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Abstract

Since Tron in 1982, Computer-Generated Imagery (CGI) gradually infiltrated most of
today’s productions. From purely animated movies like Ratatouille to integrated special
effects in Star Wars, CGI is present in almost every movie. Partly, the immense visual
progress from Tron to Ratatouille can be attributed to advances made in Geometry
Processing.

Geometry Processing covers several subfields, such as texture handling, mesh anima-
tion or remeshing. In many of those applications, the algorithms rely on the ability to
design and handle vector fields, and more precisely, tangent vector fields to surfaces.
Even though tangent vector fields are intuitive to visualize, their handling has been,
and still is, extensively studied. Indeed, the discretization of curved surfaces into
triangulations leads for instance to ill-defined tangent planes on edges and at vertices.
The main question at the origin of this work is therefore the question of representation:
how do we discretize / sample a vector field on a discrete surface?

The first and most popular choice of representation is face-based sampling. The
representation requires one vector per face, and considers the vector field constant
on each face. Since the tangent plane of a face is the face itself, this representation
alleviates the problem of tangency and therefore has simple formulations of most of
the common operators. However, it also leads to lower accuracy and to difficulties in
defining derivatives and smoothness energies.

Another choice is to sample the vector field on vertices, and then “linearly” in-
terpolate the values inside faces. This representation yields better results in terms of
accuracy and allows the direct computation of derivatives and smoothness energies.
However, one needs to redefine the tangent plane at the vertex, which is a nonlinear
operation and therefore leads to a complicated formulation.

Finally, another representation used in Geometry Processing comes from Discrete
Exterior Calculus (DEC), and stores on every edge the integrated projection of the
vector field along the edge. This representation is linear, and therefore simple and
accurate but has one major drawback: contrary the previous representations, it is not
clear how DEC can represent N-RoSy vector fields. N-RoSy fields are N Rotationally
Symmetric vectors associated to one point. For instance, a 4-RoSy vector field assigns a
7cross” to every point of the mesh. N-RoSy vector fields are very useful in remeshing

and non-photorealistic rendering, for instance.



In our work, we propose a simple yet powerful new representation which stores
vectors on edge mid-points and linearly interpolates inside faces. Interestingly, the
tangency problem can be trivially resolved at the edges, and the resulting vector fields
are linear per face. Our representation is therefore simple, accurate and can handle
N-RoSy vector fields and therefore provides a simple unified framework for tangent

vector field processing.



Chapter 1

Introduction

Tangent vector fields are used ubiquitously in geometry processing, with applica-
tions ranging from texture synthesis [WLKT09, KCPS15] through non-photorealistic
rendering [HZ00] and quadrangular remeshing [BLP*12] to physically based simula-
tion [AWOT14, AVWT15]. It is therefore of interest to design a discrete representation
of tangent vector fields which is on the one hand simple and thus widely applicable, and
on the other hand accurate and robust.

One of the main challenges in tangent vector field representation is to reconcile the
need for smoothness of the vector field, with the nature of the tangent space on triangle
meshes, which is not well-defined at vertices and edges. Smoothness is important for
vector field design, where it serves as a regularizer for finding tangent vector fields given
some user constraints. Another challenge is to define a space of tangent vector fields
which is compatible with the space of scalar functions, such that, for example, it is
possible to find a function whose gradient is most similar to a given vector field. This is
important, for example, for quadrangular remeshing, where two functions are sought
after which are aligned with a given input. Finally, also for remeshing, it is of interest
to be able to handle rotationally symmetric vector fields, also known as N-RoSy fields,
which can represent vector fields that are known only up to some rotational ambiguity.

Existing representations of tangent vector fields excel at one or more of the pre-
viously mentioned challenges, however, to the best of our knowledge, there is no
single representation which can handle all three. Specifically, vertex-based representa-
tions [ZMT06, KCPS13, dGDT15] yield smooth vector fields with well defined derivatives,
yet are not directly applicable to texture mapping and quadrangular remeshing, due
to the lack of relationship to a scalar function space. Furthermore, they are somewhat
complicated to analyze due to the intricate constructions involved in the representation.
On the other hand, face-based representations [PP03, War06] are piecewise-constant,
and thus are compatible to gradients of piecewise-linear functions, and are additionally
simple and easy to manipulate. However defining their derivatives is not straight-forward
and leads to various difficulties.

Therefore, common practice is (as suggested e.g. in the recent review [dGDT15]) to



first design a vector field using a vertex based representation, and then sample it to get
a face based representation for further applications. Unfortunately, this approach both
complicates the pipeline, as not all processing is done within the same framework, and
additionally introduces error due to the conversions between representations.

The goal of this thesis is to bridge this gap, and introduce a representation of
tangent vector fields which is applicable both for vector field design and for quadrangular
remeshing, and can additionally be used for function and vector field transport, which
are important for physically-based simulation.

We therefore propose (Section 2) a tangent vector field representation which is based
on the non-conforming piecewise-linear basis functions for triangle meshes [War06]. Our
representation shares various properties with existing approaches, e.g. it leverages a
complex formulation and thus is easily generalizable to N-RoSy fields, it is based on
a piecewise-smooth basis and can thus be derivated directly inside triangles, and it is
additionally closely related to discrete edge-based one-forms. We can use it to define first
order derivative operators such as divergence, curl (Section 3.3) and covariant derivative
(Section 5.1) as well as to define second order derivative operators such as the connection
Laplacian (Section 3.1), and finally to define operators which act on functions, such as
gradient (Section 4.2) and the Laplace-Beltrami operator (Section 4.2).

As broad applicability is our main goal, we introduce the operators in the context of
three applications: vector field design (Section 3), quadrangular remeshing (Section 4)
and transport (Section 5), and show how to compute all the required quantities for
implementing these applications within our framework. In addition, we provide com-
parisons of our approach with state-of-the-art methods, showing that our approach is

simpler, more efficient, and yields comparable results, within a unified framework.

1.1 Other Vector Field Representations at a Glance

We provide here a brief classification of existing vector field representations in Computer
Graphics, following the recent review [dGDT15]. We will provide a detailed analysis of

the differences between these methods and ours in Section 6.

Face-based representation. This is perhaps the simplest representation of tangent
vector fields, which assigns a single constant vector per face of the mesh. The advantages
of this representation are its simplicity, and its relation to piecewise linear functions,
which are given by values at the vertices or at the edges of the mesh. However, since
the vector field is constant per face, directly computing derivatives on triangles is
not meaningful, and it is therefore required to resort to representation in a smooth
basis [AOCBC15] in order to have well defined derivatives. Some notion of smoothness
has been proposed [RVLLO0S], but it relies on a non convex energy which is therefore

difficult to minimize.



