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Abstract

Since Tron in 1982, Computer-Generated Imagery (CGI) gradually infiltrated most of

today’s productions. From purely animated movies like Ratatouille to integrated special

effects in Star Wars, CGI is present in almost every movie. Partly, the immense visual

progress from Tron to Ratatouille can be attributed to advances made in Geometry

Processing.

Geometry Processing covers several subfields, such as texture handling, mesh anima-

tion or remeshing. In many of those applications, the algorithms rely on the ability to

design and handle vector fields, and more precisely, tangent vector fields to surfaces.

Even though tangent vector fields are intuitive to visualize, their handling has been,

and still is, extensively studied. Indeed, the discretization of curved surfaces into

triangulations leads for instance to ill-defined tangent planes on edges and at vertices.

The main question at the origin of this work is therefore the question of representation:

how do we discretize / sample a vector field on a discrete surface?

The first and most popular choice of representation is face-based sampling. The

representation requires one vector per face, and considers the vector field constant

on each face. Since the tangent plane of a face is the face itself, this representation

alleviates the problem of tangency and therefore has simple formulations of most of

the common operators. However, it also leads to lower accuracy and to difficulties in

defining derivatives and smoothness energies.

Another choice is to sample the vector field on vertices, and then “linearly” in-

terpolate the values inside faces. This representation yields better results in terms of

accuracy and allows the direct computation of derivatives and smoothness energies.

However, one needs to redefine the tangent plane at the vertex, which is a nonlinear

operation and therefore leads to a complicated formulation.

Finally, another representation used in Geometry Processing comes from Discrete

Exterior Calculus (DEC), and stores on every edge the integrated projection of the

vector field along the edge. This representation is linear, and therefore simple and

accurate but has one major drawback: contrary the previous representations, it is not

clear how DEC can represent N-RoSy vector fields. N-RoSy fields are N Rotationally

Symmetric vectors associated to one point. For instance, a 4-RoSy vector field assigns a

”cross” to every point of the mesh. N-RoSy vector fields are very useful in remeshing

and non-photorealistic rendering, for instance.
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In our work, we propose a simple yet powerful new representation which stores

vectors on edge mid-points and linearly interpolates inside faces. Interestingly, the

tangency problem can be trivially resolved at the edges, and the resulting vector fields

are linear per face. Our representation is therefore simple, accurate and can handle

N-RoSy vector fields and therefore provides a simple unified framework for tangent

vector field processing.
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Chapter 1

Introduction

Tangent vector fields are used ubiquitously in geometry processing, with applica-

tions ranging from texture synthesis [WLKT09, KCPS15] through non-photorealistic

rendering [HZ00] and quadrangular remeshing [BLP+12] to physically based simula-

tion [AWO+14, AVW+15]. It is therefore of interest to design a discrete representation

of tangent vector fields which is on the one hand simple and thus widely applicable, and

on the other hand accurate and robust.

One of the main challenges in tangent vector field representation is to reconcile the

need for smoothness of the vector field, with the nature of the tangent space on triangle

meshes, which is not well-defined at vertices and edges. Smoothness is important for

vector field design, where it serves as a regularizer for finding tangent vector fields given

some user constraints. Another challenge is to define a space of tangent vector fields

which is compatible with the space of scalar functions, such that, for example, it is

possible to find a function whose gradient is most similar to a given vector field. This is

important, for example, for quadrangular remeshing, where two functions are sought

after which are aligned with a given input. Finally, also for remeshing, it is of interest

to be able to handle rotationally symmetric vector fields, also known as N-RoSy fields,

which can represent vector fields that are known only up to some rotational ambiguity.

Existing representations of tangent vector fields excel at one or more of the pre-

viously mentioned challenges, however, to the best of our knowledge, there is no

single representation which can handle all three. Specifically, vertex-based representa-

tions [ZMT06, KCPS13, dGDT15] yield smooth vector fields with well defined derivatives,

yet are not directly applicable to texture mapping and quadrangular remeshing, due

to the lack of relationship to a scalar function space. Furthermore, they are somewhat

complicated to analyze due to the intricate constructions involved in the representation.

