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Abstract

Conformal maps are especially useful in geometry processing for computing shape

preserving deformations, image warping and manipulating harmonic functions. The

Cauchy-Green coordinates are complex-valued barycentric coordinates, which can be

used to parameterize a space of conformal maps from a planar domain bounded by a

simple polygon. In this work, we use the Cauchy-Green coordinates to simulate 2D

potential flow with interactive control, and to construct conformal maps between planar

domains.

The Hele-Shaw flow describes the slow flow of a viscous liquid between two parallel

plates separated by a small gap. In some configurations such a flow generates instabilities

known as Saffman-Taylor fingers, yielding intricate visual patterns which have been

an inspiration for artists, yet are quite difficult to simulate efficiently. Formulating the

equations with our framework allows us to efficiently simulate the flow and to provide

the user with interactive control over the behavior of the fingers. Additionally, we show

that the Cauchy-Green coordinates are applicable to the exterior of the domain, and

use them for simulating two fluids with different viscosities.

The Riemann mapping theorem guarantees that there exists a conformal map

between any two simply connected planar domains, yet computing this map efficiently is

challenging. One of the main challenges is finding the boundary correspondence between

the two domains. We use the Cauchy-Green coordinates for parameterizing the space

of conformal maps from the source domain, and propose an alternating minimization

algorithm for constructing a boundary-approximating conformal map, which implicitly

finds a boundary correspondence. We enrich the space of solutions by generalizing the

setup to quasi-conformal maps, and allow the user to interactively control the result

using point-to-point and stroke-to-stroke constraints. Finally, we show applications to

stroke based deformation and constrained texture mapping.
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Chapter 1

Introduction

Many applications in computer graphics often involve computation which has to be

carried out over a large domain, leading to heavy and slow algorithms which prohibits user

interaction in real time. An example for such an application is fluid simulation, which

is widely used in the film industry for creating realistic yet controllable fluid animations

and for special effects where a fluid-like behavior is desired. In such simulations one

often has to track the entire volume of the fluid (represented as particles or as a fixed

grid), yielding a long and heavy computation. In this work, we are interested in a special

case of fluid simulation where the computational cost can be reduced significantly by

tracking only the boundary of the fluid.

The special phenomenon we consider in this work is viscous fingering [47], in which

compelling patterns are generated due to instabilities at the interface of a viscous liquid.

These patterns are often observed when a liquid flows into a porous medium and are

related to other phenomena such as snowflake formation, bacterial growth and dendritic

growth. One way to study these phenomena is to inject a less viscous liquid into a

more viscous one which is trapped between two parallel plates separated by a small gap,

also known as a Hele-Shaw cell. Such a setup creates a slow flow, called a Hele-Shaw

flow, leading to the generation of viscous fingers which can be controlled by different

parameters such as the viscosities, the surface tension at the interface of the two fluids

and the rate of injection.

As these patterns has been an inspiration for artists and designers, it would be

potentially useful to simulate them numerically, and allow the user to control the

generated fingers formation while preserving the physical behavior and the appearance

of the fluid. To this end, we devise a boundary integral formulation of the problem

based on the special properties of the flow. Specifically, the Hele-Shaw flow is a

potential flow, driven by the pressure of the fluid which is a harmonic function. For

representing the harmonic function governing the flow we use the Cauchy-Green complex

barycentric coordinates, which simplify the derivation and analysis of the problem, and

provide an efficient way for representing the pressure by considering only values stored

on the boundary of the domain. We show how these coordinates can be integrated
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into a formulation of the Hele-Shaw equations, which allows us to simulate the flow

at interactive rates and thus allows the user control the generated flow in real time.

Additionally, we allow an injection from a line segment source and show how the Cauchy-

Green coordinates can be applicable to the exterior of a planar bounded domain and

multiply connected domains, which enable the generation of a large variety of patterns

and different types of flows.

The second problem we consider is finding a mapping between two planar domains,

which can be useful for transferring a texture between the domains, sketch based

deformation and image warping. The mapping is often required to have several properties

such as preservation of angles between two vectors originating at the same point

(informally can be described as preservation of the texture fidelity) and low area

distortion. The amount of angle distortion is called the conformal distortion, and a

conformal map is a mapping with no angle distortion. Previous approaches for solving

the problem often fix the correspondence between the boundary points of the domains

and try to find a mapping for the interior points which minimizes the conformal and

area distortion [48], [57]. In [22] the boundary correspondence was also updated in order

to achieve a lower conformal distortion, however it requires (as well as the previous

methods) a discretization of the interior of the domain. A few methods seek for a

conformal map from the given domain to the unit disk, such as circle packing [50]

and Schwarz Christoffel mapping [20]. However, the circle packing method involves an

iterative process which slowly converges and the Schwarz Christoffel mapping requires

solving a set of nonlinear equations which becomes slow for large polygons.

In our method we use the Cauchy-Green coordinates [54] web for parameterizing

a space of conformal maps from the source domain, and thus compute a continuous

map without requiring the discretization of the interior of the domain. We then use an

iterative minimization algorithm for finding a boundary correspondence which is the

closest to the boundary mapping of a conformal map represented by the coordinates.

The boundary integral representation yields a very efficient method, which allows to

interactively modify additional user-provided constraints for guiding the map, such as

point-to-point and stroke-to-stroke correspondences. Furthermore, we show how this

method can be easily generalized to quasi-conformal maps, thus enriching the space of

mappings which allows to find maps with a lower area distortion.

Both of the applications described above leverage the Cauchy-Green coordinates for

achieving a boundary only formulation of the problems, leading to efficient algorithms.

User interaction can then be integrated into these algorithms, providing control which

allows guiding the algorithms toward the desired solution.
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Chapter 2

Preliminaries

2.1 Cauchy-Green coordinates

Both of the applications described in this work utilize an efficient method for represent-

ing holomorphic maps (complex differentiable functions), namely the Cauchy-Green

coordinates. This representation relies on a significant result from complex analysis, the

Cauchy integral formula [6], which informally states that the value of a holomorphic

function at any point inside a domain can be calculated from its boundary values. More

formally, given a simply connected domain Ω and some point z ∈ Ω, the value of the

holomorphic function f : Ω→ C can be calculated by

f(z) =
1

2πi

∮
∂Ω

f(w)

w − z
dw (2.1)

The Cauchy-Green coordinates [54] provide a discrete representation of holomorphic

maps by discretizing Cauchy’s integral formula. The boundary of the domain Ω is

represented in the discrete case as a polygon with n vertices S = {zj}nj=1, and the

holomorphic function is discretized by storing a complex value at each vertex of the

polygon fj = f(zj), while the value of the holomorphic function on an edge is calculated

by linear interpolation. Applying this discretization, we get to

f(z) =
1

2πi

n∑
j=1

∫
ej

fj +
w−zj
zj+1−zj (fj+1 − fj)

w − z
dw

We proceed by calculating the integral on each edge analytically and arranging terms

together, yielding the following discrete representation

f(z) =

n∑
j=1

Cj(z)fj (2.2)

5©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



The set {Cj(z)}nj=1 are called the Cauchy-Green coordinates of the point z, and they

are given by the expression

Cj(z) =
1

2πi

(
Bj+1

Aj+1
log

Bj+1

Bj
− Bj−1

Aj
log

Bj
Bj−1

)
(2.3)

where Bj = zj − z and Aj = zj − zj−1 (see Figure 2.1).

𝑧

𝐵𝑗+1

𝐵𝑗

𝐵𝑗−1

𝐴𝑗
𝐴𝑗+1

𝑧𝑗+1

𝑧𝑗−1

𝑧𝑗

Figure 2.1: Notations for the Cauchy-Green coordinates.

Note that if the coordinates are stored in a column vector Ĉ(z) and the coefficients

are stored in a column vector f̂ , then the value of f(z) is given by f(z) = Ĉ(z)T f̂ .

Thus, evaluating the function at different points p̂ = {pr}mr=1 inside the domain can be

achieved by packing the coordinates of the points in a matrix C of size m× n where

row r contains the coordinates for point pr, and multiplying the matrix by the vector of

coefficients f̂ : f(p̂) = Cf̂ .

The first and second derivatives of the function is calculated by differentiating

equation 2.2 with respect to z, leading to the derivative coordinates which are given by

Dj(z) =
1

2πi

(
1

Aj+1
log

Bj
Bj+1

+
1

Aj
log

Bj
Bj−1

)
D

(2)
j (z) =

1

2πi

(
1

Bj−1Bj
− 1

BjBj+1

)
Then, the first derivative of the function is given by f ′(z) =

∑n
j=1Dj(z)fj and the second

derivative is given by a similar expression involving the second derivative coordinates.
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Chapter 3

Hele-Shaw Flow Simulation with
Interactive Control using
Complex Barycentric
Coordinates

Figure 3.1: (left) A typical setup of the Hele-Shaw experiment with our simulation
results. (right) One of the effects obtained by our simulation.

3.1 Background

The interaction between fluids often leads to compelling visual phenomena, such as

mixing and pattern formation. In this paper we are interested in viscous fingering, which

are the patterns generated at the unstable interface of a viscous liquid. Such patterns

can arise when a liquid flows into a porous medium (e.g. sand), and are closely related

to other pattern phenomena such as bacterial growth and snowflake formation. One

option to experimentally study such fingering phenomena, is to inject air into a viscous

liquid trapped between two parallel plates separated by a small gap (see Figure 3.2),

also known as a Hele-Shaw cell [47]. This setup allows experimental and mathematical

analysis of the pattern formation, as the governing equations for the expanding air

bubble are the same as those of other more complex flows yielding similar phenomena.

From the Computer Graphics perspective, such flows generate intricate patterns
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which have inspired artists [29] and designers [43]. It would therefore be potentially useful

to simulate such patterns numerically, and allow the user to control the finger formation,

while preserving the physical behavior and appearance of the liquid. While a plethora

of methods exist for numerically simulating this phenomenon in the Computational

Fluid Dynamics literature, the vast majority requires copious amounts of computational

resources, and are thus not amenable to user control at interactive rates. Furthermore,

traditional fluid simulation methods from Computer Graphics, such as a full Navier-

Stokes simulation, is unnecessarily computationally heavy: there is no need to simulate

the full behavior of the fluid in the domain, since the fingering phenomena happen at

the moving free boundary.

In the spirit of recent methods for fluid simulation using boundary tracking [34],

we suggest a boundary integral formulation for this problem. Our main observation is

that the problem formulation shares many properties with the problem of planar shape

deformation, where the behavior is prescribed by user constraints, rather than by the

laws of physics. We therefore propose to leverage a reduced model successfully used for

shape deformation, namely generalized barycentric coordinates, in order to parameterize

the behavior of the flow. As Hele-Shaw flow is governed by a harmonic function, we use

complex holomorphic barycentric coordinates, which simplify the derivation and analysis.

We show how to formulate the model equations using complex barycentric coordi-

nates, which allows us to simulate the flow at interactive rates, and thus allows user

control over the direction in which the fingers grow. By controlling the domain of

injection, e.g. by injecting from a line segment instead of a point, we further the

artist’s control and enable the generation of a large variety of patterns. Finally, we

show that complex holomorphic coordinates are applicable to the exterior of a planar

bounded domain, which allows us to simulate finger formation in the case of two liquids

with different viscosities, as well as for multiply connected domains, which allows us to

simulate obstacles.