Vertex-Based representations. In these approaches, the vector field is defined at
the vertices of the mesh, and interpolated to the neighboring faces. Since the tangent
space at the vertex is not canonically defined, various methods have been proposed
to tackle this difficulty. In [ZMTO06], the authors use a geodesic polar map to create a
local chart on the one ring of a vertex and map it to the plane. Unfortunately, this
construction is not well defined in the triangle near the vertex, which led the authors
to “cut out” a small piece of the triangle near the vertex for the computations. A
different approach to address this issue was proposed in [KCPS13], where instead of
performing integration on the flat triangle, the curvature of the vertex was “pushed” to
the triangle, and the computations were done on these curved triangles (see section 6.2).
Both formulations lead to somewhat complicated expressions for evaluating the vector
field inside the triangle, and in general to difficulties in tailoring specific operators to
specific applications.

Finally, most recently, an extrinsic approach was discussed in [dGDT15], where given
additional tangent planes and reference frames at the vertices and edges, it is possible
to define a smoothly varying vector field which is defined everywhere. Unfortunately,
this requires additional information beyond the input mesh, which has to be provided
together with the vector field representation for the vector field description to be usable.
Furthermore, the resulting expressions are somewhat complex as well.

Our approach shares the same design guidelines as [ZMT06, KCPS13], namely: we
define an intrinsic tangent space with a corresponding local frame at chosen locations, and
then represent the vector field as a linear combination of the frame-based representations.
However, by choosing the local frames to be at the edges where the mesh is locally flat,
instead of the at vertices where the angle deficit complicates matters, the flattening
procedure is considerably simpler. Specifically, curved triangles are not required, thus

considerably simplifying the resulting formulation.

Discrete 1-forms. Discrete Exterior Calculus [Hir03] provides a coordinate-free ap-
proach to tangent vector field representation, by encoding the line integral of the
projection of the vector field on the oriented mesh edges. Thus, this approach is, like
ours, edge-based. However, using only discrete one-forms, representing symmetric tensors
and first order derivatives requires additional, somewhat intricate, machinery [dGLB*14],
whereas in our setup the formulation of all the operators is quite straightforward, using
standard variational formulations and piecewise linear basis functions. Interestingly, we
show in Section 6.3, that our representation can be understood as a generalization of
DEC, which spans a larger space of vector field and allows to easily represent N-RoSy
fields.

Operator-based representations. A more recent approach to tangent vector field
representation [ABCCO13] has suggested to represent vector fields in a coordinate-

free manner, as linear derivation operators on scalar functions. This point of view is



especially beneficial when the transport of quantities on the surface is required, e.g.
for parallel transport, as has been shown in [AOCBC15|. Our representation is in fact
complementary to the operator approach, as we can similarly construct the required
global linear operators based on our representation, instead of using piecewise constant

vector fields.

1.2 Contribution

A discrete 1-form is represented using one real number per edge and the other repre-
sentations use one complex number per vertex or face. We propose to combine both
approaches and store one complex number per edge. Our construction then linearly
interpolates the complex values to faces therefore providing (1) a simple representation,
thus widely applicable, (2) a piecewise-linear basis whose derivatives can be easily

computed, and (3) a straightforward generalization to N-RoSy fields.



Chapter 2

Edge-Based Tangent Vector
Fields

Given a triangulated surface M, our goal is to define a discrete basis to represent
tangent vector fields on M, and then derive the corresponding operators. We first
describe our representation, and then, in the context of three applications, we show how

various standard operators can be computed in this representation.

2.1 Motivation

Two decisions are required for choosing a discrete representation: (1) where to sample
the vector field, and (2) how to interpolate between the samples. Our goal is to enable
the computation of first order derivatives, and thus we choose to interpolate the values
using piecewise linear functions. On a triangle mesh, two options are available for
piecewise linear functions [dGDT15], one which interpolates values at the vertices and
is continuous everywhere on the mesh, and another which interpolates values at the
edges, and is only continuous at edge-midpoints. In both cases, an interpolated vector
field constructed with those functions must be continuous at the sample points by
construction. Thus, for a curved surface, at the location of the sample points, the
mesh should be mapped to a flat domain, as only there a tangent vector field can be

continuous across triangles.

If one chooses to sample at the vertices (as has been done in [ZMT06, KCPS13]),
this flattening procedure is non-trivial, since the discrete Gaussian curvature is concen-
trated at the vertices, and thus some distortion must be introduced when flattening,
complicating the formulation. We on the other hand sample the vector field at the
edge-midpoints, where the Gaussian curvature is zero, as two triangles can be easily
flattened locally without introducing distortion. This leads to much simpler expressions

for the vector field basis, as well as the resulting operators.



2.2 Formulation

Complex representation. On a planar domain, a vector field 1 is commonly repre-
sented as a function from R? to R?. Following [KCPS13], we replace the tangent plane
R2 with the complex line C and write ¥ (z,y) = z(z,y) X, with z : R2 — C.

Local frames. The tangent spaces of a surface do not have a canonical two dimensional
coordinate system. Therefore, for every point p € M, we need to define an arbitrary
unit norm coordinate frame Xp. At an edge mid-point ¢ between the vertices v; and
v;, we choose Xq to be the normalized edge vector, with the orientation from the lower
to higher vertex index (see figure 2.1). For any other point p inside a face of M, we
choose Xp to be the direction of the first edge of the face. Note, that we always work
per triangle, and thus the local frame at the vertex has multiple values, one for every

neighboring triangle.

a)

Figure 2.1: Although there is no well-defined tangent space on the edge (a), we can unfold
the adjacent triangles (b), to obtain a local distortion-free planar parameterization at
the edge mid-point. This property differentiates our method from vertex based sampling.
Note that we oriented the edge from ¢ to j assuming ¢ < j.

Transport coefficients. Given a coordinate system at every point, we need to relate
the coordinate systems of nearby tangent spaces. For two points p,q on the same face,
we call the transport function rp, : T, M — T, M the function which transports a vector
sampled at p to the point ¢ along a straight line. Namely, r,, takes a vector expressed
in the X'p coordinate system and expresses it in the )?q coordinate system. Since X'p
and Xq have unit norm, r,,; only needs to account for the rotation of the coordinate
system and can be represented with a single unit norm complex number r,, € C, which

we denote as the transport coefficient.

