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3.2 Collapse of a harmonic map. Top row: mapping from a low resolution
sphere (a) to a high resolution sphere, starting from the identity map (b).
The map quickly “slides” to a single hemisphere (c) and then degenerates
(d). Bottom row: the same phenomenon with more complex shapes
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3.3 Preventing collapse with reversibility. For different α values, we measure
the discrete geodesic Dirichlet energy and the sum of relative mapped
area (ideally 2). We visualize some of the results using texture transfer
(left), and show the final values as a function of α (right). Note that
when α is small the Dirichlet energy is high, and when α is large the map
collapses, as is evident by the zero total area. Finally, taking α = 5 · 10−4
leads to a good balance between the energy components. . . . . . . . . . 30

3.4 The importance of the high dimensional embedding. For these shapes,
geodesic and Euclidean distances are significantly different, thus using
the input vertex positions in �
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3.10 Qualitative and quantitative comparison starting with a functional map
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3.13 Robustness to noise and sampling. Top row: a shape with various
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3.14 Shape interpolation using our computed correspondence as input for [HRS+14]. 43

3.15 Quad mesh transfer using our computed correspondence. Left: input quad
mesh, right: output quad mesh. Note the preservation of the prominent
edge flows in the quad mesh, such as the fingernails and knuckles. . . . . 43

4.1 Visualization of our results using texture transfer from the target shape
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4.2 A sketch of the locally injective matching configuration for 1D simplicial
meshes in �
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4.4 The difference between minimizing Einj (left) and Ebij (right) for non
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Here, Ebij significantly improves the matching in the ear region, where
Einj leads to unwanted artifacts. . . . . . . . . . . . . . . . . . . . . . . 53
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Abstract

Shape correspondence is a fundamental task in shape analysis, and has a variety of
applications in computer graphics and computer vision. Generally, given two shapes,
the goal is to compute for each point on the source shape a corresponding point on the
target shape. Example applications include morphing (gradually deforming one shape
to another), deformation or texture transfer, and statistical shape analysis.

Shape correspondence can be classified into different categories, based on the proper-
ties of the input shapes, and the desired properties of the result. A common category is
isometric shape correspondence, that usually characterizes matching between the same
object in different poses. In other cases, where correspondence is computed between
different objects, the task is more challenging and not well defined mathematically.

This research studies non isometric shape correspondence. The main challenge is
to explicitly define the mathematical properties of the desired results, and to design
algorithms that generate results with the desired properties. As the desired result mostly
depend on the downstream application, it is instrumental to consider the application
when designing the method.

We propose semi-automatic methods for computation of shape correspondence
between highly non isometric shapes, as well as a method that optimizes an existing
correspondence method for shape classification and retrieval using deep learning. Our
shape correspondence methods are designed to generate locally smooth results, that
are advantageous for applications in computer graphics such as texture transfer and
shape interpolation. This document contains a detailed description of the problem and
the motivation, the proposed algorithms, and demonstrates the results and a variety of
applications.
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Chapter 1

Introduction

Shape correspondence, or shape matching is a fundamental task in shape analysis, and
has many applications in computer graphics and computer vision. Example applications
include statistical shape analysis [MDW08], texture, segmentation and deformation
transfer [SP04], and shape interpolation [HRWW12]. Generally, the objective is to
compute for each point on the source shape a corresponding point on the target shape
(visualized in Figure 1.1).

Shape correspondence can be classified into different categories, based on the proper-
ties of the input shapes, and the desired properties of the result. A common classification
distinguishes between isometric shape correspondence, that usually characterizes match-
ing between the same object in different poses, and non isometric shape correspondence
where different objects are matched. Another possible classification distinguishes between
full and partial correspondence; full correspondence means that every point on the source
shape has a matching point on the target and vice versa, while partial correspondence
assigns a matching point only to a subset of points.

Isometric correspondence can be mathematically characterized by pairwise distance
preservation, while there is no consensus regarding the mathematical characteristics of
correspondence between different objects. In fact, in some cases different applications

Figure 1.1: A map between shapes visualized using color transfer and lines that connect
a sparse subset of correspondences.
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require different correspondence between the same objects. Consider for example the
shapes in Figure 1.2, which are not isometric. Seemingly, these shapes can be classified
into the partial correspondence category, since the shape on the left has a part of the
arm that the shape on the right does not have. For applications such as texture transfer,
only points on the hand itself should have a corresponding point on the target. However,
to successfully interpolate between these shapes, a bijective correspondence is required,
where the arm segment is smoothly mapped to the bottom part of the target hand. Such
a bijective map is visualized in the figure using texture transfer, and the interpolation
results are demonstrated as well.

The main challenge this thesis addresses is mathematically defining the desired
properties of correspondence between non isometric shapes. Since we handle shapes of
different objects, we do not assume that semantic correspondence can be determined
solely by the shape geometry. We therefore assume that additional information is given,
such as a sparse set of corresponding landmarks, or an initial map that we refine.

Map refinement is instrumental to leverage existing correspondence methods that
generate reasonable results with local inaccuracies. For example, many existing methods
use functional maps [OBCS+12], which are linear operators that match between smooth
functions rather than points. Functional maps have many advantages; the discrete
representation is compact, and its computation is efficient since many properties can be
formulated as linear constraints. However, eventually the functional map needs to be
converted to a pointwise map, and extracting a good pointwise map is not straightforward.
We therefore devised a method that efficiently and accurately converts functional maps
to pointwise maps [EBC17]. It is useful for a variety of methods that rely on the
functional map representation. The method can also be used to refine a pointwise map,
by converting it to a functional map (which removes high frequencies) and back. The
details and the results are described in section 2.

When a sparse set of corresponding landmarks is given, it is natural to extend it
to the entire shape in a smooth fashion. The Dirichlet energy is a known function
that measures smoothness of maps between shapes, and a discretization for triangle

Interpolation after joint remeshing using correspondence Correspondence visualization
by texture transfer

Figure 1.2: Non trivial correspondence example. While the shapes may seem to partially
correspond, interpolation requires bijective correspondence.
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meshes has been studied as well [IN05]. While optimizing the Dirichlet energy of a map
improves local smoothness, it also shrinks the map in the sense that entire regions of the
target shape may remain unmatched. We therefore recently suggested an energy that
combines a discrete approximation of the Dirichlet energy and a term that promotes
bijectivity [ESBC19]. Our discretization allows efficient and robust optimization, as well
as locally accurate results. The details are provided in section 3.

While optimizing the Dirichlet energy is robust and leads to smooth results, it does
not align extrinsic features such as creases and corners. In many cases, aligning extrinsic
features is crucial for semantic correspondence. This can be done by replacing the
Dirichlet energy with a non-linear elastic energy [EHA+19], that is widely used for
shape deformation. The use of a deformation energy for correspondence computation is
natural, since shape correspondence is actually equivalent to a constrained deformation
of the source to the target shape. To allow robust optimization of the elastic energy,
some modifications of the energy have been made, and the modified energy is applicable
to highly degenerate initializations. Since the energy is not linear in this case, its
optimization is slower than the optimization of the Dirichlet energy, but the results are
more accurate. The method is presented in section 4.

Finally, in section 5 a method that utilizes shape correspondence for deep learning is
described [ESKBC17]. While deep learning methods are widely used for various tasks
that involve images, applying deep learning techniques on 3D data is more challenging.
The reason for the difference is that while images can be easily represented by a uniform
structure (array of pixels), 3D data is usually not uniformly structured. If a uniform
representation of 3D data (such as a voxel grid) is used, deep learning techniques can
be applied, but such a representation usually does not make use of intrinsic properties
of shapes. For example, a volumetric grid would encode completely differently shapes
of the same object in a different pose. To overcome this problem, one can use shape
correspondence to map geometric descriptors from a shape to a 2D grid, forming an
image that represents the shape, that can be used as input to standard neural networks
that operate on images. If the correspondence preserves pairwise distances, isometric
shapes would have a similar image representation. We proposed a method that computed
such a representation, where the correspondence is optimized for the application, which
was classification and retrieval of 3D shapes in our case. Similarly, this method can be
extended to other downstream applications that are not in the scope of this research.

To conclude, this thesis describes a few methods for non-isometric shape correspon-
dence, that differ in the input type and the intended application. Studying correspon-
dence in a context of specific applications is crucial, as different applications may require
significantly different correspondence between shapes. We devised methods that can
be used for various applications, such as texture transfer, morphing, quad transfer and
classification.
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1.1 Related Work

Shape correspondence, or shape matching, is a fundamental topic in geometry processing,
with a considerable body of existing work (see [VKZHCO11, TCL+13] for a detailed
survey of this field). We will focus our literature review on the shape correspondence
methods that are most relevant to this thesis.

1.1.1 Fully Automatic Shape Correspondence

Kim et al. [KLF11] suggested one of the first fully automatic methods for non-isometric
shape matching, that consistently generates high-quality results on a benchmark of
shapes. This approach, denoted by BIM, generates a blending of conformal maps,
with blending weights optimized to minimize isometric distortion. While providing
excellent results in many cases, BIM is limited to genus-zero surfaces and can introduce
large distortions for some shapes. Recently, Zheng et al. [ZWL+17] suggested to map
between high-genus surfaces with the same genus, by decomposing the surfaces using a
pants decomposition, and then computing harmonic maps between a set of intermediate
cylindrical domains. This leads to a piecewise harmonic map between the input surfaces,
which is further relaxed using geodesic heat flow. While this approach can be used
without user intervention, if a globally semantic map is needed then accurate input
landmarks are required, and it is limited to shapes of the same genus. Lahner et
al. [LVB+17] suggested a method that computes vertex-to-vertex maps based on a
set of matching descriptors and pairwise distances. While the method is robust to
topological changes, it may leave areas unmapped, and is therefore less appropriate
for applications such as texture transfer. Recently, a genetic algorithm was used for
automatic computation of isometric shape correspondence [Sah18].

Some fully automatic methods compute a sparse correspondence between the shapes.
For example, Kezurer et al. [KKBL15] formulated the shape correspondence problem
as a Quadratic Assignment Matching problem, and suggested a convex semi-definite
programming (SDP) relaxation to solve it efficiently. Dym et al. [DML17] suggested to
combine doubly stochastic and spectral relaxations to optimize the Quadratic Assignment
Matching problem, which is not as tight as the SDP relaxation, but much more efficient.

Functional maps. The functional map approach, introduced by Ovsjanikov et al.
[OBCS+12], was originally designed for nearly-isometric shapes but has since been
extended to non-isometric matching [KBB+13, PBB+13, SK14, KBBV15, ERGB16,
BDK17, RPWO18]. This method generates a generalized map which puts in cor-
respondence the function spaces on the mapped shapes (rather than points). Nog-
neng et al. [NO17] recently suggested a method that computes functional maps us-
ing fewer input descriptors by formulating commutativity constraints, and Huang et
al. [HO17] suggested to use adjoint functional maps to improve and analyze corre-
spondences. Using a hybrid approach, Maron et al. [MDK+16] optimize jointly for
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a functional map and sparse correspondences, which are then extended to a dense
vertex-to-vertex map. Recently, this framework was extended to computing partial
correspondence [RCB+16, LRB+16, LRBB17], and to computing correspondences in
shape collections [SBC14, HWG14, KGB16]. In addition, functional maps have been
used for analysis and visualization of maps [OBCCG13, ROA+13], and image segmenta-
tion [WHG13]. See the recent survey [OCB+16] for a thorough overview of the functional
map framework and its applications.

Other generalized representations. Solomon et al. suggested to use another gen-
eralized representation: fuzzy or a soft maps [SNB+12], that can be interpreted as a
probability distribution over pairs of points, that determines the likelihood that each
pair of points is in correspondence. Kim et al. [KLM+12] used fuzzy maps for exploring
shape collections, and Solomon et al. [SPKS16] used the Gromov-Wasserstein objective
to compute fuzzy maps between general domains, such as triangle meshes, point clouds
or graphs. While generalized maps are beneficial for challenging mapping problems, such
as mapping between shapes of different genus, extracting a precise map (deblurring)
is a necessary post-processing step if the output map is to be used for transferring
high-frequency data such as textures, normals, or deformations. A simple and efficient
deblurring method has been proposed in [OBCS+12], and has been used in many sub-
sequent papers. This approach is based on the assumption that indicator functions
projected onto the reduced basis should correspond under a rotation in the spectral
domain. However, while this assumption is suitable for isometric matching, in general
cases it no longer holds, leading to inaccurate results. Other deblurring methods are
described in the semi-automatic method section.

When the shapes are geometrically different and the optimal map is not expected to
be isometric, the shape correspondence problem is ill-posed without additional semantic
information. Such information can be given in the form of landmark constraints or an
initial generalized map, from which a refined dense map can be computed.

1.1.2 Semi-automatic Shape Correspondence

Input: landmarks. Parameterization-based approaches compute bijective smooth
maps to a common intermediate domain, and define precise maps between arbitrary
shapes as the composition of the maps to the common domain. A variety of interme-
diate domains have been used in the literature, e.g. the plane [APL14, APL15], the
sphere [GWC+04], the hyperbolic disk [SZS+17] and orbifolds [TFV+13, AL15, AL16,
AKL17], to mention a few. These methods optimize the distortion of the map from the
shapes to the target domain, but the composed map is not guaranteed in general to
have low distortion. Furthermore, mapping through an intermediate domain places a
topological restriction on the type of mapped shapes, as they should be topologically
equivalent. Alternatively, Panozzo et al. [PBDSH13] compute a direct map between two
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triangle meshes without requiring an intermediate domain. Their method computes
on-surface barycentric coordinates with respect to the source landmarks, and then uses
them with respect to the target landmarks to compute the corresponding point on
the target shape. They use a high-dimensional Euclidean embedding to speed up the
computation. Despite excellent results, in some cases a large number of landmarks is
required to compute a correct correspondence. More recently, Mandad et al. [MCSK+17]
use landmarks or extrinsic alignment for initialization and then optimize simultaneously
for a generalized map and a precise map.

Gehre et al. [GBKS18] suggested an interactive method, that gets corresponding
curves as input from the user. Similarly to their method, that relied on functional
maps [OBCS+12], most methods that compute functional maps can easily incorporate
soft landmark constraints.

Input: generalized maps. Rodolà et al. [RMC15] have suggested a deblurring
approach that is suitable for non-isometric maps, by matching projected indicator
functions using a non-rigid deformation, yet their approach is only applicable to shapes
with the same number of vertices. This method was later extended to handle partial
matching [RMC17]. Similar to our denoising approach, namely starting from an input
pointwise map, Shtern et al. [SK14] use functional maps to refine the input map iteratively,
by aligning the spectral kernels of the shapes. While their approach improves the ground
truth error, it introduces significant conformal distortion in the map.

Vestner et al [VLB+16, VLR+17] recover a bijective vertex-to-vertex map by solving
a linear assignment problem. While vertex-to-vertex bijections are beneficial for shapes
with a similar triangulation, they highly depend on the tessellation of the input shapes.
Furthermore, while remeshing the shapes to have the same number of vertices is possible,
the sampled vertices are not likely to match bijectively, especially if the shapes are not
isometric.

Finally, Corman et al. [COC15] as well as Azencot et al. [AVBC16] suggested a
recovery method which reformulates the problem in terms of an unknown vector field.
The output map is guaranteed to be continuous, as it is computed as the optimal flow
which transports an arbitrary continuous initial map to the given functional map. Their
setup requires as input a smooth pointwise map in addition to the input functional map.

1.1.3 Machine Learning Methods for Shape Correspondence

To deal with aspects of shape matching that are difficult to capture using mathematical
models alone, some methods compute correspondences using concepts from machine learn-
ing, e.g. support vector machines [SSB05], PCA [SBS06], random forests [RRBW+14],
subspace analysis [COC14]. Litman et al. [LB14] suggested a method that learns shape
descriptors, inspired by Wiener filter. More recently, deep learning approaches were used
for shape correspondence. In [WHC+16] they constructed an artificial neural network
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that maps between depth maps: they rendered the 3D shapes from a certain angle, to
generate an embedding of the geometry as an image. This approach depends on the
view direction that was used for the rendering. Other methods use local isotropic or
anisotropic filters in intrinsic convolution layers [MBBV15, BMRB16, MBM+17]. Haibin
et al. [HKC+17] used the multi-view approach, where shapes are rendered from different
angles and the multiple images represent the shape. Litany et al. [LRR+17] suggested
deep functional maps, a network architecture that is based on functional maps.

While the mentioned deep learning methods depend on available labeled training
data, Halimi et al. [HLR+18] as well as Roufosse et al. [RO18] suggested self supervised
methods that do not necessarily require labeled data. Both methods relied on the deep
functional map architecture [LRR+17], but suggested different quality criteria; Halimi
et al. [HLR+18] relied on pairwise distance preservation, while Roufosse et al. [RO18]
relied on the functional map energy terms that were used by Ren et al. [RPWO18].
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Chapter 2

Deblurring and Denoising of Maps
between Shapes

Since computing a high-quality map between two general surfaces is challenging, recent
approaches suggest to relax the concept of a pointwise map and use generalized map rep-
resentations. Such approaches put in correspondence, for example, functions [OBCS+12]
or probability distributions [SPKS16] instead of points. While such generalized maps can
successfully tackle challenging scenarios, e.g. matching between surfaces with different
topologies [SPKS16] and partial matching [RCB+16], some applications do require a
high quality pointwise map for transferring information between the shapes. This issue
is exacerbated when the data to be transfered changes rapidly on the surface, and thus
has high frequencies, such as in texture transfer or map-aware quadrangulation [PLPZ12].
Unfortunately, generalized maps often hold information only about the correspondence
of smooth, low frequency functions, due to the use of the truncated eigenfunctions of the
Laplace-Beltrami operator as a basis for representing the map [OBCS+12], or due to
the entropy incorporated in the map to improve efficiency [SPKS16]. Hence, successful
map deblurring, namely extracting a high-quality pointwise map from a semantic low
frequency map, is paramount to the usability of generalized maps in applications.

A good map deblurring technique should fulfill a few required properties. First, it
should be applicable in a general setting, without requiring the input shapes to be close
to isometric, or the output map to be bijective. Otherwise, we may lose in this step the
benefits we have gained by using generalized map representations. Second, the deblurred
map should have a low conformal distortion, to avoid distorting textures during transfer.
This requirement implies that the map should be a vertex-to-point map, also denoted as
a precise map, where each vertex on the source shape is mapped to a point anywhere on
the target surface and not necessarily to a vertex. Finally, the deblurred map should be
as robust to the triangulation of the target surface as the generalized map. While map
deblurring techniques exist, none fulfill all the required properties.

We propose a new method for map deblurring, by introducing a smoothness prior
on the reconstructed map. Surprisingly, this straightforward approach results in better

11©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



maps than using existing approaches, especially when the shapes are not isometric.
While we do not have a theoretical guarantee on the distortion bounds implied by our
prior, our method generates in practice precise maps with lower conformal distortion
than existing methods for deblurring and denoising. In addition, our technique can be
easily incorporated into existing map computation pipelines, significantly improving
the results. Furthermore, using the same framework we can perform map denoising, by
projecting a given noisy map to a blurred map and reconstructing. Finally, we show
that our approach outperforms the state of the art for a benchmark of non-isometric
shapes, as well as show applications to map extraction from computed functional maps,
and high quality intrinsic symmetry computation for challenging surfaces.

2.1 Method

Notation. We represent a triangle mesh M by its vertex set and face set (V,F), where
we denote n = |V|,m = |F|, and its embedding by V ∈ �n×3. H(M) denotes the space
of continuous piecewise linear functions on M , and S(M) denotes a space of functions
given in a reduced basis of size k. The basis transformation between S and H is given
by a matrix Ψ ∈ �n×k, whose columns are the basis elements. The projection from the
full space to the reduced space is given by the pseudo-inverse of the basis matrix, Ψ†.
We denote scalar functions f : M → � by their vector of coefficients in a basis, with
either f ∈ �n or f ∈ �k, for the full and reduced basis, respectively. The squared norm
of a function on the surface is given by ‖f‖2M = f�Af , where A ∈ �n×n is the diagonal
(lumped) mass matrix of the vertices. Similarly, for matrices we use the matrix trace:
‖F‖2M = Tr(F�AF ). We denote the i-th row and j-th column of a matrix F by Fi∗ and
F∗j , correspondingly.

When two meshes are involved we use a subscript, for example Hi = H(Mi) is the
space of piecewise linear functions on Mi. A pointwise map between two triangle meshes
is denoted by T12 : V1 →M2, and it can be applied to any vertex v on M1 to give any
point p ∈ �3 on M2 (not restricted to the vertices). The matrix T12(V1) ∈ �n1×3 thus
represents the 3D coordinates of the mapped vertices of M1. Maps between the functional

Figure 2.1: Our notation, see the text for details.
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spaces are denoted by C12 : S2 → S1 and P12 : H2 → H1, and are represented by matrices
C12 ∈ �

k1×k2 and P12 ∈ �
n1×n2 , respectively. These spaces and transformations are

visualized in Figure 2.1.

Background. The term functional map [OBCS+12], denotes a map between scalar
functions on the two shapes. Given a pointwise map T12 : V1 → M2, its functional
representation in the hat basis P12 : H2 → H1 fulfills [OBCS+12]

(P12f)(v) = f(T12(v)), ∀v ∈ V1, f ∈ H2.

The embedding of M2 plays a special role in the relation between the functional and
pointwise maps, as by definition we have:

T12(V1) = P12V2.

We define the feasible set P12 such that P12 ∈ P12 if and only if there exists a map T12

such that P12 = P (T12), where P is the operator that converts a vertex-to-point map to
a matrix, which we will describe later.

To represent the functional map in a reduced basis C12 : S2 → S1, we apply the basis
transformations on both sides and get:

C12 = Ψ†1P12Ψ2.

A common choice for the basis functions Ψ is the first k eigenfunctions of the Laplace-
Beltrami (LB) operator, such that smooth functions can be well approximated using
a small number of coefficients. We use the standard area weighted cotangent LB
operator [BKP+10], thus we have Ψ�AΨ = Id and Ψ† = Ψ�A.

2.1.1 Map Deblurring

Given a map in a reduced basis, C12, our goal is to find the “best” corresponding pointwise
map T12. We formalize this using the following optimization problem:

minimize
P12

R(P12) + ‖C12 −Ψ†1P12Ψ2‖2F
subject to P12 ∈ P12

, (2.1)

where R is some regularizer that favors “good” maps. Given P12 we extract the map
T12(V1) = P12V2.