On the other hand, face-based representations [PP03, War06] are piecewise-constant,

and thus are compatible to gradients of piecewise-linear functions, and are additionally

simple and easy to manipulate. However defining their derivatives is not straight-forward

and leads to various difficulties.

Therefore, common practice is (as suggested e.g. in the recent review [dGDT15]) to
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first design a vector field using a vertex based representation, and then sample it to get

a face based representation for further applications. Unfortunately, this approach both

complicates the pipeline, as not all processing is done within the same framework, and

additionally introduces error due to the conversions between representations.

The goal of this thesis is to bridge this gap, and introduce a representation of

tangent vector fields which is applicable both for vector field design and for quadrangular

remeshing, and can additionally be used for function and vector field transport, which

are important for physically-based simulation.

We therefore propose (Section 2) a tangent vector field representation which is based

on the non-conforming piecewise-linear basis functions for triangle meshes [War06]. Our

representation shares various properties with existing approaches, e.g. it leverages a

complex formulation and thus is easily generalizable to N-RoSy fields, it is based on

a piecewise-smooth basis and can thus be derivated directly inside triangles, and it is

additionally closely related to discrete edge-based one-forms. We can use it to define first

order derivative operators such as divergence, curl (Section 3.3) and covariant derivative

(Section 5.1) as well as to define second order derivative operators such as the connection

Laplacian (Section 3.1), and finally to define operators which act on functions, such as

gradient (Section 4.2) and the Laplace-Beltrami operator (Section 4.2).

As broad applicability is our main goal, we introduce the operators in the context of

three applications: vector field design (Section 3), quadrangular remeshing (Section 4)

and transport (Section 5), and show how to compute all the required quantities for

implementing these applications within our framework. In addition, we provide com-

parisons of our approach with state-of-the-art methods, showing that our approach is

simpler, more efficient, and yields comparable results, within a unified framework.

1.1 Other Vector Field Representations at a Glance

We provide here a brief classification of existing vector field representations in Computer

Graphics, following the recent review [dGDT15]. We will provide a detailed analysis of

the differences between these methods and ours in Section 6.

Face-based representation. This is perhaps the simplest representation of tangent

vector fields, which assigns a single constant vector per face of the mesh. The advantages

of this representation are its simplicity, and its relation to piecewise linear functions,

which are given by values at the vertices or at the edges of the mesh. However, since

the vector field is constant per face, directly computing derivatives on triangles is

not meaningful, and it is therefore required to resort to representation in a smooth

basis [AOCBC15] in order to have well defined derivatives. Some notion of smoothness

has been proposed [RVLL08], but it relies on a non convex energy which is therefore

difficult to minimize.
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Vertex-Based representations. In these approaches, the vector field is defined at

the vertices of the mesh, and interpolated to the neighboring faces. Since the tangent

space at the vertex is not canonically defined, various methods have been proposed

to tackle this difficulty. In [ZMT06], the authors use a geodesic polar map to create a

local chart on the one ring of a vertex and map it to the plane. Unfortunately, this

construction is not well defined in the triangle near the vertex, which led the authors

to “cut out” a small piece of the triangle near the vertex for the computations. A

different approach to address this issue was proposed in [KCPS13], where instead of

performing integration on the flat triangle, the curvature of the vertex was “pushed” to

the triangle, and the computations were done on these curved triangles (see section 6.2).

Both formulations lead to somewhat complicated expressions for evaluating the vector

field inside the triangle, and in general to difficulties in tailoring specific operators to

specific applications.

Finally, most recently, an extrinsic approach was discussed in [dGDT15], where given

additional tangent planes and reference frames at the vertices and edges, it is possible

to define a smoothly varying vector field which is defined everywhere. Unfortunately,

this requires additional information beyond the input mesh, which has to be provided

together with the vector field representation for the vector field description to be usable.

Furthermore, the resulting expressions are somewhat complex as well.

Our approach shares the same design guidelines as [ZMT06, KCPS13], namely: we

define an intrinsic tangent space with a corresponding local frame at chosen locations, and

then represent the vector field as a linear combination of the frame-based representations.