Interpolation. Given the transport coefficients, we can now interpolate values. Let
p € T3 be a point in the triangle in Figure 2.2 (a). Given complex values z1, 22, 23 at

the edge mid-points g1, g2 and g3, our vector field representation is given by:

Y(p) = ¥1(p) z1 + 2(p) 22 + ¥3(p) 23, (2.1)



where 9;(p) = ¢i(p) rq;p is our vector field interpolation basis and ¢; is the hat basis
function for the mid-edges: ¢;(q;) = d;; [dGDT15] (see Figure 2.2 (b)). To simplify
notations, we will denote r;; for r4,,,. Figure 2.3 illustrates our construction on the
generic triangle 1723 of figure 2.2. Note that our basis is not continuous across edges, but
at the edge mid-points. This does not pose any practical problem as all our constructions

rely on integrals over M which are computed as a sum of integrals over triangles.

b)

Figure 2.2: a) Notations for a triangle T723. b) Edge mid-point hat basis function
(see[dGDT15)).

Figure 2.3: The three piecewise linear edge basis vector fields {¢;} (top) and some
interpolated vector fields (bottom) on the triangle from Figure 2.2 a). The pink triangle
highlights the region where all the barycentric interpolation coefficients ¢;(p) are positive.



n-vector fields Following [KCPS13|, we represent n-vector fields by their complex

0

angle-based n-th power. In other words, if u = ae® is one component of our n-vector field

9 which we call the representation vector. To get

(with a = |u]), we work with z = ae
the n-vector field back from z, we take the angle-based n-th root of z: i = |z| e?8(2)/"
which can differ from u by an integer number of rotations of angle 27 /n (see figure 2.4).
Note that our construction is slightly different from the one of [KCPS13] where the
authors used the standard power and angle root, thus leading to different norms for a

n-vector and its representation vector, which we believe is less desirable.

Figure 2.4: a) Original cross field represented by the wu; complex numbers. b) The
representation vector z as the nth angle power of u. The first nth angle root of z is us.

2.3 Operators and Notation

Unless specified otherwise, for every operator, we compute the stiffness and mass matrices
using a variational formulation derived from the problem. Whenever integration by part
is required, we implicitly assume the mesh is closed. Since all computations are done by
integrating over triangles, we only provide the contribution of a single triangle to the
matrix entries. The general assembly into the global matrices are then made by looping
over triangles and indices. Please see Figure 2.2 for an illustration of the notations, and

the appendix A for the derivation details.

Interpolation Bases. We use ¢; to denote the standard hat basis functions for the
vertex v;, and ¢; = 1 — 2¢p; for the hat basis function of the edge mid-point ¢;. We
further denote by 1; the basis vector field of the edge e;. The complex value of vector
field ¥ at ¢; is denoted by z; .

Geometry. The positive angle at the vertex v; is given by «;, and the triangle area
by A7. We additionally require the orientation of the edges, and thus denote by §; the
coefficient matching the orientation of X; with its corresponding triangle (e.g. in Figure
2.2, 01 =1,00 = —1 and 63 = 1). The transport coefficient in an oriented triangle T;;y,

from g; to g; is denoted by r;; = —5,~(5]~emk (note that rj; = 7).

Inner products. We denote by ((-,-)) and ||-|| the Hermitian dot product and its
associated norm on our discrete surface M, i.e.: ((§,1)) = fMng and [|¢]|* = ({1, ).

10



We additionally use |-| for the pointwise norm and for the absolute value of a complex
number, where required.
We will now provide the details for the computation of various vector field operators

in our framework, in the context of different applications.

11
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Chapter 3

Vector field design

We describe various possible formulations of tangent vector field design. We start from
the simplest setup of finding the smoothest tangent vector field using the connection
Laplacian, then demonstrate how to additionally minimize the divergence or curl of the

vector field, and finally we show how to apply various alignment constraints.

3.1 The Smoothest vector fields

We first provide the setup, following [KCPS13], and then discuss the benefits of our

formulation.

Energy. Given a surface M, the smoothest vector fields on M are defined as the
vector fields ¢ with [|¢]|> = Iy 1)|* = 1 which minimize the Dirichlet energy:

B, (1) = /M VP, (3.1)

where V1 is the Jacobian matrix of ¢. The positive definite quadratic form associated
with the Dirichlet energy is the connection Laplacian A.. Thus, we can find discrete

minimizers of (3.1) by solving an eigenvector problem for a discretization of A..

The connection Laplacian.  Using our interpolation basis, we define a vector field
as the linear combination ¢ = > z);, and find the smoothest vector fields as the

eigenvectors corresponding to the smallest eigenvalue of the eigenvalue problem:
Lez =AM, z,

with (Lc);; = ((V4hi, Vi) and (M),; = ((¢i, ;). The simplicity of our linear basis

makes the matrix entries straightforward to compute, and the resulting formulas are

13



concise and easy to implement. For the stiffness matrix we have:

lei]” leil [e;]
(Le)y; = Ap (Lc)ij = T A cos(ag) 7ji,

and the mass matrix M, is diagonal and real: (M.),, = %AT. Note that no lumping
was involved for the mass matrix and M, is therefore entirely consistent. We refer the

reader to the appendix A for the derivation, and show some examples in Figure 3.1.

Smoothest n-vector field To design the smoothest n-vector field, we first design
the smoothest representation vector field and then take the n-th angle root of the result.
As noted in [KCPS13], we only need to slightly modify our stiffness matrix L. to act
on representation vector fields, by replacing 7;; with (r;;)". See figure 3.1 (b-d) for an

illustration.

AR RN
L
4

)
sl o'
RN e

) !
ity g

Figure 3.1: Smoothest n-vector fields on an ellipsoid. The color is the norm of the
vector field. a), b), ¢) and d) are respectively the smoothest 1, 2, 3 and 4-vector fields
with 2, 4, 6 and 8 singularities.

3.1.1 Comparison to [KCPS13]

Our results are visually very similar to the ones obtained by [KCPS13], however our
construction improves on the previous method both in simplicity and in accuracy while

preserving some desirable properties such as resistance to noise.