3.1.1 Related Work

While fingering in Hele-Shaw cells has not been, to the best of our knowledge, simulated

in Computer Graphics, the body of work dedicated to the experimental, analytical

and numerical study of this phenomenon in the Computational Fluid Dynamics (CFD)

literature is vast, and a complete review is beyond our scope. We therefore focus our

literature overview on putting our work in context of existing schemes, by discussing

the simulation of this phenomenon in other disciplines, simulation of related phenomena

in graphics, and other applications in graphics which use similar tools.

Viscous fingering in Hele-Shaw cells. An excellent review on the problem of

viscous fingering in two dimensions, including the Saffman-Taylor model equations,

the formulation using complex analysis and conformal maps, as well as numerical

experiments, appears in [9]. A more recent mathematical treatment of the problem
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using a complex analytic approach is given in [27]. Experimental investigation of this

problem continues to this date, including, e.g., analyzing the dependency of the emerging

pattern on the viscosity ratio in two-phase flow [11]. Numerical methods in the CFD

literature are diverse, including boundary integral methods [41], yet the main focus in

such disciplines is long-time evolution and the emergence of limit shapes (see e.g. the

largest simulation to date [40]), as opposed to computation at interactive rates which

is necessary for enabling user control. For a recent review of numerical methods for

this problem in CFD, see the PhD thesis [16] and references within. Finally, it is worth

noting that while the Cauchy integral formula has been used before [35] for this problem,

the formulation there is quite different, as the integral there is computed numerically as

opposed to our approach which uses analytic integrals on polygonal domains, leading to

a more stable computation.

Simulation of related phenomena in Graphics. For a review of the simulation

of the full Navier-Stokes equations in graphics we refer to [12]. The simulation of viscous

flow using reduced dimensional methods has been proposed for viscous threads [10],

viscous sheets [4] and viscous thin films on curved surfaces [3], and gap coupled solids [45].

See e.g. [52], and references within, for additional approaches to viscous fluid simulation.

As opposed to these methods, we only need to simulate the behavior of the boundary

curve of the fluid, and therefore face different challenges. Perhaps the phenomenon most

related to our approach, is the simulation of Laplacian growth leading to fractal pattern

formation, which is governed by similar equations. Such phenomena are exhibited

for example by lichen growth, as were simulated in [51, 19] using Diffusion Limited

Aggregation. In [36], a dielectric breakdown model was used for efficiently simulating

lightning, whereas in [37] a hybrid algorithm was used for simulating ice formation.

While all these problems are related to ours, the formulation of Hele-Shaw flow requires

the use of dedicated solutions, which are both efficient and user controllable.

Other applications using similar tools. Our numerical simulation is based on

complex-valued holomorphic barycentric coordinates, knowns as the Cauchy-Green (CG)

barycentric coordinates, which were first suggested for image deformation in [54], following

their initial introduction using a real-variable formulation [42]. These coordinates were

later extended to allow for conformal maps with sharp bends [56], to non-holomorphic

functions [55], and to three-dimensions [8]. The CG coordinates are a special case of

generalized barycentric coordinates, which are used in graphics mostly for cage-based

shape deformation, see e.g. [23], for a recent review. The CG coordinates are based on

a boundary integral formulation, formulated in complex variables for ease of analysis,

using analytical, as opposed to numerical, integration. It has been shown [54] that

these coordinates are well-behaved even near the boundary of the domain, as they have

a non-singular limit there, which motivates their use for the simulation of Hele-Shaw

flows. Recently, beyond shape deformation, boundary element formulations have been
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used in graphics for, e.g., fluid simulation [34, 13, 25], sound simulation [59], and crack

simulation [28, 60].

3.1.2 Contributions

Our main contribution is a formulation for efficiently simulating Hele-Shaw flow with

viscous fingering at interactive rates, while allowing for user control, using Cauchy-Green

barycentric coordinates. Specifically, we:

• Formulate the model equations of the Hele-Shaw flow in terms of the Cauchy-

Green coordinates, which leads to an efficient numerical simulation method (Sec-

tions 3.2, 3.3).

• Show that the Cauchy-Green coordinates are applicable to more general problems,

such as exterior domains, and multiply connected domains, which allows us to

simulate two-phase flow, and flow with obstacles (Section 3.4).

• Show a variety of effects that can be achieved with our technique (Section 3.5).

3.2 One phase Hele-Shaw Flow

3.2.1 The Model.

The Physics. We investigate the evolution of an incompressible viscous liquid slowly

injected into (or pumped out of) two parallel plates separated by a small gap, under

the influence of surface tension, and without gravity. To simplify the exposition, we

initially assume that the surrounding fluid is air (i.e. has zero viscosity and constant

pressure), and extend later to more general settings. We further assume no-slip boundary

conditions at the interface between the liquid and the plates, and a freely evolving

liquid-air interface. Figure 3.2(a) illustrates this scenario.

The general Navier-Stokes equations describing fluid motion can be considerably

simplified under the aforementioned assumptions. Specifically, the fluid velocity can be

integrated across the gap, yielding a reduced model in terms of the two-dimensional

averaged velocity V . Following the derivation presented in [27], the governing equation

is V = −∇Φ, where Φ is a scalar potential function, related to the physical pressure p

by Φ = (h2/12µ)p, with h the gap height and µ the fluid viscosity.

Assuming the fluid is incompressible and fills the entire gap (therefore having a

constant height h) the fluid averaged velocity is divergence free everywhere except at

the injection point, which we assume to be at the origin. There we have a source of

strength Q < 0 representing a constant rate of injection. If the fluid is pumped out of

the cell, Q will be positive instead. Thus, in the interior of the fluid domain we have:

∆Φ = Qδ0(x, y),
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h

Q<0Q>0

(a)

Ω

𝑂

 𝑛

𝜕Ω = Γ

(b)

Figure 3.2: The Hele-Shaw cell model. (a) The physical model. (b) The geometry and
notation.

where ∆ is the Laplacian and δ0(x, y) is the two-dimensional Dirac distribution supported

at the origin.

The boundary conditions for the pressure p are given by the Young-Laplace condition,

namely the pressure difference at the fluid-air interface is proportional to the mean

curvature of the interface. Assuming constant air pressure at the exterior of the fluid,

we can eliminate it from the equation by shifting both pressures by a constant factor.

Furthermore, in the reduced two-dimensional model, the mean curvature of the interface

is the curvature κ of the boundary curve, yielding the boundary conditions Φ = σκ,

where σ is a rescaled surface tension parameter.

The Geometry. From the geometric perspective, the fluid occupies a time-dependent

planar domain Ω(t) ⊂ C, which we assume to be simply-connected. Note, that we switch

to complex-variable notation for points in the xy plane, namely we denote the point

(x, y) ∈ R2 by z = x + iy, where i is the imaginary unit. The aforementioned model

equations for the potential and velocity can be formulated as an evolution problem for

the boundary of the domain Γ(t) = ∂Ω(t), given in terms of the time-varying scalar

potential Φ(t) : Ω(t)→ R [27, pp. 17]:

∆Φ(z) = Qδ0(z), z ∈ Ω (3.1a)

Φ(z) = σκ(z), z ∈ Γ (3.1b)

vn = 〈∂Γ

∂t
(z), n̂(z)〉 = 〈−∇Φ(z), n̂(z)〉, z ∈ Γ, (3.1c)

where n̂ is the outward unit normal direction of the boundary curve Γ (see Figure 3.2(b)).

The first two equations yield a unique solution for the potential Φ(t), and the last

equation specifies that the fluid-air interface (namely the boundary Γ(t) of the domain)

evolves according to the normal velocity vn = 〈V, n̂〉.
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Given an input initial domain Ω(0), our goal is to efficiently find a family of domains

Ω(t) which fulfill the model equations (3.1a)-(3.1c). To understand the behavior of the

flow, consider the equations for the zero surface tension case (ZST), when σ = 0. In this

case, the value of Φ on the boundary is 0, thus when the fluid is injected (i.e. Q < 0),

the potential in all the domain is positive. Hence, the velocity at the boundary points

outward and the boundary expands. Intuitively, points closer to the singular point at

the origin will have a larger potential gradient, and therefore move faster away from

the origin. This effect tends to smooth the curve. See Figure 3.3 (top) for an example

showing the potential (a), the resulting velocity (b), and a few evolutions of the front

under injection (c).

(a) (b) (c)

Figure 3.3: (top) injection and (bottom) suction, with zero surface tension. (a) The
potential Φ at t = 0 is positive for injection and negative for suction. (b) Boundary
velocity: points closer to the source have higher velocity. (c) Curve evolution: the curve
is smoothed for injection and sharpened for suction. The original curve is shown in
blue, and later iterations in green.

If, on the other hand, the fluid is pumped out (i.e. Q > 0), the potential is negative

in all the domain, and the velocity points towards the interior. In this case as well

points closer to the origin will move faster, but now the movement is towards the origin,

enhancing the curvature (see Figure 3.3 (bottom)). This property makes the front

unstable, as small perturbations grow, and is the cause for the fingering phenomena.

Numerically, this is one of the reasons simulating this flow is challenging: a naive

discretization of the model equations in the case of suction (which is the interesting

case generating the pleasing visual phenomena) might quickly become unstable and

cease to evolve. While the surface tension term acts as a regularizer, careful numerical
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treatment is still required in order to evolve the front in a stable and efficient manner.

To do that, we leverage an important property of the system, namely that it is

described by harmonic functions, which allows us to reformulate the problem in terms

of boundary information only. Specifically, we will consider two approaches, modeling

the behavior of Γ and Φ, respectively. In both cases, reformulating the problem in terms

of complex functions is instrumental, due to the wide applicability of complex methods

to the analysis of harmonic problems in two-dimensions [15].

The Complex Formulation. We briefly mention some complex analysis notation

which is required for the following discussion, and refer the reader to the excellent book [1]

for a thorough introduction. We slightly abuse notation, by treating planar vectors (x, y)

as the complex number x+iy, thus for example, the gradient of a real function φ : C→ R
corresponds to the complex number ∂φ/∂x+ i∂φ/∂y. A holomorphic function is a function

that is complex differentiable, namely the limit ∂f/∂z(z0) = limz→z0f(z)−f(z0)/z−z0 exists

regardless to the direction in which z approaches z0.

The Cauchy-Riemann equations [1] formalize the relation between a holomorphic

function f(z) = φ(z) + iψ(z) and its real and imaginary parts φ, ψ : C→ R. Specifically,

φ, ψ are harmonic, and their gradients are orthogonal and of equal norm. Furthermore,

any harmonic function is the real part of some holomorphic function. Thus, we can

rephrase the Hele-Shaw model equations using a holomorphic complex potential W :

Ω→ C, whose real part agrees with the real-valued potential: Re(W ) = Φ.

Reformulating Equations (3.1a)-(3.1c) using W we have [27, pp.17-18]:

W (z) =
Q

2π
log(z) + g(z), z ∈ Ω (3.2a)

Re(W (z)) = σκ(z), z ∈ Γ (3.2b)

vn = −Re(
∂W

∂z
n̂(z)), z ∈ Γ, (3.2c)

where g is a holomorphic regular function (i.e. without poles in Ω). For the first

equation we used the fact that Re(1/2π log(z)) = 1/2π log(|z|) is the Green’s function for

the Laplacian in the plane, and thus solves Equation (3.1a), whereas g is used to fulfill

the boundary conditions (3.1b). Finally, the third equation is due to the representation

of the inner product of two planar vectors in complex form: 〈a, b〉 = Re(ab), and the

relation between the derivative of a holomorphic function and the gradient of its real

part, yielding: ∂W/∂z = ∂Φ/∂x− i∂Φ/∂y.