However, by choosing the local frames to be at the edges where the mesh is locally flat,

instead of the at vertices where the angle deficit complicates matters, the flattening

procedure is considerably simpler. Specifically, curved triangles are not required, thus

considerably simplifying the resulting formulation.

Discrete 1-forms. Discrete Exterior Calculus [Hir03] provides a coordinate-free ap-

proach to tangent vector field representation, by encoding the line integral of the

projection of the vector field on the oriented mesh edges. Thus, this approach is, like

ours, edge-based. However, using only discrete one-forms, representing symmetric tensors

and first order derivatives requires additional, somewhat intricate, machinery [dGLB+14],

whereas in our setup the formulation of all the operators is quite straightforward, using

standard variational formulations and piecewise linear basis functions. Interestingly, we

show in Section 6.3, that our representation can be understood as a generalization of

DEC, which spans a larger space of vector field and allows to easily represent N-RoSy

fields.

Operator-based representations. A more recent approach to tangent vector field

representation [ABCCO13] has suggested to represent vector fields in a coordinate-

free manner, as linear derivation operators on scalar functions. This point of view is
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especially beneficial when the transport of quantities on the surface is required, e.g.

for parallel transport, as has been shown in [AOCBC15]. Our representation is in fact

complementary to the operator approach, as we can similarly construct the required

global linear operators based on our representation, instead of using piecewise constant

vector fields.

1.2 Contribution

A discrete 1-form is represented using one real number per edge and the other repre-

sentations use one complex number per vertex or face. We propose to combine both

approaches and store one complex number per edge. Our construction then linearly

interpolates the complex values to faces therefore providing (1) a simple representation,

thus widely applicable, (2) a piecewise-linear basis whose derivatives can be easily

computed, and (3) a straightforward generalization to N-RoSy fields.

6©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Chapter 2

Edge-Based Tangent Vector

Fields

Given a triangulated surface M, our goal is to define a discrete basis to represent

tangent vector fields on M, and then derive the corresponding operators. We first

describe our representation, and then, in the context of three applications, we show how

various standard operators can be computed in this representation.

2.1 Motivation

Two decisions are required for choosing a discrete representation: (1) where to sample

the vector field, and (2) how to interpolate between the samples. Our goal is to enable

the computation of first order derivatives, and thus we choose to interpolate the values

using piecewise linear functions. On a triangle mesh, two options are available for

piecewise linear functions [dGDT15], one which interpolates values at the vertices and

is continuous everywhere on the mesh, and another which interpolates values at the

edges, and is only continuous at edge-midpoints. In both cases, an interpolated vector

field constructed with those functions must be continuous at the sample points by

construction. Thus, for a curved surface, at the location of the sample points, the

mesh should be mapped to a flat domain, as only there a tangent vector field can be

continuous across triangles.

If one chooses to sample at the vertices (as has been done in [ZMT06, KCPS13]),

this flattening procedure is non-trivial, since the discrete Gaussian curvature is concen-

trated at the vertices, and thus some distortion must be introduced when flattening,

complicating the formulation. We on the other hand sample the vector field at the

edge-midpoints, where the Gaussian curvature is zero, as two triangles can be easily

flattened locally without introducing distortion. This leads to much simpler expressions

for the vector field basis, as well as the resulting operators.
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2.2 Formulation

Complex representation. On a planar domain, a vector field ψ is commonly repre-

sented as a function from R2 to R2. Following [KCPS13], we replace the tangent plane

R2 with the complex line C and write ψ(x, y) = z(x, y) ~X, with z : R2 → C.

Local frames. The tangent spaces of a surface do not have a canonical two dimensional

coordinate system. Therefore, for every point p ∈ M, we need to define an arbitrary

unit norm coordinate frame ~Xp. At an edge mid-point q between the vertices vi and

vj , we choose ~Xq to be the normalized edge vector, with the orientation from the lower

to higher vertex index (see figure 2.1). For any other point p inside a face of M, we

choose ~Xp to be the direction of the first edge of the face. Note, that we always work

per triangle, and thus the local frame at the vertex has multiple values, one for every

neighboring triangle.

jv

iv

iv

Xijzij Xij

vja) b)

Figure 2.1: Although there is no well-defined tangent space on the edge (a), we can unfold
the adjacent triangles (b), to obtain a local distortion-free planar parameterization at
the edge mid-point. This property differentiates our method from vertex based sampling.
Note that we oriented the edge from i to j assuming i < j.