14



Simplicity. First, our matrix entries are considerably simpler (see e.g. Appendices
D.2 and D.3 in [KCPS13]), which is beneficial in practice for implementation and
analysis. Furthermore, our mass matrix M, is real and diagonal, which is not the case
for the vertex-based representation. This allows us to compute its inverse, and use it
for composing operators (Section 4.2) and for using exponential integrators for PDEs
(Sections 3.2 and 5.1).

Accuracy. As illustrated in figure 3.2, the eigenvalues of both discretizations converge
at the same rate both for regular and grid-like meshes. As our matrices are bigger (we
compute n. ~ 3 n, complex values), we are, for a fixed mesh, on average 2 times slower
yet 5 times more accurate. As we can see in figure 3.2 (c), our method indeed provides

the best ratio of time-to-accuracy.

Resistance to noise. Similarly to vertex-based sampling, our method is robust to
normal noise on vertices (see Figure 3.3).

a) Error as a function b) Time as a function

. . ¢) Error as a function of time
of number of vertices of number of vertices )

2 . 2
10 “ 10° 10
it iiif'
10 10
-2
10" 105 10 10° 1072

Ours
Vertex sampling

e Ours
e Vertex sampling

Figure 3.2: Convergence of the first 48 eigenvalues of L. on a sphere (using two
triangulations). Results are compared to the ground truth given in [SW12].

e
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=
———
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~

DS

Figure 3.3: Robustness to noise. a) The mesh with added normal noise, on which we
compute the smoothest vector field. b) The original mesh with the vector field of a).
The result is very close to the one in figure 3.1 (a).
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3.2 Vector Field Smoothing by Heat Diffusion

The Laplace-Beltrami operator is used both for computing smooth functions using an
eigenvector problem, as well as for function smoothing. Similarly, in addition to the
computation of the smoothest eigenvectors, the connection Laplacian can be used for
vector field smoothing. Thus, given an initial, potentially noisy, n-vector field g, the
heat-diffused vector field v (t) satisfies:

(1) + A1) =0, 6(p.0) =t
In the space-discrete setting this becomes %z(t) = — M, 1L.2(t), which we can solve
numerically using an exponential integrator [HLI7] as z(t) = exp(—tM_ *L.)zp, where
exp is the matrix exponent. Note, that there exist efficient methods for computing the
multiplication between the exponent of a large sparse matrix and a vector [AMH11].
Results are shown in Figure 3.4 and the attached video. We additionally used heat

diffusion for curvature computations in section 3.4.

Figure 3.4: Heat diffusion. (a) Very noisy curvature computed as an orthogonal direction
to every edge. (b) Heat diffused version of (a) with ¢ = h/2 with h the mean edge length
of the mesh.

16



3.3 Prescribe Divergence and Curl

The problem (3.1) has a global degree of freedom, as the global rotation of all the vectors
by a constant angle does not modify the energy. We will therefore add another term
to the energy to get, for instance, the smoothest divergence free vector field. This will
remove the extra degree of freedom, and make the solution unique. As our vector fields
are piecewise linear, divergence and curl are available directly as piecewise constant
functions per face. Their computation is then trivial, either by explicitly computing

derivatives, or using the circulation theorem, as follows.

Integral property. In order to compute the circulation of a vector field, we need to
integrate its value along edges. From the median symmetry of the mid-edge hat basis

functions ¢;, we get the following interesting property for our basis (App. B.1):
[w=1e1%, [ w)= [ w0 (3.2
€; €5 €L

In other words, the integral of our vector field along the edge e; is simply its value z; at

the mid-edge multiplied by the edge length.

Computation. With the help of (3.2), we can now directly compute the circulations
of our vector field. Let 1 be a vector field. On a triangle T', we know that [, curly =
Jor ¥ - dl. From the integral property we get:

/ curly = Zée le] Re(ze)-

T ecT

Similar results are achieved for the divergence by noting that div = curlwp. If we
denote by curly and divy the discrete face valued functions, we have:

M; curly p = K Re(z), M;divpy = —K Im(z)

where K = Ge_,t M., G._ is the signed graph adjacency matrix from edges to faces,

and My, M, are the diagonal mass matrix of triangle area and edge lengths respectively.

Divergence and Curl. We can now assemble our curl (resp. divergence) energy.
The global energy becomes E, = E, + uE.,1 where ;1 balances how much the curl
energy influences the smoothness energy, and where E.y1(¢) = fﬂ(curlq/))g. We now
need to compute the matrix L.,. However, as the curl operator is not “complex linear”

on complex vector fields, because Re(uz) # 1 Re(z), we need to transform our matrices

to act on R?™:
L Re(z) I o Re(L;) —Im(Lc)
Im(z)) = °° Im(L.) Re(L.) /)’
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The matrices L¢yy and Lgiy can then be written as:

KTM'K 0 0 0
Lewn = y Laiv = T r—1 .
0 0 0 K'M 'K

We illustrate some results in figure 3.5. As expected, the energy F,, with y small only

lifts the global rotation degree of freedom, without affecting the smoothness.

Figure 3.5: Smoothest curl free (top) and div free (bottom) vector fields.
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3.4 Alignment

Sparse hard constraints. Sparse hard constraints given as prescribed value at
prescribed locations are modeled by minimizing the smoothness energy under linear
equality constraints. To prescribe only the direction and not the norm, we add instead
an orthogonality constraint as follows. Let w; € C be the direction constraint we
impose at ¢;. The value z; of the vector field ¢ at (¢;) must satisfy: Re(z;)Im(w;) —
Im(z;) Re(w;) = 0. Figure 3.6 shows an example where hard constraints (a) and direction

constraints (b) are imposed.

Soft global alignment. For soft alignment, we use the alignment energy proposed
in [KCPS13]: given an alignment field w = ) | w;1;, the alignment energy is: Falign =
Re ((w,v)). When combined with the smoothness energy using £; = (1 —t)E,, — t Eqlign
where ¢ € [0, 1] balances the tradeoff between alignment and smoothness, E; has the
advantage of promoting alignment where |w(p)| is high and promoting smoothness when
lw(p)| is small. The discrete minimizer to E; is solution of the system: (L. — A\M,)z =

M,w, where choosing \; = 0 usually provides a good trade-off.

Curvature computation In some applications alignment to the curvature directions
is required. We compute the curvature 2-vector field w using the 2 angle power of
w;j =15/ |ej|, where §; is the signed dihedral angle between the two adjacent triangles
to the edge e¢; [BKPT10]. The curvature direction is therefore orthogonal to every edge.
This simple discretization is enough for most meshes, however it is more robust to
slightly heat diffuse the curvature directions prior feeding it to the alignment energy.
We use t = h/10 with h being the mean edge length of our mesh. Figure 3.7 shows a

few examples of direction fields aligned with curvature directions.