We suggest to incorporate a smoothness assumption, namely:

P12Ψ2 ∈ span(Ψ1). (2.2)

Intuitively, out assumption implies that functions on M2 that are well represented
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with Ψ2 will be well represented with Ψ1 after applying the map. When Ψi are the
eigenfunctions of the LB operator this assumption implies that the map P12 does not
introduce spurious high frequencies. To incorporate the smoothness prior into the
optimization problem, we use the regularizer

R(P12) = ‖(Id−Ψ1Ψ
†
1)P12Ψ2‖2M1

, (2.3)

which penalizes the component of P12Ψ2 that is orthogonal to Ψ1.
Figure 2.2 illustrates that indeed, in practice, for large enough values of k1 our

assumption 2.2 holds. We show the value of the regularizer R(P12), where P12 is the
ground truth map, as a function of k1 for a fixed k2 = 50. We use two pairs of shapes from
FAUST [BRLB14]: the same target M2, and two source shapes M I

1 ,M
NI
1 , representing

shapes isometric and non-isometric to M2 respectively: M I
1 is the same person in a

different pose, and MNI
1 is a different person in the same pose. Note that while for M I

1

the error reduces greatly when k1 reaches 50, for MNI
1 we need a larger k1, but after it

is reached, the error drops.
Incorporating the regularizer (2.3) into the optimization problem (2.1) leads to the

optimization problem:

minimize
P12

‖Ψ1C12 − P12Ψ2‖2M1

subject to P12 ∈ P12

. (2.4)

We formally prove the equivalence between these optimization problems in Appendix A.1.
Intuitively, P12Ψ2 are functions in H1, which can be represented using their projection
on the basis Ψ1 and the projection on its orthogonal complement Ψ⊥1 . The term
‖C12 − Ψ†1P12Ψ2‖2F only constrains the projection of P12Ψ2 on Ψ1 to be close to the
data C12, and says nothing about the projection on the orthogonal complement. We
add as a regularizer the requirement that the projection on the orthogonal complement
is as small as possible, thus fully specifying constraints on P12Ψ2, leading to the second
optimization problem.

k1

40 50 60 70 80 90 100

R(
P)

1

3

5 Isometric pair
Non-isometric pair

Figure 2.2: The value of the regularizer R(P ) for a pair of isometric (M I
1 ,M2) and

non-isometric (MNI
1 ,M2) shapes from FAUST [BRLB14]. See the text for details.
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Figure 2.3: Deblurring with a varying number of basis functions k1 for an isometric (left)
and non-isometric (right) pair. A larger k1 is required to achieve the same error for a
non-isometric pair.

An important advantage of our formulation is that the objective and the constraint
are row separable in P12. Therefore, to fulfill the difficult constraint that P12 is in the
feasible set P12, we can solve separately for each row of P12, finding a global minimizer
of the optimization problem. We elaborate on the numerical approach for solving the
optimization problem in the next Section, and first demonstrate some illustrative results.

We explore the parameter choice for our deblurring method using the same two
pairs from Figure 2.2. We keep k2 = 50 fixed, and vary k1 ∈ [50, 55, 60]. We compute
the blurred map from the ground truth map as C12 = Ψ†1P12Ψ2, deblur it by solving
the optimization problem (2.4), and measure the error with respect to the ground
truth. To avoid bias in the results by using the same triangulation for both meshes, we
have remeshed the FAUST dataset, and propagated the ground truth map to the new
meshes. Figure 2.3 shows the resulting error graphs, where we use the same protocol as
in [KLF11]. As expected, taking larger values for k1 leads to a smaller error, where in
general to achieve the same error, larger values are required for non-isometries than for
isometries. Note that, in contrast to original deblurring approach [OBCS+12], increasing
k1 does not affect the complexity of our approach, as we measure distances in �

k2 .

2.1.2 Map Denoising

Given a noisy pointwise map P̃12 we would like to improve it. Using our smoothness
prior, we optimize for a map such that the projection of P12Ψ2 on Ψ1 is close to the
input map’s projection, and the projection on Ψ⊥1 is minimal. This leads to:

minimize
P12

R(P12) + ‖Ψ†1P̃12Ψ2 −Ψ†1P12Ψ2‖2M1

subject to P12 ∈ P12

, (2.5)
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Figure 2.4: r-ring noise and low pass effect on P12Ψ2. From left to right: eigenfunction
on the target f , f pulled back to the source using the ground truth map, the noisy map,
and the smoothed noisy map. The last image on the right is f pulled back to the source
using our denoised map. See the text for details.

which is equivalent to the optimization problem from Equation (2.4), when taking
C12 = Ψ†1P̃12Ψ2. Intuitively, we are removing the high frequencies in P̃12 by blurring it,
and then reconstructing the best pointwise approximation using our deblurring approach.

Figure 2.4 demonstrates the effect of projecting P12Ψ2 to the span of Ψ1. Start-
ing from a ground truth map P̂12 between the non-isometric pair from the previous
experiment, we introduce noise by randomly mapping each vertex to one of its r-ring
neighborhood, with r ∈ [3, 4, 5], yielding the noisy maps P̃ r

12. The figure shows the 10-th
eigenfunction of M2, which we denote by f , on the target shape (left), the same function
mapped to MNI

1 using the ground truth map P̂12f , using the 3-ring noisy map P̃ 3
12f

and using the noisy map and projected to the span of Ψ1 (center). The solution to the
optimization problem (2.5) P ∗12 has a smoothing effect on the input. See the resulting
reconstructed function P ∗12f on the right.

Figure 2.5 illustrates the result of denoising these maps, by showing the total average
error as a function of k1 (left), and the error graph as a function of the noise r (right).
Note that the error decreases as k1 is increased, until a minimum is reached and then
the error increases back, since for larger k1 values we have enough eigenfunctions to
reconstruct the noisy input. Furthermore, the optimal k1 depends on the amount of
noise: higher noise requires a smaller k1 to increase the smoothing effect.

2.1.3 Relation to FMaps 2012

Ovsjanikov et al. [OBCS+12] suggested the following objective for map deblurring:

minimize
P12

‖(Ψ†1)� − P12(C12Ψ
†
2)
�‖2F , (2.6)

subject to the constraint that P12 is binary row stochastic. The rationale was that the
columns of Ψ†i represent the coefficients of delta functions on Mi in the reduced basis,
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Figure 2.5: Map denoising of r-ring noise, varying parameters. (left) varying k1, total
average error, (right) error graph for fixed k1 = 130 for different r. See the text for
details.

and the optimal vertex-to-vertex map should put them in correspondence. However,
the original approach was geared towards volume preserving maps, in which case C12 is
a rotation matrix, namely C�12C12 = Id. Indeed, in this case, when taking orthogonal
bases, equations (2.6) and (2.4) are equivalent (to see that, take Ψ†i = Ψ�i in (2.6), and
then multiply by C12 from the right).

However, when the shapes are considerably different, the projections of delta functions
of corresponding vertices on Ψi are no longer expected to correspond. Figure 2.6
demonstrates that: we take two highly non-isometric shapes, pick a vertex v1 ∈ V1 (left)
and measure for all vertices v2 ∈ V2 the distance ‖(Ψ1)v1∗C12− (Ψ2)v2∗‖2 where C12 is a
given ground-truth map. This distance is then shown as a function on M2 (center). This
is the distance that our approach, Equation (2.4), aims to minimize. Note that small
values are achieved in a correct zone of the mesh, and the point with the minimal distance
is a correct match to v1. We additionally show the distance ‖C12(Ψ

†
2)∗v2 − (Ψ†1)∗v1‖2

(right), which represents the distance in �k1 that Equation (2.6) aims to minimize. Note
that now many regions are close to v1 and the point with the minimal distance is now
an incorrect match to v1. See in addition Figure 2.7 which shows reconstruction from a

Figure 2.6: Delta functions represented in a reduced basis do not necessarily correspond
under the ground truth map if the shapes are considerably different. (left) A vertex
v1 on M1. (center) the distance in �

k2 that our formulation minimizes. (right) the
distance between mapped delta functions and the delta function of v1. Note that only
our distance yields the correct match to v1 on M2.
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computed functional map using [OBCS+12] and using our approach.

2.2 Optimization

2.2.1 Feasible set

The main challenge in solving the optimization problem (2.4) is fulfilling the constraint
that P12 is in the feasible set P12. We use the following definitions:

Definition. Given M1,M2, the set F2 of valid rows of P12 is defined as follows: w ∈ F2

if and only if w ∈ �
1×n2 has at most three non-zero entries (ω1, ω2, ω3) at columns

(c1, c2, c3), respectively, the vertices ci form a face f ∈ F2, ωi ≥ 0 and
∑

i ωi = 1. The
set P12 of valid matrices is defined as follows: P ∈ P12 if and only if P ∈ �n1×n2 and
every row of P is in F2. The operator P (T12) constructs a matrix from a map as follows:
let T12(vi) = p ∈ M2, which lies in the face f with barycentric coordinates ω. Set
the i-th row of P12 to all zeros except at the vertices of f , and there use the values ω.
It is straightforward to show that P12 ∈ P12 if and only if there exists T12 such that
P12 = P (T12).

2.2.2 Row separability

The computational advantage of the optimization problem (2.4) is that it is separable in
the rows of P12. To see that, note that the objective is of the form ‖B‖2M = ‖√AB‖2F =∑n

i=1(A)ii‖Bi∗‖22. Furthermore, the constraint on P12 is also row separable, as a matrix
is in the valid set P12 if and only if all its rows are in the valid rows set F2. Hence, we
solve n1 small optimization problems, for the rows of P12, of the form:

minimize
wi∈F2

‖(Ψ1)i∗C12 − wiΨ2‖22 , (2.7)

for i ∈ [1, n1], and then set the i-th row of P12 to the value of the minimizer.

2.2.3 Implementation

Vertex to vertex maps. In [OBCS+12] it was noted that map deblurring can be
considered as a point-correspondence problem in �

k. Our formulation has the same
structure, and if we only need a vertex-to-vertex map, we can use the same nearest
neighbor approach to solve (2.4). Note that in this case we are reducing the feasible set
to binary row stochastic matrices, which are a strict subset of P12. Hence, while this
approach is more efficient than extracting precise maps, it yields maps with a higher
conformal distortion that are more sensitive to the triangulation (see Figure 2.11).

Precise Maps. When working with the full feasible set of precise maps P12, nearest
neighbor search is not enough. In fact, we are effectively considering an embedding of
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Figure 2.7: We compute functional maps using a few landmark constraints and extract
a precise map to transfer texture. The figure shows the target surface M2 (left), and
the texture pulled back to the source surface M1 using the map computed with our
deblurring approach (center) and the original recovery method [OBCS+12] (right). Note,
that while for similar surface the original method performs well (e.g. the teddy models),
for surface which undergo large deformations our recovery is considerably better.

the triangle mesh M2 in k2 given by Ψ2, and we need to project on it the n1 points
Ψ1C12. To solve (2.7) for a vertex vi ∈ V1, we need:

minimize
f∈F2

minimize
ω∈ 1×3

+ ,
∑

ω=1
‖(Ψ1)i∗C12 − ω (Ψ2)f∗‖22 , (2.8)

where (Ψ2)f∗ ∈ 3×k2 are the rows of Ψ2 corresponding to the vertices of the face f .
From the minimizer we generate wi, the solution to (2.7), by setting wi at the locations
given by the vertices of f to the values in ω, which leads to a feasible solution wi ∈ F2.

Thus, for each vertex of M1, we iterate over the faces of M2, solve for each face a
linear least squares problem with linear constraints for ω, and pick the face and the
corresponding ω which minimize the error. The least squares problem is solved using a
straightforward generalization to k of the algorithm that projects a point to a triangle,
see e.g. [Ebe].

We therefore need to solve m2 constrained optimization problems for each vertex of
V1 which is prohibitive for large meshes. We can gain a considerable speedup by using
nearest neighbors queries to identify faces which cannot be minimizers without explicitly
solving the optimization problem. For example, for FAUST meshes this procedure
allowed us to solve the optimization problem only on 0.5 percent of the faces. The details
of the algorithm are provided in Appendix A.2.

Limitations While we have demonstrated the relation between k1 and the noise ratio,
in practice the choice of best k1, k2 values is highly dependent on the two shapes and

19©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



the application. It is an interesting direction for future work to try to estimate k1 from
the noise level for different datasets and mapping methods.

Even with the reduction in the number of candidate faces, the time required for
computing a precise map is still considerably higher than using k-nearest neighbors. For
example, our naive Matlab implementation on the CPU takes 55s for a mesh with 10k
faces on a standard laptop. Note, though, that the problem is highly parallelizable as
we solve for each row of P12 independently. A parallel implementation could therefore
potentially be used to increase the performance.

Finally, we have only considered the l2 norm, and can thus handle only local high
frequency noise. It might be beneficial to generalize to other norms to make the method
more robust to outliers, e.g. if the map has concentrated noise in some region.

2.3 Applications

2.3.1 Map Deblurring

Recovery from computed functional maps. We compute functional maps for
a few shapes from SHREC07 [GBP07], using the landmarks provided in the BIM
benchmark. We used the Wave Kernel Map as landmark descriptors as well as Wave

Target RMC15 RMC15 + Ours ICSKM ICSKM + Ours OursOBCS*12 VLB*16

Figure 2.8: Qualitative comparison with previous methods for functional map deblurring.
The input functional map was computed using a few landmarks. “+ Ours” indicates
that Eq. (2.4) was used. Note, that our method yields the best results, see especially
the ear and the hands.
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Figure 2.9: Deblurring the FAUST dataset, starting from the ground truth map. See
the text for details.
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Kernel Signature [ASC11], without any additional constraints. When computing a
functional map from a sparse set of landmarks performing the iterative ICP based
recovery from [OBCS+12] is essential for getting reasonable maps. We show in Figure 2.7
the deblurred map computed using our approach and the original approach, where we
incorporated our reconstruction into the ICP process. In this case, we do not have
ground truth data, but as the figure qualitatively shows, we obtain considerably better
maps using our approach.

We additionally perform a qualitative comparison to the recovery methods IC-
SKM [SK14], and [RMC15, VLB+16]. The shapes were resampled to have the same
number of vertices in order to accommodate the latter two methods. Figure 2.8 shows
the results of the original deblurring methods as well as combinations of [RMC15] and
ICSKM with our method by using Equation (2.4) during the optimization. Note that
our method achieves the best results, see, e.g., the ear and the hands of the model.

Recovery from ground truth. To isolate the effect of our deblurring procedure
from the map computation algorithm, we check the accuracy of our deblurring when full
information is given. We use 45 non-isometric pairs of shapes from the FAUST dataset,
remesh so they do not share the same connectivity, convert their ground truth maps to a
functional map and then deblur them using our approach and competing approaches. We
compare to the original map deblurring approach from [OBCS+12], and to the approach
by Rodolà et al. [RMC15]. We use k2 = 30, and k1 as is shown in Figure 2.9. Note
that our approach outperforms both methods. It is worth noting that the competing
approaches in fact perform better with a smaller number of eigenfunctions. In following
experiments we have used the best k1, k2 parameters for each method.

M T(M) ||X-T(V)|| T+[PLPZ12]

Figure 2.10: Intrinsic symmetry on a high genus surface, deblurred by our method
from a computed functional map. (left) the pulled back texture through the precise
map. (center) the isolines of the distance between each vertex and its image under the
map, (right) the resulting quad mesh when this map was used as input to a symmetric
quadrangulation method [PLPZ12].
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Figure 2.11: Tesselation invariance of our precise maps. (left) target model and texture,
(center) pulled back texture using a precise map, and (right) using a vertex-to-vertex
map, both extracted by deblurring the ground truth functional map. Note that the
texture pulled back with the precise map is indistinguishable from the original.

High quality intrinsic symmetries. Generalized maps are especially useful for
computing maps in difficult cases where tailored approaches are not available. For
example, intrinsic symmetry can be extracted in a variety of ways, but no method exists
for generating a precise map for intrinsically symmetric high genus surfaces which can
be used in applications which require a high quality map. We use the functional map
framework, with a few user chosen landmarks, to generate a functional symmetry map
for the kitten model. We then apply our deblurring method to compute a high quality
precise symmetry map. In Figure 2.10 we show the pointwise map recovered using our
approach. The figure shows the texture pulled back through the map (left), as well as
the Euclidean distance between each point and its image (center), which identifies the
symmetry line. We further fed this map to the symmetric quadrangulation method by
Panozzo et al [PLPZ12], and succeeded in generating a high quality symmetric quad
mesh (right).

Tessellation invariance. The ability to extract precise maps is especially important
to avoid tessellation dependence. To demonstrate that, we deblur the ground-truth map
between a shape and its re-tessellation. Figure 2.11 shows the re-tessellated surface M2

with its texture (left), and the texture pulled back to the original surface M1 using the
deblurred precise (center) and vertex-to-vertex (right) maps. Note the notably higher
quality for the precise maps.

2.3.2 Map Denoising

Improving conformal distortion. The ICSKM method for map denoising [SK14]
is highly effective for improving the ground truth error of noisy maps, yet it introduces
high conformal distortion. Since it uses the same recovery method as [OBCS+12], we
can simply replace it with our recovery method. We used BIM to generate maps between
45 non-isometric pairs of shapes from the FAUST dataset, and then applied different
denoising approaches. As Figure 2.12 shows, using our approach with ICSKM yields a
high quality map, where both the ground truth error and the conformal distortion are
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Figure 2.12: We apply our algorithm in tandem with [SK14] to extract high quality
maps for FAUST by denoising maps obtained with BIM. See the text for details.

low. We use the definition by Hormann et al. [HG00] (equation 3 in their paper) for
conformal distortion and subtract 2 so that the minimal conformal distortion is zero.
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Chapter 3

Reversible Harmonic Maps between
Discrete Surfaces

In applications such as texture transfer and shape interpolation, desirable correspondences
satisfy some basic key properties: they should be smooth to avoid introducing geometric
noise during transfer; they should preserve semantic features to ensure that key features
are put in correspondence; and they should be reversible, namely invariant to which of
the two shapes is chosen as the source.

Many existing approaches to shape mapping focus on generating maps with low
global distortion (e.g. preserving pairwise distances [SY11]) at the expense of large local
distortion, which reduces the quality of the correspondence and hinders downstream
applications. On the other hand, approaches that minimize local distortion measures
mostly require an intermediate domain and construct the final map as a composition
through this domain (e.g. [AL16]). While such methods minimize distortion of the maps
into the intermediate domain, the distortion of the composed map can be large. This
problem is exacerbated when the input shapes have significantly different geometric
features, such as four-legged animals with different dimensions, e.g. a cat and a giraffe.
In this case, the isometric distortion of the optimal map is expected to be large, and
thus minimizing the distortion of the two maps into an intermediate domain is quite
different from minimizing the distortion of the composition.

We propose a novel approach for computing a smooth and reversible map between sur-
faces that are not isometric to each other, without requiring an intermediate domain. We
incorporate semantic information by starting from some user guidance given in the form
of sparse landmark constraints or a functional correspondence. Our main contribution is
the formulation of an optimization problem whose objective is to minimize the geodesic
Dirichlet energy of the forward and backward maps, while maximizing their reversibility.
We compute an approximate solution to this problem using a high-dimensional Euclidean
embedding and an optimization technique known as half-quadratic splitting [GY95].
We demonstrate that our maps have considerably lower local distortion than those
from state-of-the-art methods for the difficult case of non-isometric deformations. We
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further show that our maps are semantically accurate by measuring their adherence
to self-symmetries of the input shapes, their agreement with ground-truth when the
deformation is known, and their compatibility with human-generated segmentations.

3.0.1 Contributions

We present an algorithm for shape correspondence between non-isometric triangular
meshes, that has the following advantages:

• The algorithm is widely applicable, and the resulting maps are semantic and
exhibit low conformal distortion.

• The formulation is simple and efficient to optimize and thus can be combined with
additional energy terms and various initializations.

• The maps are accurate enough for downstream applications, such as shape inter-
polation and quad mesh transfer.

3.1 Background: Harmonic Maps and Local Distortion

Suppose M1,M2 ⊆ �
3 are smooth, compact surfaces with or without boundary. Given a

map T12 :M1→M2 from one into another, a natural task is to measure the distortion of
M1 as it is mapped via T12 onto M2; this distortion measure eventually will serve as
an objective function for optimization problems whose unknown is the correspondence
T12. The basic role of these distortion measures is to evaluate whether nearby points
are mapped to nearby points under T12, at least differentially, a common proxy for the
quality of the map.

In the theory of differential geometry, a key distortion measure is the Dirichlet energy
E[·] (defined below) of T12; minimizers of E[·] are called harmonic maps. Intuitively, if
we think of M1 as a rubber sheet, a harmonic map represents an equilibrium position of
the sheet after stretching it over M2 and letting it compress. The Dirichlet energy and
its minimizers find many roles in the geometry processing literature, most prominently
in surface parameterization [LPRM02b], due to its intuitive measurement of distortion
and connections to notions of conformality. At the same time, theory and practice
of harmonic mapping become considerably more challenging when M2 has areas of
positive curvature; intuitively these can cause the rubber sheet to slip or bunch, yielding
singularities in gradient flow procedures designed to uncover harmonic maps.

In this section, we describe the basic construction of the Dirichlet energy and point
out its advantages and flaws in the context of surface-to-surface correspondence; we also
provide basic constructions for approximating the Dirichlet energy of a map between
discrete surfaces. In §3.2, we then propose a modified notion of harmonicity designed to
avoid singularities and asymmetry in the surface-to-surface correspondence pipeline.
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3.1.1 Smooth Surfaces

Following [Ura93, Nis00], harmonic maps between smooth surfaces are defined as the
critical points of the Dirichlet energy :

E [T12] :=
1

2

∫
M1

|dT12|2 dv1, (3.1)

where dT12 is the map differential and dv1 is the volume element of M1. E[T12] measures
the total stretch of M1 after it is warped onto M2, as measured by the integrated norm
of the Jacobian dT12. Formally, given an orthonormal basis {e1, e2} for TpM1 at p∈M1,
the integrand can be expanded as

|dT12|2 =
2∑

i=1

〈dT12(ei), dT12(ei)〉g2(T12(p)),

where g2 is the metric of M2.
Existence, uniqueness, and regularity of harmonic maps given assumptions on the

geometry/topology of M1 and M2 as well as the homotopy class of T12 is a key theme
in the twentieth-century differential geometry literature. A landmark paper by Eells
and Sampson [ES64] proves existence of a harmonic map in each homotopy class under
the assumption that M2 has non-positive curvature. The proof technique in this paper
is attractive from a computational perspective: Essentially they start with an arbitrary
map in the prescribed homotopy class and use an analog of gradient descent to decrease
the Dirichlet energy.