Transport coefficients. Given a coordinate system at every point, we need to relate

the coordinate systems of nearby tangent spaces. For two points p, q on the same face,

we call the transport function rpq : TpM→ TqM the function which transports a vector

sampled at p to the point q along a straight line. Namely, rpq takes a vector expressed

in the ~Xp coordinate system and expresses it in the ~Xq coordinate system. Since ~Xp

and ~Xq have unit norm, rpq only needs to account for the rotation of the coordinate

system and can be represented with a single unit norm complex number rpq ∈ C, which

we denote as the transport coefficient.

Interpolation. Given the transport coefficients, we can now interpolate values. Let

p ∈ T123 be a point in the triangle in Figure 2.2 (a). Given complex values z1, z2, z3 at

the edge mid-points q1, q2 and q3, our vector field representation is given by:

ψ(p) = ψ1(p) z1 + ψ2(p) z2 + ψ3(p) z3, (2.1)
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where ψi(p) = φi(p) rqip is our vector field interpolation basis and φi is the hat basis

function for the mid-edges: φi(qj) = δij [dGDT15] (see Figure 2.2 (b)). To simplify

notations, we will denote rij for rqiqj . Figure 2.3 illustrates our construction on the

generic triangle T123 of figure 2.2. Note that our basis is not continuous across edges, but

at the edge mid-points. This does not pose any practical problem as all our constructions

rely on integrals over M which are computed as a sum of integrals over triangles.

v3

v2v1

q3

q2 q1

X3

X2 X1

a) b)

Figure 2.2: a) Notations for a triangle T123. b) Edge mid-point hat basis function
(see[dGDT15]).

-i i

-i

-1 1

1

0 0

i

0 0

1

1 0

0

0 1

0

a) b) c)

d) e) f)

Figure 2.3: The three piecewise linear edge basis vector fields {ψi} (top) and some
interpolated vector fields (bottom) on the triangle from Figure 2.2 a). The pink triangle
highlights the region where all the barycentric interpolation coefficients φi(p) are positive.
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n-vector fields Following [KCPS13], we represent n-vector fields by their complex

angle-based n-th power. In other words, if u = aeıθ is one component of our n-vector field

(with a = |u|), we work with z = aeınθ which we call the representation vector. To get

the n-vector field back from z, we take the angle-based n-th root of z: ũ = |z| eıarg(z)/n

which can differ from u by an integer number of rotations of angle 2π/n (see figure 2.4).

Note that our construction is slightly different from the one of [KCPS13] where the

authors used the standard power and angle root, thus leading to different norms for a

n-vector and its representation vector, which we believe is less desirable.

a) b)

e2
6�
5u1
ı=

X X

e2 ı �54z =

u2

u3
u4

Figure 2.4: a) Original cross field represented by the ui complex numbers. b) The
representation vector z as the nth angle power of u. The first nth angle root of z is u3.

2.3 Operators and Notation

Unless specified otherwise, for every operator, we compute the stiffness and mass matrices

using a variational formulation derived from the problem. Whenever integration by part

is required, we implicitly assume the mesh is closed. Since all computations are done by

integrating over triangles, we only provide the contribution of a single triangle to the

matrix entries. The general assembly into the global matrices are then made by looping

over triangles and indices. Please see Figure 2.2 for an illustration of the notations, and

the appendix A for the derivation details.

Interpolation Bases. We use ϕi to denote the standard hat basis functions for the

vertex vi, and φi = 1 − 2ϕi for the hat basis function of the edge mid-point qi. We

further denote by ψi the basis vector field of the edge ei. The complex value of vector

field ψ at qi is denoted by zi .