With the complex formulation at hand, we can now attempt to address the model

equations. We will propose two approaches, with complementary advantages. First, we

will leverage the invariance of harmonic functions under conformal (angle preserving)

maps, to directly solve for the evolving front Γ(t) by parameterizing it as a time-evolving

conformal map (and thus a holomorphic function) from the unit disk. This allows us to

handle both injection and suction, and produces similar behavior as a known analytic

solution for the challenging case of suction with zero surface tension. Unfortunately, this
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approach is difficult to extend to more general scenarios (e.g. non-zero surface tension

and two-phase flow), and causes additional technical problems due to uneven sampling

of the evolving front. Our second approach is to directly solve for the evolving complex

potential W , and it can be applied in a variety of scenarios, yet cannot reproduce

the analytic solution. Still, this approach is highly useful in practice, as it is easily

modified to allow for user control, and is efficient enough to allow interactivity. Note

that Figure 3.4 was produced with the first approach, and all the others were produced

with the second approach.

analytic

(a)

ours

(b)

analytic

(c)

ours

(d)

Figure 3.4: Comparison of the quadratic form analytic approach for injection (a) and
suction (c) with our approach for injection (b) and suction (d), using the same initial
curve Ω(0). Note that our method indeed produces a cusp similar to the cusp of the
analytic solution.

3.2.2 Evolving the Interface

The Riemann Mapping Theorem states that for any simply connected domain Ω ⊂ C
there exists a unique bijective conformal mapping which maps the unit disk U = {ζ :

|ζ| < 1} into Ω such that f : U → Ω, f(0) = 0, f ′(0) ∈ R+. Thus, we can track the

time-varying domain of the fluid Ω(t) by the time-varying conformal map f(ζ, t) from

the unit disk into Ω(t) for every t (see Figure 3.5).

The Polubarinova-Galin (PG) equation [27] provides a condition that the conformal

mapping f(ζ, t) must satisfy (in the case of a single singular point at the origin (s = 0)

and zero surface tension) for the model equations to hold. It builds on three facts: First,

harmonic functions are invariant under conformal maps, and thus given a solution to

the model equations on U we can use the conformal map to get a solution on Ω. Second,

the normal velocity vn can be expressed both in terms of the complex potential WΩ

and the time derivative of the conformal map ∂f/∂t. And finally, the normal n̂ on Ω can

also be computed using f (as seen in Figure 3.5).

Combining these facts yields the equation (see supplemental material) [27, Eq.

(1.16)]:

Re

(
∂f

∂t
ζ
∂f

∂ζ

)
= − Q

2π
, ζ ∈ ∂U. (3.3)

It was shown [26] that in the case of injection under some assumptions on smoothness

of ∂Ω(0) there exists a unique solution f(ζ, t) satisfying the PG equation. It is also
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𝑧 = 𝑓(𝑡, 𝜁)𝑈(𝜁)
Ω(𝑡, 𝑧)

𝑂

 𝑛 =
𝜁𝑓′ 𝜁

𝑓′ 𝜁
 𝑛 = 𝜁

𝑂

𝜕Ω = Γ(t, z)

Figure 3.5: Notation for evolving the interface. We map the unit disk U(ζ) (left) using
a time varying conformal map f(ζ, t) to a time-varying domain Ω(t, z) with boundary
Γ(t, z) (right). The normal to the disk is mapped with the derivative of the map f ′ to
the scaled normal at the target domain.

possible to find analytic solutions by using a special form for f(ζ, t) (i.e. expressing

specific types of boundaries). For example, in [24] the author chose the quadratic form

f(ζ, t) = a1(t)ζ + a2(t)ζ2 where a1(t) and a2(t) are real coefficients. Substituting f(ζ, t)

into (3.3) gives two equations which can be solved for the coefficients a1, a2 at time t,

yielding an explicit solution for the problem.

In the next section we discuss the spatial discretization using the Cauchy-Green

barycentric coordinates for this formulation, and the resulting discrete equations. Fig-

ure 3.4 shows such solutions to the PG equation for injection and suction, using the

quadratic form approach and our approach, using the same initial curve Ω(0). Note,

that our method produces similar behavior to the analytic solution.

3.2.3 Evolving the Potential

As solving for the conformal map f has several issues, we alternatively suggest to find

the complex potential W (z) which satisfies Equations (3.2a)-(3.2c). We do so by solving

for the holomorphic function g(z) : Ω → C, which satisfies the boundary conditions:

Re(g(z)) = −Q/2π log |z|+ σκ(z). Interestingly, holomorphic functions and conformal

maps are equivalent, thus we can use the same ansatz for the spatial discretization,

namely the discrete Cauchy-Green coordinates. Furthermore, this approach is more

easily generalizable to handle multiple singularities of different types.

Mutliple Singularities. In the physical model, extending to multiple singularities

implies that instead of having a single source or sink of the velocity at the origin, there are

multiple sources and sinks at locations sk ∈ Ω, with strengths Qk. Thus Equation (3.1a)
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changes to ∆Φ =
∑

kQkδ(z − sk). Since Green’s functions can be superimposed,

the corresponding contribution to the complex potential is
∑

k
1/2πQk log(z − sk) =∑

kWs(z, sk).

Similar reasoning allows us to add line singularities, namely sources and sinks which

are localized on line segments. Given a line segment l : s(t) = z1 + t(z2 − z1), its

contribution to the complex potential is Wl(z, l) = 1/2πQl
∫ 1

0 log(z − s(t))dt (see the

supplemental material for the closed form solution of this integral). Fig. 3.6 shows the

scalar potential and the velocities for a source localized on a line segment. Note that,

compared to a point source, there is a larger neighborhood of points on the evolving

curve with large velocities, yielding a more noticeable effect during the evolution.

(a) (b) (c)

Figure 3.6: Simulating a sink localized on a line segment. (a) The scalar potential Φ. (b)
The velocity of the interface, note the larger region of high velocities. (c) The resulting
evolution of the front.

Combining the contributions from all the singularities yields to the following modifi-

cation to Equation (3.2a):

W (z) =
∑

k
Ws(z, sk) +

∑
k
Wl(z, lk) + g(z), (3.4)

where {sk} and {lk} are the sets of point sources and line segments, respectively.

In the next section we show how the Cauchy-Green barycentric coordinates can

be used for this formulation. Figure 3.7 shows an example of a flow where the point

location of the singularity (i.e. the source s) changes during the flow, which allows fine

control on the behavior of the fingers. Since the computation is done at interactive rates,

the user can move this location interactively, yielding an intuitive tool for generating

16©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



finger-like effects (see the video).

Figure 3.7: A few frames from an interactive simulation, where the user modifies the
singularity’s location in real-time. The resulting singularity path is shown on the left.
Note how the path of the fingers is modified to “aim” for the location of the closest
singularity.

3.3 Discretization

In the previous section we described how the model equations of Hele-Shaw flow can be

reduced to finding a time-varying holomorphic function, representing either a conformal

map from the unit disk to the fluid domain, or the regular part of the complex potential

of the fluid domain, under some constraints. This setup is remarkably similar to the

setup common in planar shape deformation, where we seek a deformation of the input

shape which is detail preserving, under some user constraints. In [54] it was proposed

to use the machinery of conformal maps for this problem, yielding exactly the same

mathematical formulation as we have, namely, finding a time varying conformal map

under some constraints. We now leverage that machinery to get a deformation which is

conformal, yet driven additionally by the physical model, rather than exclusively by a

human user.

3.3.1 Cauchy-Green Coordinates.

The Cauchy integral formula [6] is a central result in complex analysis, expressing the

fact that the values of any holomorphic function inside a domain Ω can be calculated

by the following integral on the boundary of Ω:

f(z) =
1

2πi

∮
∂Ω

f(w)

w − z
dw, z ∈ Ω. (3.5)

The Cauchy-Green Coordinates [54] are a discretization of the Cauchy integral. The

domain Ω is discretized using a polygon on which we store the function as values at

the vertices {fj}nj=1. The function f(w) is approximated on each edge by a linear

interpolation between these values. Then, the integration on the edges can be cal-

culated analytically, yielding a complex coefficient Cj(z) for each fj . These complex
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coefficients are called the Cauchy-Green barycentric coordinates. Finally, the integral is

approximated using the sum:

f(z) =
∑n

j=1
Cj(z)fj .

Similarly, the derivative of f can be approximated using the derivative of Cj(z):

f ′(z) =
∑n

j=1
C ′j(z)fj =

∑n

j=1
Dj(z)fj .

We provide the expression for the Cauchy-Green coordinates and their gradients in the

supplemental material. In the following we show how the CG coordinates can be used

for evolving the interface and the complex potential.

3.3.2 Evolving the Interface

Spatial Discretization. We search for a time varying conformal map f : U → Ω,

which satisfies Equation (3.3). We discretize the unit circle using a regular n-sided

polygon Û , and represent the conformal map using n functions fj(t), j ∈ 1..n, t ∈ R,

corresponding to the vertices of the polygon. Then, the map of Û is:

f(ζ, t) =
∑n

j=1
Cj(ζ)fj(t), ζ ∈ Û . (3.6)

Since Cj(ζ) are independent of f , the time derivative is given by: ∂
∂tf(ζ, t) =∑

j Cj(ζ) ∂∂tfj . Thus, the semi-discrete PG equation corresponding to Equation (3.3) is,

for ζ ∈ ∂Û :

Re

 n∑
j=1

Cj(ζ)
∂fj
∂t

(ζ n∑
m=1

Dm(ζ)fm

) = − Q
2π
. (3.7)

We additionally sample the regular polygon at the points S = {ζl} ∈ ∂Û , which

leads to the space-discrete system of ODEs:

Re

(
(C ∂
∂t
f̂)l(Df̂)l

)
= − Q

2π
, ∀l ∈ 1..|S|, (3.8)

where C,D are complex matrices with entries Clj = Cj(ζl) and Dlm = ζlDm(ζl),

respectively, and f̂ is a vector with entries fj(t).

Time Discretization. We use an explicit Euler scheme to integrate equation (3.8).

Specifically, given f̂k at iteration k, we find a discrete approximation of ∂
∂t f̂

k, denoted

by (∆f̂)k, by minimizing the error of an over-constrained set of linear equations derived

from Equation (3.8) sampled at 4n points. Finally, we set f̂k+1 = f̂k + ∆t(∆f̂)k for a

constant delta time ∆t = 0.001. Figure 3.4 (top) shows a comparison of our evolution

for the case of injection with the classic solution obtained using the quadratic complex

form, where we achieve similar behaviour.
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Regularization. While this approach works for the injection problem, the suction

problem requires additional regularization because of its ill-posed nature. The regu-

larization we propose is the minimization of the second spatial derivative of ∆f̂ , in

order to keep the conformal map smooth. Thus, we add a regularization term λC(2) to

the linear equations, where C(2) are the second spatial derivatives of the Cauchy-Green

coordinates in matrix form (provided in the supplemental material). Figure 3.4 shows

our result with this regularization (where we used λ = 0.001) compared with the classic

analytic solution. Note that we manage to achieve the characteristic cusp despite our

use of regularization.