A key drawback of the Eells and Sampson proof technique from a computational
perspective, however, highlights an issue with harmonic correspondence in the context
of algorithmic mapping between surfaces. In particular, their gradient descent procedure
can fail when the target M2 has regions of positive curvature. Roughly, this singular
behavior is explained by the fact that the objective |dT12|2 is minimized globally by
dT12 ≡ 0, the constant map! This observation highlights the difference between harmonic
mapping and elastic models like the ones proposed in [SA07, CPSS10], which seek dT12

(a) (b) (c) (d) (e)

Figure 3.1: Limitations of the piecewise linear discretization of the Dirichlet energy. (a)
Source M1: a flat disk embedded in �

3. (b) Target M2: enneper. (c) Initial piecewise
linear map. (d,e) Final maps that minimize the energies in Eqs. (3.3). and Eq. (3.4),
respectively. See the text for details.
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to be close to a rotation matrix rather than to the zero matrix. We will address this
issue in our “reversible harmonic” formulation by adding the Dirichlet energy of T−112 for
the case of diffeomorphic correspondence; this has the added benefit of making forward
maps T12 and reverse maps T21 critical points of the same objective function.

3.1.2 Triangle Meshes

For surfaces that are discretized as triangle meshes Mi, represented by their vertex, edge
and face sets (Vi, Ei,Fi), a pointwise vertex map T12 assigns a point on a face of M2

to each vertex of M1. The extension of the vertex map to the interior of faces of M1

determines the corresponding Dirichlet energy.

If the map is assumed to be affine on every face f ∈ F1, then the Dirichlet energy is
given by

E [T12] =
1

2

∑
f∈F1

|dT12 (f) |22af , (3.2)

where dT12 (f) ∈ �2×2 is the unique linear transformation between f and its image
triangle T12(f), and af is the area of f [PP93]. Equivalently, the energy can also be
written as:

E [T12] :=
1

4

∑
(u,v)∈E1

wuv ‖T12 (u)− T12 (v) ‖22, (3.3)

where wuv is the cotangent weight of the edge (u, v). This energy is convex and quadratic
in the images of the vertices of M1, and is therefore straightforward to minimize efficiently
when T12 is unrestricted, e.g. for planar parameterization [LPRM02b].

When M2 is a non-Euclidean space, T12 should be restricted to lie on M2, leading to
a constrained optimization problem that is harder to solve. In addition, a more serious
issue is the linearity assumption itself. When T12 does not sample the target surface M2

well, the linear extension of T12(V1) can be far from M2. In this case, minimizing the
Dirichlet energy of the piecewise-affine map can lead to incorrect results.

Consider for example, as in Figure 3.1, mapping a disk M1 (a) to an enneper surface
M2 (b) with Dirichlet boundary conditions; since the target has negative curvature, in
the smooth case [ES64] gradient flow will reach a harmonic map T12 : M1 → M2. An
initial map (c) maps all the interior vertices of M1 to a single interior vertex on M2,
and the boundary of the disk is mapped to the boundary of the enneper. Minimizing
Eq. (3.3) using gradient descent, the analog of Eells & Sampson’s heat flow, with the
side constraint that T12(V1) is restricted to lie on M2, leads to a map (d) that is clearly
not smooth. Effectively, Eq. (3.3) aims to place the image of every vertex of M1 in the
Euclidean weighted average of the image of its neighbors. When the affine map samples
the target poorly, this strategy fails to generate an approximation of a smooth map.

Alternatively, [IN05] suggest an intrinsic formulation, the geodesic harmonic energy,
which replaces the Euclidean distances in Eq. (3.3) with the geodesic distances dM2(·, ·),
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as follows:
ED [T12] :=

∑
(u,v)∈E1

wuv d
2
M2

(T12 (u) , T12 (v)) . (3.4)

As shown in Figure 3.1(e), minimizing this energy instead of the Euclidean one yields a
significantly better result at the cost of having to compute geodesic distances. Motivated
by this idea, we propose to use this energy as the main building block in a shape mapping
algorithm. We reformulate it to allow efficient optimization and combination with other
terms that address the case of positively-curved target surfaces M2, as described in the
following section.

3.2 Reversible Harmonic Maps

Notation. We represent a triangle mesh M by its vertex, edge and face sets (V, E ,F),
respectively, where we denote n = |V|, and its given embedding by V ∈ �n×3. We
denote scalar functions g :M → � by a vector of coefficients of piecewise linear hat
functions, with g ∈�n. The squared l2 norm of a function on the surface is given by
‖g‖2M = gTAg, where A∈�n×n is the diagonal (lumped) mass matrix of the vertices.
The total area of the mesh is denoted by s = Tr(A). The squared gradient norm
is given by ‖g‖2W = gTWg, where W is the matrix of cotangent weights. Similarly,
for matrices G ∈ �

n×k whose columns are scalar functions, we use the matrix trace:
‖G‖2M = Tr(GTAG), ‖G‖2W = Tr(GTWG). When two meshes are involved we use a
subscript, e.g. Ai is the mass matrix of Mi.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Collapse of a harmonic map. Top row: mapping from a low resolution sphere
(a) to a high resolution sphere, starting from the identity map (b). The map quickly
“slides” to a single hemisphere (c) and then degenerates (d). Bottom row: the same
phenomenon with more complex shapes from SHREC’07 [GBP07], where we use a sparse
set of landmarks for initialization and visualization. The final result (h) does not map
any points to the upper part of the wings and to most of the tail.
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0.2
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Target Texture -4 = 0 -4-2  = 1-6

Figure 3.3: Preventing collapse with reversibility. For different α values, we measure
the discrete geodesic Dirichlet energy and the sum of relative mapped area (ideally 2).
We visualize some of the results using texture transfer (left), and show the final values
as a function of α (right). Note that when α is small the Dirichlet energy is high, and
when α is large the map collapses, as is evident by the zero total area. Finally, taking
α = 5 · 10−4 leads to a good balance between the energy components.

3.2.1 Energy

While the geodesic harmonic energy can be effective, harmonic maps in general can
become degenerate and map large regions to a single point. Indeed, the map taking all
the points on M1 to a single point on M2 is harmonic. An example of such behavior
is demonstrated in Figure 3.2. On the top row, the source M1 is a sphere with a
small number of triangles (a), that is mapped to a high-resolution target sphere M2.
Even if the initial map is the ground-truth map (b) between the spheres, during the
optimization the map quickly “slides over” to a single hemisphere of the target sphere
(c), and then degenerates and collapses to a single point (d). The same phenomenon
occurs for complex shapes, as shown in the bottom row. Here, we initialized a map
between two bird shapes from SHREC’07 [GBP07] (e,f) using landmarks as specified in
section 3.3.2. Initially (f), the tips of the wings and tail are mapped correctly, but again
they gradually slide (g) until no vertices are mapped to most of the target’s wings or
tail (h).

Intuitively, in the discrete case, we can think of M1 as an elastic fishnet instead of a
continuous rubber sheet, stretched over M2 and allowed to compress. Then, in addition
to the usual degeneracies in the smooth case, the target surface can effectively “slip
through” one of the holes in the net, allowing the map to degenerate to a single point.
To prevent this, we minimize the geodesic harmonic energies of both the forward and
backward maps, together with a reversibility constraint relating both maps. As we later
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demonstrate, this approach is highly effective in generating non-degenerate harmonic
maps.

Smoothness. Given two triangle meshes M1,M2, and maps T12, T21, the total har-
monic energy of both forward and backward maps is given by

ED [T12, T21] =
∑

i,j∈{1,2}
i �=j

1

sj
ED [Tij ] , (3.5)

where ED is given in Equation (3.4).

Reversibility. We define the reversibility energy similarly to [KBB+13, EBC17] as:

ER [T12, T21] =
∑

i,j∈{1,2}
i �=j

1

s2i

∑
pi∈Vi

d2Mi
(Tji (Tij(pi)) , pi)Ai(pi). (3.6)

The reversibility energy prevents the maps from collapsing. In the smooth case, if the
reversibility energy is bounded pointwise, it easily follows that the maps are close to
being injective and surjective, as we show in the Appendix. For both energies, care is
required to handle correctly meshes of different scales, hence the normalization by si,
the total area of Mi.

Finally, the full energy is given by:

E [T12, T21] = αED [T12, T21] + (1− α)ER [T12, T21] , (3.7)

where the parameter α∈ [0, 1] controls the trade-off between smoothness and reversibility.
Note that while in the continuous setting exact reversibility might be desired, this
will not be the case in the discrete setting described in section 3.2.2. Thus we enforce
reversibility as a soft constraint controlled by the parameter α.

To demonstrate the effect of the different components of the energy we compute a
map between a disk and a folded disk, using different values of α. In the initial map all
the interior vertices of the disk are mapped to a single interior vertex of the folded disk,
and the boundary of the source is mapped to the boundary of the target. During the
optimization the mapped boundary vertices are not constrained to lie on the boundary
of the target.

Figure 3.3 shows the results, where we visualize the maps using texture transfer
(left), and quantitatively evaluate them using the discrete geodesic Dirichlet energy from
Eq. (3.4) (center right) as well as the sum of the total area of the images of the forward
and backward maps (right). The graphs show the final values of these quantities as a
function of the parameter α, where the energy is normalized with respect to its value in
the first iteration.

The figure demonstrates the trade-off that the parameter α controls, e.g. taking
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α=0 models reversibility only, leading to a high Dirichlet energy. On the other hand,
taking α=1 models harmonicity only, and leads to a map that collapses the image to a
single point, as is evidenced by the final total area which is zero. In general, if α is too
small, the map has a high Dirichlet energy and thus is more distorted locally, and if α is
too large the map collapses. Taking α=5·10−4, as we did for all the experiments except
for Figure 3.3, leads to a balance between the harmonic energy and reversibility.

Minimizing the energy in Eq. (3.7) requires computing the gradient of the geodesic
distances with respect to the forward and backward maps, as well as tracing vector
fields on the surface, which are both computationally heavy. We therefore apply two
approximations to address these issues.

3.2.2 Energy approximation

Notation

Any point p∈M can be represented uniquely using its barycentric coordinates ωl(p), l∈
{1, .., 3} with respect to the face f(p) = (v1, v2, v3) ∈ F it lies on. We denote by
λ(p)∈�1×n the row vector that is zero everywhere except at the vertices of f(p), where
we have λ(p)[vl] = ωl(p). In addition, we denote the feasible row set of M , i.e. the set
of all possible such vectors, by P={λ(p) | p∈M}. Finally, the feasible set of all possible
precise maps from M1 to M2 is given by P12={P12∈�n1×n2 |P12(l, :)∈P2, ∀l∈{1..n1}},
where P (l, :) denotes the l-th row of the matrix P . Thus, any map T12 can be represented
using a matrix P12, by setting P12(l, :) = λ2(T12(vl)), ∀l ∈ {1..n1}, which, by definition,
is in the feasible set P12. Furthermore, the matrix P12V2 ∈ �n1×3 represents the images
of the vertices V1 under the map T12.

High-dimensional embedding

As we have seen, if the target space is Euclidean then the geodesic distances are Euclidean
distances, and the optimization is simple and efficient. Following similar ideas in the
literature [BBK06], we therefore suggest to use a high-dimensional Euclidean embedding
as a proxy for fast geodesic distance computation.

Given a mesh M , we seek an embedding x : V → �
m, for m  n such that the

Euclidean distance ‖x (u)− x (v) ‖ approximates well the geodesic distance dM (u, v), for
all u, v∈V. The literature on such embeddings is quite vast, and we chose to leverage
the method suggested by [PBDSH13] that relies on multidimensional scaling [CC00].
Any other embedding method could be used as well, as long as the geodesic distances
are well approximated. We took m = 8 in all our experiments, following [PBDSH13].

Our goal now is to compute a harmonic map between the high-dimensional Euclidean
embeddings. We denote by X ∈ �n×m the matrix whose rows are the embeddings
x(v), ∀v ∈ V. Rewriting the harmonic and reversibility energies in terms of the high-
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dimensional embeddings, and in matrix form, leads to:

E (P12, P21) =
∑

i,j∈{1,2}
i �=j

α
1

sj
‖PijXj‖2Wi

+ (1− α)
1

s2i
‖PijPjiXi −Xi‖2Mi

. (3.8)

Note that the weights in the harmonic energy, given now in matrix form in Wi, remain
the same for the high-dimensional embedding, since the embedding is nearly isometric.

Figure 3.4 demonstrates the importance of the high dimensional embedding. For
shapes where the geodesic distances are considerably different than Euclidean distances
in �

3, e.g., the spring shapes from SHREC’07 [GBP07], using the three-dimensional
input Euclidean embedding in the optimization leads to a highly distorted map (center).
Specifically, neighboring vertices on the source shape are mapped to different coils of the
target spring, which are extrinsically close but intrinsically far. On the other hand, by
using the high dimensional embedding, the geodesic Dirichlet energy is well approximated
leading to an improved map (right).

Half quadratic splitting

While Equation (3.8) can be minimized using gradient descent, we found, similarly
to [EBC17], that it is more efficient to use the half quadratic splitting optimization
method [GY95] (see also e.g. [WYYZ08, ZW11]). We introduce auxiliary variables
Xij ∈ �ni×m, which estimate the images of the vertices Vi given by PijXj . Substituting,
the energies are:

ĒD(Xij) =
1

sj
‖Xij‖2Wi

, ĒR(Pij , Xji) =
1

s2i
‖PijXji −Xi‖2Mi

, (3.9)

Target Texture Optimized map
Input Embedding 

Optimized map
High Dim. Embedding 

Figure 3.4: The importance of the high dimensional embedding. For these shapes,
geodesic and Euclidean distances are significantly different, thus using the input vertex
positions in �

3 during the optimization results in a highly distorted map (center). The
high dimensional embedding that approximates the geodesic distances leads to a better
map (right).
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for i, j∈{1, 2}, i �= j. In addition, we need soft constraints for the auxiliary variables:

ĒQ(Pij , Xij) =
1

sisj
‖Xij − PijXj‖2Mi

, (3.10)

where we again normalize by sisj to retain scale invariance.
The full energy is now:

Ē (P12, P21, X12, X21) =∑
i,j∈{1,2}

i �=j

αĒD(Xij) + (1− α)ĒR(Pij , Xji) + βĒQ(Pij , Xij), (3.11)

where β controls the accuracy of the auxiliary variables and functions as a step size.
When using the half-quadratic splitting optimization scheme, the update schedule for
β is often tailored per application, with the general guideline of increasing β as the
iterations advance [WYYZ08]. In our case, we often initialize the optimization with a
highly degenerate map, e.g. as obtained from a sparse set of landmarks, and therefore the
value of β during the first iterations should be small enough so that the map can change
significantly. As the iterative solution approaches a local optimum, β can increase, as
less modification is required. The final value of β should be large enough to ensure Pij

and Xij correspond. In all of our experiments, we took β = 5 · 10−3k where k is the
optimization iteration number for the first 100 iterations, and then kept the value of β
fixed until convergence.

3.2.3 The optimization problem

Our optimization problem is now given by:

minimize
P12,P21,X12,X21

Ē(P12, P21, X12, X21)

subject to P12∈P12, P21∈P21,
(3.12)

where Pij is the feasible set of precise maps from Mi to Mj . Despite the two approxima-
tions that we used, solving this optimization problem succeeds in decreasing the total
discrete Dirichlet energy from Eq. (3.4) while preventing the map from collapsing, as is
illustrated in Figure 3.5. In addition to the energy, we show the initial map that was
created from landmarks as described in section 3.3.2, and the intermediate map at a few
iterations.

3.3 Optimization

Our optimization problem has block structure, in the sense that if some of the variables
are kept fixed it becomes a linear least squares problem. We therefore chose to use block
coordinate descent (see e.g. [XY13]) as the optimization algorithm.
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3.3.1 Block coordinate descent

In each sub-iteration we solve for one of the matrices Xij , Pij , while keeping the others
fixed. Since the energy is quadratic in all the variables, every sub-iteration involves a
relatively simple optimization problem, with the only complication arising because of
the non-convex feasible sets Pij .

Optimizing for Xij. When P12, P21 are fixed, the optimization problem is a linear
least squares minimization of the form ‖AXij − B‖22, with known matrices A and B,
where A is sparse, which we solve using a direct method. The system is highly over-
constrained, as even if Pji degenerates, the system is well-conditioned due to the term
ĒQ, as long as the vertex areas of the mesh Mi do not vanish.

Optimizing for Pij. When X12, X21 are fixed, the energy has the form ‖PijA−B‖22,
where A,B are known, with the constraints that Pij ∈ Pij . Following [EBC17], the
optimization is done by solving for every row of Pij separately. Intuitively, we can think
of A as a high-dimensional embedding of the faces of Mj , and of B as a high-dimensional
point cloud. The optimal Pij projects each point in B to its closest point on the faces
given by A. As shown in [EBC17], this process is guaranteed to find Pij which are
globally optimal when Xij are kept fixed.

Stopping criterion. The alternating descent guarantees that the energy is reduced at
every iteration, since the sub-iterations find a global optimum of the reduced optimization
problems. In practice, we stopped the optimization when the change of energy was less
than 10−9, or after a maximum of N = 200 iterations. In most cases, we have observed
convergence of the energy to high precision even when early stopping after N iterations
was used.

We provide the details of the alternating descent in Algorithm 1.

Algorithm 3.1 Alternating minimization.

Input: Two triangles meshes M1, M2, initial P12, P21, X12, X21

Output: P12, P21

For k = 1 . . . N
For i = 1, 2

j = 3− i
Pij ← argmin

P∈Pij

ĒR(P,Xji) + ĒQ(P,Xij)

Xij ← argmin
X∈�ni×m

ĒD(X) + ĒR(Pji, X) + ĒQ(Pij , X)

end
end
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Figure 3.5: Optimization of Eq. (3.12), starting from landmarks. The discrete Dirichlet
energy in Eq. (3.4) decreases, and the final map, visualized by texture transfer, is
semantic and not distorted locally.

3.3.2 Initialization

Our method is general and can receive as input various initial data. Depending on the
input, we describe the initialization of the variables Pij , Xij . Given a pointwise map
T12 : V1 →M2 its corresponding matrix representation is given by P12(l, :) = λ2(T12(vl))

for l ∈ {1, .., n1}. Similarly, given a matrix representation Pij ∈ Pij , we have that
Tij(vl) = (PijVj)(l, :)∈Mj . Therefore, in the following refer to Pij or Tij according to
which notation is more convenient.

Pointwise map. Given a pointwise map P12 we approximate an inverse map P21 by
taking T21(v2) = argminv∈V1

‖T12(v)− v2‖. Then, the initialization of Xij is PijXj .

Functional map. The term functional map [OBCS+12] denotes a map between scalar
functions. It is a linear operator that can be represented using a matrix when scalar
functions are represented in a linear basis. Let Ψi ∈ �ni×ki be a matrix whose columns
are basis functions of a subspace of scalar functions on Mi, where each function is
piecewise linear and is defined by values assigned to vertices. Given a pointwise map that
maps vertices of M1 to points on M2, the corresponding functional map C12 ∈ �k1×k2

maps functions on M2 to functions on M1, represented in the reduced basis. Therefore,
given two functional maps C12 and C21, we initialize Xij = ΨiCijΨ

†
jXj . Optimizing Pij

does not require initialization. Figure 3.10 shows results where functional maps were
used for initialization.

Landmarks. Given r input landmark pairs {(pi, qi)} where pi ∈ V1, qi ∈ V2 and i ∈
{1, .., r}, we first construct a rough initial pointwise map P12 and then use it to initialize
the rest of the variables, as previously described. We first compute the geodesic Voronoi
diagram on M1 with centers pi, and then set T12(v) = qi, ∀v ∈ Ci, where Ci is the
geodesic cell corresponding to the center pi. Note that this initialization is highly
degenerate, as all the points on M1 are mapped to the landmarks qi on M2, yet it is
enough for our needs. In Figure 3.5 initialization using input landmarks is visualized.
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Figure 3.6: Quantitative comparison on the SHREC dataset, measuring, from left to
right: conformal distortion, compatibility with symmetries and distance from ground
truth landmarks. Note that we achieve a better conformal distortion, and comparable
symmetry geodesic error. Furthermore, note that WA and HOT do not modify their
input landmarks, while our method and VMTP do. Compared to VMTP we achieve a
better landmark geodesic error.

Figure 3.7: Qualitative results, from input landmarks. From left to right: target texture,
our method, HOT [AL16], WA [PBDSH13] and VMTP [MCSK+17]. See the text for
details.
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Figure 3.8: Minimizing the reversible harmonic energy does not align extrinsic features.

3.3.3 Limitations

Using the projection step when optimizing for Pij has some limitations. First, as
discussed in [PBDSH13], such a projection is not smooth. Furthermore, the closest point
on the high-dimensional embedding of the triangle mesh might not be unique, therefore
the solution of the optimization for Pij might alternate between two configurations
with the same energy. Thus, while the energy is guaranteed to converge, we do not
have a similar guarantee for the convergence of the solution. In practice, we have not
encountered a case where these limitations posed a practical problem. In future work it
could be possible to handle the first issue using a Phong projection, as in [PBDSH13],
and the second issue using an additional regularization that penalizes diverting from the
current solution.

Since we optimize for both harmonicity and reversibility we cannot guarantee con-
vergence to a smooth harmonic map; this is likely a fruitful avenue for future work. In
addition, our method does not consider extrinsic features such as edges and corners,
and hence such features will not necessarily be mapped to each other. An example is
shown in figure 3.8, where our map between the two folded disks is smooth, but the
edge features do not correspond.

3.3.4 Timing

The most expensive step in the optimization process is the projection on a triangle mesh
for optimizing Pij . However, this procedure is highly parallelizable since the projection
of each point is independent of the other points. We used CUDA 8 to implement
the projection in parallel, while the rest of the optimization method was written in
MATLAB. On a desktop machine with a TITANX GPU and an Intel Core i7 processor,
200 optimization iterations of our method, for shapes with 5K vertices, took around 115

seconds.