Geometry. The positive angle at the vertex vi is given by αi, and the triangle area

by AT . We additionally require the orientation of the edges, and thus denote by δi the

coefficient matching the orientation of Xi with its corresponding triangle (e.g. in Figure

2.2, δ1 = 1, δ2 = −1 and δ3 = 1). The transport coefficient in an oriented triangle Tijk

from qi to qj is denoted by rij = −δiδjeiαk (note that rji = r̄ij).

Inner products. We denote by 〈〈·, ·〉〉 and ‖·‖ the Hermitian dot product and its

associated norm on our discrete surfaceM, i.e.: 〈〈ξ, ψ〉〉 =
∫
M ξ ·ψ and ‖ψ‖2 = 〈〈ψ,ψ〉〉.
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We additionally use |·| for the pointwise norm and for the absolute value of a complex

number, where required.

We will now provide the details for the computation of various vector field operators

in our framework, in the context of different applications.
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Chapter 3

Vector field design

We describe various possible formulations of tangent vector field design. We start from

the simplest setup of finding the smoothest tangent vector field using the connection

Laplacian, then demonstrate how to additionally minimize the divergence or curl of the

vector field, and finally we show how to apply various alignment constraints.

3.1 The Smoothest vector fields

We first provide the setup, following [KCPS13], and then discuss the benefits of our

formulation.

Energy. Given a surface M, the smoothest vector fields on M are defined as the

vector fields ψ with ‖ψ‖2 =
∫
M |ψ|

2 = 1 which minimize the Dirichlet energy:

ED(ψ) =

∫
M
|∇ψ|2 , (3.1)

where ∇ψ is the Jacobian matrix of ψ. The positive definite quadratic form associated

with the Dirichlet energy is the connection Laplacian ∆c. Thus, we can find discrete

minimizers of (3.1) by solving an eigenvector problem for a discretization of ∆c.

The connection Laplacian. Using our interpolation basis, we define a vector field

as the linear combination ψ =
∑
ziψi, and find the smoothest vector fields as the

eigenvectors corresponding to the smallest eigenvalue of the eigenvalue problem:

Lcz = λMzz,

with (Lc)ij = 〈〈∇ψi,∇ψj〉〉 and (Mz)ij = 〈〈ψi, ψj〉〉. The simplicity of our linear basis

makes the matrix entries straightforward to compute, and the resulting formulas are
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concise and easy to implement. For the stiffness matrix we have:

(Lc)ii =
|ei|2

AT
, (Lc)ij = −|ei| |ej |

AT
cos(αk) rji,

and the mass matrix Mz is diagonal and real: (Mz)ii = 1
3AT . Note that no lumping

was involved for the mass matrix and Mz is therefore entirely consistent. We refer the

reader to the appendix A for the derivation, and show some examples in Figure 3.1.

Smoothest n-vector field To design the smoothest n-vector field, we first design

the smoothest representation vector field and then take the n-th angle root of the result.

As noted in [KCPS13], we only need to slightly modify our stiffness matrix Lc to act

on representation vector fields, by replacing rji with (rji)
n. See figure 3.1 (b-d) for an

illustration.

a) b)

c) d)

Figure 3.1: Smoothest n-vector fields on an ellipsoid. The color is the norm of the
vector field. a), b), c) and d) are respectively the smoothest 1, 2, 3 and 4-vector fields
with 2, 4, 6 and 8 singularities.

3.1.1 Comparison to [KCPS13]

Our results are visually very similar to the ones obtained by [KCPS13], however our

construction improves on the previous method both in simplicity and in accuracy while

preserving some desirable properties such as resistance to noise.
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Simplicity. First, our matrix entries are considerably simpler (see e.g. Appendices

D.2 and D.3 in [KCPS13]), which is beneficial in practice for implementation and

analysis. Furthermore, our mass matrix Mz is real and diagonal, which is not the case

for the vertex-based representation. This allows us to compute its inverse, and use it

for composing operators (Section 4.2) and for using exponential integrators for PDEs

(Sections 3.2 and 5.1).

Accuracy. As illustrated in figure 3.2, the eigenvalues of both discretizations converge

at the same rate both for regular and grid-like meshes. As our matrices are bigger (we

compute ne ≈ 3 nv complex values), we are, for a fixed mesh, on average 2 times slower

yet 5 times more accurate. As we can see in figure 3.2 (c), our method indeed provides

the best ratio of time-to-accuracy.