A=

Figure 3.6: The two types of hard constraints. The red arrows enforce norm and
direction whereas the green arrow only forces the direction.
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Figure 3.7: Direction fields aligned with curvature directions: a) cross field, b) and c)
2-direction field.
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Chapter 4
Quadrangulation

To demonstrate the applicability of our vector field representation to quadrangular
remeshing, we follow [BZK09], and show how the relevant steps can be performed in

our framework.

The quadrangulation algorithm. For the purpose of this paper, we compute the
u, v coordinate functions, and refer to [EBCK13]| for the quad extraction. The general

algorithm is:
1. Design a smooth curvature aligned cross field.
2. Identify the locations of the singularities.

3. Cut the mesh into topological disk patches, such that the singularities of the cross
field are on the cut, and propagate on each patch a consistent orientation of one

of the cross field component to generate two vector fields U, V.

4. Minimize E(u,v) = [,,|Vu — Ul* 4+ |Vv — V|? to find the coordinate functions,

with additional integer constraints.

The first step is performed as explained in the previous section, and the third step
is a topological operation independent of the representation of the vector field. We will
therefore first describe how to do the second step, and then address the projection of a

given vector field onto the space of gradients of functions, for the last step.

4.1 Singularity detection.

The notion of singularities is closely linked to the one of turning number (see [RVLLOS]).
The turning number Ty, (7y) of the vector field ¢ along the loop « is the integrated angle
of the vector field with the tangent to the curve: Ty (y) = & fv do(t,, 1), where 0(t., 1))
is the oriented angle between 1 and the tangent vector field t_; to . S is a singularity
if for any loop ~ enclosing S, Ti;(y) # 1. We can then define the index of a singularity

as the turning number of an arbitrary small loop enclosing S minus one.
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To detect a singularity, we partition the surface into non overlapping “vertex
regions” and “face regions” and then compute the turning number on every region’s
boundary (see figure 4.1 a)). The index formula for the region inside a face Tjo3 is

Zj
Zi Tij

I(T) = 5= (w12 4+ was + ws1), where w;; = arg ( € [—m, +m| represents how much
the vector field rotates from g; to g;. Similarly, the index formula for the region around
the vertex v; is I,(v;) = % (QZ + ZTijk wjk>, where T;;;, are the adjacent triangles to
v; and €); is the angle defect at v;. Note that the computed indexes can only 0, 1 or —1.

Figure 4.1 (b,c) and our video show singularities detected on several models.
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Figure 4.1: Singularity computation. Positive and negative singularities are plotted in
green and red respectively. (a) The partition to vertex regions and triangle regions. (b)
singularities on the torus for a cross field. (c¢) Singularities on the hand for a vector
field. Note that the singularities are located in natural places.

Singularity remeshing In step 3 of the algorithm, the singularities are required to
be on vertices, which is not guaranteed by our cross field. If our cross field has singularity
on a triangle, we locate the exact location of the singularity inside the triangle and
create a new vertex at the singularity location. We solve for a and b (see App B.2) such
that M(a, b)” = B, with:

_ Re (21 — 221) Re (2'1 — 231) _ 1 Re (21 — 221 — 231)

Im (211 — 221) Im (Zl — Z31) 2 Im (211 — 291 — 2’31)

where z;; = z;r;; is the transported value z; from ¢; to ¢;. Then, the singularity S is
located at S = v +a(vy —vy) + b(vs — v1).
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4.2 Projection on Gradient Vector Fields

We will now address the problem of projecting a given input vector field on the space
of gradients of functions, effectively minimizing E(u) = [, [Vu—-U 2, to find the

coordinate function w.

The Gradient.

Let f be a function defined the vertices of M, the variational formulation yields:
v=Vf o M=z=G],

where G is a ne X n, matrix whose entries are G;; = ((¢i, V;)). The contribution of a

triangle T;;1, to G is:
e
Gij == 15]‘ |6j|rji-

e
Gii = 25i|g|7
Graphical analysis Figure 4.2 provides an illustration of the gradient of the hat
function. Note that only the red vectors are computed, the others are the result of the
interpolation in the face. The 1D analogy of figure 4.2 should not be understood as exact,
as the gradient field of figure b) is not even continuous on the common edge, but should

serve more as an intuition to explain the improved results for the Laplace-Beltrami

operator below.

Figure 4.2: Gradients computed with our method. a) Gradient of the height function
f(z,y,2) = z) at the south pole of the sphere. For plotting purposes we normalized the
vectors lengths. In figure a) and b), we illustrate how our gradient can be understood as
an approximation of a smooth interpolation of the orange and green points. b) Gradient
of the hat function of the green vertex. c¢) 1D analog figure b).

Tangential component We can show (App. B.3) that the tangential component of

the gradient corresponds to a natural finite difference approximation. Let f =Y fip; be
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a function and z = M 'Gf its discrete gradient. For the edge ei; between the vertices

v; and vj, we have:

_fi—fi

Re(ze,;) = el
ij

(4.1)

With (3.2) and (4.1), it is then straightforward to prove that the discrete version of
curloV = 0 holds.

The Gradient’s Adjoint In the continuous setting, it is well known that the gradient
is the L? adjoint of the divergence operator. Interestingly, in our complex discrete

framework, we get (see App. B.4):
M, (div, (¢) + vcurl, () = —G*z,

thus, an alternative formulation for the divergence operator, is given by minus the real

part of the adjoint of the gradient.

Laplace-Beltrami operator

To project a vector field on the space of gradients, we effectively need to solve a
Poisson equation, and thus require a Laplace-Beltrami operator. Using our gradient and
its adjoint, we can define a new discretization which has a better accuracy in terms
of convergence than the standard cotangent weight Laplacian, at virtually the same
computational cost. For a function f on M, the classical variational formulation for

the Laplace Beltrami operator is

u=-Af < Vo, /v-u:/ Vv -Vf.
M M

In our framework, this yields the discrete integrated operator:
L=G*M;'G. (4.2)

As Figure 4.3 shows, this discretization of the Laplace-Beltrami operator is about 3
times more accurate than the standard cotangent weight discretization, and still does not
use any higher order lattice subdivision contrary to quadratic or cubic finite elements.
However, it is also less sparse than the cotangent weight formulation as it acts on
the 2 ring of each vertex, so it is approximately 1.3 times slower. Similarly to the
connection Laplacian’s convergence (figure 3.2), our discretization has the best ratio
of accuracy-to-computation time, compared to all standard discretizations including

quadratic and cubic finite elements discretization.
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a) Error as a function b) Time as a function ¢) Error as a function

of number of vertices of number of vertices of time
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Figure 4.3: Convergence of the first 16 eigen-values of the Laplace-Beltrami operator on
the sphere, on a regular triangulation with non-lumped mass matrices. The a’) graph is
a zoom on the green rectangle of graph a). Note in ¢) that our new discretization has
the best ratio accuracy-to-complexity compared to all previous standard discretizations
including quadratic and cubic finite elements.