3.4 Results

To validate our method we have compared with a variety of state-of-the-art mapping
techniques, in accordance with the type of input they can accept. In addition, we show
applications to shape interpolation and quad mesh transfer.
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Figure 3.9: Mapping SHREC quadrupeds by our method, starting from noisy landmarks.
Our method is only slightly affected by the noise even when the landmark modification
is severe.

3.4.1 Quality metrics

To evaluate the quality of a map we measure its smoothness through its conformal
distortion and its semantic accuracy, using the distance to the ground truth, when given.
We also use alternative measures, such as symmetry and compatibility with ground
truth segmentations, when no dense ground truth map is available.

Conformal distortion. We use the definition by Hormann and Greiner [HG00, Eq.
(3)] for the conformal distortion of a single triangle f ∈F1: κ(f)= σ1

σ2
+ σ2

σ1
, where σ1≥σ2

are the singular values of the linear transformation which maps f from M1 to M2. We
subtract 2 so that the minimal conformal distortion is zero and visualize the result as a
cumulative graph showing the percentage of triangles with less than a certain distortion
value.

Distance from ground truth. When a ground truth map is given, we measure the
distance from the ground truth using the protocol suggested by [KLF11, Section 8.2]. For
every mapped vertex, we measure its geodesic distance from the ground truth location,
relative to the square root of the total area of M2, and visualize the percent of vertices
whose distortion is less than a given value.

Compatibility with segmentations. For some datasets ground truth labeled seg-
mentations are available. In this case, for every pair of shapes and a given map we
measure the consistency of the segmentation with respect to the map. This is done by
computing the relative vertex area of vertices that are mapped to a face that belongs to
the same segment as the source vertex.

Compatibility with symmetry. For some datasets a ground truth map is only
known for a subset of the points, yet a full intrinsic symmetry can be computed for every
shape separately. We assume that a good map should respect the intrinsic symmetries
of the source and target shapes, given by S1, S2, respectively. We therefore use these
symmetries as input, and measure the compatibility of the map T12 with the symmetries,
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given by the geodesic distance dM2(S2(T12(v1)), T12(S1(v1))), ∀v1∈V1. We visualize the
result using a cumulative graph, similarly to the ground truth error. To compute the
symmetries we use the method by Kim et al. [KLF11]. We also manually filtered the
results to use only the accurate symmetries.

3.4.2 Dataset: SHREC, input: landmarks

We use the BIM benchmark [KLF11] that provides more than 200 pairs of highly non-
isometric shapes from the SHREC dataset [GBP07] with user-verified landmarks. We
compare our method with a state of the art parameterization based method [AL16]
(HOT) and the weighted averages method [PBDSH13] (WA). Both receive as input
landmark points, which are not modified during the optimization, and generate precise
maps. In addition we compare to the recent method by [MCSK+17] (VMTP), that
similarly gets as input landmark points, yet can modify them during the optimization.
Since VMTP requires uniform isotropic meshes, we recursively add edges using the
longest edge bisection method to meshes with less than 10K vertices, before applying
VMTP. All the methods we compare with produce precise maps, as vertex-to-vertex
maps induce high local distortion. As input to our method we also use the user defined
landmarks, and extend them to a full initial map as described in section 3.3.2. The
landmarks are not used after the initialization.

Quantitative results are shown in Figure 4.11, where we measure conformal distortion,
compatibility with symmetries and distance from the ground truth landmarks. Note

0 0.05 0.1 0.15 0.2
0
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100

0 0.5 1 1.5 2
0

50
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Figure 3.10: Qualitative and quantitative comparison starting with a functional map
computed from landmarks. From left to right: target texture, [EBC17] (DND), our
method. Notice the difference at the cup handle and the legs.
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M1 M2

Figure 3.11: Qualitative result, caricatures. M2 was generated by deforming M1 [SAK15],
and the deformation defines a ground truth map. M2 was remeshed so that the source
and target shapes do not have the same connectivity.

that our method achieves the best conformal distortion. In addition, the distance from
the ground truth landmarks is also improved when compared to the other method
which modifies them (VMTP). As shown in section 3.4.3, the option to modify the input
landmarks is valuable when the input is not completely reliable. In terms of compatibility
with symmetry, our method is comparable with existing techniques, notably achieving a
better ratio of perfect matches with about 15% of the vertices exactly symmetric for
our method, where the next best method has less than 10% exactly symmetric vertices.
On this dataset ground truth segmentations are also available [KHS10a, CGF09], and
measuring the relative mapped area which is compatible with the segmentations we
have HOT: 90.39%, WA: 90.35%, VMTP: 81.8%, our method: 89.62%. Therefore, this
measure also demonstrates that our maps are as compatible semantically as existing
techniques, while being considerably more conformal.

Qualitative results are shown in Figure 3.7, where we have selected a subset of pairs
to visually show the differences between the maps. In every row we show, from left to
right, the target texture, and the results of our method, HOT, WA and VMTP.

3.4.3 Dataset: SHREC quadrupeds, input: noisy landmarks

In many cases, the selection of the landmarks by the user has some variability (see,
e.g. [CSPF12]), and it might be better to treat these landmarks as guidelines rather than
exact ground truth. Our approach is compatible with this notion, since our method only
uses the landmarks for initialization, and their final location will, in most cases, vary
from their initial one. To check the sensitivity of our approach to the landmark locations,
we repeated the experiment from section 3.4.2 with various landmark modifications.
Figure 3.9 shows the landmark geodesic error of the output maps when starting from
the noisy landmarks compared to starting from the original landmarks. We ran the
experiment on the “quadrupeds” class (20 pairs) from the SHREC dataset and did the
following modifications: (a) moved every landmark randomly to a vertex in its 5-ring
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neighborhood, (b) switched between the two eyes, or mapped both eyes on M1 to a
single eye on M2, and (c) mapped both feet on M1 to the same foot on M2. In addition
to the error graph we show some example maps, as well as the input noisy landmarks.
As the figure shows, our results are not sensitive to landmark noise, and even a relatively
severe modification, such as mapping both feet to the same foot, yields good qualitative
and quantitative results.

0 0.1 0.2 0.3
0
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0 0.5 1 1.5 2
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Figure 3.12: Quantitative measures for the meshes in Figure 3.11. Note that our method
achieves a considerably better conformal distortion, while maintaining ground truth
error comparable to existing methods.

Target Texture  Noisy Vertex
Positions

Topological Noise
(genus 4)

Sampled
(5% #vertices)

Target Texture Uniform AnisotropicMulti-resolution

Figure 3.13: Robustness to noise and sampling. Top row: a shape with various transfor-
mations from SHREC’10 [BBB+10]. Bottom row: the left shape is mapped to the same
geometry with different tessellations.
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Figure 3.14: Shape interpolation using our computed correspondence as input
for [HRS+14].

3.4.4 Dataset: SHREC two pairs, input: functional map

The functional map [OBCS+12] machinery is quite versatile, and allows to compute
generalized maps in a variety of cases. Our method can also be used to extract a
precise pointwise map from a given functional map. We use the SHREC dataset with its
landmark data from the BIM benchmark [KLF11], and use the landmarks to compute a
functional map using the Wave Kernel Map and the Wave Kernel Signature [ASC11].
Any other recent method for computing functional maps could be used as well. We
provide the functional map as input to our approach and the recent map deblurring
approach [EBC17] (DND), which is the only other method that recovers precise maps
from a functional map. Specifically, we used the consistency extension of DND with
α = 0.8. Figure 3.10 qualitatively visualizes the difference between the methods for two
pairs of shapes. Note the map improvement on the handle of the cup and the legs of
the cow. We also show graphs of the conformal distortion and ground-truth error of the
landmarks.

3.4.5 Dataset: caricatures, input: landmarks

One of the advantages of our formulation is its simplicity, that leads to flexibility in
adding additional components to the energy. For example, in some cases it can be
beneficial to add weak landmark constraints, to encourage feature points to remain in
the neighborhood of the input landmarks.

Figure 3.15: Quad mesh transfer using our computed correspondence. Left: input quad
mesh, right: output quad mesh. Note the preservation of the prominent edge flows in
the quad mesh, such as the fingernails and knuckles.
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Weak landmark constraints. Given pairs of matching landmarks pi∈V1, qi∈V2, i =
1 . . . r, we add the following term to the energy:

γ

r∑
i=1

A1(pi)‖X12 (pi, :)−X2 (qi) ‖2M2
+A2(qi)‖X21 (qi, :)−X1 (pi) ‖2M1

. (3.13)

The value of γ depends on the reliability of the landmarks, if the landmarks are not
accurate then γ should be small. To demonstrate the effectiveness of this approach,
we used as input the Homer and Max Planck models, and caricatures of these models
generated using the method by [SAK15]. The caricatures have the same triangulation
as the original shapes. We remesh the caricatures to avoid bias, and project the original
caricature to the remeshed model to generate the ground truth for validation. As input
to all approaches, we picked 28 and 14 landmarks from the input map for the homer
and Max models respectively. For our algorithm we added the energy in Equation (3.13)
with γ = 1. The qualitative and quantitative results are shown in figures 3.11 and 3.12,
respectively. As in previous experiments, we achieve considerably better conformal
distortion, with comparable ground truth error.

3.4.6 Robustness

We test our method on horse shapes from the SHREC’10 dataset [BBB+10], which
contains various shapes with geometric and topological noise. The results are shown in
the top row of Figure 3.13, where we compute a correspondence between the horse in a
neutral pose (left) and a noisy pose: (center left) noise is added to the vertex positions;
(center right) topological noise is introduced, e.g. between the rear feet; and (right)
the mesh is sampled to 5% of the number of vertices. We initialized our method using
19 landmarks and obtained semantically correct results in all cases. The bottom row
shows our results for different tessellations of a shape of a head, where one shape has
uniform triangles, a second shape has larger triangles on one half and smaller triangles
on the other half, and a third shape has highly anisotropic triangles. For initialization,
we used the identity map with additional noise. The resulting mapped texture is smooth
and similar for the different tessellations.

3.4.7 Application: Shape Interpolation

Existing shape interpolation methods require the input shapes to share the same con-
nectivity, while real data rarely satisfies this requirement. Our mapping can be used to
remesh the target surface M2 using the image of the vertices of M1, given by P12V2, and
the connectivity of M1. We used our map between two birds from SHREC to demon-
strate this application, starting from the BIM landmarks as described in section 3.4.2.
After remeshing M2, as a few faces had a zero area, we iteratively moved vertices of the
degenerate faces to an average of their 1-ring neighbors until there were no degenerate
faces. We then used the shape interpolation method by [HRS+14] to interpolate between
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the shapes, as shown in Figure 3.14. Note that we correctly mapped the wings, head
and tail of the birds, as is evident from the natural interpolation results.

3.4.8 Application: Quad Mesh Transfer

Finally, we demonstrate a potential application of our correspondence to quad mesh
transfer of artist-generated quad meshes to scanned meshes. In this experiment, we start
from a set of 41 landmark points, and use weak landmark constraints with γ = 5 · 10−5.
We choose to have a larger number of landmarks in this example to preserve the fine
features such as fingernails and joints. The results are shown in Figure 3.15, with two
views of the input and output quad meshes on the left and right, respectively. Note, that
the edge flow of the output quad mesh closely follows the features of the hand, and the
special structures in the input, such as the fingernails and knuckles, are nicely preserved
in the output mesh. Such a high quality transfer can only be achieved if the computed
map has a low conformal distortion, which leads to well preserved quad shapes.
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Chapter 4

Elastic Correspondence between
Triangle Meshes

We consider the case of correspondence between two manifold triangle meshes that have
the same topology, but are not necessarily isometric. In such cases, the strong geometric
prior of the preservation of geodesic distances is no longer available, and there exists a
huge set of smooth, valid maps between such surfaces. A high quality map should have
a low angle and area distortion, facilitating downstream applications such as texture
and deformation transfer. However, intrinsic geometric information alone is often not
enough to yield a semantically correct map. An important extrinsic geometric property
of semantically correct maps, is the correct alignment of prominent curvature features,
such as the crease of an airplane wing (see Fig. 4.1). Yet, achieving both low metric
distortion and crease alignment is difficult using existing techniques. Some mapping
approaches are fully intrinsic [KLF11, AL16, MCSK+17], and therefore are not aware
of extrinsic curvature dependent features. Alternatively, classic extrinsic approaches
(e.g. [LSP08]) can match extrinsic features, but often focus on global rather than local
distortion, and in addition are sensitive to the global orientation of the input shapes,
since they optimize for the extrinsic deformation matrices.

We bridge this gap and achieve extrinsic feature matching, as well as low local

Initial Map Our ResultTarget

Figure 4.1: Visualization of our results using texture transfer from the target shape (left)
to the source shape with the initial map (middle) and our final map (right). Note the
texture distortion in the initial map due to the incorrect matching of the airplane wing
creases, which is aleviated using our crease-aware method.
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distortion, while remaining parameterization-free and invariant to global rigid trans-
formations of the input shapes. We accomplish this using a novel combination of a
discrete thin-shell energy that is often used for shape deformation [HRS+14] with a
recent projection-based, parameterization-free, optimization technique for local distortion
of maps between triangle meshes [EBC17].

Starting from a set of sparse landmarks provided by the user, we initialize using
an intrinsic map computed using existing methods [AL16]. Then we simultaneously
optimize for an elastic deformation of the input shape while penalizing the distance from
its projection on the target shape. Our energy is composed of a non-linear membrane
energy that favors isometry, and a bending energy that is rotation invariant and promotes
feature alignment. It is a novel modification of the classic discrete thin-shell energy, that
is robust to the extreme deformations that may arise in a projection-based optimization
framework, while remaining faithful to the physical behavior of the classic energy.

Our scheme yields high-quality, crease preserving maps between non-isometric
shapes, that far surpass state-of-the-art methods on both the FAUST [BRLB14] and
SHREC07 [GBP07] datasets. We show quantitative improvement of various error mea-
sures, specifically geodesic error from the dense ground truth on FAUST, and angular
distortion, area distortion, mean curvature error and geodesic error from sparse ground
truth on SHREC07. Further, our crease preserving maps are highly useful in down-
stream applications, as we demonstrate by applying our computed maps for generating
consistent cross-fields [ACBCO17], for shape interpolation [HRWW12] and for consistent
quadrangular remeshing of a set of shapes.

Our contributions. We propose a novel matching algorithm to compute a high
quality correspondence map between two triangle meshes. The main characteristics are:

• Our algorithm combines a physical thin shell deformation model with a parameterization-
free projection-based correspondence scheme.

• Our method is initialized with the output of an existing correspondence algorithm,
which is smooth yet might have substantial local distortion and lacks feature
alignment.

• Our output is a low-distortion and feature-aligned correspondence, which is highly
effective for downstream applications such as texture transfer.

4.1 Related Work

This related work section focuses on elasticity and specifically its use for shape corre-
spondence.
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4.1.1 Elastic Shape Modeling

Physically-based elastic energy models have been widely used for computer graphics and
geometry processing applications [RW14]. The classical model for elastically deformable
surfaces is the shell model, originally introduced in a graphics context by Terzopoulos
et al. [TPBF87], for thin, flexible materials. Grinspun et al. [GHDS03] introduced the
discrete shell model in which a triangle mesh is a spatially-discrete representation of the
mid-surface of a shell. The model was used for simulation of deformable materials under
physical forces. Similar thin-shell energies have been used by Botsch et al. [BPGK06]
for interactive shape deformation. Heeren and coworkers [HRWW12, HRS+14] have
used the same physical model for time-discrete Riemannian analysis of shapes. In the
direction of improving efficiency, the as-rigid-as-possible (ARAP) framework [SA07] is
based on alternating minimisation over vertex positions and local rotations of an energy
that measures deviation from rigidity. Von Radziewsky et al. [vRESH16] recently showed
how model reduction can be used to efficiently evaluate elastic deformation models,
including the discrete shell energy. This enables elastic models to be used in realtime
applications.

4.1.2 Elastic Shape Correspondence

Already in [LDRS05] a non-linear elastic deformation energy between thin shells has been
investigated for surface matching. In this approach, the matching problem is formulated
on disc type parameter domains of the surface patches to be matched. This renders
the surface matching problems as a classical elastic image registration problem and
the membrane energy takes the role of the regularization energy, whereas the bending
energy turns into a fidelity energy with respect to the matching of mean curvature
functions on the parameter domains. The surface matching method in [WSSC11] picked
up the matching energy from [LDRS05] and investigated matches as surfaces in the
product space of the source and template geometry. Using relaxation methods from
linear programming Windheuser et al. were able to robustly compute bijective triangle
matching deformations with vertex to vertex correspondence. They do not allow for
general deformations of source vertices onto the target surface, and the approach is quite
heavy computationally due to the use of the product manifold. The elastic matching of
volumetric shapes from the perspective of shape optimization has been investigated by
Buhan et al. [dBDFN16]. Finally, Iglesias et al. [IRS18] have applied elastic energies for
computing correspondences between level-set surfaces.

Many early deformation-based approaches, that find, e.g., sparse [ZSCO+08] or
dense [LSP08], correspondences, solve for an extrinsic deformation, namely the optimiza-
tion variables depend on the local rotation that is applied to each face or vertex of the
mesh to obtain the deformed mesh. Two more recent deformation-based correspondence
approaches [AXZ+15, ZYL+17] target mostly man made shapes consisting of parts that
can be represented using simple geometric primitives, and are therefore less appropriate
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for non-isometric manifold models.

4.2 The elastic matching model

In a very general setup we consider two discrete surfaces, i.e. a source surface M1 and a
target surface M2 having n1, n2 ∈ � vertices, respectively. In general, we assume n1 �= n2,
hence M1 and M2 do not share the same connectivity. The meshes are represented
by the coordinate matrices with rows containing vertex positions, i.e. V1 ∈ �n1,3 and
M2 ∈ �n2,3, respectively. Since the connectivities of M1 and M2 are supposed to be
fixed throughout our algorithm, there are unique relationships M1 ↔ V1 and M2 ↔M2,
respectively, and we interchange notation if appropriate.

We aim at studying deformations Φ12 of the source surface M1 that are constrained
to the target surface M2 by means of a soft penalty. In detail, we consider two distinct
situations. First, we only require Φ12 to be locally injective. This model is suitable for
the matching of almost isometric shapes and, in particular, for partial matching. In a
second step, we expand the model to be suitable for non-isometric matching problems.
To this end, we additionally consider a reverse deformation Φ21 of M2 and study pairs
of deformations (Φ12,Φ21), which are approximately inverses of each other.

4.2.1 Locally injective matching

In the locally injective matching case the inclusion

Φ12(M1) ⊂M2 , (4.1)

should hold approximately and the deformation Φ12 should induce as little distortion as
possible. We therefore define Φ12 such that V1 and Φ12(V1) share the same connectivity,
and use well established elastic deformation energies to control this distortion. In
addition, to establish (4.1) on discrete surfaces, i.e. on their nodal positions V1 and
M2, we use a projection mapping from �

n1,3 to �n2,3 (see Fig. 4.2). These aspects are
explained in detail in the following two paragraphs.

Deformation energy. We assume the deformation Φ12 to be defined on vertices - the
deformed values of interior points are obtained by piecewise linear interpolation on the
faces. In particular, Φ12(V1) ∈ �n1,3 and the resulting mesh has the same connectivity
as M1. To simplify notation, we introduce an auxiliary variable V12 := Φ12(V1) that
contains the deformed vertex positions of M1 and represents Φ12 uniquely. Now we build
on the vast literature on physical deformation energies defined between two triangle
meshes sharing the same connectivity, e.g. [TPBF87, GHDS03, BS08, FB11, HRWW12].
In these approaches the distortion induced by an elastic deformation is separated into
two distinct contributions, i.e. membrane distortion and bending distortion. To this end,
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Figure 4.2: A sketch of the locally injective matching configuration for 1D simplicial
meshes in 2. The source mesh M1 with coordinate matrix V1 (blue) is deformed via
Φ12 to a mesh with coordinate matrix V12 (dashed blue). The deformed vertices are
projected based on the matrix P12 onto the target mesh M2 (red).

a generic elastic energy in the context of thin shell deformations can be written as

Wdef(V1, V12) = αWmem(V1, V12) + ηWbnd(V1, V12) (4.2)

with weights α and η. While V1 ∈ n1,3 is fixed throughout the algorithm, V12 ∈ n1,3

is a primal variable that we optimize for. The definition of the two energy components
will in particular ensure that (4.2) is invariant with respect to rigid deformations and
isometric deformations minimize the membrane energy. More details also on the physical
background on this energy will be given below in Section 4.3.

Projection mapping. To establish a suitable approximation of condition (4.1) on
triangular surfaces we have to consider mappings between the involved discrete spaces.
To this end, we consider a linear projection map P12 :

n2 → n1 such that P12V2 is a
projection of V12 onto the target surface M2. In particular, the mapping P12 represents
another degree of freedom. Then (4.1) can be achieved in a discrete setup by penalizing
‖P12V2 − V12‖2V1

(similarly to (3.10)), where the (squared) norm on the source surface is
given as the lumped L2-norm

‖B‖2V1
= Tr

(
B�A1B

)
(4.3)

with A1 ∈ n1,n1 being the lumped mass matrix of M1 (with the vertex areas on the
diagonal).

The linear projection P12 : n2 → n1 can be represented as a (sparse) matrix
P12 ∈ n1,n2 which contains barycentric coordinates for triangles of M2. In detail, the
i-th row of the matrix P12 has at most three nontrivial entries 0 ≤ P12ij , P12ik, P12il ≤ 1,
such that (jkl) represents a triangle in M2 and P12ij+P12ik+P12il = 1. Let P12 ⊂ n1,n2

the set of all matrices fulfilling these properties which is denoted as the set of admissible
maps. This definition implies that (P12M2)

T
i ∈ 3 is a point on the discrete surface M2

for i = 1, . . . , n1. In particular, (P12M2)
T
i will be a good approximation of the deformed

position of the i-th vertex in M1 whenever ‖P12V2 − V12‖V1 is small. Note that we only
project vertices, i.e. corresponding edges/faces might not be mapped onto the target
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surface.
Total energy. Altogether we obtain the following variational problem: For fixed
V1 ∈ �n1,3 and M2 ∈ �n2,3 we minimize the energy

Einj(V12, P12) =Wdef(V1, V12) + β ‖P12V2 − V12‖2V1
(4.4)

for V12 ∈ �n1,3 and P12 ∈ P12, where β is a penalty parameter and Wdef a generic elastic
deformation energy as in (4.2) that will be further specified in Section 4.3. Note that
for an optimal energy (4.4) the resulting deformation Φ12 defined by the optimal V12

will be (close to) an isometry and, in particular, locally injective. Due to the matching
term we expect that there are no local overfolds in the projection P12V2, which is close
to V12 in an L2-sense. However, Φ12 is not necessarily surjective which is obvious for
instance for partial matching problems.