3.3.3 Evolving the Potential

Spatial Discretization. We search for a holomorphic function g(z) : Ω(t)→ C, given

by equations (3.4) and (3.2b). We first discretize the input domain Ω(t) using n samples,

to get the closed polygon Ω̂(t), and then we use again the Cauchy-Green coordinates to

represent g(z):

g(z) =
∑n

j=1
Cj(z)gj , z ∈ Ω̂(t). (3.9)

The boundary conditions (3.2b) yield the constraints:

Re

 n∑
j=1

Cj(z)gj

 = −Re(Wsrc(z)) + σκ(z), z ∈ ∂Ω̂,

where Wsrc(z) is the combined potential of all the sources and sinks, as given in

Equation (3.4).

We sample the boundary of the discrete domain at the points S = {zl} ∈ ∂Ω̂, which

again leads to an over-constrained system of linear equations, which can be solved for

ĝ, the complex vector with entries gj . The spatial derivative of the complex potential

∂/∂zW is computed using the known derivative of the potential at the singularities and

g′(zl) =
∑

j Dj(zl)gj . Finally, from Equation (3.2c), the normal velocity is given by

vn = −Re(∂/∂zWn̂), where n̂ is the averaged normal at the vertices of Ω̂.

Time Discretization. We use explicit Euler integration of Equation (3.2c), and

advance the sampled locations zj using zk+1
j = zkj + (∆t)vn(zj)n̂(zj). Since in this setup

we can directly prescribe non-zero surface tension σ, no regularization is required. We

do, however, resample the curve ∂Ω̂(t) during the evolution, taking into account the

curvature. See section 3.5.1 for the details, as well as for the computation method of

the dynamic time-step ∆t.

While it is possible to use a more advanced time integrator, we have observed that

this approach is efficient and stable. Specifically, for a constant rate of injection Q, the

area of the domain should grow linearly. Figure 3.8 shows the result of injection (left)

and suction (middle) from a single source using the complex potential approach and

the corresponding graph denoting the change in the area (right). Note that we get a
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linear change in the area, as expected.

Time (seconds)
0 0.5 1 1.5 2

A
re

a

3

3.5

4

4.5

5

5.5

Suction
Injection

Figure 3.8: Front evolution for the stable case of injection (left) and suction (middle)
with small surface tension (10−5), using the complex potential approach (Section 3.3.3).
The method yields linear evolution of the area as expected (right).

3.4 Extensions to the Model

The setup we presented, namely: simulating the one-phase Hele-Shaw flow by evolving

the complex potential with the Cauchy-Green coordinates, can be easily extended to

more complicated physical setups. We first present the generalization to exterior flow,

namely the fluid occupies an unbounded domain in the plane which is the complement

of a simply connected curve, by showing how the Cauchy-Green coordinates can be

modified to handle holomorphic functions on unbounded domains. Then, by combining

interior and exterior flows, we address two-phase flow by solving for two potential

functions. Finally, we show how to handle obstacles using multiply connected domains

and different boundary conditions.

3.4.1 One Phase Hele-Shaw Flow with a Bubble

We consider the inner fluid to be air with zero viscosity (forming a bubble inside the

outer fluid) and suction or injection of the external fluid from infinity (see Figure 3.9).

The flow is driven by the potential of the external fluid Φ which is related to the fluid

pressure by a constant scaling factor. Since the singular point is at infinity the potential

should be harmonic everywhere but behave at infinity as [17]:

Φ(z) ≈ − Q
2π

log |z|, as |z| → ∞.

We therefore represent the potential as Φ(z) = −Q/2π log |z|+ h(z) where h(z) is a

harmonic function which tends to a constant at infinity, and its gradient tends to zero.

20©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Ω

 𝑛

𝜕Ω = Γ

Figure 3.9: The geometry and notations of the exterior one phase flow.

The corresponding model equations are therefore:

W (z) = − Q
2π

log(z) + g(z), z /∈ Ω (3.10a)

Re(W (z)) = −σκ(z), z ∈ Γ (3.10b)

vn = −Re(
∂W

∂z
n̂(z)), z ∈ Γ (3.10c)

where g(z) is a holomorphic function which satisfies lim
|z|→∞

g(z) = const, and n̂ still

points outward of the curve. As previously, the boundary conditions are given by

the Young-Laplace condition relating the pressure difference to the curvature of the

boundary. The viscosity of the inner fluid is negligible compared to the viscosity of

the outer fluid, and thus the pressure of the inner fluid is assumed to be constant,

leading to the boundary conditions in Eq. (3.10b). Similarly to the interior flow, we

will represent the holomorphic function g(z) using the Cauchy-Green coordinates, by

slightly modifying them to handle exterior domains.

Exterior Cauchy-Green Coordinates. Given a bounded simply connected domain

Ω and a function f(z) which is holomorphic in the exterior of Ω such that limz→∞ f(z) =

c for some constant c, the following holds [33, pp. 140]:

1

2πi

∫
∂Ω

f(w)

w − z
dw =

c z ∈ Ω

c− f(z) z /∈ Ω
.

This result is sometimes known as Cauchy’s integral formula for an unbounded domain.

Thus, we can pick an arbitrary point a ∈ Ω, and then the value of f(z) for a point z /∈ Ω

is given by:

f(z) =
1

2πi

∫
∂Ω

f(w)

w − a
dw − 1

2πi

∫
∂Ω

f(w)

w − z
dw,
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and is independent of the choice of a.

We discretize the domain using a polygon Ω̂, and use the Cauchy-Green coordinates

for discretizing the Cauchy integral:

f(z) =

n∑
j=1

Cej (z)fj , Cej (z) := Cj(a)− Cj(z), z /∈ Ω̂,

where a ∈ Ω̂ is arbitrary, and Cej (z) is the exterior Cauchy-Green coordinate for a vertex

j of Ω̂. This result indicates that the exterior coordinates can be expressed using the

regular Cauchy-Green coordinates, and so do their derivative as De
j (z) = −Dj(z).

Exterior Flow. Using the exterior coordinates, we can apply our previous ansatz and

discretize Equations (3.10a)-(3.10c). Specifically, we assume that lim|z|→∞ g(z) = const

and represent it by g(z) =
∑

j C
e
j (z)gj . As before, the discrete values gj are calculated

by solving the over-constrained linear system obtained by sampling the boundary and

applying the boundary conditions Re(g(z)) = −σκ(z) + Q/2π log |z|. Given the values of

gj , the velocity is calculated using the derivative of the exterior coordinates and the

interface is advanced according to the normal velocity.

Figure 3.10 shows an example of using the exterior flow to “continue” a real

Hele-Shaw flow. Specifically, we extracted from a photograph by the artist Antony

Hall [29] the boundary curve of a real Hele-Shaw flow, and used it as the initial

conditions of our simulation. The Figure shows the original photograph (left), and our

“simulated” photograph (right), after allowing the front to evolve (the initial fluid has

darker color). Note that the simulated front closely resembles the original photograph.

Fig. 3.1, 3.13, 3.16 and the attached video show additional results using the exterior

flow.

Figure 3.10: “Continuing” an experimental Hele-Shaw flow. (left) Photograph by Antony
Hall. (right) Our evolution starting from the boundary curve of the photograph.

3.4.2 Two Phase Hele-Shaw Flow

In the general case, there are two fluids with non-zero viscosities µ1 and µ2 occupying

the interior and exterior of the domain [32]. Their flow is driven by two harmonic
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potentials which we denote by Φ1 and Φ2 for the inner and outer fluid, respectively.

We again represent the potentials as the real parts of complex holomorphic potentials

W1 and W2. For simplicity we assume a single source inside the inner fluid located at

the origin. Since the fluids are incompressible, the total amount of material must not

change and thus injection of material at some location must be compensated by removal

of material from another. Therefore, the outer fluid will also have a singularity, and we

assume it is at infinity.

The corresponding equations for this model are [32]:

W1(z) =
Q1

2π
log(z) + g(z), z ∈ Ω (3.11a)

W2(z) = −Q2

2π
log(z) + h(z), z /∈ Ω (3.11b)

µ1 Re(W1(z))− µ2 Re(W2(z)) = σκ z ∈ Γ (3.11c)

− vn = Re

(
∂W1

∂z
n̂(z)

)
= Re

(
∂W2

∂z
n̂(z)

)
z ∈ Γ (3.11d)

where Q1 is the strength of the singularity at the origin, Q2 is the strength of the

singularity at infinity, g(z) is a holomorphic function inside Ω and h(z) is a holomorphic

function in the exterior of Ω which tends to a constant at infinity. Note that in order to

preserve the incompressibility of the fluids we must have that Q1 = −Q2 (the rate of

injection matches the rate of pumping). The holomorphic functions g(z) and h(z) are

determined by the Young-Laplace boundary condition (3.11c), expressing the pressure

jump across the interface, and the kinematic boundary condition (3.11d), stating that

the normal velocities of the two fluids at the interface must be equal (as the fluids do

not mix).

As before, we represent the holomorphic functions g(z) and h(z) using the interior

and exterior Cauchy-Green coordinates g(z) =
∑

j Cj(z)gj and h(z) =
∑

j C
e
j (z)hj , and

discretize equations (3.11a)-(3.11d) in the same way. The coefficients gj and hj are

found as the solution of an overconstrained linear system obtained by sampling the

boundary, and the values of gj are used for calculating the normal velocity and advance

the boundary of the curve.

Figure 3.11 shows examples of two-phase flows, for the stable case of injection when

µ1 > µ2 (bottom), and the unstable case of injection for two viscosity ratios µ1/µ2

(top,middle). Note that the smaller viscosity ratio generates more intricate and thinner

fingers, as expected [11]. Furthermore, it is worth noting that in the extreme limits of

the viscosity ratio the two previous cases are recovered. Specifically, when µ2/µ1 → 0 the

flow behaves as the one phase flow of the inner fluid and when µ1/µ2 → 0 it behaves as

the one phase flow with a bubble. Figure 3.14 and the attached video show additional

results of the two phase flow.
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t

Figure 3.11: Two phase flow simulation. (top) Unstable injection with µ1/µ2 = µa = 0.01.
(middle) Unstable injection with µ1/µ2 = µb = 0.3. (bottom) Stable injection with
µ1/µ2 = 2. Note that the lower viscosity ratio µa (top) generates thinner and more
intricate fingers.

3.4.3 Obstacles.

Obstacles are formulated using the no-penetration Neumann boundary conditions, i.e.

the normal velocity of the interface along the obstacle should be zero. Here the fluid

domain may be multiply-connected, and its boundary ∂Ω is composed of a free boundary

denoted by Γ1, and a part which is allowed to move only in the tangent direction (where

the boundary is part of an obstacle), denoted by Γ2. Thus, the formulation is similar

to the formulation of the regular Hele-Shaw flow, with the exception that now the

boundary condition for the potential function on Γ2 is Re(∂W∂z n̂) = 0.

Since obstacles form holes in the domain, the domain is now multiply-connected.

Interestingly, the Cauchy integral formula holds in this case as well [6], with the

modification that the orientation of the interior boundaries should be opposite to those

of the exterior boundaries. Thus, we can use the same discretization as before using the

Cauchy-Green coordinates to represent the regular part of the complex potential, and

add the boundary conditions:

Re

 Q

2πz
+

n∑
j=1

Dj(z)gj

 n̂

 = 0 z ∈ Γ2.

Note, that in this case D(z) discretizes the multiply connected Cauchy integral. Given

the fluid interface with the Cauchy-Green coordinates DΓ(z) and m holes with the
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Cauchy-Green coordinates {Dk(z)}mk=1 the multiply connected coordinates are given by

D(z) = DΓ(z)−
∑m

k=1D
k(z). Fig. 3.12 shows suction from a line source in an interior

flow with obstacles and Fig. 3.16 shows an external flow with obstacles.

