applying texture. (left) The result of our flow. (middle) Initial mesh
textured. (right) Final mesh textured, zoomed in.
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Chapter 6

Conclusion and open questions

6.1 Conclusion

In this work we propose a method to generate a generalized foliation of a volume given
its boundary surface as an input. We accomplish it by relying on a generalization of
the Hele-Shaw flow with injection in three-dimensions, where the flow is being executed
in the domain bounded by the Mdébius inverted input boundary surface. Our foliation
leaves are then obtained when inverting back the surfaces obtained at each simulation
step. Our method produces a controllable flow that converges to a sphere. We believe
that our flow could potentially be used for further mesh processing tasks, such as
mesh smoothing, volumetric correspondence and volumetric texture transfer. It could
also be used as a pre-process step for correspondence matching methods and for three
dimensional point cloud recognition and classification algorithms. It is also interesting
to investigate generalizations of the Hele-Shaw flow, such as more general singularity

structures, and two-phase flows.

6.2 Open questions

A proof for the result being a foliation. The key challenge remaining in this
work is to provide a proof for when the inverted domain remains simply connected in
the continuous case (for example when the injection is at the point of starlikeness, for a
star-like domain), then the result is indeed a foliation, when inverting back the result of
each step of the evolution. For making the theory side complete, showing the above in

the discrete case is also necessary.

Domains of convergence. Finding the classification of the domains together with
the appropriate locations of the injection point for the 3D Hele-Shaw flow so that
convergence to a sphere can be proven is yet another gap in the theory side. Though for
a star-like domain, when the injection is at the point of starlikeness, this convergence

can be proven, but as we have introduced in this work, convergence can be achieved for
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non star-like domains, and even for domains bounded by high genus surfaces.
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Appendix A

Evolution of a Sphere

An analytic solution for the model when domain is a sphere. The Laplacian in spherical

coordinates (after neglecting the terms dependant of § and ¢ due to symmetry) is,

1 0,,00
Equation (3.2) is then,
AD = Q4(r) (A.2)
The Green function for the Laplacian in spherical coordinates,
Gr) =~ (A3)
Ao )
A solution is of the following form,
O(r) = _ @ +c c1 const (A.4)
4y ’
Applying boundary condition - equation (3.7),
oy . Q
d(r=R)=0cH=0H=——"=+0c (A.5)
4R
_ Q
=c=0H+ iR (A.6)
The potential is therefore,
_ Q Q
O(r)=0cH gy + iR (A.7)
O(r,t) = oH(t) — -2 4 -9 (A.8)

T 4 4R
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The velocity is the normal derivative of the potential,

0P 0P Q
/
t = = —— = —— = —
F(t) =v On lr=R(t) Or |r=R(t) 47r2 lr=R(t)
So that we get an ODE,
Q
() — —
B =~ Tree
R ___Q
dt — 4mR(t)?
/ 4w R(t)*dR = — / Qdt
3
Ar R(t) Ot + e
3
R(t) = {2 (~Qt + c2)
 Vidr 2
3 47
R(t:O):RgiRQZ 0 ECQ?CQZRgg
_ 83 sdmy f/ 3 _ 3Q¢
Rt = {2 (-qr+ w2 = iy - 2

(A.9)

(A.10)
(A11)
(A.12)
(A.13)
(A.14)
(A.15)

(A.16)

3 4

If @ > 0, i.e. the flow is a suction flow, then the sphere will vanish at t = Ro@'

Our flow is an injection flow, i.e. @ < 0.
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