4.2.2 Bijective matching

In the case of strongly non-isometric surfaces we additionally favor surjectivity, i.e. we
seek for one-to-one matching deformations. To this end, we expand our matching model
in a two step procedure. First, we introduce a reverse deformation Φ21 of M2 and
symmetrize our model (4.4). In particular, we consider an additional deformation energy
related to Φ21 and establish a suitable approximation of the condition

Φ21(M2) ⊂M1 . (4.5)

Then, in a second step, we ensure reversibility with additional energy terms to imply
the opposite inclusions of (4.1) and (4.5), i.e. M2 ⊂ Φ12(M1) and M1 ⊂ Φ21(M2),
respectively.
Symmetry. We introduce an auxiliary variable V21 ∈ �

n2,3 which contains the
deformed vertex positions of the target surface M2 and represents Φ21 uniquely, i.e.
V21 = Φ21(V2) (see Fig. 4.3). Furthermore, we consider a projection map P21 : �n1 → �

n2

to represent projections of V21 onto M1. Analogously to the definition of P12 ⊂ �
n1,n2

above, we define a set P21 ⊂ �
n2,n1 of admissible maps, which are sparse matrices

containing rows with barycentric coordinates for triangles of M1. To symmetrize (4.4)
we finally consider the additional termsWdef(V2, V21) and β̃ ‖P21V1−V21‖2V2

where β̃ ∈ �
is a suitable penalty parameter and ‖ · ‖2V2

is defined analoguously to (4.3). In particular,
V21 and P21 are additional degrees of freedom in our optimization algorithm.
Reversibility. Solely symmetrizing our model the new variables V21 and P21 are not
yet coupled with the variables V12 and P12 of the original model (4.4). In particular,
for a one-to-one matching we have to ensure suitable approximations of the inclusions
M2 ⊂ Φ12(M1) and M1 ⊂ Φ21(M2). So far, P12V2 is considered as the projection of
V12 onto M2 and the difference is penalized in a lumped L2 sense in the energy. Now,
we assume that the same map P12 represents the projection of V1 onto Φ21(M2), given
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Figure 4.3: To symmetrize the locally injective matching model sketched in Fig. 4.2 we
consider a deformation Φ21 in the opposite direction, which maps M2 with coordinate
matrix V2 to a mesh with coordinate matrix V21 (dashed red), and a matrix P21 encoding
the projection onto the source mesh M1 as additional degrees of freedom.

by P12V21 ∈ n1,3 (see Fig. 4.3). The corresponding projection error P12V21 − V1 is
also measured in the lumped L2-norm (4.3) to define a corresponding penalty energy.
Likewise, P21V1 was defined to reflect the projection of V21 onto M1. Thus, we analogously
consider the same map P21 as the projection of V2 onto Φ12(M1) with the projection
error P21V12 − V2, and a resulting penalty energy ‖P21V12 − V2‖2V2

(similarly to (3.9)).
Total energy. Altogether we obtain the following variational problem for the one-to-
one matching of strongly non-isometric surfaces: For fixed V1 ∈ n1,3 and M2 ∈ n2,3

we minimize the energy

Ebij(V12, V21;P12, P21) =Wdef(V1, V12) + β‖P12V2 − V12‖2V1

+Wdef(V2, V21) + β̃‖P21V1 − V21‖2V2

+ γ‖P12V21 − V1‖2V1
+ γ̃‖P21V12 − V2‖2V2

(4.6)

for V12 ∈ n1,3 and V21 ∈ n2,3 as well as P12 ∈ P12 and P21 ∈ P21. Here, β, β̃, γ, γ̃ ∈
are penalty parameters to be chosen appropriately.

The difference between Einj and Ebij for non isometric shapes is demonstrated in
Fig. 4.4. Evidently minimizing Ebij leads to better results. Note that minimizing (4.6)
implies P21P12M2 ≈M2 and P12P21V1 ≈ V1. Indeed, the triangle inequality yields that
‖P21P12M2 −M2‖V2 and ‖P12P21V1 − V1‖V1 become arbitrary small for large enough
penalty parameters β, β̃, γ, and γ̃.

Figure 4.4: The difference between minimizing Einj (left) and Ebij (right) for non isometric
shapes from SHREC07 [GBP07]. The final deformation V12 is shown as a solid shape,
and the target shape is rendered as wireframe. Here, Ebij significantly improves the
matching in the ear region, where Einj leads to unwanted artifacts.
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4.3 Elastic deformation energy

In this section we focus on the deformation energy associated with a matching deformation
Φ12 for two discrete surfaces sharing the same mesh connectivities. As above, let
V1 ∈ �n1,3 and V12 = Φ12(V1) ∈ �n1,3 be the geometries of the undeformed and deformed
configuration, respectively. It will often be convenient to denote quantities living on the
undeformed/reference surface with a hat – in particular, those objects are not subject
to optimization since V1 is fixed.

As mentioned before we deploy a model of thin shell elasticity in our approach. If
the triangle mesh is considered to be an approximation of a middle layer of a thin elastic
material of finite thickness δ > 0, the corresponding membrane energy Wmem scales as
δ, whereas isometric deformations induce a bending energy Wbnd that scales as δ3. Here
the non-linear membrane energy takes into account stretching and shearing and encodes
a preference for isometric deformations, while the bending energy (theoretically in the
limit for δ → 0 only observable for isometric deformations) compares curvature related
quantities such as shape operators or mean curvatures and is in particular suitable for
feature matching.

4.3.1 Non-linear membrane energy

Considering a simple quadratic energy functional to model membrane deformations a
degenerate mesh with vanishing edge length naturally appears as a minimizer. Although
a total collapse can in principle be prevented by additional forcing or boundary terms,
the favoring of short edges induces a bias in the optimization. To this end, we make use
of the non-linear membrane energy

Wmem(V1, V12) =
∑
t∈T

âtW (Gt) ,

where ât denotes the area of triangle t in V1 and Gt = ĝ−1t gt ∈ �
2,2 is the geometric

distortion tensor. Here ĝt, gt ∈ �2,2 are the discrete first fundamental forms of V1 and V12,
respectively, i.e. if e0, e1, e2 ∈ �3 are the edges of triangle t we have gt = [e1|−e2]T [e1|−e2]
which is invertible if t contains no parallel edges. The hyperelastic energy density
A �→W (A) for A ∈ �2,2 is given by

W (A) =
μ

2
trA+

[
λ

4
detA−

(
μ

2
+

λ

4

)
log detA−

(
μ+

λ

4

)]
, (4.7)

where μ, λ ≥ 0 are physical parameters, i.e. the Lamé coefficients of linear elasticity
(see [LDRS05, HRWW12] and for mathematical details [Cia00]). Note that we choose
λ = μ = 1 in all our experiments.

Since we have W (A) ≥ 0, W (�) = 0 and W,A(�) = 0, the identity map is a minimizer
of the energy, and the gradient of the energy is zero at the identity. Furthermore W is
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invariant wrt. rigid body motions, i.e., if t is deformed by means of a rigid body motion
we have Gt = � and hence W (Gt) = 0.

The first term
∑

t∈T ât trGt is sensitive to changes in edge lengths and coincides
with the Dirichlet energy used in [ESBC19]. The second term penalizes variations in
triangle areas. In particular, growth of area is penalized quadratically whereas shrinkage
is penalized logarithmically to prevent the degeneration of faces, i.e., W (A)→∞ for
detA→ 0. This property is indeed crucial to prevent the collapsing of triangles by a
matching deformation.

But, our algorithm relies on a good initialization given e.g. by the output of an
established correspondence method (as will be discussed in Sec. 4.4.1). This initialization
might come with degenerate faces and led to an undefined membrane energy density due
to a zero argument in the log term in (4.7). In order to deal with these situations we
slightly modify W in (4.7) by redefining the negative log term. In detail, we extend the
function A �→ − log detA via a linear profile log ε+ x−ε

ε below a small threshold ε > 0

such that the compound function is still differentiable. This way W (A) is well-defined
even if detA ≤ 0.

4.3.2 Bending energy

As the initial choice for our bending energy one might consider the Discrete Shells
bending energy introduced in [GHDS03], i.e.

WDS(V1, V12) =
∑
e∈E

(θ̂e − θe)
2

d̂e
l̂2e , (4.8)

where θ̂e, θe denote the dihedral angle at some edge e in V1 and V12, respectively.
If e = t ∩ t′ we have de = 1

3(at + at′), and le denotes the edge length of e. This
energy has the smallest possible stencil (i.e. two adjacent triangles) to capture bending
in a mesh and has been used extensively in the computer graphics community, e.g.
[BMF03, TW06, GGWZ07, FB11, HRWW12, HSTP11]. However, when fixing t and
rotating t′ around the common edge e the dihedral angle θe jumps by 2π when the faces
intersect each other (see Fig. 4.5). Unfortunately, this is a serious drawback when facing
extreme situations, e.g. large dihedral angles and faces penetrating each other, that can
appear in the initial phases of the optimization. In particular, the lack of continuity of
the above energy density leads to a failure of line-search methods in the optimization.
To resolve this we propose a modified version of (4.8) that rather penalizes deviations in
the cosine of the dihedral angles and is continuous for all pairs of dihedral angles:

Wbnd(V1, V12) =
∑
e∈E

(cos θ̂e − cos θe)
2

d̂e
l̂2e . (4.9)
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For e = t ∩ t′ we have cos θe = 〈nt, nt′〉 where nt, nt′ ∈ �
3 denote the unit triangle

normals of t and t′, respectively. This energy density is periodic when rotating t′ around
the common edge e and has proven to be very robust even for degenerated situtations
(see Fig. 4.5). Furthermore, the evaluation of (4.9) is cheaper than (4.8), since the latter
requires the costly calculation θe = arccos〈nt, nt′〉.

This modification of the bending energy provides robustness and does not affect
the physical or semantic correctness of the results in all of the conducted experiments.
This can be verified by comparing the results obtained with both energies, for a pair of
meshes where the Discrete Shells bending energy does not cause numerical problems.
Such an example is shown in Fig. 4.6.

Combining Wmem and Wbnd we define the total elastic energy (4.2) with weights

Initial 
Deformation

Intermediate
Deformation

Final 
Deformation

Target

Figure 4.5: Robustness of bending energy. Top: different rotation angles for two
adjacent triangles and corresponding graphs of discontinuous dihedral angle (red) and
its periodic cosine (blue). Bottom: Reconstruction of degenerated mesh by minimizing
Y �→ Wdef(X,Y ). Starting from a degenerated state (left), we first optimize with
η = 10−5 (middle left) and finally with η = 10−3 (middle right) to restore X (right).

Target Initialization (HOT) Discrete Shells Bending Energy

Figure 4.6: Comparison of the Discrete Shells (DS) bending energy (Eq. (4.8)) and our
modified bending energy (Eq. (4.9)). From left to right: the target texture, the initial
map (HOT), our optimized map using the DS bending energy (4.8), and our optimized
map using the modified bending energy (4.9). Note that the modified energy remains
faithful to the DS energy, leading to very similar results, yet with the advantage of
increased robustness (see Fig. 4.5).
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α, η > 0. Note that due to the scaling properties discussed above we have η/α ∼ δ2,
where δ > 0 is the physical thickness of the approximated thin shell. Obviously, the
total elastic energy (4.2) is invariant with respect to rigid deformations.

4.4 Optimization

In this section we describe the optimization pipeline in order to solve the bijective
matching problem, i.e. minimizing (4.6). The corresponding algorithm to optimize (4.4)
can be considered as a special case, i.e. with certain parameters set to zero and, in
particular, less degrees of freedom. The degrees of freedom (DOFs) of the energy (4.6)
are given by V12 ∈ �

n1,3 and V21 ∈ �
n2,3 as well as P12 ∈ P12 and P21 ∈ P21. The

numerical minimization of (4.6) is based on an alternating optimization strategy, i.e. we
sequentially minimize one of the above matrix valued DOFs while fixing the other three.
In the following, we discuss the main features of this algorithm as well as additional
implementation details.

4.4.1 Alternating optimization

Given suitable initial mappings P12 ∈ P12 and P21 ∈ P21, which represent projection
maps of V1 onto M2 and V2 onto M1, we initialize V12 := P12V2 and V21 := P21V1. Then
we perform the alternating optimization algorithm described in Algorithm 4.1. Each of
the K outer iterations of the algorithm consists of a sequential solution of four inner
optimization problems, two optimizing for the mappings P12, P21, and two optimizing
for the deformations V12, V21.
Mapping optimization. The minimization of Ebij with respect to P12 and with fixed
V12, V21, P21 is performed by solving small, constrained, linear least squares systems for
each row of P12, similarly to the approach suggested by Ezuz et al [EBC17]. The terms
that contain P12 are

β‖P12M2 − V12‖2V1
+ γ‖P12V21 − V1‖2V1

,

thus we need to balance the quality of the projection of V12 onto M2 with the quality of
the projection of V1 onto Φ21(M2). As all variables except for P12 are fixed, this term
can be written as ‖P12A−B‖2V1

, where A,B collect the fixed terms. Note that instead
of considering this as the balancing of two projections in �3, we can think of A and B as
coordinates in �

6. Therefore the optimal P12 will give the orthogonal projection of the
rows of B on a triangle mesh with the triangulation of M2, that is embedded in �

6 and
its vertex positions are given by A. This projection can be computed naively by finding
for each row of B the distance to its orthogonal projection on each such 6 dimensional
triangle. Let (j0, j1, j2) be the triangle that realizes the smallest distance to the i-th
row of B. Then, the three entries P12ijk for k = 0, 1, 2 are set to the corresponding
barycentric coordinates of the closest point on the triangle. To improve efficiency, it
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is enough to project each point only to a relevant subset of the triangles [EBC17]. In
addition, this process can be parallelized as the projection can be done in parallel for
each point and triangle, and therefore it is performed on the GPU.
Deformation optimization. Minimizing Ebij with respect to V12 is done with a
Quasi-Newton method while fixing all other variables. Hence, we only need to evaluate
the energy and the energy gradient with respect to V12. In detail, we employ a standard
BFGS-method using Armijo’s inexact line-search (as described in [NW99] for example)
with a stopping criterion ε = 10−8 and a maximum number of 50 BFGS iterations.

Finally, analogous strategies are used for optimizing with respect to P21 and V21.
Note that P12 ∈ P12 and P21 ∈ P21 by construction. For the locally injective matching
problem the only degrees of freedom are P12 and V12, hence there are only two inner
problems.

4.4.2 Implementation details

Global scale. Our deformation energy favors rigid body motions as solutions, where
the geometric distortion tensor is the identity. We therefore scale the shapes so that
the total area of each is one. This ensures that the argument of the membrane energy
density (4.7) is not globally shifted away from its local minimum at the identity, and
thus improves the robustness of our method.
Initialization. We chose to initialize our method using the Hyperbolic Orbifold Tutte
Embedding (HOT) method [AL16], that produces bijective maps given a sparse set of
landmarks. As HOT is intrinsic, it cannot take into consideration extrinsic features such
as crease lines, which our method can align and thus significantly improve the map, as
we demonstrate in the next Section.

In Fig. 4.7 we investigate the robustness of our method with respect to the initializa-

Algorithm 4.1 Alternating optimization for the bijective matching problem with
K = 300 outer iterations and four inner variational problems to be solved sequentially
via different optimization methods.

Input: Two triangle meshes M1, M2, initial P12 ∈ �n1,n2 and P21 ∈ �n2,n1

Output: Optimized P12 and P21

Scale M1, M2 such that each has unit total area
Get vertex positions matrices V1 ∈ �n1,3 and V2 ∈ �n2,3

Initialize V12 ← P12V2 and V21 ← P21V1

Until (Energy increment < Threshold) or (IterationCount > K)
P12 ← argmin

P12∈P12

Ebij(V12, V21;P12, P21) (projection)

V12 ← argmin
V12∈�n1,3

Ebij(V12, V21;P12, P21) (BFGS)

P21 ← argmin
P21∈P21

Ebij(V12, V21;P12, P21) (projection)

V21 ← argmin
V21∈�n2,3

Ebij(V12, V21;P12, P21) (BFGS)

end
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tion. We first modify the initial HOT map by composing it with an area-preserving map
generated by the flow of a divergence free vector field. Such a transformation introduces
variation in the initial map while keeping it bijective. We show the initializations and
results for such a modification where the vector field is flown for shorter (VFx5) and
longer (VFx10) times. The smaller distortion has no effect on our results, while the
larger distortion leads to convergence to a different final map, where locally the result is
smooth. Additionally, we distort the initial map by snapping each mapped point to the
closest target vertex (NN). Such a distortion causes many degeneracies, therefore we use
a smaller η = 0.002 to successfully handle it.

Masking edge sets. While HOT is theoretically bijective, it can generate faces which
have numerically zero area due to finite numerical precision. Therefore, our optimization
should be robust to such occurrences of collapsed triangles during the iterations. We
have already described in Section 4.3 how we modify the non-linear membrane energy
to be well-defined for degenerate triangles. However, such a simple extension is not
appropriate for the bending energy (4.9), where the evaluation of the energy density at
an edge requires the existence of two adjacent triangle normals. Therefore, the definition
(4.9) is slightly modified such that we only sum over admissible edges, where an edge is
admissible if its two adjacent triangles are not degenerate. Of course, the definition of
the gradient is modified accordingly. The set of admissible edges is updated after each
inner iteration step of the BFGS-method. In most experiments, we observe that almost
all edges are admissible after a few outer optimization iterations, and stay admissible
throughout the optimization process.

Parameters. The parameter values can be tuned according to the properties of the
shapes and the desired properties of the output, e.g. whether we expect the result to be

Target HOT HOT + VFx5 HOT + VFx10 HOT + NN

+ Ours:

Figure 4.7: Effect of the initialization. We apply our method to the HOT initialization,
and to three different distorted HOT initializations (see the text for the distortion
details). Moderate perturbations (VFx5, NN) have no effect on our final map, whereas
a strongly amplified perturbation (VFx10) leads to convergence to a different final map,
that has a moderate coarse scale twist in cylindrical regions, yet is still locally smooth.
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Figure 4.8: Impact of bending weight. A flat, rectangular source domain [0, 2]× [0, 1] is
mapped to the flat unit square (orange wireframe). We show the optimal deformation
Y (blue solid, first row) as well as Y with a linear scaling in z-direction for a better
visualization (blue solid, second row). The injective matching model was used with
α = 10, β = 1 (resp. β = 100 in the rightmost column) and increasing bending weights
η. For the initialization of Y we added some noise in z-direction (at most 1%) to the
flat source shape. The optimal deformation ranges from an isometry (left) to a uniform
compression without any bending distortion (right).

close to isometric or not.

α The weight of the non-linear membrane energy, mainly controls the area distortion. In
all our experiments we used α = 20 along with λ = μ = 1 for the Lamé coefficients
in (4.7).

η The weight of the bending energy, controls the extrinsic feature alignment. For
isometric shapes, a moderate value of η is sufficient to regularize the non-linear
membrane energy, and prevent undesired folding. Non-isometric shapes require a
larger value of η, to favor feature matching over minimizing the amount of stretch.
On the other hand, if flipped, or nearly degenerate, triangles appear in the initial
map, η should have a smaller value, to allow the membrane energy to recover a
smooth map. Finally, η can be used to either enforce an isometric deformation or
oppress any bending distortion (see Fig. 4.8).

β The weight of the mismatch energy, controls the correspondence between P12 and
V12. It is a standard penalty coefficient, and we follow the standard guideline of
penalty methods [WYYZ08] that suggests increasing β throughout the optimization
process. A low value of β at the beginning of the optimization enables a significant
deviation from the initial map, and β should increase to ensure the final map P12

corresponds to the deformation V12 whose elastic energy is minimized. For all the
experiments we start with β = 103 and linearly increase until β = 2 · 105.

γ The weight of the reversibility energy term, controls bijectivity. It should be high for
non-isometric shapes to ensure bijectivity. We use γ = 2 ·104 in all our experiments
where reversibility was employed.

We use the same parameters for the symmetrized version of the energy, i.e. β̃ = β

and γ̃ = γ.
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Timing. We measured example timings of our method applied on shapes with 5K
vertices. The average duration of a single iteration is 1.5 seconds, and the complete
optimization took 7.5 minutes. These measurements are the same order of magnitude
as recent shape correspondence methods. All of our experiments were executed on a
desktop machine with a TITANX GPU and an Intel Core i7 processor.

4.4.3 Limitations

The proposed method relies on the computation of an initial correspondence map, which
is allowed to contain degenerate triangles but should not have too complicated folds
and self-penetrations. To this end, our method can also be seen as a post-processing
step to ensure extrinsic feature alignment on top of a fair intrinsic matching result.
Unfortunately, for highly complex meshes the minimization algorithm might get stuck in
a local minimum far from the global optimum. Here, a multiscale approach is required,
which couples the mesh resolution on the source and the target and adapts the bending
energy with an appropriate notion of scale dependent curvature information. Finally,
our method is oblivious to the orientation of the resulting map, as we optimize for the
first fundamental form of the deformation and not the Jacobian. On the one hand this
makes our approach rotation invariant, but on the other hand we cannot incorporate
into the energy a penalty for inverted triangles.

4.5 Results

In this section we present the results of our method for datasets that contain various types
of shapes. We show quantitative and qualitative results that demonstrate improvement
over the state of the art. In addition we show the applicability of our method for the
applications such as consistent quadrangular remeshing and shape interpolation.

4.5.1 Benchmark evaluation

We measure the error with respect to the ground truth using the standard cumulative
error graph [KLF11], that shows the percentage of points on the source shape (y axis)
whose corresponding point on the target shape is closer than a certain geodesic distance
(x axis) to the ground truth correspondence. The geodesic distances are normalized by√
s2 where s2 is the total face area of M2. When only a sparse ground truth is given,

the percentage of points is relative to the number of landmarks. Similarly, we show
cumulative error graphs of the conformal and area distortion. We compute the conformal
distortion per triangle as defined by Hormann et al. [HG00], and subtract 2 so that the
minimal conformal distortion is zero. Area distortion per triangle is computed similarly
to Nadeem et al. [NSZ+17] as

∣∣∣log at
ât

∣∣∣ where ât is the area of the source triangle of M1

and at is the area of the corresponding deformed triangle.
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Figure 4.9: Quantitative results for the FAUST dataset. Our method significantly
outperforms the initialization according to all distortion measures.