Results Once we completed the steps 1-3 of the algorithm, we minimize the energy
E(u,v) = E,(u) + E,,(v) using

E,(u) =u'Lu+2Re(G*2)Tu+ 2*M, =

where z represents the propagated direction U of the cross field. Figure 4.4 shows
results we obtained this framework using the solver [GO15]. Note, that our goal is
not to claim better results than state-of-the-art quad meshing methods, but simply
to demonstrate that our piecewise-linear vector field representation is indeed feasible

for use for quad-meshing applications, which were so far limited to piecewise constant

representations.

Figure 4.4: Quadrangulation on several simple meshes.
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Chapter 5
Transport

Finally, for our last application, we show how our representation can be used in
conjunction with the recently proposed operator representation of tangent vector
fields [ABCCO13]. Specifically, we provide a discretization of the covariant derivative
operator, and use it to simulate the parallel transport of a vector field, similarly to what

was done in [AOCBCI15].

5.1 Covariant derivative

If we denote z, w amd z the discrete complex values of ¥, w and x, we have:
x=Vu & M,x=D,z
with
(‘Dw)ij = <<T/’i,vw7/’j>>7

where the contribution of the triangle Tjj; is

e
(Dw);; =0, (Dw)z’;éj = _51"3]’ Im (w;rij)rji
Following [AOCBC15], we compute the backward parallel transport of the vector field
1o along w, using:

0

aMzw(]% t) + Dy, 1/)<p7t) =0, T/J(Pa O) = o,

whose closed-form solution is then given by:

$(t,p) = exp(tM; " Dy,)ebo(p).

We implemented this equation on the sphere with a simple turning vector field
transported along itself. To add some regularization, as the solution quickly diverges, we

smooth the resulting vector field at every step, using the connection Laplacian (similarly
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Chapter 6

Relation to other discretizations

In this section we provide a detailed discussion of the main differences between our
method and existing representations.For a detailed survey on how to compute the

operators in each discretization, we refer the reader to [dGDT15].

6.1 Face-Based Piecewise constant vector fields

As mentioned in the introduction, piecewise constant vector fields probably provide the
most popular discretization. Using the same complex construction of section 2.2, it is
straightforward to generalize it to n-vector fields. Our main advantage with respect to
this approach is the robust computation of derivatives, such as the connection Laplacian

and the covariant derivative.

6.2 Vertex-based sampling

Vertex based sampling was first introduced in [ZMT06] and extended by [KCPS13] and
[dGDT15]. Sampling tangent vector fields on vertices might seem natural, especially in
the plane where the linear basis can be directly constructed. However, on curved surfaces,
the tangent plane at a vertex is not well-defined, which complicates the definition of a
linear vertex-based vector field basis. The original approach to define the tangent space
at the vertex used a geodesic polar map. Based on the idea presented in [Cral3], we

propose an alternative, yet equivalent, point of view which we find more intuitive.

The inflation-deflation method. Consider the vertex v of the tetrahedron of figure
6.1. Contrary to what we did in figure 2.1, it is impossible here to directly define a
coherent intrinsic notion of tangent space by just unfolding. In order to compensate for
the angle deficiency, we need to: (1) Unfold and inflate the mesh around the vertex; (2)
Define the basis on the inflated mesh; (3) Deflate and fold the mesh back to its original
structure; and (4) Multiply by the hat basis function. This procedure is illustrated in
figure 6.2 and the final result on the folded mesh is shown in figure 6.3 (a).
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a) ? b) V c)
" P>
\J
T missing

Figure 6.1: Vertex unfolding and inflation of a tetrahedron mesh. a) No clear definition
of tangent space. b) Vertex unfolding of the tetrahedron. c¢) Inflated mesh. Compare to
figure 2.1 where the unfolding was done without distortion. Our tangent space should
encode the fact that the red and blue vectors are opposite to each others in a), which b)
does not encode but ¢) does.

Figure 6.2: The inflation-deflation procedure to define the vertex based basis.
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Closed form expression Although neither [ZMT06], [KCPS13] nor [dGDT15] pro-
vided a closed form expression of the basis, we propose the following concise expression
(App. B.5):

i(p) = pi(p) e AP,

where p € C is the point on the unfolded mesh of figure 6.1 b), i is the index of the

vertex v, and s; is the angle deficiency rescaling factor s; = 227”a
Tov; —*

Treating the discontinuity The produced vector field is not linear, and is not even
continuous as illustrated in figure 6.3. The discontinuity of the resulting basis on vertices
prevents a direct computation of the Dirichlet energy on a triangle, as the derivative
diverges near the vertex. [ZMTO06] alleviated the problem of the divergent Jacobian
by cutting off an arbitrary small triangular region at the problematic vertices (see the
dark green area in figure 6.3 b)). [KCPS13] proposed a more rigorous approach by
computing the integrals on the curved inflated mesh (see figure 6.3 ¢)) which drastically

complicates the integration formulas.

Conversion to and from If conversion to or from the vertex representation is needed,
we provide here a simple method. Because of the complexity of the vertex based basis,
instead of proposing the complicated formulas resulting from the variational formulation,
we propose a simple average as a conversion: average of adjacent edge values to convert
to vertices, and average the 2 vertex values to convert to edges. To do so, we only need
to compute r,. the transport coefficient from a vertex v to the midedge point of an
adjacent edge e (remember that re, = Tye). If we note 6 the oriented angle between
Xv and )_('e on the unfolded mesh, we have r,. = e~*? where s is the angle deficiency

rescaling factor of v.

a)

Figure 6.3: a) Top view of the tetrahedron on which we plotted the resulting basis of the
inflation-deflation procedure. b) Focus on the green face to highlight the discontinuity of
the produced vector field at the vertex. c¢) The curved green triangle used by [KCPS13]
to bypass the discontinuity of (b). The triangle is obtained by pushing the curvature of
the 3 adjacent vertices to the triangle.
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6.3 Discrete one-forms

Discrete one-forms [Hir03] require storing coefficients on edges, thus several analogies
to our method can be drawn. To understand the main differences between the two
frameworks, we will show that discrete one-forms can only represent the specific subset

of divergence free vector fields.