Figure 3.12: Flow with obstacles, suction from an interior segment.

3.5 Experimental Results

3.5.1 Implementation details.

User Interface. We implemented our method in MATLAB. The interface is repre-

sented as a polygon with n vertices, where n may change during the flow. The user

draws a control polygon, which is then interpolated using a cubic spline and sampled

at n = 100 points for getting the initial polygonal interface. The user adds singularity

points and line singularities and chooses their strength Q. The user is free to move the

singularity locations during the simulation, and thus change the direction which the

fingers will follow. Using the line singularities the user can choose the path of a finger

when it reaches the line (see Figure 3.13).

Figure 3.13: By prescribing a line singularity the user controls the path of the fingers,
as they follow the line when it is reached.

Simulation. For each simulation frame the interface is sampled at 4n points (each

edge is sampled 4 times) on which the boundary conditions are applied to obtain 4n

linear equations. The calculation of the coordinates for these samples can be easily
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parallelized, and is thus done on the GPU (on an NVIDIA GTX 980 card). To give a feel

for the timings involved, calculating the coordinates of 4000 points takes 5 milliseconds.

The system of linear equations is then solved by minimizing the least squares error,

resulting in a vector of coefficients representing the potential. The normal velocity at

each vertex is then calculated using the derivative of the coordinates, and the vertices

are moved using an explicit Euler scheme with a dynamic time step, which is chosen

according to the ratio of the edge length and the normal velocity ∆t = min (|ei|/vn).

Finally, we fit a cubic spline which interpolates the new polygon and sample it according

to the curvature (i.e. more samples in the highly curved regions). The number of

sampled points is chosen dynamically according to a minimal edge limit and a limit on

the number of points, where we used 0.02 and 1000, respectively.

Singular integrals at the boundary. The Cauchy-Green coordinates and their

derivatives can be singular when evaluated at the boundary of the domain. The

coordinates, though, have a non-singular limit, given in [54], which we use for our

computations. The derivatives have a non-singular limit on the edges of the boundary

polygon, yet are undefined at the vertices. Thus, we calculate ∂W/∂z at a point close

to the vertex inside the domain. We chose to calculate the derivative at a point with

distance of 10−3 from the vertex in the normal direction into the interior or the exterior

of the domain, depending on where the complex potential is defined (the interior or

the exterior flow). In the two phase case we can calculate the velocity from either the

interior or the exterior potentials. The normal of the vertices is calculated as a weighted

average of the incident edges normals.

Degrees of freedom. Since the coordinates sum to one, their imaginary parts sum to

zero. Thus, we have one degree of freedom which can be fixed by choosing the imaginary

part of the first coordinate to be zero. In the two phase case we have three degrees

of freedom: two of them are expressed as a constant addition to the imaginary parts

of each of the potentials, and fixed similarly. The third is due to the Young-Laplace

boundary condition, as it involves the difference between the two potentials. It is fixed

by choosing the real part of the first coordinate of one of the potentials to be zero.

3.5.2 Limitations.

Our method has a few limitations. First, we do not handle topology changes, which

sometimes may be required (e.g. merging fronts after passing an obstacle, or bubbles

created due to self intersections). In principle, topology changes can be handled using a

more sophisticated tracking algorithm. Second, for exterior flow, if the front becomes

very large, the computational cost becomes larger as we require many points to represent

the front. We believe that a multi-resolution approach, e.g. using a multi-grid based

method could alleviate this problem, but leave further investigation for future work.
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3.5.3 Applications.

Visualizing the interior flow with a texture In this experiment we used a texture

to visualize the flow in the interior of the domain. We simulated the two phase case,

where the boundary of the mesh acts as the interface between the two fluids. After

solving for the potentials, we used the potential of the interior domain for moving the

interior vertices of the mesh as well as the boundary vertices. After each iteration

we resample the boundary and the interior of the mesh and interpolate the texture

coordinates. In Fig. 3.14 we show the results for unstable injection.

Figure 3.14: Unstable injection from the origin. See text for details.

Pumping from the medial axis. Here we have computed the medial axis of an

input curve, and used it as a collection of line singularities from which we pump the

fluid (see Fig. 3.15 (left)).

Figure 3.15: (Left) Pumping fluid from the medial axis of the boundary. (Right)
Directing the fingers by moving a point singularity.

Controlling the fingers. Here we control the direction which the fingers follow by

moving the suction point in exterior flow. In Fig. 3.15 (right) the user moves the suction

point in the shown path, and the fingers follow this path as shown in the next images.

Note that in the figure we show the caged air in gray and do not show the fluid (which

occupies the exterior of the domain).

Obstacles In this experiment we tested exterior flow with multiple obstacles. In

Figure 3.16 the fingers are forced to pass through the obstacles as they move toward a

line source placed at the bottom. The full simulation is showed in the attached video.
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Note that in this simulation we show the air inside the domain in red and do not show

the fluid occupying the exterior of the domain.

Figure 3.16: Exterior flow with multiple obstacles.
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Chapter 4

Iterative Closest Conformal
Maps between Planar Domains

(a) Source (b) Target (c) Result (d) Source (e) s2s (f) p2p

Figure 4.1: Left: The rose (a) is given as a source shape and the line drawing (b) as
the target. The conformal mapping found via the algorithm is used for transferring the
texture from the source shape to the target shape (c). Right: Deformation of the giraffe
using stroke-to-stroke constraints, compared to point-to-point constraints. Note that
our method (e) generates a deformation with less area distortion (e.g., of the head),
and without the foldovers near the head and tail evident when forcing point-to-point
matching of points on the curve.

4.1 Background

Conformal maps are often used in computer graphics for mesh parameterization [31] and

shape deformation [56] among many other applications. Given two simply connected

polygonal domains, the Riemann mapping theorem [46] guarantees that there exists a

conformal map between them. Constructing this map efficiently, however, is challenging

in practice.

One common approach, is to compose two conformal maps, one from the source to

the unit disk, and the second from the unit disk to the target, thus reducing the problem

to the case where one of the domains is the unit disk. Different methods were developed

for this task, two of the renown ones being the Schwartz-Christoffel method [20] and

circle packing [50], where the first yields a continuous map, from any point in the source

domain, and the latter requires a discretization of the interior, yet is guaranteed to
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converge to the smooth case under refinement [30]. This approach has been further

generalized in computer graphics to quasi-conformal [14] maps and bijective harmonic

maps [48].

Unfortunately, these methods suffer from a common drawback: as it is necessary to

pass through an intermediate convex domain, any distortion incurred in the process

could be visible in the final map. Furthermore, the additional degrees of freedom of

the problem, namely all Mobius transformations from the unit disk to itself are not

considered in this process. Finally, the method should be efficient to allow user control

at interactive rates, as well as allow some flexibility since it is not necessarily needed to

interpolate the target shape exactly.

We suggest instead to directly map between the source and target domains, by

starting with an initial conformal map from the source domain, and iteratively refining

it until it matches the boundary of the target domain. We represent a conformal map

from the source domain using the Cauchy transform [6], which (in the continuous case)

spans the entire space of conformal maps from the domain. The Cauchy transform maps

continuous functions defined on the boundary of the domain to holomorphic functions

(complex differentiable functions which are conformal when their derivative does not

vanish) in the interior of the domain. Specifically, it can reproduce a holomorphic map

from its boundary values. Thus, given the boundary correspondence specified by a

conformal map, we can extend this map to the interior of the domain using the Cauchy

transform.

We therefore opt for an alternative minimization approach, jointly optimizing

for the boundary correspondence and the conformal map. Specifically, we alternate

between finding the closest conformal map for a given correspondence and updating the

correspondence given a conformal map. This approach leads to a very simple algorithm,

which runs at interactive rates and quickly converges to a high quality conformal map.

We demonstrate the applicability of our approach using applications to texture transfer

and shape deformation. In addition, we show that our method can be easily extended to

handle quasi-conformal maps, point-to-point and stroke-to-stroke constraints, and that

our results yield lower area distortion than state-of-the-art conformal mapping methods.

4.1.1 Related Work

Many methods for numerically constructing a conformal map from an arbitrary domain

to the unit disk can be found in the literature, see e.g. [39] for a recent review. In

engineering applications, the most common methods for this task are the Schwarz-

Christoffel Mapping [20] and circle packing [50]. However, most of these approaches

are quite slow, requiring the solution of non-linear equations or a dense sampling of

the domain to achieve sufficient accuracy. Among these, perhaps the closest to our

approach is Wegmann’s method [58], which also iteratively solves for the boundary

correspondence. However, we do not restrict one of the domains to be the unit disk
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(which can cause crowding [21]).

In Computer Graphics, planar conformal maps are popular for shape deformation

(e.g. [54], [53]), yet existing conformal approaches do not allow for stroke-to-stroke

constraints which enable the curve constraints and the boundary to slide as we do.

Alternatively, the boundary constraints can be specified by requiring the angles of the

input polygon to be preserved [56]. We demonstrate that our approach leads to a better

trade-off between the user’s constraints and the resulting area distortion. Another

iterative approach which does allow boundary sliding is suggested in [22], yet it requires

the discretization of the domain and does not output a smooth conformal map.

4.1.2 Contributions

Our main contribution is a fast iterative algorithm for producing conformal maps between

two simply connected planar domains, without prescribing boundary correspondence

(§4.2). In addition, we:

• Introduce stroke-to-stroke constraints, which can be used for deforming a given

shape in an intuitive way and for guiding a conformal map between two domains

(§4.3.3).

• Show how to incorporate a quasi-conformal energy to reduce the area distortion

(§4.3.2).

• Show applications of our algorithm to image deformation and constrained texture

mapping (§4.4).

4.2 Iterative Closest Conformal Mapping

Given an input source shape Ωs and a target shape Ωt, both simply connected planar

domains, we seek for a conformal map of the source domain, which maps its boundary

to the boundary of the target domain. The Riemann mapping theorem [46] states

that for any simply connected domain Ω ⊂ C, there exists a bijective holomorphic

map f from Ω to the unit disk U = {z ∈ C : |z| < 1}. An immediate corollary of

the theorem is that for any two simply connected domains Ωs,Ωt and the bijections

f1 : Ωs → U, f2 : Ωt → U , one can construct a bijective holomorphic map between the

domains f : Ωs → Ωt, where f is given by f = f−1
2 ◦ f1.

However, since the space of exact holomorphic maps from one domain to another

is quite small and difficult to compute, we would like to relax the problem and gain

flexibility to control the behavior of the map. Therefore, we define the following energy,

which promotes boundary fitting as a soft constraint.

Energy. Given a mapping f : Ωs → C defined over the source domain Ωs with

boundary curve S, we define an energy for measuring its closeness to the target domain
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Ωt with boundary curve T as:

Ec(f) =

∮
S
d(f(s), T )2ds (4.1)

where d(w, T ) is the minimal distance from the point w to the boundary of Ωt: d(w, T ) =

min
z∈T
|w − z|.

Discretization. We represent the source and target domains by their boundary,

discretized as a source polygon S with n vertices and a target polygon T with m vertices.

The space of the holomorphic maps defined over the source polygon is given by a

discretization of the Cauchy transform for polygons [54], which yields the Cauchy-Green

coordinates. These coordinates express a subspace of the holomoprhic maps as complex-

valued vectors in the range of a fixed complex matrix, depending only on S. Minimizing

the discretized energy Ec then boils down to solving a least-squares system using a fixed

matrix.