Resistance to noise. Similarly to vertex-based sampling, our method is robust to

normal noise on vertices (see Figure 3.3).

Ours
Vertex sampling

Ours
Vertex sampling

105101 101

10-4

10-2

100

a) Error as a function
of number of vertices

10510-2

100

102

b) Time as a function
of number of vertices

10-2 100 102

10-4

10-2

100

c) Error as a function of time

Figure 3.2: Convergence of the first 48 eigenvalues of Lc on a sphere (using two
triangulations). Results are compared to the ground truth given in [SW12].

b)a)

Figure 3.3: Robustness to noise. a) The mesh with added normal noise, on which we
compute the smoothest vector field. b) The original mesh with the vector field of a).
The result is very close to the one in figure 3.1 (a).
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3.2 Vector Field Smoothing by Heat Diffusion

The Laplace-Beltrami operator is used both for computing smooth functions using an

eigenvector problem, as well as for function smoothing. Similarly, in addition to the

computation of the smoothest eigenvectors, the connection Laplacian can be used for

vector field smoothing. Thus, given an initial, potentially noisy, n-vector field ψ0, the

heat-diffused vector field ψ(t) satisfies:

∂

∂t
ψ(p, t) + ∆c ψ(p, t) = 0, ψ(p, 0) = ψ0.

In the space-discrete setting this becomes ∂
∂tz(t) = −M−1

z Lcz(t), which we can solve

numerically using an exponential integrator [HL97] as z(t) = exp(−tM−1
z Lc)z0, where

exp is the matrix exponent. Note, that there exist efficient methods for computing the

multiplication between the exponent of a large sparse matrix and a vector [AMH11].

Results are shown in Figure 3.4 and the attached video. We additionally used heat

diffusion for curvature computations in section 3.4.

a) b)

Figure 3.4: Heat diffusion. (a) Very noisy curvature computed as an orthogonal direction
to every edge. (b) Heat diffused version of (a) with t = h/2 with h the mean edge length
of the mesh.
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3.3 Prescribe Divergence and Curl

The problem (3.1) has a global degree of freedom, as the global rotation of all the vectors

by a constant angle does not modify the energy. We will therefore add another term

to the energy to get, for instance, the smoothest divergence free vector field. This will

remove the extra degree of freedom, and make the solution unique. As our vector fields

are piecewise linear, divergence and curl are available directly as piecewise constant

functions per face. Their computation is then trivial, either by explicitly computing

derivatives, or using the circulation theorem, as follows.

Integral property. In order to compute the circulation of a vector field, we need to

integrate its value along edges. From the median symmetry of the mid-edge hat basis

functions φi, we get the following interesting property for our basis (App. B.1):∫
ei

ψi(p) = |ei| ~Xi,

∫
ej

ψi(p) =

∫
ek

ψi(p) = 0. (3.2)

In other words, the integral of our vector field along the edge ei is simply its value zi at

the mid-edge multiplied by the edge length.

Computation. With the help of (3.2), we can now directly compute the circulations

of our vector field. Let ψ be a vector field. On a triangle T , we know that
∫
T curlψ =∫

∂T ψ · dl. From the integral property we get:∫
T

curlψ =
∑
e∈T

δe |e|Re(ze).

Similar results are achieved for the divergence by noting that divψ = curl ıψ. If we

denote by curlT and divT the discrete face valued functions, we have:

Mt curlT ψ = K Re(z), Mt divT ψ = −K Im(z)

where K = Ge→tMe, Ge→t is the signed graph adjacency matrix from edges to faces,

and Mt, Me are the diagonal mass matrix of triangle area and edge lengths respectively.

Divergence and Curl. We can now assemble our curl (resp. divergence) energy.