For the qualitative evaluation we use texture transfer. We compute the texture
coordinates of the target shape by projecting V2 on a plane. We then transfer them
to M1 by applying the projection map P12 to the texture coordinates. As we use a
texture with fine details, this visualization enables the detection of local distortion, and
the assessment of semantic correctness. As the texture coordinates are computed by
projection on a plane, texture discontinuities indicate regions that are parallel to the
projection plane. In addition we visualize the vertex normals of the target surface by
color, where the RGB values correspond to the [x, y, z] coordinates of the normals. Again
we transfer the normals to the source shape using P12. This visualization emphasizes
regions of the surface where features were not mapped correctly.

FAUST Dataset. The FAUST dataset [BRLB14] contains shapes of 10 different
humans, each of them in 10 different poses, and a ground truth correspondence is given.
Since the shapes in FAUST have the same triangulation, which might bias matching
algorithms, we uniformly remesh the dataset to avoid this bias. We recover the ground
truth correspondence between the remeshed shapes by composing the projections of the
remeshed shapes on the original corresponding shapes.

We employ the standard subsets of intra and inter classes. Note, however, that we
use different parameters for the intra class and inter class, as the locally injective model
(4.4) is sufficient for isometric shapes. For the inter class, we deploy symmetrization
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Target Ours HOT

Figure 4.10: Visualization of the initial map and our results for a pair of non-isometric
shapes from FAUST using texture transfer. We zoom in on the head to highlight the
effect of our crease preserving map, that is semantically correct despite the distorted
initialization.

and reversibility, i.e. make use of the bijective model (4.6). We use the same values of
α = 20 and β = 103 initially and linearly increase until β = 2 · 105. However, we use
a larger bending weight η = 0.01 for the intra class than η = 0.001 for the inter class.
The bending and reversibility terms both prevent "foldings" of the deformed surface,
therefore the bending weight is larger when the reversibility term is not used. For the
inter class we use γ = 2 · 104. We use 17 landmarks as input to HOT[AL16].

The quantitative results are shown in Fig. 4.9. We measure the error with respect to
the ground truth maps, the conformal and area distortion for each class, as specified in
section 4.5.1. Our method significantly improves the similarity to the ground truth map,
as well as the conformal and area distortion, especially for the more challenging inter
class. In Fig. 4.10 we show the qualitative improvement due to our crease-aware method.
Note especially the correct mapping of the forehead, the ears and the nose region.

SHREC’07 Dataset. We additionally test our method on 71 pairs of shapes from the
SHREC’07 dataset [GBP07], that contains various classes that are mostly non-isometric,
and the BIM benchmark [KLF11], which provides a sparse set of corresponding landmarks
for each class. Since hard landmark constraints are used in HOT, we only use a subset
of the landmarks given by the benchmark to evaluate the ground truth error on the
remaining landmarks. For the SHREC’07 dataset we minimize the symmetric energy
(4.6) with α = 20, η = 0.1, β = 1000 initially and linearly increasing for the first 200

Class VMTP HOT RHM DDM Ours
glasses 76.12 97.64 100.87 98.11 54.18
airplanes 263.70 175.16 183.05 188.63 105.30
ants 116.07 136.63 248.56 713.89 59.44
tables 290.57 225.59 282.18 237.05 141.57
teddies 58.76 85.26 119.68 81.44 51.90
hands 55.94 122.39 142.93 129.37 89.49
pliers 24.24 36.11 41.43 38.76 20.27
fish 59.62 87.69 84.91 89.55 48.48
birds 166.88 199.50 158.34 201.23 84.32

Table 4.1: Mean curvature error for each class of SHREC’07 [GBP07]. Our method
produces the lowest error for all the classes except for the “hands” class.
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Figure 4.11: Quantitative results for the SHREC07 dataset. Our results have a sig-
nificantly lower geodesic and conformal distortions compared to VMTP [MCSK+17],
and a significantly lower area distortion compared to HOT [AL16], DDM [EBC17] and
RHM [ESBC19].

Figure 4.12: Visualization by texture transfer of our results compared to HOT [AL16],
VMTP [MCSK+17], DDM [EBC17] and RHM [ESBC19] for a pair from each class we
used from the SHREC07 dataset. See the text for details.
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OursOursTarget HOT VMTP DDM RHMHOT VMTP

Figure 4.13: Visualization by normal transfer of our results compared to HOT [AL16],
VMTP [MCSK+17], DDM [EBC17] and RHM [ESBC19] for a pair from each class we
used from the SHREC07 dataset. See the text for details.

iterations and γ = 2 · 104. These parameters are almost identical to the parameters we
used for FAUST, with the exception of a larger bending weight η, which is required for
the significantly non-isometric shapes of SHREC’07.

We compare our results with the initial map computed using HOT and with the
shape correspondence method that was recently suggested by Manded et al. [MCSK+17]
(VMTP). Additionally, we compare with two other methods that improve input corre-
spondences, where we use the same initialization as our method (HOT): one method
is based on functional maps [EBC17] (DDM) and another optimizes the reversible
harmonic energy [ESBC19] (RHM). The quantitative comparison is shown in Fig. 4.11,
and visualizations using texture mapping and normal transfer are shown in Fig. 4.12
and 4.13. Note that compared to VMTP our method yields considerably lower geodesic
and conformal distortions, as well as a significantly lower area distortion compared to
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HOT, DDM and RHM. While RHM has the lowest conformal distortion, it does not align
extrinsic features, as is especially notable in the “tables” and “glasses” examples. Thus
our approach yields maps which are semantic, and have both low area and conformal
distortions.

Additionally, we compare the error of mean curvature alignment. Semantic maps
are expected to align features, such that corresponding points should have similar mean
curvature values. We compute the mean curvature per vertex of the source and target
shapes using [KSNS07], and compute the error per mesh as ‖P12H2−H‖V1 where H,H2

denote the vector with mean curvature values per vertex of the source and target shapes
respectively. We sum this error across each class we used, and compare the results
in Table 4.1. Our mean curvature error is the lowest for almost all classes, with the
exception of the “hands” class, where we believe that more landmarks are needed for a
better initialization and results.

The advantage of matching mean curvature values is additionally evident in Fig. 4.13.
The texture correspondence (left) visualizes our correct mapping of the table crease, the
airplane and bird wings, and the sunglasses top crease. The normal mapping (right)
serves as an additional visualization of the advantage of our approach. Note that using
our result, the pushed-forward normals from the target shape match the creases of the
source shape (see e.g., the handles of the plier, the right leg of the teddy, and the bottom
crease of the sunglasses).

More results are shown in Fig. 4.14, where we used our method (with α = 20,
η = 0.002, β = 1000 initially and linearly increasing for the first 200 iterations, γ = 2·104)
to compute correspondence between the left human shape and other human shapes
from FAUST, and between the Giraffe and other quadrupeds from SHREC’07. The
transferred texture shows that our results are highly accurate even in the case of
significant non-isometric deformations.

4.5.2 Partial matching

We demonstrate our method for partial matching, using a simple test case, as shown
in Fig. 4.15. We map a part of the tail of an airplane to the whole airplane shape. An
initial distorted map is computed by rotation of the partial shape and projection on the
target surface. While this initialization method is not robust generally, we use it as a
proof of concept to show that our method can be extended to partial matching.

Slight adjustments needed to be made for the partial case. First, rescaling both
shapes to have the same total area is not be suitable for partial matching, as it would
cause the desired map to have a high area distortion which our method penalizes. In this
case we do not scale the shapes. Second, since the total area of the shapes is different,
the parameter values also depend on the total area of the shapes; α is divided by s the
total area of M1, and β is divided by s ·s2 the multiplication of the total areas of M1,M2

to ensure robustness across shapes in different scales. Indeed, using this normalization,
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Figure 4.14: Visualization of our correspondence between various non-isometric shapes
from the FAUST and SHREC’07 datasets, using texture transfer.

Initial Map Final MapTarget

Figure 4.15: Demonstration of our method for partial matching of a part of the tail of an
airplane to the whole airplane shape. An initial distorted map (middle) was computed
by rotation of the partial shape and projection on the target surface. Our method
successfully computed a map (right) that aligns the features correctly.

we used the same α = 20, η = 0.1, β = 1000 for the partial matching example as we used
for the full matching of shapes from SHREC07.

4.5.3 Applications

Consistent cross-field design. High-quality feature aligned correspondences are
especially important in the context of computing consistent cross fields for a pair of
shapes. Consistent cross fields are used for generating (approximately) consistent quad
meshes, and are therefore required to align to the principal curvature directions of the
shape. If the correspondence does not align correctly the creases of the shapes, a solution
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where both cross fields are aligned with the curvature directions, and also correspond
under the map, will not exist. We show in Fig. 4.16 the quadrangulations resulting
from employing the method of Azencot et al. [ACBCO17], where we either use maps
computed with HOT (top row) or with our method (bottom row). Notice that HOT
maps induce a significant stretch on one of the plier legs (shown both for the front and
back views in the top row). In comparison, our result does not have such a shear, and,
in addition, the quad edges are aligned with the curvature directions.

Consistent quadrangulation. Ultimately, shape correspondence can be used to
consistently remesh a collection of shapes, for applications such as shape blending and
shape analysis. To demonstrate that such an application is feasible with our mapping

HOT

Ours

F B

Figure 4.16: We compute consistent cross fields to quadrangulate a pair of shapes and
we provide views from the front and the back. Using maps computed with HOT (top
row) yields a significant shear on the plier leg. This shear is not observed when our
correspondences are used (bottom row).

Figure 4.17: Consistent quadrangulation of a set of shapes by computing a curvature
aligned quadrangulation of one shape (left) and mapping it to the other shapes (right)
using our computed map. Note that the mapped quadrangulations are curvature aligned,
although they were not computed as such explicitly.
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Figure 4.18: Shape interpolation using [HRS+14]. The target shape is remeshed using our
result (right) so that the triangulation of the source (left) and target shapes correspond.
The resulting interpolation (three middle shapes) is smooth, which indicates a correct
semantic mapping of the airplane’s features.

approach, we used our results to map a curvature-aligned quadrangulation of a source
shape, shown in Fig 4.17 (left), to a set of other shapes, shown in Fig 4.17 (right). Note
that the resulting quadrangulations are similarly curvature aligned, although we have
not explicitly computed them as such.
Shape interpolation. We demonstrate the usage of our method for shape inter-
polation. As shape interpolation methods mostly require consistent triangulation of
the source and target shapes, a correspondence between them is required. We remesh
the target shape according to a map P12 by setting the new vertex positions to P12M2

and using the triangulation of the source shape. Then we use [HRS+14] to interpolate
between the shapes. The results are shown in Fig. 4.18, and the supplementary video.
Note the smooth interpolation of the shapes, which indicates the semantically correct
mapping of features.
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Chapter 5

GWCNN: A Metric Alignment
Layer for Deep Shape Analysis

Recent advances in acquisition and modeling tools for 3D geometry, as well as the rising
popularity of user-facing applications such as VR, have led to unprecedented growth
in geometric data. This necessitates effective shape analysis algorithms that predict
semantic attributes of shapes, essential for organizing, searching, and using geometric
datasets for content creation. Deep neural networks hold significant promise for these
tasks, providing a fundamental tool for learning a mapping from low-level geometric
features to high-level semantic attributes. Unfortunately, these networks usually operate
on regular inputs such as n-D grids, which are not natural representations for geometric
data. Thus, most existing network architectures pre-process the data by converting
unstructured point or triangle surface samples to regular representations.

One common way to do this conversion is to rasterize surfaces to volumetric grids,
where each cell either stores a binary occupancy function [QSN+16] or a distance to
the closest surface point [SX16]. This leads to surface representations that only capture
coarse geometry. One can also project 3D models to multiple external camera planes and
analyze the corresponding images [SMKLM15]; this leads to redundancy in representation
and is only suitable for cases when the majority of the surface is visible from a small
number of pre-defined cameras. The main limitation of the extrinsic approaches described
above is that they are sensitive to articulation and deformation. A common way to
circumvent this problem is to analyze the surfaces intrinsically. To this end, previous
work explored flattening techniques such as geometry images [SBR16] and local geodesic
polar coordinates [BMRB16]. While these pre-processing steps typically embed surfaces
to a regular domain enabling application of convolutional neural networks, existing
embedding procedures stay fixed across all problems and cannot be tailored specifically
to the task.

Our main contribution is a parametric and differentiable mapping layer that can be
optimized for a specific problem and dataset. Our key idea is to leverage an efficient
algorithm that optimizes the regularized Gromov–Wasserstein (GW) objective [SPKS16]
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Descriptor
Computation
(pre-process)

Metric 
Alignment

(network layer)

Other 
CNN layers

...

Figure 5.1: Our pipeline. We first compute point-wise surface features that are mapped
to a stack of 2D functions over a canonical domain via our novel metric alignment layer
(see Fig. 5.5). This provides a natural input for subsequent CNN layers.

to map from unstructured data to a regular representation. Unlike most correspondence
algorithms, this regularized technique is differentiable in the geometries of the mapped
domains, making it amenable to gradient-based optimization techniques.

Our pipeline is visualized in Figure 5.1. Given an input shape and scalar geometric
features, our layer maps the features to a common 2D grid. This yields a multi-channel
image over the grid that we feed into standard deep architectures. As we optimize the
GW objective [SPKS16], our input is given in the form of a pairwise distance matrix
and thus our layer can handle polygonal meshes, point clouds or general graphs as
long as pairwise distances are computable. Further, the GW map minimizes distortion
in pairwise distances between the source and the target, leading to mapped features
that are consistent under isometric deformation of the source geometry. Finally, we
include the geometry of the 2D grid as a variable during the learning stage, learning task-
optimal mappings from unstructured domains to the regular domain. We implement
our layer with the Torch library [CKF11] and use it within a deep architecture for
shape classification. Results demonstrate that our approach outperforms state-of-the-art
methods on standard benchmarks for non-rigid shape classification and retrieval.

5.1 Related Work

A wide range of fundamental shape analysis problems such as classification [BBGO11],
segmentation [KHS10b], and correspondence [COC14] have been addressed with machine
learning techniques (see [XKH+16] for a survey). Due to recent developments and
success of deep neural networks, researchers have focused on developing appropriate
shape representations suitable for deep learning. In this section, we overview relevant
extrinsic and intrinsic representations as well as other work related to our approach.

5.1.1 Representations for Deep Learning

Extrinsic. One straightforward representation for geometry is a 3D voxel grid, where
each voxel stores a binary occupancy function [MS15] or a truncated distance to the
surface [SX16]. Deep CNNs have been used to analyze these grids for shape classifi-
cation [WSK+15] and geometric modeling [BLRW16, WZX+16]. This representation
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is inefficient since typical surfaces occupy only a small fraction of the volume. Riegler
et al. [ROUG17] suggested to use an octree instead of a dense grid to allow a more
compact representation. Another alternative is to project surfaces to external camera
planes. One can analyze rendered images [SMKLM15, KAMC17] or depth images from
multiple viewpoints [WHC+16] or from panoramic views [SBZB15]. These techniques
only work for shapes for which all relevant geometric details are visible from a fixed set
of external cameras. Qi et al. [QSN+16] proposed view-dependent volumetric analysis
with anisotropic kernels, closing the gap between multi-view and volumetric approaches.

One can also directly analyze features of unordered surface elements such as mesh
faces [GZC15], but this approach requires powerful features that provide additional
contextual information. Concurrently with our work, Qi et al. [QSMG17] proposed
a novel network architecture that directly analyzes coordinates of unordered point
sets by using symmetric order-independent max pooling functions. This concept was
later extended in an hierarchical model [QYSG17]. Atzmon et al. [AML18] performed
convolution on point clouds by performing an Euclidean convolution on the volumetric
extension of point cloud functions.

Extrinsic techniques are sensitive to articulation and non-rigid deformation, a com-
mon problem in shape analysis addressed via intrinsic shape representations. Such
representations often map the shape to a common domain in a way that is invariant to
nearly-isometric deformation of the input.

Spectral. Several methods have been proposed for spectral analysis of functions on
a graph [BZSL14, HBL15, DBV16, KW17]. While these methods are invariant to
isometry, they are limited to analyzing functions on a specific non-Euclidean domain
(e.g. a graph with fixed connectivity) and thus cannot be used to analyze different
geometries. Concurrent to our approach, Yi et al. [YSGG17] propose to synchronize the
spectral domains of the graphs to enable cross-shape analysis. They create canonical
shape domains (described by their graph Laplacian eigenbases) as a pre-process, and
use extrinsic alignments between shapes to initialize functional maps [OBCS+12] to the
common domain. While potentially applicable to non-rigid shapes, they focus their
analysis on rigid man-made objects and use the consistent extrinsic alignment provided
in the ShapeNet dataset for the initialization.

Local mapping. Masci et al. [MBBV15] use geodesic polar coordinates to parameterize
a surface locally around every point. Boscaini et al. [BMRB16] improve this approach
with anisotropic patches. These techniques operate on relatively small geodesic patches
which limits their ability to incorporate global context.

Global mapping. To remedy this, Sinha et al. [SBR16] proposed to use geometry
images [GGH02], a global shape parameterization technique for manifold genus zero
surfaces. To parameterize point clouds or polygon soups, Sinha et al. use α-shapes [EM94]
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to create a manifold input, and topological processing to ensure the input is genus zero.
Unfortunately, this pre-processing does not preserve the original geometric details,
such as the interior structure of the model. Furthermore, the same surface can be
parameterized in multiple ways depending on the placement of cuts. Thus, this method
also suffers from inconsistent mappings across similar surfaces. Maron et al. [MGA+17]
used seamless parameterization to a planar torus, that allows a translation invariant
convolution operator on genus 0 surfaces.

In contrast to existing approaches, our metric alignment layer is based on minimizing
the regularized GW objective and thus explicitly optimizes for consistency in aligning
surfaces to the regular domain. Moreover, we learn the geometry of the canonical domain
specifically for the task at hand.

5.1.2 Shape Parameterization and Mapping.

Mapping a shape to another domain is a common task in shape analysis with applica-
tions to texture mapping [LPRM02a], modeling [PSS01], correspondence [AL15], and
retrieval [SK16]. Surface parameterization techniques [HLS08] typically require manifold
surfaces and do not aim to embed similar shapes consistently. Spectral methods [ZvKD10]
usually rely on the first few eigenfunctions of a Laplacian operator and thus only encode
low-frequency attributes of shapes. Correspondence techniques map between arbitrary
geometric domains [AL15, OBCS+12] while minimizing some distortion metric, thus
offering a certain degree of consistency when mapping similar shapes. However, it is
not immediately clear how to optimize the embedding process for these methods with
respect to a back-propagated loss function of the neural network.

Typical deep learning algorithms require the gradient of the loss function with respect
to all parameters of the learned network. This is problematic for shape parameterization
as a customizable unit in a network, since at some level the output is a permutation. To
overcome this issue, we use the metric alignment method of Solomon et al. [SPKS16]
because its use of entropic regularization makes the objective differentiable in the input
metric spaces. This differentiability is also leveraged by Peyré et al. [PCS16] to compute
barycenters of sets of metric spaces.

5.2 Metric Alignment Layer

5.2.1 Problem Setup

The role of the metric alignment layer is to map scalar geometric features given on an
input shape Σ to features on a canonical domain Σ0. In our design of the layer we have
the following goals:

Applicability. The layer should be applicable to multiple shape representations, e.g.
point clouds and triangle meshes, and its output should be usable with standard network
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architectures.

Consistency. Given geometric features that are invariant to isometries, the output of
the layer should be invariant to isometries.

Learn-ability. The layer should be specified by a set of parameters, which can be
learned and tuned within a deep learning network. Consequently, the layer should be
differentiable with respect to these parameters.

With these goals in mind, we make a few design choices. First, since many network
architectures are available for images, we define the canonical domain Σ0 to be n0 points
laid out on the 2D grid, and encode the k output features as a multi-channel image
f0 : Σ0 → �

k on this grid. Second, to allow for diverse input representations, we use
the Gromov–Wasserstein (GW) generalized mapping algorithm [SPKS16]. The GW
algorithm represents a map as a “soft correspondence,” namely given two geometries
Σ,Σ0 with n and n0 points respectively, the algorithm constructs a matrix Γ ∈ �n0×n

such that a pair of points (p, p0) ∈ Σ× Σ0 is assigned a high probability if they should
be matched. We thus define the output of the layer to be f0 = Γf , where f : Σ→ �

k

are the features defined on the input geometry. This mapping technique can be applied
to point clouds, polygon soups, or any other geometric domain equipped with a metric.

Another advantage of using the GW algorithm is that it encourages consistency as it
tries to find an embedding that preserves the metric of the source shape. Specifically,
given the pairwise distance matrix D ∈ �n×n between points on the source domain Σ,
and the pairwise distance matrix D0 ∈ �n0×n0 on the target domain Σ0, the matrix Γ is
constructed such that if a high probability is given to (x, x0) and (y, y0), both in Σ×Σ0,
then the distances D(x, y) and D0(x0, y0) are similar. Figure 5.2 shows a GW map
between a human in different poses and a 2D grid. We visualize the map by selecting

Embedding to      :

Selected
points:        

Selected
points:         

Embedding to    : 

, f ˜ , f̃

0 0

Γ(D,D 0)f Γ(D̃,D0)f̃

Figure 5.2: Visualization of the GW fuzzy map for two nearly isometric shapes from
FAUST [BRLB14]. (left) two shapes and corresponding color coded points, (right)
distributions on the grid according to the GW map, high intensity indicates high
probability for a match.
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 (WKS)
Initial Embedding

Learned Embedding

 (WKS)Σ, f Σ̃, f̃Γ(D,D0)f Γ(D̃,D0)f̃

Γ(D,D0)f Γ(D,D0)f̃

f0 = f̃0 =

f0 = ˜f̃0 =

Figure 5.3: Toy example, learning a target metric to optimize consistency. Given input
descriptors f, f̃ on two shapes we show embeddings to canonical domain (center) before
optimization (top) and after optimization (bottom).

a few feature points on the human, assigning them consistent colors and mapping the
colors to the grid with the soft correspondence produced by GW optimization. Note the
similarity between the resulting representations on the grid. We use a slightly distorted
target grid to avoid symmetric ambiguities in the target metric (see Section 5.3).