4.2.1 Background - Cauchy-Green coordinates

The Cauchy transform [6] is a widely used operator in complex analysis, which generates

the space of holomorphic functions on a domain Ω from continuous functions f(z)

defined on the boundary ∂Ω:

u(z) =
1

2πi

∮
∂Ω

f(w)

w − z
dw, z ∈ Ω. (4.2)

The function u is holomorphic in the domain, and when f corresponds to the boundary

values of a holomorphic function, the Cauchy transform will reproduce f .

The Cauchy coordinates [54] are a discretized version of the integral (4.2). If we

discretize Ω using a polygon {zi}ni=1, then given samples of the function fi = f(zi) and

by interpolating them linearly on the edges of the polygon, we can calculate the integral

analytically. The integration yields n functions Ci(z), denoted as the Cauchy-Green

coordinates, such that the value of the integral (4.2) is given by:

u(z) =

n∑
i=1

Ci(z)fi. (4.3)

Note, that while the boundary of the domain is discretized as a polygon, the interior of

the domain is continuous, thus z can take the value of any point in the domain. We

provide the expressions for Ci(z) given the input polygon in 2.

4.2.2 Algorithm

Discrete energy. The source polygon is sampled at r points (not necessarily at the

vertices), denoted by {zj}. If we are given the boundary correspondence to the target,

namely for each of the sampled points, we have a corresponding point on the target
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domain boundary wj , then the energy Ec is discretized by:

Ec({fi}) =
r∑
j=1

|
n∑
i=1

Ci(zj)fi − wj |2.

Since the correct correspondence is not known in advance, we set wj as additional

optimization variables, and constrain them to be points on the edges of the target

polygon T . If we pack the coordinates Ci(zj) of each sample in a coordinate matrix

C ∈ Cr×n, such that row j contains the coordinates of sample zj , then the discretized

energy is:

Ec(f̂ , ŵ) = ‖Cf̂ − ŵ‖2, (4.4)

where f̂ ∈ Cn, ŵ ∈ Cr are complex vectors with entries {fi}, {wj}, respectively.

Alternating minimization. We obtain the following minimization problem:

min
f̂ ,ŵ

Ec(f̂ , ŵ), s.t. ŵ ∈ T. (4.5)

We solve the minimization problem using a local-global approach, by alternating between

minimizing it with respect to the conformal map given by Cf̂ (the global step), and the

corresponding points on the target, ŵ (the local step).

The initial points w0 are obtained by sampling the target boundary with respect to

the arclength of the source boundary sampling, and the coefficients f̂0 are initialized

with zero. Then, at each iteration the coefficients f̂k are updated by minimizing (4.4)

with respect to f̂ . This is a linear least squares problem, where the minimizer is

given by f̂k = C+ŵk−1. Here C+ is the pseudo-inverse of the matrix C, given by

C+ = (C∗C)−1C∗, and C∗ is the conjugate transpose of C.

In the second step of each iteration we minimize the energy with respect to ŵ, under

the constraint that ŵ is a set of points lying on the target domain boundary. This is

done by finding for each point zj , transformed by the current mapping f̂k, the closest

point on an edge (or a vertex) of the target polygon T . The algorithm is summarized in

Algorithm 4.1.

Convergence. The Iterative closest conformal map (ICCM) algorithm always con-

verges to a local minimum, since at each iteration the energy is reduced twice. First, by

minimizing it with respect to the conformal map given by f̂ while keeping ŵ fixed and

second, by projecting the points on the target polygon T , therefore solving for ŵ while

keeping f̂ fixed. Figure 4.2 shows a typical execution of the algorithm and the energy

Ec during the iterations.
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Algorithm 4.1 Iterative closest conformal mapping

Input: source polygon S, target polygon T
Output: set of coefficients f̂ defining the closest conformal map found from S to T
1: ẑ = SamplePolygon(S)
2: ŵ0 = SamplePolygon(T)
3: f̂0 = 0
4: k ← 0
5: while Ec(f̂

k, ŵk) > threshold do
6: f̂k+1 ← C+ŵk

7: ŵk+1 ← ClosestPoint(T,Cf̂k+1)
8: k ← k + 1
9: end while

10: f̂ ← f̂k

Iteration
10
0 1 2
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Figure 4.2: Top: the energy during the iterations of a typical execution of the algorithm
on a log-log scale. Bottom, from left to right: the initial domain, the conformal mapping
after a single iteration of the algorithm, and the conformal mapping after 100 iterations.

4.3 Extensions

4.3.1 P2P Constraints

For gaining more control over the behavior of the conformal map, we can add additional

energies to the minimization problem. One possibility is the point-to-point energy EP2P

which allows the user to guide the conformal map by specifying points in the source
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domain ui and their desired location in the target domain vi. Packing the coordinates

of the source points ui together, we obtain the matrix CP2P where each row contains

the coordinates of a source point. Then, the P2P energy is expressed by:

EP2P (f̂) = ‖CP2P f̂ − v̂‖2 (4.6)

where v̂ is the vector of target locations. Minimizing only this energy yields a conformal

map which transforms the chosen source points as close as possible to the target positions.

With both energies combined, we now seek to minimize E = Ec(f̂ , ŵ)+λEP2P (f̂), where

λ is a parameter controlling the strength of the P2P energy. This optimization problem

can be solved in a very similar way to the ICCM algorithm, the only difference being

the fact that now the minimization with respect to f̂ should be taken over the weighted

least squares problem defined by the two energies. In addition, for the initialization

step it is beneficial to calculate f̂0 by minimizing the EP2P energy, yielding a rough

initial map, and set ŵ0 to be the closest points on the target boundary to the sampled

points mapped by f̂0. Figure 4.3 shows the result of running the algorithm with user

defined P2P constraints.

Figure 4.3: left: source domain and constrained points, right: the mapping obtained by
the ICCM algorithm with the specified target boundary and P2P constraints.

4.3.2 Quasi-conformal maps

Since the number of degrees of freedom for a conformal map from one simply-connected

domain to another is quite small, a possible way to extend the space of mappings is

allowing the map to be quasi-conformal. Instead of looking for a holomorphic function,

we will search for a complex harmonic function, where the real and imaginary parts are

both real harmonic functions. It is known that any complex harmonic function f can be

decomposed as the sum of holomorphic and antiholomorphic functions. Thus, we will
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represent the complex harmonic function f using the Cauchy-Green coordinates by:

f(z) = Φ(z) + Ψ(z) =
n∑
j=1

Cj(z)φj +
n∑
j=1

Cj(z)ψj (4.7)

where Φ(z) =
∑n

j=1Cj(z)φj is a holomorphic function and Ψ(z) =
∑n

j=1Cj(z)ψj is an

antiholomorphic function. Denoting by C the matrix of coordinates for the sampled

points (similarly to the previous section), the energy Ec now becomes:

Ec =

∥∥∥∥∥(C C
)(φ̂

ψ̂

)
− ŵ

∥∥∥∥∥
2

(4.8)

where φ̂ is the vector with entries φj and ψ̂ is the vector with entries ψj .

The dilatation of a mapping f is defined as [2]:

Df (z) =
|fz|+ |fz|
|fz| − |fz|

=
1 + |fz |/|fz |

1− |fz |/|fz |
(4.9)

where fz = ( ∂
∂x + i ∂∂y )f and fz = ( ∂

∂x − i
∂
∂y )f . The dilatation can be used for measuring

the conformal distortion of the mapping: for a conformal map the dilatation is exactly

1 (since fz = 0, which is equivalent to satisfying the Cauchy-Riemann equations), and

as it gets larger, the map distorts angles more. Therefore, for limiting the amount

of conformal distortion the dilatation has to be minimized, which can be achieved by

minimizing |fz|. Note that while a quasi-conformal map requires a bounded dilatation

in the whole domain, we do not find this global bound, but attempt to minimize

it by minimizing the values of |fz| on the boundary. From the maximum modulus

principle [38], since in our case fz is antiholomorphic, the maximum value of |fz| occurs

on the boundary of the domain, and thus by minimizing |fz| on the boundary, it will be

minimized inside the domain as well.

In our representation, since f decomposes as a sum of two holomorphic and anti-

holomorphic functions we get that fz = Φz = Dφ̂ and fz = Ψz = Dψ̂, where D is the

matrix with the derivatives of the coordinates for the sampled points, i.e. D = ∂
∂zC.

Therefore, we add the energy:

Eq = ‖fz‖2 = ‖Dψ̂‖2, (4.10)

where the derivative is calculated for each element in the matrix, as described in 2.

Figure 4.4 compares the area and conformal distortion of the conformal and quasi-

conformal maps achieved using our approach. Note the reduced area distortion near

the boundary of the domain, at the expense of a small conformal distortion.

4.3.3 Stroke to Stroke mapping

A similar idea to ICCM can be employed for extending the point-to-point constraints

to curve-to-curve constraints. In this type of constraints, the user can draw a source
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ICCM

ICQCM

Area
distortion

Area
distortion

Conformal
distortion

Conformal
distortion

Figure 4.4: Left: The source polygon. Top row: The conformal map found by the ICCM
algorithm, bottom row: quasi-conformal map found by the ICQCM algorithm. Note
that we achieve less area distortion in the quasi-conformal mapping at the expense of
some conformal distortion.

stroke Sks inside the domain and a target stroke Skt, and the goal would be to find a

conformal mapping of the domain which maps between the drawn strokes. Formally, we

define the energy ES2S in a very similar way to the energy Ec:

ES2S(f) =

∫
Sks

d(f(s), Skt)
2ds, (4.11)

where d(z, T ) measures the minimal distance of the point z from the curve T . The

discretization of the energy is achieved using the Cauchy-Green representation of the

conformal mapping f . First, the source and the target strokes are sampled uniformly at

n points {sj}nj=1 and {tj}nj=1. Next, we calculate the Cauchy-Green coordinates for the

points sampled on the source stroke and pack them together in a matrix Csk. Finally,

the discretized energy is defined by:

ES2S(f̂ , t̂) = ‖Cskf̂ − t̂‖2 (4.12)

where t̂ is the vector of points sampled on the target stroke. The minimization of this

energy is done using a similar iterative algorithm to ICCM, where at each iteration a

least squares problem is solved for the coefficients f̂k+1, and then the new set of points

t̂k+1 is calculated by projecting the current mapping of the source points on the target

stroke.

This energy, similarly to the P2P energy, can be used for guiding the conformal

map when combined with the closeness energy Ec, but can also be useful for deforming

a shape. In the latter scenario, it is beneficial to add a regularization term which is

defined as an additional energy Es(f̂) = ‖D(2)f̂‖2, where D(2) is a matrix containing
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(a) Source (b) p2p (c) s2s

Figure 4.5: Stroke to stroke constraints used for shape deformation. Left: the original
shape and the given constraints. Middle: deformation with point-to-point constraints
(the points on the strokes are fixed). Right: deformation with stroke-to-stroke constraints
(points are allowed to move along the strokes). Note that using the stroke-to-stroke
constraints yields a lower area distortion for the hands and the head.

the second derivative of the Cauchy-Green coordinates for additional points sampled

on the boundary of the domain. This energy is useful for fixing the degrees of freedom

(when the number of constraints is smaller than the number of coordinate functions)

and for preserving the smoothness of the boundary. Figure 4.5 shows the deformation

found using the stroke-to-stroke constraints, and the comparison to the deformation

found using similar point-to-point constraints. Note that since the points are allowed

to move freely on the target stroke, the deformation found using the stroke-to-stroke

constraints yields a smaller area distortion for the hands and the head.