6.3.1 Analogies between the two constructions.

A discrete one-form provides a proxy to a vector field, by storing on every edge the
integral of the dot product of the vector field and the unit edge direction. Let e be an
(w(p), X.)dp, where X, is the

unit norm vector in the direction of e. Note the difficulty of handling n-vector fields

oriented edge of M, the stored coefficient c. is c. = fe
with this representation, as the technique to raise a complex number to the power n to
alleviate the direction uncertainty is no longer available.

The analogy with our construction is now clear: if z represents our complex coefficient,
then (3.2) implies ¢, = |e|Re(z¢). Since the curl operation directly uses (3.2), the curl
operation from section 3.3 is the exactly the curl operator of DEC as both are computed
using the circulation theorem.

Interestingly, one could also work with the orthogonal version of DEC, by storing the
integral of the orthogonal component on the edge, to get the similar conjugate results.
To summarize, if we denote by DEC and DEC, the regular DEC framework and its

orthogonal conjugate, we get:

¢| el = le| z

t| (curly — 2div, ) = Kz,
l

where |e|, and |t| are the diagonal mass matrices of edge lengths and triangle areas.

6.3.2 Why our construction is not just DEC| +:DEC_

The previous identities might mislead the reader into thinking that our construction
can be assembled by using the two different DEC versions. However, replacing real
coefficients by complex ones in DEC) does not work, mainly because of the interpolation
basis used both in DEC and its orthogonal conjugate. Thus, building a new basis as we

have done in section 2 cannot be avoided.

The Whitney basis Let us focus on DEC);. The Whitney basis ¢ is the reconstruc-
tion basis associated to the coefficient c. of an edge e. 1, can be easily computed with

the hat basis functions:

Ye;; = @iVo; — iV,
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where v; and v; are the 2 vertices of e = e;; (see figure 6.4 for the construction). To get
a better intuition, we propose a new formula involving complex numbers. In a triangle
Tij, (figure 2.2), we have

P = 0 Yy = (z —w), (6.1)

2Ar

where the term (z — vg) accounts for the singularity at the vertex vy, ¢ for the vortex
shape of the singularity, and J; for the counterclockwise or clockwise rotation of the

vector field.

a
) \\ //
O\\ //O
A K
P K
P 3
A A
%% > &Y
// 1 \\
// \\
0 X X0
s e €
A X \\\

Figure 6.4: Whitney basis 1-forms (exceptionally, vectors are plotted at their mid
points). To construct the basis for the edge e;;, we set ¢;; = 1 and ¢ = 0 on the others
edges. Since the integral of the dot product (ue,);;) is null on the exterior edges, it is
natural (although not necessary) to assume that v;; is orthogonal to the exterior edges,
hence the orthogonal constraints in a) and the resulting Whitney basis in b).

Circular vector fields From equation (6.1) it is straightforward to show that any
non constant vector field produced from Whitney 1-forms on a single triangle, can be

written as:

P(z) =1\ (z —w), (6.2)

where w € C is the singularity location of the vector field, and A € R is the oriented
magnitude of the vector field. Therefore the Whitney basis only produces divergence
free vector fields. From (6.1) and (6.2), one can also prove that the singularity of a
combination of Whitney 1-forms is the barycenter of the original singularities. In other
words, if ¥ = a1y + bipe, with a,b € R, we get ¥(2) = 1A (2 — w) with

a+f w_avl—i-ﬁvg
2AT ’ N CY—F,B

A:

where o = ad; and 8 = bdy are the re-oriented coefficients. See figure 6.5 for an

illustration.
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Figure 6.5: The DEC reconstruction vector fields are always circular, with the singularity
being the barycenter of the vertices with the re-oriented edge coefficients as weights
(blue numbers). Note that the singularity might go to infinity yielding a constant vector
field.

Complex Whitney 1-forms 7 It is therefore straightforward to show that allowing
the discrete one-form coefficient to be complex (which is equivalent to adding the
Whitney basis of DEC, as an imaginary part) would not be enough to recover the
whole space of linear vector fields. The general form of such vector fields would still be
of the form (6.2), yet with A\ € C, which only covers a 4 dimensional space, whereas the

space of linear vector fields is of dimension 6.
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Chapter 7

Conclusion and further work

We proposed a new discretization of tangent vector fields on triangle meshes, which
is both simple to implement and widely applicable. We additionally showed how to
derive various operators which are required in the context of two important applications
- vector field design, and quadrangular remeshing. We believe that our representation
could be a viable alternative to the widely used piecewise-constant vector fields in other
applications as well.

One piece which is missing from our discretization, is a discrete Hodge decomposition
which is available for the face-based representation and the discrete one-form represen-
tation. However, due to the analogies between our framework and DEC, we are hopeful
that future research would uncover a Hodge decomposition for our representation as well.
Finally, we believe that our representation brings us somewhat closer to the ultimate
goal of providing a complete and unified framework for handling discrete functions and

discrete vector fields in geometry processing applications.
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Appendix A

Computation of matrix indices

Let us note ({1, 1j)j>>ijk the hermitian product restricted to the triangle T;;x, and (-, ),
the real part of (-,-). Let us also note u; the complex coefficients of X, in the basis XT,
h; the height of the vertex v; in a triangle Tj;, and A;;;, the area of Tjjy.

A.1 Some general identities

Before starting the computation with specific operators, here are some results which we

will use in all the following computations. In a triangle T', we have for all ¢, j:

A A 1 ¢

Note also that 24,5, = |e;| hs.

A.2 Mass matrix M,

We want to compute M, = ({1, ¢j>>ij' Note that (M. );; # 0 only if i and j are adjacent.
In Tk, we have

(i, )i = / (Piui, djuz) = (uiyuz) [ digj =0
Tijk Tijk
(Wi = [ (oo = [ 6= Ay

Tijk Tijk

A.3 Connection Laplacian L.