Finally, the GW algorithm is differentiable with respect to the geometry of the target
domain, represented by the metric D0. Hence, we can set up optimization problems over
the distance matrix D0 to modify the resulting map, which we demonstrate using the
following toy experiment visualized in Figure 5.3. Given two shapes Σ, Σ̃ of a one-headed
and a two-headed bunny, we compute a Wave Kernel Signature [ASC11] descriptor to
define the source functions f, f̃ (left and right) respectively. We embed them to the 2D
grid Σ0 with the GW mapping which yields functions over the grid f0, f̃0 (center-top).
As the surfaces are not isometric these mappings are not consistent and the resulting
images are dissimilar. This can be amended by optimizing over D0 to minimize the
image dissimilarity:

D�
0 = argmin

D0

‖Γ(D,D0)f − Γ(D̃,D0)f̃‖2.

We use gradient descent to find a local optimum D�
0, and the resulting mapped images

f�
0 and f̃�

0 are more consistent (center-bottom). Figure 5.4 further demonstrates the
improvement in consistency when using the optimized domain. We map a function that
highlights the heads of the two-headed bunny (left) to the one-headed bunny via the
original and the optimized domains. When using the original domain the two heads are
mapped to the tail (center) whereas with the optimized domain the heads are mapped
to the head (right).

We use a similar idea within a convolutional neural network architecture, by con-
structing the metric alignment layer depicted in Figure 5.5. The layer receives as input
the distance matrices of the source shapes D, as well as area weights μ. It then learns
the target metric D0 during training so that the mapped descriptors minimize the loss
function when plugged into the next layers. Therefore, we effectively tune the regular
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Indicator function, Mapped via initial Mapped via optimized
f̃ = Γ−1(D̃,D 0)Γ(D,D 0)f f̃ = Γ−1(D̃,D 0)Γ(D,D 0)f

f

Figure 5.4: Mapping an indicator of the heads (left) to the single-headed bunny before
(center) and after (right) the optimization of the target domain. See the text for details.

GW minimization

Learnable parameters: 
Constant parameters: 

Matrix 
Multiplication

mapped 
descriptors

Figure 5.5: Our metric alignment layer. The inputs are a pairwise distance matrix D, a
measure μ, and k per-point descriptors. The layer maps the descriptors to a common
domain by learning its metric D0, and generates a mapping matrix Γ. Finally, the input
descriptors are multiplied by Γ to generate a stack of 2D images to feed to the following
layers.

embedding to produce mapped descriptors that best suit our task.

5.2.2 Implementation

GW minimization. The computation of the mapping matrix Γ between the input
domain Σ and the regular domain Σ0 is the main building block of our metric alignment
layer. We use the method proposed by Solomon et al. [SPKS16, Algorithm 1] that requires
two distance metrics D and D0 for two domains and nonnegative area measures μ, μ0.
The output is a matrix Γ that locally minimizes the regularized Gromov–Wasserstein
distance measure:

GW 2
2 (μ0, μ,D0, D) :=

min
Γ∈M̄(μ0,μ)

⎡
⎣∑

ijkl

(D0ij −Dkl)
2 ΓikΓjlμ0iμ0jμkμl − αH (Γ)

⎤
⎦ (5.1)

where H (Γ) = −∑
ik Γik ln (Γik)μ0iμk is the entropy of Γ, and

M̄ (μ0, μ) :=
{
Γ ∈ �n0×n

+ : Γμ = 1, ΓTμ0 = 1
}
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is the set of possible fuzzy maps, also known as measure couplings. Intuitively, Γij

represents the probability that the ith point of Σ0 corresponds to the jth point of Σ.
The parameter α controls the entropy, where larger values create “fuzzier” maps. We
set α = 0.005 throughout all experiments and normalize each distance matrix by its
maximal value.

Derivatives. Typically, neural network parameters are optimized using stochastic
gradient descent, in which the chain rule is used to differentiate the loss function with
respect to the parameters in a process called backpropagation. Standard implementations
of this procedure provide us with the gradient of the loss L with respect to the map Γ,
denoted by ∇ΓL; from this matrix, our goal is to compute the gradient ∇D0L of the
loss L with respect to the metric D0, which determines Γ through Gromov–Wasserstein
optimization.

Recall that [SPKS16] alternates between a closed-form exponential formula and
Sinkhorn projection onto the cone of doubly stochastic matrices to compute Γ. For
every iteration i = 1, ..., I of their algorithm, we denote the map by Γi and the input to
Sinkhorn projection as Ki. Given ∇ΓIL from backpropagation through the later stages
of our network, we obtain ∇D0L by iteratively computing ∇ΓiL, ∇KiL in reverse order
from i = I to i = 1.

Given ∇ΓiL, ∇KiL is computed using partial derivatives of Sinkhorn projection of
Ki onto the doubly stochastic cone. While [BPC16] differentiates individual iterations
of the Sinkhorn algorithm for this task, for efficiency and storage reasons we choose to
compute the derivative of the converged term directly using an implicit linear system
derived from the following stationarity conditions for Γi:

Γi= [[v]]Ki[[w]] Γi�μ0= [[w]]Ki�(v ⊗ μ0) = 1

Γiμ= [[v]]Ki(w ⊗ μ) = 1 1�v= 1�w,
(5.2)

where [[v]] ∈ �n×n is a diagonal matrix with v on the diagonal. Here, v and w are vectors
of length n0, n, respectively, computed during Sinkhorn projection. The first equation is
the explicit computation of Γi, while the second and third equations define a valid fuzzy
map; the last equation ensures that we have unique solution for v, w. All are satisfied
when Sinkhorn projection converges. Differentiating these four equations with respect
to each entry of Ki yields a linear system whose solution gives the derivatives of Γi with
respect to the entries of Ki.

Using the chain rule and ∇ΓiL we iteratively compute ∇KiL and ∇Γi−1L; chaining
these computations together leads to ∇D0L. Full derivations and formulas are provided
in Appendix C.

Mapped descriptors. Once Γ is computed, we map the k point-wise input features
f ∈ �n×k to the regular domain Σ0 obtaining an image f0 = Γ[[μ]]f . We then reshape
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the k mapped images f0 into k matrices of size
√
n0 × √n0 (with

√
n0 = 32 for all

experiments), to represent a multi-channel image over the 2D grid. We then feed the
resulting k matrices of fixed size to a neural network that may contain convolutional
layers, which is expected to learn appropriate kernels for each feature independently.

Parameters. For a given shape Σ we compute n evenly distributed point samples,
typically around 1000. To evenly sample n points on a triangle mesh, we first randomly
sample 10n triangles and barycentric coordinates for each sampled triangle, where each
triangle is chosen with probability proportional to its area. Then we cluster the sampled
points to n clusters, and select the point closest to the centroid of each cluster. The
pairwise distances D are computed using Dijkstra’s algorithm on a graph constructed
by connecting every sampled point to its 5 nearest neighbors and iteratively connecting
closest disconnected components. The measures μ are taken to be one third of the area
of neighboring faces for manifold meshes, and unit for point clouds.

For intrinsic per-point features f of deformable manifold meshes we use Gaus-
sian curvature [BKP+10], conformal factor [BCG08] and the first entry of the Wave
Kernel Signature [ASC11]. For extrinsic per-point features of polygon soups we use
PCA-based features in the local point neighborhoods [KHS10b], height, shape diameter
function [SSCO08], and absolute curvature using the publicly available implementa-
tion [KCGF14]. The descriptors are normalized to have zero mean and unit variance on
the training set.

Computing the metric alignment matrix and its gradients requires solving a large
system of linear equations, and can become a major bottleneck in training. To remedy
this, we run our metric alignment algorithm for a fixed number of iterations I = 5, and
use Γ from the previous epoch as the initial solution.

We implement this layer using the Torch library [CKF11] and execute the metric
alignment algorithm and its differentiation on GPU using NVIDIA’s cuDNN [CWV+14]
and MAGMA [TDB10].

5.3 Shape Classification

Given the multi-channel 2D grid as the output of metric alignment layer we can take
advantage of standard CNN layers designed for image analysis. In particular, for
classification task we use a stack of convolutional layers, batch normalization, ReLU and
dropout layers [SHK+14], depicted in Figure 5.6.

While the differentiable metric alignment layer enables us to train this network end-
to-end, we found that pairwise distances of the target domain are difficult to optimize
directly. Thus, we created a different mini-network dedicated to learning the common
domain. Our mini-network only contains the metric alignment layer, and follows the
Siamese architecture [BBB+93]. We construct our loss function to favor images of shapes
within the same category to be as-similar-as-possible, and images of shapes from different
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Figure 5.6: Our convolutional neural network for classification and shape retrieval.

categories to be separated by a margin. The input is a pair of shapes Σ1,Σ2 with their
category labels y1, y2 represented using pairwise distance matrices D1, D2, measures
μ1, μ2 and a set of k pointwise descriptors f, g. The features of each shape are mapped
to the common domain Σ0 using the two copies of the metric alignment layer with shared
parameters. The embedding creates images f0, g0 and we use L2 hinge loss function:

L (f0, g0) =

⎧⎨
⎩‖f0 − g0‖2 y1 = y2

max (0,m− ‖f0 − g0‖2) y1 �= y2
(5.3)

where m is the margin. This loss function penalizes different embeddings of shapes of
the same category, as well as similar embeddings of shapes of different categories.

We initialize the pairwise distances of the 2D grid D0 to the Euclidean distances
between the points of a distorted 2D grid Σ0. We distort the metric in the 2D plane to

AlienAnts

Initial

Optimized

Figure 5.7: Embedding of a single descriptor before (top) and after (bottom) metric
learning, for two categories of SHREC’11, 3 meshes from each category.
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Geometry Images Without metric learning With metric learning

Figure 5.8: tSNE embedding [MH08] of mapped descriptors corresponding to different
mapping methods: (left) Geometry images [SBR16], (center) GW mapping to a fixed
2D grid, (right) GW mapping with a learned metric. We show the first 10 classes of
SHREC’11 [LGB+11], where each point represents a shape, and shapes from the same
class are in the same color. Note that after metric learning our mapped descriptors are
nicely clustered, aiding the classification and retrieval tasks we optimized the embedding
for.

avoid perfect symmetries that lead to unnecessary ambiguity in the mapping. Since our
metric alignment optimization is fairly robust to random perturbations, we introduce a
consistent bias in the metric. In particular, we stretch the rows and columns of the grid
using the following formula for each point of the grid with initial coordinates (x, y):

xdistorted = x (1 + (αx − 1) y) .

We apply a similar transformation for y coordinate, and set αx = 1.1, αy = 1.2 for all
the experiments. This formula was chosen arbitrarily to generate a common domain
that is similar to a grid and is not symmetric. At each epoch we compute a random
permutation of shapes, and take pairs of subsequent examples for training. We use the
Siamese network with the smallest training error.

Figure 5.7 illustrates the embedded features before (top) and after (bottom) the
metric learning step. Note how the images that correspond to the meshes from the
same category are similar to one another after metric learning, and dissimilar across
categories. In Figure 5.8 we visualize the proximity between these feature images via
a tSNE embedding [MH08]. Each dot corresponds to a model from the SHREC’11
dataset [LGB+11] and the color corresponds to the ground truth class label. We use
three methods to map the shape features to an image: the method used by Sinha et
al. [SBR16] (Geometry Images) for deep learning (left), GW mapping directly to a
2D grid (middle), and GW mapping based on the learned metric (right). Note that
even without learning, the GW mapping to a 2D grid provides more consistency in the
embedding, which is then enhanced after metric learning.

After we train the metric alignment layer, we keep the learned parameters D0 fixed,
and train the other parameters of the classification network depicted in Figure 5.6. We
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Classification Retrieval
Data \ method SG SN GI Ours SG SN GI Ours

SHREC, 10 62.6 52.7 88.6 90.3 0.65 0.1 0.65 0.87
SHREC, 16 70.8 48.4 96.6 96.6 0.74 0.13 0.72 0.96

Table 5.1: Performance on the SHREC’11 classification benchmark, percentage of
correct classification / mAP. We compare with Shape Google [BBGO11] (SG), 3D
ShapeNets [WSK+15] (SN) and Geometry Images [SBR16] (GI).

tried fine-tuning our D0 parameters in the whole network and train it end-to-end, but it
significantly slowed down the training step and did not yield any significant improvement
in accuracy.

We next evaluate the performance of our network on classification and retrieval tasks
on commonly used benchmarks.

5.4 Results

We test our method for classification and retrieval tasks on several existing benchmarks,
and also demonstrate the effect of different design choices for the features and the metric.

Classification and retrieval of deformable shapes. We use the SHREC’11 bench-
mark [LGB+11] to test our method for classification of articulated shapes. The dataset
contains 600 shapes containing both rigid (e.g., furniture) and non-rigid (e.g., humans,
animals) shapes with significant articulations. We compute the intrinsic shape descrip-
tors: Gaussian curvature (GC), Conformal Factor (CF) and Wave Kernel Signature
(WKS). We start by learning the metric using the Siamese architecture described in
Section 5.3 for 100 epochs. We set the margin to 50 (approximately the average distance
between pairs from different classes). Then we train the classification network depicted
in Figure 5.6. Due to the small dataset size we did not use a validation set and stopped
training after a fixed number of epochs (200), similarly to Sinha et al. [SBR16]. We used
l1 and l2 regularization with weights 10−4, 10−5 respectively, as well as weight decay
10−5.

We evaluate our classification network by measuring the percentage of correct
classifications of shapes in the test set. We also use the output of a penultimate fully
connected layer as a global shape descriptor, and evaluate the quality of retrieval using
Mean Average Precision (mAP). We use the metrics and the protocol established in
Sinha et al. [SBR16] and similarly run on two data splits: 10 training samples from
each category (and 10 test shapes), and 16 training samples from each category (4 test
shapes).

We compare our results with three other methods: Shape Google [BBGO11] (SG),
which uses a bag of features representation, 3D ShapeNets [WSK+15] (SN), which uses
a volumetric representation, and Geometry Images [SBR16] (GI), which uses a deep
network trained over a flattened shape. Note that GI use substantially larger images in
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Metric Classification Retrieval
Ours (metric learning) 90.3 0.87

Distorted grid (no learning) 88.66 0.85
Augmented grid (no learning) 86.66 0.87

Table 5.2: Results of our method with and without metric learning on SHREC’11 with
10 training samples per class.

their representation (32× 32 pixels). We present the accuracy and retrieval results in
Table 5.1. Our method produces more accurate classifications than state-of-the-art tools
using only 10 training examples, and performs comparably to geometry images with 16
training examples. Our retrieval mAP score is consistently higher for all experiments.

Visualization of learned features. After mapping the shapes to the common domain
each shape is represented by a multi channel image. The output of the layers of the
classification network is therefore challenging to interpret directly. To visualize properties
of the classification network we map the output of each convolution layer back to the
shape using the GW map, generating a shape descriptor with 320 values for each vertex.
Interestingly, the features of the first layer highlight relatively low resolution properties,
while the features of the last layer capture finer details, as has been shown for natural
images classification. This is visualized in Figure 5.9 using distances in feature space.
We pick a point p on a bird model from SHREC, and plot the l2 distance between the
features of the first convolution layer of p and all the other points on the shape (top), and
similarly for the last convolution layer (bottom) . We also show the distance between
the features of the same point p and all the points on two other shapes, one is another
shape from the same class and the second is from a different class of a different kind of
bird. The features of the first convolution layer are symmetric and similar for points
with similar functionality, even for birds from different classes. However, the features of
the last convolution layer can distinguish between the two wings of the same bird, and
are different for birds of different classes.

Effect of learning the metric of the common domain. We next investigate how
important is it to learn the metric of the common domain in comparison to simpler
alternatives. We run experiments with 10 training examples on the SHREC’11 dataset.
First, we use the initial metric of the grid, computed using distorted Euclidean distances
between grid cells (Section 5.3). Another option is to use the undistorted metric of the
grid, which will yield some symmetric ambiguities. To resolve these ambiguities, we can
augment the data at training time and feed all the elements of the symmetry group to
the classification CNN (i.e., rotations and reflections of the 2D square). Both options
are presented in Table 5.2 and yield inferior results to our method.

Effect of input features. In Table 5.3 we compare our method when using Euclidean
distances for computing the distance matrices for the input shapes, and with different
geometric features. Note that since SHREC’11 has many models with severe articulations
the use of an extrinsic (Euclidean) distance metric significantly decreases the quality of
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First layer

Last layer

Class Bird 1 Class Bird 1 Class Bird 2 Class Bird 1 Class Bird 1 Class Bird 2

Figure 5.9: Features learned at the first convolution layer (top row) vs. last convolution
layer (bottom row) of the classification network for SHREC’11. We visualize the distance
between a selected point (tip of the nose or tip of the wing) and other points on the
same or different shapes. Note that features from the last convolution layer provide
more details and differentiate between birds from different classes.

Features Classification Retrieval
GC,CF,WKS, Geodesic 90.3 0.87
GC,CF,WKS, Euclidean 84.6 0.81

GC, CF, Geodesic 89.3 0.87
GC, Geodesic 89 0.84

Table 5.3: Comparison of our method with different geometric features on SHREC’11
with 10 training samples per class. The features are Gaussian curvature (GC), Conformal
factor (CF), Wave Kernel Signature (WKS), Geodesic distances (Geodesic), Euclidean
distances (Euclidean).

the results. Our retrieval results are higher than the other methods (Table 5.1) even
with very simple features.

Classification and retrieval of rigid shapes. We also evaluate our method on
the ModelNet40 and ModelNet10 benchmarks [WSK+15] that contain mostly rigid
shapes. For these datasets we use as features the distance histogram, PCA in the
local neighborhood of a point and the height, computed using the publicly available
code [KCGF14]. Due to the size of this dataset we do the initial metric optimization
with the Siamese network only for 10 epochs. We set the margin to 120 (approximately
the average distance between pairs from different classes). We do 5-fold cross validation
during training and use l2 regularization with the weight 10−3, as well as weight decay
10−4. The results are presented in Table 5.4. Our method provides competitive retrieval
results with respect to GI, but classification suffers from lack of resolution (we use
32 × 32 images to represent a shape, whereas GI uses images of size 64 × 64). Our
method under-performs on ModelNet40 when compared to multi-view representation
methods, e.g. MVCNN [SMKLM15] (classification and retrieval rates of 90.1 and 0.79,
respectively), or [QSN+16] (classification rate 91.4). Therefore, it appears that some of
our design choices lead to non-optimal performance on rigid shapes, however as our main
focus is non-rigid shapes, we leave further investigation of this direction for future work.

Timing. The new metric alignment layer takes about 1s to compute an initial matrix Γ
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Classification Retrieval
Data \ method SN GI Ours SN GI Ours
ModelNet10 83.5 88.4 85.8 0.68 0.75 0.74
ModelNet40 77 83.9 74.6 0.49 0.51 0.59

Table 5.4: Performance on ModelNet. We compare with 3D ShapeNets [WSK+15] (SN)
and Geometry Images [SBR16] (GI).

(50 internal GW iterations) for shapes with approximately 1000 points. After computing
the initial maps we only use 5 internal GW iterations and computing Γ takes about 0.2s.
Computing the gradient with respect to D0 takes about 1s. Our approach took 12h to
train the Siamese network for SHREC’11 classification (100 epochs), and 6m to train
the classification network. Training the Siamese network for ModelNet40 took 25h and
20m to train the classification network.
Limitations. While learning the optimal embedding is beneficial, the number of
parameters grows quadratically with the number of discrete elements in the target domain;
this affects training complexity. While the GW computation is robust to uniformly
distributed noise in the input pairwise distances, topological noise might drastically
change pairwise geodesic distances and undermine the quality of near-isometric mappings.
Finally, the user’s choice of point-wise shape descriptors affects the applicability of the
method, and thus requires some prior knowledge about the analyzed dataset. We found
our method and design choices to be more suitable for nonrigid shape analysis, as is
evident from poor performance of our method on the ModelNet40 dataset.
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Chapter 6

Conclusion and Future Work

This thesis describes a few approaches for semi-automatic shape correspondence. Our
deblurring and denoising approach (section 2) is based on the prior that the eigenfunctions
of the LB operator on the target mesh are mapped to functions in the span of the source
eigenfunctions. This assumption was made implicitly when taking the same number
of eigenfunctions for isometric shapes, and we have shown that enforcing it explicitly
as a prior in the optimization problem yields an efficient deblurring method. We have
further demonstrated the use of this idea for map denoising, and used it to generate high
quality symmetry maps. The method presented in section 3 can also be used to deblur
generalized representations of correspondence, and can get input landmarks as well.
Since it optimizes the reversible Dirichlet energy directly, it produces maps with lower
conformal distortion than other methods, but its computational cost is higher than the
method in section 2. Optimizing the discrete thin shell energy rather than the Dirichlet
energy, aligns extrinsic features, and leads to highly accurate results (section 4).

These methods produce results with low conformal distortion, that is necessary for
downstream applications in computer graphics such as shape interpolation, texture
transfer, joint cross field design and joint quadrangulation. However, shape classifi-
cation and retrieval using deep learning require different properties rather than low
conformal distortion. We therefore designed a novel metric alignment layer that is
used to learn the correspondence between an input shape and a common domain, such
that the classification results are optimal. Our layer works with a range of geometric
representations such as point clouds and polygon soups and can capture intrinsic as well
as extrinsic geometric structure, as long as it is possible to compute a metric over the
input shape. There are many directions to explore in the future using metric alignment.
Incorporating automatic feature learning can also potentially improve results and reduce
user intervention. Training deep networks for other geometry analysis tasks, such as
keypoint detection and segmentation, is also an interesting future direction.

While non isometric shape correspondence methods have significantly improved in
recent years, there are still many challenges for future research. State of the art methods
are semi automatic, and designing a fully automatic pipeline for non isometric matching
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is a challenging task. The task of volumetric matching, where the entire volume should
be matched (rather than just the surface), is especially relevant to the medical imaging
community and was not thoroughly explored from the geometry point of view. Partial
matching is another difficult problem, especially in the non isometric case.