4.3.4 Higher Order Approximation of the Distance Function

In the global step of the minimization problem (the optimization for f̂), we used a zeroth

order approximation of the distance function d(z, T ) at the mapped point f(zj), namely

the squared distance to the closest point found in the previous step wj . One could

use, alternatively, a higher order approximation for the distance function as suggested

in [44]. The first order approximation of d(z, T ) is the distance to the tangent at the

closest point wj . Thus, using complex-variable notation the first order approximation is

given by d(z, T ) ≈ Re
(
(z − wj)Nj

)2
, where Nj is the unit normal at wj and we have

used the representation of a dot product between two vectors a, b ∈ R2 in complex form:

〈a, b〉 = Re(ab). Integrating the first order approximation in the global step, we obtain

the following minimization problem:

f̂k+1 = argmin
f̂

‖Re
(
N
(
Cf̂ − ŵ

))
‖2 + λ‖Cf̂ − ŵ‖2 (4.13)
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where N is the diagonal matrix with the entries Nj on its main diagonal. Note that

the zeroth order approximation is used here as a regularization term for stabilizing

the energy when the algorithm is close to converge. This is still a simple least squares

problem which can be solved by converting the complex variable formula to one with real

variables. Note that the local step does not need to change since the distance function

can be exactly calculated when the points f(zj) are fixed, therefore an approximation

is not necessary. Figure 4.6 shows a comparison between the different approximation

orders. Notice that while the zeroth order approximation works well for points far away

from the curve, the first order approximation behaves better for points close to the

curve, and the convergence is achieved much faster.

1 10 30 100
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(a) Convergence of the energy Ec

(b) zeroth order

(c) first order

Figure 4.6: (a) Convergence of the energy using different orders of approximation for
the distance function. (b), (c) the conformal map obtained by the zeroth and first order
approximations at iteration 30, in which the first order approximation has converged.

4.4 Experimental Results

4.4.1 Implementation Details

We have implemented the ICCM algorithm and its extensions in MATLAB. Given a

source polygon S with n vertices and a target polygon T , we sample the source polygon

at r points for creating the vector of points P used for discretizing the closeness energy

Ec. It is necessary to sample points at the edges of the polygon for constraining their

mapping to be close to the target polygon. While a sparse sampling may result in

mapping of points between the sampled ones to points far from the target polygon,

sampling too dense might make the algorithm slow. The number of sampled points per

edge should depend on its length and on the available computational resources. Since
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in our experiments the source polygons had approximately uniform edge lengths, we

have found that sampling each edge at 4 points (including the vertices) is sufficient for

achieving good results. The target polygon is sampled according to the accumulative

arclength of the points in P , starting from the first point P1. Next, we calculate the

coordinates matrix C of size r × n, where row j contains the coordinates of point Pj .

The other energies Es, EP2P , ES2S are discretized in a similar way, with the coordinate

matrices D
(2)
s , CP2P , CS2S . Finally, the conformal map is found by minimizing the

combined energy:

E(f̂) = Ec(f̂ , ŵ) + αEs(f̂) + βEP2P (f̂) + γES2S(f̂ , t̂)

= ‖Cf̂ − ŵ‖2 + α‖D(2)f̂‖2 + β‖CP2P f̂ − v̂‖2 + γ‖CS2S f̂ − t̂‖2

Note that E(f̂) is a quadratic energy in f̂ , and thus can be written as E(f̂) = ‖Af̂ − b‖2.

Since the coordinates matrices are constant during the iterations of the algorithm,

we can calculate the pseudo-inverse of A in advance, and use it during the iterations

minimizing the energy with respect to f̂ by multiplying f̂k+1 = A+bk. After the new

coefficients f̂k+1 are found at each iteration, the vector bk+1 is calculated by updating

ŵk+1 and t̂k+1 to be the closest points on the target boundary and target strokes.

In the case of quasi-conformal mapping, the vector of coefficients f̂ (with n elements

in the conformal case), is extended to contain 2n elements f̂ q =

(
φ̂

ψ̂

)
, where the first

n elements represent the holomorphic function φ(z) and the last n elements represent

the antiholomorphic function ψ(z). Additionally, each one of the coordinate matrices

is concatenated from the right with its conjugate (i.e. Cq =
(
C C

)
), so that the

quasi-conformal function evaluated at the sampled points is given by f(ẑ) = Cqf̂ q. In

this case, the energy Eq is also added as part of the weighted least squares problem.

Conformal 

distortion

Area

distortion

(a) Source (b) [48] (c) [22] (d) [56] (e) Szego [54] (f) ICCM

Figure 4.7: Comparison of our algorithm to state-of-the-art methods for computing
maps between planar domains. Note that our algorithm produces a conformal map with
no shearing artifacts, but may introduce some area distortions.
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4.4.2 Limitations

One limitation of our method is that it does not have the option to control the area

distortion. Therefore, the mappings found by the method may introduce large area

distortions in order to minimize the energy. However, by searching for a quasi conformal

mapping we have seen that the area distortion can be reduced at the expense of some

conformal distortion.

In addition, our method does not prevent flipping, which can appear in the continuous

holomorphic map obtained by the algorithm, and may not preserve the order of the

points on the boundary. Furthermore, the algorithm depends on the initial boundary

correspondence, and for a bad initialization, e.g., a convex part of the source is mapped

into two different parts of the target, the optimization will converge to a local minimum.

4.4.3 Comparisons

We have compared our algorithm to several methods for mapping between planar shapes.

Figure 4.7 shows the source polygon in blue, the target polygon in red, the mapping

achieved with each of the methods, and the conformal and area distortions. In column (b)

we show the results of the method described in [48] for constructing a smooth bijective

map between arbitrary polygons via a convex regular polygon. We have discretized the

interior of the two domains, constructed two harmonic maps from the domains into a

convex regular polygon, and composed one with the inverse of the other in order to

get a mapping between the two domains. In column (c) we show the results of the

method in [22], in which the interior of the domain is discretized, and an energy which

measures the distance between the mapping of the source’s boundary to the target’s

boundary and the distortion of the laplacian of the source mesh is minimized. Notice

that both of these methods do not produce a conformal map and therefore introduce

some conformal distortion. In column (d), we use the method from [56] for finding a

conformal mapping which maps the angles of the source polygon to the angles of the

target polygon. However, the length of the edges is not prescribed, and therefore the

mapping does not interpolate the target polygon and can produce large area distortion

as can be seen in the results. In column (e) we have used the Szego coordinates which

were introduced in [54]. Our method is shown in column (f). In the example we have

also used two p2p constraints in order to construct the initial boundaries correspondence

and for guiding the source of the branch and the top leaf to their desired location.

Notice that the method produces a conformal map, therefore there is no conformal

distortion, but the area distortion is not constrained and therefore it introduces more

area distortion than the other methods in some parts of the mesh.

4.4.4 Additional Results

Deformations. Figure 4.8 shows a deformation generated by mapping a source sketch

to a target sketch, both drawn by the user. Two point-to-point constraints were used
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for guiding the mapping of the hand and the head of the monkey. Note that the

quasi-conformal map better approximates the point-to-point constraints, as well as

reduces the area distortion (see the point constraint in the hand).

(a) Source (b) Conformal (c) Quasi-conformal

Figure 4.8: Deformation of the monkey using conformal vs quasi-conformal mappings.
Note that the quasi-conformal map better approximates the point-to-point constraints,
as well as reduces the area distortion (see the point constraint in the hand).

Constrained texture mapping. Figure 4.9 shows how the algorithm can be used for

constrained texture mapping. In this experiment we have used the method from [7] for

calculating a conformal flattening of the given mesh, resulting in a 2D mesh which is

conformal to the original. Next, we used our algorithm for finding a conformal map

from the boundary of the texture (a square) to the boundary of the 2D mesh, and the

point-to-point constraints were used for guiding the conformal map.

Texture transfer. In this experiment we calculated a conformal mapping from a

hexagon into a flattened mesh, which is conformal to the target 3D mesh. Then, we have

transfered the texture from the original shape to the target shape through composition

of the two conformal maps. The results are shown in Figure 4.10.
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Figure 4.9: Constrained texture mapping. Top left: the input texture. Top right and
bottom row: the texture is mapped to the surface, using point-to-point constraints as a
guidance.

(a) Source (b) Flattened target (c) Target mesh

Figure 4.10: Texture transfer between shapes. The texture from the hexagon (a) was
transfered to the lilium mesh (c) through composition of two conformal maps.
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Chapter 5

Conclusion and open questions

5.1 Conclusion

In this work, the Cauchy-Green coordinates were used for efficiently solve 2D problems

which can be expressed in a boundary integral formulation. The fast algorithm allows

adding user interaction in real time, allowing the user to guide the result of the algorithm

toward the desired solution. Specifically, we showed how the Hele-Shaw flow can be

formulated in a boundary integral formulation which the Cauchy-Green coordinates can

be integrated into, yielding an efficient discrete scheme for simulating the flow. The

user can choose between different types of singularities and move them in real time in

order to control the flow while preserving the physically correct behavior. Additionally,

we showed how the Cauchy-Green coordinates are applicable to the exterior of a planar

bounded domain and to a multiply connected domain, which allows us to simulate the

two phase flow and obstacles.

The second application we showed for the Cauchy-Green coordinates is conformal

mapping between planar domains. In this problem, we used the coordinates for pa-

rameterizing a space of conformal maps, and devise an iterative algorithm for finding

the conformal map from this space which maps the source domain the closest to the

target domain. The efficiency of this algorithm allows the user to interactively modify

constraints such as point-to-point and stroke-to-stroke correspondences, and thus guide

the algorithm toward the desired mapping. Furthermore, we showed how this algorithm

can be generalized to quasi-conformal maps, for enriching the space of mappings and

reducing the amount of area distortion.

5.2 Open questions

Extension to 3D The Cauchy-Green coordinates derive from the Cauchy integral

formula in complex analysis and thus are limited to two dimensions. However, there

is an extension of Cauchy integral formula to higher dimensions [18] and in particular,

there is a discretization in 3D [8]. It may be interesting to use these coordinates for

the applications described in this work for simulating 3D flows and finding mappings
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between surfaces.

Different types of flows The Hele-Shaw flow could be written in a boundary integral

formulation since it involves a harmonic function which is the solution of Laplace’s

equation which is conformally invariant (required in the interface tracking method) and

can be represented as the real part of a holomorphic function (required in the potential

representation method). However, there are other types of equations which are also

conformally invariant [5] and there are other types of complex barycentric coordinates

which are not necessarily holomorphic [55]. Therefore, it might be possible to extend this

work to different types of flows by expressing them in a boundary integral formulation

using other type of barycentric coordinates.

Preserving points order to prevent flips In 4 we described an efficient algorithm

for calculating conformal maps between planar domains. The algorithm was shown to

converge, however it might produce flips and double-covers of the target domain, and

the boundary correspondence may not preserve the order of the points on the boundary.