Note that V1); is constant on each triangle. In the plane, we have

Vi = V(diui) = | 54, D6, =\ 4o, | = Viui

By ui7$ ay ui7y 8y 'U/z
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where the notation V¢; u; € C? is maybe abusive, but we leave the reader check that
the calculus are the same when dealing with full matrices in R?*2.

We can now derive the expressions. We have:

(Vi Vi))ijp = Aije |V i il
= A | Vil?
= lei|* JAij

and

((Vi, Vb)) = Aijie (V5 wi, Vojui)
= Ay ;i (Vi, V), u;

2
= Aijkh—ih—j cos(m — o )W uj
leil lej]
= ———— cos(ay)rji-
Awk ( ) Jt

A.4 Gradient operator G

We want to compute ((¢i, Vip;)),.1, but note first that one should not get confused
between ¢ which is an index for the complex edge basis 1; and j which is an index of

the function basis ;.

We have:
1 Ak 1
(T = [ (omtigiu) = 5 (uo s )
le;]
=10

1 _ Aijk 1
<¢lul,261hiuz> T3 <u17 hi7151uz>

A.5 Covariant derivative

We want to compute (D,)i; = ((¥s, Vo). Let us first compute V1, on T;j,. We
have
de}j = vwi¢i+ijj+wk¢k¢j = vwid)id}j + vw]-d)ﬂ/}j + vwk¢k¢j'

We have
Vi = Vg (05u5) = i (V@) uj = ¢i (Vj, wiwi), uj.
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So, putting it together, we get:

<<¢iavw¢j>>ijk:/T<wi’vwz'¢i+wg~¢j+wwk¢j>

= /T <¢z‘, zk: Vwkwk¢j>

— Z/T@mﬂﬁk (Voj, wrug), uj)
k

= Z /T Gip (Voj, wiuk), (wi, uj)
k

:;<v¢j,wkuk>T (s, ) /T bidn

= (Vo wius), (uq, uj) . Gigi + 0
ik

A
= (Voj,wiu), Tji?T
A 1
= ?T Re <—25jhj2ujwiui> Tji
2A
= 5T

j?hj Re (—zuﬁwiui) Tji

e
= —(5]"3]| Im(winj)rﬁ

If we consider the case j = i, we get:

<<¢Za Vw¢j>>ijk = _51’2’ Im(wi)

Therefore on a closed mesh, if we note T;;; and T;;; the 2 adjacent triangles to e;;, we

have:

(i, vw¢j>> = <<¢z; waj»ijk + (¢, Voﬂ/}j»z‘jl
= _ <6§jk + 6§jl) |e3¢| Im(w;)
=0
since an edge has the right orientation with one its adjacent triangle and the wrong
orientation with the other one.

Note however that on a non closed mesh, the diagonal term would be non zero for

the boundary edges.
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Appendix B

Other proofs

B.1 Integral property

Note that ¢; =1 on e;. We then have:

/wz Jdp = /@ (/1dp> || K
Foion= | ot ([ o) -

because ¢; is symmetric on e;.

B.2 Singularity remeshing formula

We are looking for a,b such that S = v1 + a(va — v1) + b (vs — v1). We know that S

> i(S) =

i=1,2,3

being a singularity implies

We have then

0= Z Yi(S) = Z 2 X;¢i(S) = Z 2iri1¢i(a,b)

i=1,2,3 i=1,2,3 i=1,2,3
with
¢1(a,b) =1—-2¢i(a,b)=1—-2(1—a—>b)=2a+2b—1

¢2(a,b) =1 —2¢i(a,b) =1—2a
$3(a,b) =1 —2p;(a,b) =1—2b

Note that we arbitrarily decided to convert the vector values in the X; basis, thus

the Til-
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B.3 Tangential component of our gradients

Let e = ¢e;; be the edge between the vertices v; and v;, and to simplify notations. Let f
be a function on vertices and let us note t. the tangential component of its gradient

on e. Remember that M, is real and diagonal, and that f is real.

We have:
te = Re((M;1Gf)e) ZRe k)

e k=1
Let us call Tj;; and T;; the 2 adjacent triangles to e;;. We have:
Ny A :,,0
jk
Z Re(Ge,k)fk = <fl Re <Uz]a VSO2> + f] Re <U1]7 VQD]> + fk Re <u2ja v@k>

Aijk sin a] sin oy A,-jl
= — fi f] ;

Aijl
s

3 3
_ Aiji hk/\ez\ .hk/‘e \ Aiji
- 3J ( f’L f] h] J > -+ 3‘7
h
= Ek(_fi"‘fj)'f‘g(—fi-f-fj)...
h h
= k;r N(f - £)

and we also have
(M), = (Aik + Aijt) /3.

Combining the two results, we get:

3 hi + hy
te = i — Ji
_ 6 hi + hy
- \eij\ hi + ’61‘]" h; 6 (fj fl)
_fi—fi
leij|

B.4 Gradient adjoint

Let us focus in the discrete matrix case first. We have:

(0, Vf)) = 2" M, (M. 'Gf)
=2"Gf
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Now we want to transform this matrix expression to be a dot product of vertex functions,

so we artificially insert the vertex mass matrix and develop:

{($, V) = 2"GM; M, f
= (M, G"2)" M, f
= Re((M, 'G*2)* M, f) + 1 Im((M, ' G*2)* M, f)
= M, Re((G"2)") M, f + M,  Tm((G*2)") M, f
= M, ' Re(G*2)T My f — oM Im(G*2)T M, f

In the smooth case, we know from the Green formula (also called Stokes formula) that

((dive, f)) = = {{¢, V)
({curly, f)) = ({(J¢, V)

Therefore, by identification, we get

divz = =M, Re(G*2)
curl 2 = — M, ' Im(G*2)

B.5 Inflation-Deflation closed form expression

Let s be the angle defect rescaling factor, and let z = ae*’ be a point inside the unfolded

mesh. The inflated point point z; is

zi = ae?
On all the inflated points we then associate the same basis vector ¢(z) = q. When z;
deflates to its deflated version z4 = z, the same transformation is applied to ¢(z) which
becomes ¢q(z) what we want. Note that the angle between the point z and ¢(z) stays

the same while deflating. The norm being also preserved, we have a constant ratio

Zq Zd
q; qd
Therefore ;
Zd ae’ _
G =" =q——7 = q;e?
% arsd

Remember that g; is constant. We can choose ¢; = 1 for simplicity as the choice of the
basis is arbitrary. Multiplying by the hat function yields
qd(z) — Qp(z)ez arg(z)(1—s)

which is our formula.
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