To conclude, this thesis describes methods for non isometric shape correspondence
and its applications. Accurate shape correspondence is an instrumental component of
3D data analysis and generation methods, such as shape interpolation and deformation
transfer. Such methods can be used to synthesize labeled 3D data, that is valuable as
deep learning methods become more and more common, until finally the data revolution
reaches the realm of 3D.
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Appendix A

Appendix of Chapter 2

A.1 Equivalence of optimization problems

Proposition 1. The optimization problems (2.1) and (2.4) are equivalent when using the
regularizer (2.3).

Proof. Since the constraints of the optimization problems are the same, it suffices to
show that the objectives are equal. Our objective from Equation (2.4) has the form

‖Ψ1X − Y ‖2M1
, (A.1)

where X = C12 and Y = P12Ψ2. We will show that:

‖Ψ1X − Y ‖2M1
= ‖X −Ψ†1Y ‖2F + ‖(Ψ1Ψ

†
1 − Id)Y ‖2M1

,

which is exactly the objective in Equation (2.1) when plugging in the regularizer from
Equation (2.3).

Adding and subtracting Ψ1Ψ
†
1Y from the expression inside the norm in (A.1) we

have:

‖Ψ1X −Ψ1Ψ
†
1Y +Ψ1Ψ

†
1Y − Y ‖2M1

=

= ‖Ψ1(X −Ψ†1Y )‖2M1
+ ‖(Ψ1Ψ

†
1 − Id)Y ‖2M1

+ 2Tr((Ψ1(X −Ψ†1Y ))�A(Ψ1Ψ
†
1 − Id)Y ).

(A.2)

First, note that for any X ∈ �
k×l we have ‖Ψ1X‖2M1

= Tr(X�Ψ�1 AΨ1X) =

Tr(X�X) = ‖X‖2F , where we used the fact that Ψ�1 AΨ1 = Id. Therefore, the first term
in (A.2) is equal to ‖X − Ψ†1Y ‖2F . For the third term, note that Ψ�1 A(Ψ1Ψ

†
1 − Id) =

Ψ�1 AΨ1Ψ
†
1 − Ψ�1 A = Ψ†1 − Ψ†1 = 0, where we used the facts that Ψ�1 AΨ1 = Id and

Ψ†1 = Ψ�1 A. Together, these give the result.
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A.2 Eliminating candidate faces

Given a vertex v1 ∈ V1 and a face f ∈ F2 with vertices (c1, c2, c3), we denote A =

Ψ2, b = (Ψ1)v1∗C12, and:

Δmin = min
v2∈V2

‖Av2∗ − b‖2 , δmin = min
i∈1...3

‖Aci∗ − b‖2
lmax = max

i,j∈1...3
‖Aci∗ −Acj∗‖2 .

Assume that the minimizer lies on the face f at the point q, and take w(q) to be its
corresponding vector in the valid rows set F2. By the triangle inequality, we have:

δmin ≤ ‖w(q)A− b‖2 + ‖Aci∗ − w(q)A‖2 ≤ ‖w(q)A− b‖2 + lmax,

and therefore: δmin−lmax ≤ ‖w(q)A−b‖2. Since q is a minimizer, we have ‖w(q)A−b‖2 ≤
Δmin, hence f is a face which contains the minimizer only if δmin − lmax ≤ Δmin.
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Appendix B

Appendix of Chapter 3

Proposition 2. Let (M1, g1), (M2, g2) be two smooth compact Riemannian surfaces, with
geodesic distance functions dMi(·, ·) given by the metrics gi, respectively, and let φ12 :

M1→M2, φ21 :M2→M1 be smooth maps. If there exists ε ≥ 0 such that:

dM1 (p1, φ21 (φ12 (p1))) ≤ ε, ∀p1 ∈M1,

then:

1. φ12 (p1) = φ12 (q1)⇒ dM1 (p1, q1) ≤ 2ε, ∀p1, q1∈M1.

2. ∀p1∈M1 ∃p2∈M2 s.t. dM1 (p1, φ21 (p2)) ≤ ε.

As a corollary of Proposition 1 we have that if the reversibility energy defined in
Equation (3.6) is zero, then the maps φ12, φ21 are both injective and surjective.

Proof. Let p1, q1∈M1, and set p2=φ12 (p1) , q2=φ12 (q1). Further, set p̂1=φ21 (p2),
and q̂1=φ21 (q2).

1. From the triangle inequality we have that dM1(p1, q1) ≤ dM1(p1, q̂1) + dM1(q̂1, q1).
From the assumption (1) we have that p2 = q2 and therefore p̂1= q̂1. Thus, we
have dM1(p1, q̂1) = dM1(p1, p̂1)≤ ε and dM1(q̂1, q1)≤ ε, which gives the required
result.

2. This follows trivially from the assumption of the Proposition if we set p2 = φ12(p1).
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Appendix C

Appendix of Chapter 5

Computation of Gromov–Wasserstein (GW) distances alternates between two steps,
as specified in Algorithm C.1. The algorithm is adjusted to our purpose by fixing
the number of GW iterations and constraining v, w. The first step is a closed-form
exponential formula applied independently to every element of the matrix variable. The
other is projection onto the cone of doubly-stochastic matrices. We differentiate the result
of GW distance computation by providing derivatives of the two steps independently
and composing the formulas during alternation. The exponential is differentiable using
formulaic techniques; we work out the derivative of doubly-stochastic projection below.

Algorithm C.1 Iteration for finding regularized Gromov-Wasserstein distances. ⊗,�
denote elementwise multiplication and division.

function Gromov-Wasserstein(μ0, D0, μ,D, α, η,Γ0)
// Computes a local minimizer Γ of GW distance

for i = 1, 2, . . . , I

Ki ← exp(D0[[μ0]]Γ
i−1[[μ]]D�η/α)⊗ (

Γi
)∧(1−η)

Γi, vi, wi ← Sinkhorn-Projection(Ki;μ0, μ)

return ΓI ,

function Sinkhorn-Projection(K;μ0, μ)
// Finds Γ minimizing KL(Γ|K) subject to Γ ∈M(μ0, μ)

v, w ← 1

for j = 1, 2, 3, . . .

v ← 1�K(w ⊗ μ)

w ← 1�K�(v ⊗ μ0)

v ← v/
√

1�v
1�w

w ← w
√

1�v
1�w

return [[v]]K[[w]], v, w
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C.1 Derivative with respect to Kij

Suppose we wish to rescale a kernel matrix K to be doubly stochastic (Sinkhorn projection
step). We can think of this as solving the following quadratic system of equations for Γ

and dual vectors v, w (we don’t use superscript here for simplicity, we assume all the
variables were computed at the same iteration):

Γ = [[v]]K[[w]] (C.1)

Γμ = [[v]]K(w ⊗ μ) = 1 (C.2)

Γ�μ0 = [[w]]K�(v ⊗ μ0) = 1 (C.3)

1�v = 1�w (C.4)

We differentiate these expressions with respect to an element Kij . Then,

dΓ

dKij
= [[

dv

dKij
]]K[[w]] + viwj(eie

�
j ) + [[v]]K[[

dw

dKij
]] (C.5)

0 =
dv

dKij
⊗ [K(w ⊗ μ)] + (viwjμj)ei + [[v]]K[[μ]]

dw

dKij
(C.6)

0 =
dw

dKij
⊗ [K�(v ⊗ μ0)] + (viwjμ0i)ej + [[w]]K�[[μ0]]

dv

dKij
(C.7)

1�
dv

dKij
= 1�

dw

dKij
(C.8)

Let’s organize the second two relationships as a matrix equation:

⎛
⎜⎝

[[K(w ⊗ μ)]] [[v]]K[[μ]]

[[w]]K�[[μ0]] [[K�(v ⊗ μ0)]]

1� −1�

⎞
⎟⎠

(
dv/dKij

dw/dKij

)
=

⎛
⎜⎝
−viwjμjei

−viwjμ0iej

0

⎞
⎟⎠ (C.9)

We can simplify this by leveraging the fact that the diagonal elements of this block
2× 2 matrix appear in the Sinkhorn conditions. In particular, K(w ⊗ μ) = 1� v and
K�(v ⊗ μ0) = 1� w. Hence, we can write the expression as:

⎛
⎜⎝

[[v]]−1 [[v]]K[[μ]]

[[w]]K�[[μ0]] [[w]]−1

1� −1�

⎞
⎟⎠

(
dv/dKij

dw/dKij

)
=

⎛
⎜⎝
−viwjμjei

−viwjμ0iej

0

⎞
⎟⎠ (C.10)

We factor to make it look symmetric:
⎛
⎜⎝ [[v]] 0 0

0 [[w]] 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝ [[v ⊗ v ⊗ μ0]]

−1 K

K� [[w ⊗ w ⊗ μ]]−1

(1� μ0)
� − (1� μ)

�

⎞
⎟⎠

(
[[μ0]] 0

0 [[μ]]

)(
dv/dKij

dw/dKij

)
=

⎛
⎜⎝ −viwjμjei

−viwjμ0iej

0

⎞
⎟⎠

(C.11)

The two vectors on the right-hand side are sparse except element i in the first half and
element j in the second half. So, we can invert the first matrix and put the diagonal
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matrix into the unknowns:
⎛
⎜⎝

[[v ⊗ v ⊗ μ0]]
−1 K

K� [[w ⊗ w ⊗ μ]]−1

(1� μ0)� − (1� μ)�

⎞
⎟⎠

(
[[μ0]]dv/dKij

[[μ]]dw/dKij

)
=

(
−wjμjei

−viμ0iej

)
(C.12)

Denote the left inverse of the left matrix as

⎛
⎜⎝

[[v ⊗ v ⊗ μ0]]
−1 K

K� [[w ⊗ w ⊗ μ]]−1

(1� μ0)� − (1� μ)�

⎞
⎟⎠

+

:=

(
A B

C E

)
(C.13)

Then,
(

dv/dKij

dw/dKij

)
=

(
[[1� μ0]] 0

0 [[1� μ]]

)(
A B

C E

)(
−wjμjei

−viμ0iej

)
(C.14)

=

(
[[1� μ0]] 0

0 [[1� μ]]

)(
−wjμjAcolumn i − viμ0iBcolumn j

−wjμjCcolumn i − viμ0iEcolumn j

)
(C.15)

C.2 Gradient with respect to K

Returning to our original derivative, we extract a single element

dΓk�

dKij
=

dvk
dKij

Kk�w� + viwjδikδj� + vkKk�
dw�

dKij
(C.16)

In the end, we know dL
dΓk�

for some function L and want dL
dKij

. Write the gradient of L
with respect to Γ as ∇ΓL. We start computing

dL

dKij
=

∑
k�

(∇ΓL)k�
dΓk�

dKij

=
∑
k�

(∇ΓL)k�

[
dvk
dKij

Kk�w� + viwjδikδj� + vkKk�
dw�

dKij

]

Breaking this down term by term,

∑
k�

(∇ΓL)k�
dvk
dKij

Kk�w� =

(
dv

dKij

)�
(K ⊗∇ΓL)w

= (−wjμjAcolumn i − viμ0iBcolumn j)
� [[1� μ0]](K ⊗∇ΓL)w∑

k�

(∇ΓL)k�viwjδikδj� = (∇ΓL)ijviwj

∑
k�

(∇ΓL)k�vkKk�
dw�

dKij
= v�(K ⊗∇ΓL)

dw

Kij

= v�(K ⊗∇ΓL)[[1� μ]] (−wjμjCcolumn i − viμ0iEcolumn j)
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Getting rid of the ij index (and applying symmetry of A and C) shows

∇KL = −A[[1� μ0]](K ⊗∇ΓL)w(w ⊗ μ)� − (v ⊗ μ0)[(C[[1� μ0]](K ⊗∇ΓL)w]
�

+[[v]]∇ΓL[[w]]

−B[[1� μ]](K ⊗∇ΓL)
�v(w ⊗ μ)� − (v ⊗ μ0)[E[[1� μ]](K ⊗∇ΓL)

�v]�

(C.17)

C.3 Exponential formula

Given ∇KiL we would like to compute ∇Γi−1L, the derivatives with respect to Γ from
the previous iteration. In the rest of this section K will be used for Ki and Γ for Γi−1.

K = exp
(
D0[[μ0]]Γ[[μ]]D

� · η/α
)
⊗ Γ∧1−η (C.18)

dL

dΓij
=

∑
kl

dL

dKkl

dKkl

dΓij
(C.19)

dKkl

dΓij
= δi==kδj==l (1− η) (Γ)−ηkl exp

(
D0[[μ0]]Γ[[μ]]D

� · η/α
)
kl
+ (C.20)

exp
(
D0[[μ0]]Γ[[μ]]D

� · η/α
)
kl

η

α
[D0[[μ0]]]ki

[
[[μ]]D�

]
jl
Γ∧1−η

∇ΓL = (1− η)∇KL⊗ (Γ)∧−η ⊗ exp
(
D0[[μ0]]Γ[[μ]]D

� · η/α
)
+ (C.21)

η

α
∇KL⊗

(
[[μ0]]D

�
0

(
Γ∧1−η ⊗ exp

(
D0[[μ0]]Γ[[μ]]D

� · η/α
))

D[[μ]]
)

C.4 Gradient with respect to D

Given ∇KiL, we can compute ∇DL by cumulating the following gradients throughout
the iterations:

dKkl

dDij
= Γ1−η

kl exp
(
D0[[μ0]]Γ[[μ]]D

� · η/α
)
kl
δi==l

η

α
[D0[[μ0]]Γ[[μ]]]kj (C.22)

dL

dDij
=

∑
k

dL

dKki

η

α
Γ1−η
ki exp

(
D0[[μ0]]Γ[[μ]]D

� · η/α
)
ki
[D0[[μ0]]Γ[[μ]]]kj (C.23)

∇DL =
η

α

(
∇KL⊗ Γ∧1−η ⊗ exp

(
D0[[μ0]]Γ[[μ]]D

� · η/α
))�

D0[[μ0]]Γ[[μ]] (C.24)

We also add the transposed matrix of derivatives to enforce symmetry.
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חישוב מנת על חיונית כאלה מאפיינים התאמת רבים, במקרים וכפלים. פינות כגון מאפיינים בין

שימוש נעשה בה אלסטית, באנרגיה דיריכלה אנרגית החלפת ידי על זאת לבצע ניתן סמנטי. מיפוי

שכן טבעי, הוא מיפויים לחישוב דפורמציה באנרגיית השימוש צורות. של דפורמציה עבור נרחב

כדי המטרה. לצורת מוגבלת אשר המקור צורת של לדיפורמציה שקול למעשה צורות בין מיפוי

שינויים מספר נעשו ההתחלתי, המיפוי על מגבלות ללא האלסטית האנרגיה של אופטימיזציה לאפשר

יותר איטית שלה האופטימיזציה זה, במקרה ליניארית אינה שהאנרגיה מכיוון המקורית. באנרגיה

יותר. מדויקות התוצאות אך דיריכלה, אנרגיית של מהאופטימיזציה

שימוש שיש בעוד עמוקה. למידה עבור צורות בין בהתאמה המשתמשת שיטה מתוארת לבסוף,

נתונים עבור עמוקה למידה טכניקות יישום כקלט, תמונות המקבלות עמוקה למידה בשיטות נרחב

מבנה ידי על בקלות לייצג ניתן תמונות בעוד כי היא להבדל הסיבה יותר. מאתגר תלת־ממדיים

נעשה אם אחיד. באופן מובנים לא כלל בדרך מימדיים תלת נתונים פיקסלים(, של )מערך אחיד

למידה בטכניקות להשתמש ניתן מימדי), תלת סריג (כגון תלת־ממדיים נתונים של אחיד בייצוג שימוש

מקודד מימדי תלת סריג לדוגמה, הצורה. בתכונות שימוש עושה אינו כלל בדרך כזה ייצוג אך עמוקה,

להשתמש ניתן זו, בעיה על להתגבר כדי אחר. במנח אובייקט אותו של צורות לחלוטין שונה באופן

תמונה היא התוצאה ממדי. דו לסריג מהצורה גאומטריות פונקציות למפות כדי צורות בין בהתאמה

אם תמונות. על שפועלות סטנדרטיות עצביות לרשתות כקלט לשמש ויכולה הצורה, את המייצגת

שיטה הצענו דומה. באופן מיוצגות יהיו איזומטריות צורות נקודות, בין מרחקים משמרת ההתאמה

של ואחזור בסיווג התמקדנו זה במחקר כאשר נתון, יישום עבור אופטימלי באופן כזה ייצוג המחשבת

מימדיות. תלת צורות

בסוג נבדלות אשר צורות, בין איזומטרית לא התאמה עבור שיטות מספר מתארת זו תזה לסיכום,

יש צורות, בין משמעותית שונה התאמה לדרוש עשויים שונים ויישומים מאחר המיועד. וביישום הקלט

ליישומים מתאימות המתוארות השיטות התאמה. שיטות מתכננים כאשר בחשבון היישום את לקחת

צורות. וסיווג אינטרפולציה, טקסטורה, העברת כגון שונים,
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תקציר

בגרפיקה רבים ליישומים משמשת אשר צורות, ניתוח בתחום בסיסית בעיה היא צורות בין התאמה

צורות. בין ואינטרפולציה טקסטורה של העברה צורות, של סטטיסטי ניתוח כגון ממוחשבת, וראייה

דרכים קיימות המטרה. צורת על תואמת נקודה המקור, צורת על נקודה לכל לחשב היא המטרה

מבדיל נפוץ סיווג הרצויה. התוצאה ושל הצורות של התכונות לפי צורות, בין התאמה לסווג שונות

שונה, במנח אובייקט אותו של צורות בין התאמה מאפיינת לרב אשר איזומטרית, התאמה בין

התאמה מתמטית להגדיר ניתן שונים. אובייקטים בין מתאימה אשר איזומטרית, לא התאמה לבין

הגדרה על מוסכמה שאין בעוד נקודות, זוגות בין גאודזיים מרחקים שימור על־ידי איזומטרית

יישומים בהם מקרים קיימים למעשה איזומטרית). (לא הכללי במקרה התאמה שמאפיינת מתמטית

תכונות מתמטית להגדיר הוא זה במחקר הראשי האתגר לכן שונה. התאמה תוצאת דורשים שונים

התכונות בעלות התאמות שיחשבו אלגוריתמים ולתכנן שונים, אובייקטים בין התאמה של רצויות

סמך על התאמה להסיק שניתן להניח ניתן לא שונים, אובייקטים בין מתאימים כאשר שהוגדרו.

דלילה קבוצה כגון נוסף, מידע נתון לצורות שפרט מניחים אנו לכן בלבד. הצורות של הגאומטריה

התחלתית. התאמה או תואמות, נקודות של

עם טובות תוצאות המניבות קיימות, מיפויים שיטות למינוף כאמצעי משמש התחלתית התאמה עידון

אופרטורים פונקציונליים: במיפויים משתמשות רבות קיימות שיטות לדוגמה, מקומיים. דיוקים אי

רבים; יתרונות יש פונקציונלים למיפויים נקודות. במקום חלקות פונקציות בין שמתאימים ליניאריים

ליניאריים. כאילוצים רבים מאפיינים לנסח וניתן מאחר יעיל וחישובו קומפקטי, הוא הבדיד ייצוגם

טוב מיפוי וחילוץ נקודות, בין למיפוי הפונקציונלי המיפוי את להמיר יש דבר של בסופו זאת, עם

פונקציונליים מיפויים גבוה ובדיוק ביעילות שממירה שיטה פיתחנו לכן טריויאלי. אינו נקודות בין

פוקציונליים. מיפויים על המסתמכות שיטות מגוון עבור שימושית זו שיטה נקודות. בין למיפויים

(הסרת פונקציונלי למיפוי המרתו ידי על נקודות, בין התחלתי מיפוי לעידון גם לשמש יכולה השיטה

נקודות. בין למיפוי חזרה והמרה גבוהים) תדרים

אנרגיית חלק. מלא למיפוי להרחיבה ברצוננו תואמות, נקודות של דלילה קבוצה כקלט נתונה כאשר

בדידה נוסחה קיימת ואף המיפוי, של החלקות מידת את מודדת אשר ידועה פונקציה היא דיריכלה

החלקות את משפרת דיריכלה אנרגית של שהאופטימיזציה בעוד משולשים. משטחי בין זו אנרגיה של

להישאר עשויים המטרה צורת של שלמים שאזורים במובן המיפוי את מצמצמת גם היא המקומית,

וביטוי דיריכלה אנרגית של דיסקרטי קירוב המשלבת אנרגיה לאחרונה פיתחנו לכן התאמה. ללא

כמו יעילה, אופטימיזציה מאפשרת שלנו הדיסקרטיזציה המיפוי. צמצום את ומונע הופכיות המקדם

גבוה. מקומי דיוק גם

יתאימו בהכרח לא התוצאות חלקות, לתוצאות מובילה דיריכלה אנרגית של אופטימיזציה בעוד
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המחשב. למדעי בפקולטה בן־חן, מירלה פרופסור של בהנחייתה בוצע המחקר

ובכתבי־עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של הדוקטורט מחקר תקופת במהלך
Danielle Ezuz and Mirela Ben-Chen. Deblurring and denoising of maps between
shapes. Computer Graphics Forum, volume 36, pages 165-174, 2017.

Danielle Ezuz, Justin Solomon, Vladimir G. Kim and Mirela Ben-Chen.
GWCNN: A metric alignment layer for deep shape analysis. Computer Graphics
Forum, volume 36, pages 49-57, 2017.

Danielle Ezuz, Justin Solomon and Mirela Ben-Chen. Reversible harmonic maps
between discrete surfaces. ACM Transactions on Graphics (TOG), volume 38,
pages 15:1-15:12, 2019.

Danielle Ezuz, Behrend Heeren, Omri Azencot, Martin Rumpf and Mirela Ben-
Chen. Elastic Correspondence between Triangle Meshes. Computer Graphics
Forum, volume 38, 2019.

פרופ ע"ש נסיעה ולמענק ג'ייקובס, ואירוין ג'ואן למלגת המחשב, למדעי לפקולטה לטכניון, מודה אני

הכספית התמיכה על למדע ישראל־ארה"ב הדו־לאומית הקרן של צעירים חוקרים עבור רחמימוף

בהשתלמותי. הנדיבה
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צורות בין איזומטרית לא התאמה

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

לפילוסופיה דוקטור

עזוז דניאל

לישראל טכנולוגי מכון – הטכניון לסנט הוגש

2019 מאי חיפה התשע"ט אייר
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צורות בין איזומטרית לא התאמה

עזוז דניאל
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