Therefore, it might be interesting to investigate the behavior of the algorithm when

the preservation of the points order is added as a hard constraint, allowing the points

to slide on the target boundary without crossing each other. Adding this as a hard

constraint may prevent flips and help the algorithm converge into a correct mapping.
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עם זה ייצוג של שילוב ובאמצעות צמיג, יותר נוזל בתוך הכלואה אוויר בועת של מודל לסמלץ ניתן
הקואורדינטות של הייצוג נוזלים. שני עם הילי־שו זרימת את לסמלץ ניתן סגור תחום בתוך הייצוג
שהנוזלים אזורים כלומר, מכשולים, עם הילי־שו זרימת לסמלץ מאפשר קשר פשוטי שאינם בתחומים
הניתנות זרימות של שונים סוגים של סימולציה מאפשרות אלו הרחבות לתוכם. לחדור יכולים לא

שונות. תבניות של רחב מגוון של יצירה מכך וכתוצאה המשתמש ידי על לשליטה

מימדיים. דו תחומים שני בין מיפויים מציאת של הבעיה היא זו בעבודה בה שנעסוק השניה הבעיה
דפורמציה לשני, אחד מתחום טקסטורה של העברה למצוא ניתן זו בעיה פתרון של היישומים בין
בין שנמצא המיפוי תמונות. של ועיוותים המשתמש ידי על המצויירת סקיצה פי על תמונה של
הזוויות על שמירה הן מביניהן החשובות בין כאשר תכונות, מספר לקיים נדרש כלל בדרך התחומים
על כשמירה לתיאור ניתנת זו תכונה פורמלי, לא (באופן נקודה מאותה היוצאים וקטורים שני בין
עיוות של הכמות קטן. יהיה מהמיפוי שנוצר השטח של ושהעיוות הטקסטורה) של למקור הנאמנות
מעוות שאינו מיפוי הוא קונפורמי ומיפוי המיפוי, של הקונפורמי העיוות נקרא וקטורים שני בין הזווית
ההתאמה של קיבוע כללו כלל בדרך הבעיה לפתירת הקודמות הגישות נקודה. באף הזוויות את
הקונפורמי העיוות את למזער המנסה ותהליך היעד, תחום של והשפה המקור תחום של השפה בין
התחומים של השפות בין ההתאמה הקודמות מהעבודות באחת התחום. בתוך הנוצר השטח ועיוות
העבודות לרוב (בדומה כללה היא אבל קונפורמי, העיוות את למזער כדי האלגוריתם במהלך השתנתה
של ברזולוציה תלויה היתה האלגוריתם של התוצאה ולכן כולו התחום של דיסקרטיזציה הקודמות)
מיפוי עבור מחפשות אחרות שיטות מספר קונפורמי. היה לא שהתקבל והמיפוי התחום של הדגימה
הדחיסה שיטת אופן, בכל שוורץ־כריסטופל. ומיפוי מעגלים דחיסת כמו היחידה, מעגל אל קונפורמי
כוללת שוורץ־כריסטופל מיפוי ומציאת לאט מאוד המתכנס איטרטיבי אלגוריתם כוללת המעגלים של

גדולים. פוליגונים עבור איטי שנהיה תהליך לינארית, לא משוואות מערך של פתירה

אל שלו המרחק את למזער ומנסה המקור, מתחום קונפורמי מיפוי מחפשת זאת, לעומת שלנו, השיטה
קונפורמיות העתקות של מרחב לייצג כדי קושי־גרין בקואורדינטות משתמשים אנחנו היעד. תחום
המקור תחום של רציפים קונפורמיים מיפויים לחשב ניתן זה ייצוג באמצעות כאשר המקור, מתחום
היעד לתחום המרחק את למזער כדי שלו. השפה את רק אלא התחום, כל את לדגום צורך בלי
הקרובה התחומים של השפות בין התאמה אחר המחפש איטרטיבי באלגוריתם משתמשים אנחנו
ידי על לייצוג הניתנים המיפויים אחד ידי על המקור תחום של ממיפוי המתקבלת להתאמה ביותר
המאפשרת יעילה שיטה המניב התחום, שפת על המחושב אינטגרל על מתבסס זה ייצוג הקואורדינטות.
באמצעות האלגוריתם. ביצוע כדי תוך אמת בזמן ידו על המוגדרים שונים אילוצים לשנות למשתמש
יכול המשתמש "סקיצה־אל־סקיצה", או "נקודה־אל־נקודה" מיפוי של אילוץ הכוללים אלו, אילוצים
איך מראים אנחנו בנוסף, המקור. מתחום עקומים או נקודות יתמפו לאן ולבחור המיפוי על לשלוט
ההעתקות מרחב את להעשיר המאפשרים קוואזי־קונפורמיים, מיפויים עבור להכללה ניתנת השיטה
את לספק באפשרות המסתמנת גמישות יותר מתקבלת ולכן הקואורדינטות ידי על לייצוג הניתנות

שטח. עיוות פחות עם מיפויים ולמצוא יותר טוב המשתמש שמגדיר האילוצים

רק המבוסס ייצוג להשיג כדי קושי־גרין קואורדינטות את מנצלות זו בעבודה שפתרנו הבעיות שתי
הם הבעיות את הפותרים האלגוריתמים מכך וכתוצאה התחום, של השפה על השמורים ערכים על
אלו, אלגוריתמים של החישוב כדי תוך המשתמש עם אינטרקטיביות הוספת מתאפשרת לכן, יעילים.

האלגוריתם. של התוצאה על שליטה למשתמש המספקת
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תקציר

בה ומעורבים גדול תחום פני על שנפרשת בעיה מערבים ממוחשבת בגרפיקה שונים יישומים הרבה
נמנעת ולכן וכבדים, איטיים הם הבעיה את שפותרים האלגוריתמים מכך כתוצאה משתנים. הרבה
ולקבוע הפתרון אופי על לשלוט למשתמש לאפשר שמטרתו אמת בזמן אינטרקטיבי לממשק האפשרות
מאוד יישום זהו נוזלים. של סימולציה היא כזה ליישום דוגמה עבורו. שחשובים נוספים פרמטרים
עבור הדרישות כאשר נוזלים, שמערבות ואנימציות מיוחדים אפקטים ליצירת הסרטים בתעשיית נפוץ
ושלאמן הפיזיקה) חוקי לפי נכונה תראה הנוזל של (ההתנהגות אמיתית תיראה שהיא הן הסימולציה
בדרך יש נוזלים בסימולציות תראה. הזרימה שבו באופן לשלוט יכולת תהיה האנימציה את שיוצר
ידי על הנוזל, שתופס הנפח בכל ולחץ) מהירות (למשל, הנוזל של התכונות אחרי לעקוב צורך כלל
בכל כאשר בתוכה נמצא שהנוזל רשת הגדרת באמצעות או חלקיקים של כאוסף הנוזל של ייצוג
המשתמשים אלגוריתמים מכך, כתוצאה נקודה. באותה התכונות של הערכים נשמרים ברשת נקודה
עבודה הזרימה. על אמת בזמן ושליטה חישוב מתאפשר ולא וכבדים, איטיים להיות נוטים זה בייצוג
הסימולציה של החישוב עלות את להקטין ניתן שבו נוזלים סימולציות של מיוחד במקרה תעסוק זו
התחום של השפה על רק הנשמרים ערכים באמצעות הנוזל תכונות של ייצוג ידי על משמעותי באופן

הנוזל. של

בתופעה הצמיגה. מהזרימה כתוצאה הנוזל של "אצבעות" יצירת היא בה תעסוק זו שעבודה התופעה
בשפה יציבויות אי נוצרות מסויימות, תכונות עם תווך בתוך צמיג נוזל של איטית מזרימה כתוצאה זו,
מחלחל נוזל כאשר בטבע הזו התופעה את לראות ניתן מעניינות. תבניות ליצירת שגורמות הנוזל של
שלג, פתיתי יצירת כגון אחרות, בתופעות גם מופיעות אותה שמאפיינות והתבניות נקבובי, לתווך
שבו ניסוי באמצעות היא התופעה את חוקרים שבה נפוצה דרך מסתעפת. וגדילה בקטריות של גידול
קטן רווח וביניהם לזה זה מקבילים לוחות שני בין הכלוא צמיג יותר לנוזל צמיג פחות נוזל מזריקים
הילי־שו. זרימת בשם נקרא כן ועל הילי־שו, ידי על לראשונה ונחקר הוצע הניסוי הנוזל. את שמכיל
יציבויות אי מסויימים במקרים מתפתחות שבה זרימה יוצר זה מודל באיטיות, מוזרק הנוזל כאשר
מספר ידי על לשליטה וניתנות האצבעות, של האפקט ליצירת שמובילות הנוזלים, שני שבין בממשק
הנוזל. הזרקת וקצב הנוזלים שני בין הפונים מתח הנוזלים, של הצמיגות כגון הזרימה של פרמטרים

של בסימולציה שימוש למצוא יוכלו הם ומעצבים, אמנים להרבה השראה היוו האלו והתבניות היות
כדי תוך שנוצרות, האצבעות תבניות על המשתמש של שליטה בנוסף המספקת במחשב, התופעה
של ייצוג פותח זו בעבודה זה לצורך אמיתית. זרימה של המראה ועל הפיזיקה חוקי על שמירה
זרימת ספציפית, זו. זרימה של המיוחדות התכונות על המסתמך שפה, אינטגרל על המבוסס הבעיה
הנוזל של והלחץ שלו מהלחץ ישירות מונעת הנוזל של המהירות שבה פוטנציאל, זרימת היא הילי־שו
השתמשנו הזרימה את שמניעה הלחץ של ההרמונית הפונקציה את לייצג כדי הרמונית. פונקציה הוא
ומספקות הבעיה את ולנתח לפשט שמאפשרות הקומפלקסיות, קושי־גרין בקואורדינטות זו בעבודה
התחום. של בשפה רק ערכים שמירת על המתבססת הנוזל של הלחץ של לייצוג ופשוטה יעילה דרך
זרימת את המתארות בנוסחאות אלה קואורדינטות את לשלב ניתן איך זו בעבודה מראים אנחנו
להוסיף גם ניתן כן ועל אמת בזמן הזרימה את לסמלץ מתאפשר זה ניסוח באמצעות ואיך הילי־שו,
אנחנו בנוסף, הסימולציה. חישוב כדי תוך תתנהג הזרימה שבו האופן על המשתמש של שליטה
ומראים ישרים, קטעים של מאוסף המורכב דיסקרטי, מעקום נוזל של שאיבה או הזרקה מאפשרים
שאינו לתחום או במישור סגור תחום של החיצוני לתחום קושי־גרין קואורדינטות את ליישם ניתן איך
סגור לתחום החיצוני בתחום הלחץ ייצוג באמצעות חורים). מספר המכיל לתחום (כלומר, קשר פשוט
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המחשב. למדעי בפקולטה בן־חן, מירלה פרופסור של בהנחייתה בוצע המחקר

ובכתבי־עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק
הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של המאסטר מחקר תקופת במהלך

Aviv Segall and Mirela Ben-Chen. Iterative Closest Conformal Maps between Pla-
nar Domains. Computer Graphics Forum, 2016.

Aviv Segall, Orestis Vantzos and Mirela Ben-Chen. Hele-Shaw Flow Simulation with
Interactive Control using Complex Barycentric Coordinates. Proceedings of the 15th
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2016.

תודות

הדרך. לאורך התמיכה על ולחבריי להוריי שלי, למנחה להודות רוצה אני

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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באמצעות ומיפויים מימדיות דו סימולציות
קושי־גרין קואורדינטות

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם
המחשב במדעי למדעים מגיסטר

סגל אביב

לישראל טכנולוגי מכון – הטכניון לסנט הוגש
2016 יולי חיפה התשע"ו תמוז
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