The global energy becomes Eµ = ED + µEcurl where µ balances how much the curl

energy influences the smoothness energy, and where Ecurl(ψ) =
∫

Ω(curlψ)2. We now

need to compute the matrix Lcurl. However, as the curl operator is not “complex linear”

on complex vector fields, because Re(ız) 6= ıRe(z), we need to transform our matrices

to act on R2n:

z ←

(
Re(z)

Im(z)

)
, Lc ←

(
Re(Lc) − Im(Lc)

Im(Lc) Re(Lc)

)
.
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The matrices Lcurl and Ldiv can then be written as:

Lcurl =

(
KTM−1

t K 0

0 0

)
, Ldiv =

(
0 0

0 KTM−1
t K

)
.

We illustrate some results in figure 3.5. As expected, the energy Eµ with µ small only

lifts the global rotation degree of freedom, without affecting the smoothness.

Figure 3.5: Smoothest curl free (top) and div free (bottom) vector fields.
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3.4 Alignment

Sparse hard constraints. Sparse hard constraints given as prescribed value at

prescribed locations are modeled by minimizing the smoothness energy under linear

equality constraints. To prescribe only the direction and not the norm, we add instead

an orthogonality constraint as follows. Let wi ∈ C be the direction constraint we

impose at qi. The value zi of the vector field ψ at (qi) must satisfy: Re(zi) Im(wi) −
Im(zi) Re(wi) = 0. Figure 3.6 shows an example where hard constraints (a) and direction

constraints (b) are imposed.

Soft global alignment. For soft alignment, we use the alignment energy proposed

in [KCPS13]: given an alignment field ω =
∑
wiψi, the alignment energy is: Ealign =

Re 〈〈ω, ψ〉〉. When combined with the smoothness energy using Et = (1− t)ED− tEalign

where t ∈ [0, 1] balances the tradeoff between alignment and smoothness, Et has the

advantage of promoting alignment where |ω(p)| is high and promoting smoothness when

|ω(p)| is small. The discrete minimizer to Et is solution of the system: (Lc − λtMz)z =

Mzw, where choosing λt = 0 usually provides a good trade-off.

Curvature computation In some applications alignment to the curvature directions

is required. We compute the curvature 2-vector field ω using the 2 angle power of

wj = ıβj/ |ej |, where βj is the signed dihedral angle between the two adjacent triangles

to the edge ej [BKP+10]. The curvature direction is therefore orthogonal to every edge.

This simple discretization is enough for most meshes, however it is more robust to

slightly heat diffuse the curvature directions prior feeding it to the alignment energy.

We use t = h/10 with h being the mean edge length of our mesh. Figure 3.7 shows a

few examples of direction fields aligned with curvature directions.

Figure 3.6: The two types of hard constraints. The red arrows enforce norm and
direction whereas the green arrow only forces the direction.
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a) b)

c)

Figure 3.7: Direction fields aligned with curvature directions: a) cross field, b) and c)
2-direction field.
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Chapter 4

Quadrangulation

To demonstrate the applicability of our vector field representation to quadrangular

remeshing, we follow [BZK09], and show how the relevant steps can be performed in

our framework.

The quadrangulation algorithm. For the purpose of this paper, we compute the

u, v coordinate functions, and refer to [EBCK13] for the quad extraction. The general

algorithm is:

1. Design a smooth curvature aligned cross field.

2. Identify the locations of the singularities.

3. Cut the mesh into topological disk patches, such that the singularities of the cross

field are on the cut, and propagate on each patch a consistent orientation of one

of the cross field component to generate two vector fields U, V .

4. Minimize E(u, v) =
∫
M |∇u− U |

2 + |∇v − V |2 to find the coordinate functions,

with additional integer constraints.

The first step is performed as explained in the previous section, and the third step

is a topological operation independent of the representation of the vector field. We will

therefore first describe how to do the second step, and then address the projection of a

given vector field onto the space of gradients of functions, for the last step.

4.1 Singularity detection.

The notion of singularities is closely linked to the one of turning number (see [RVLL08]).

The turning number Tψ(γ) of the vector field ψ along the loop γ is the integrated angle

of the vector field with the tangent to the curve: Tψ(γ) = 1
2π

∮
γ dθ(

~tγ , ψ), where θ(~tγ , ψ)

is the oriented angle between ψ and the tangent vector field ~tγ to γ. S is a singularity

if for any loop γ enclosing S, Tψ(γ) 6= 1. We can then define the index of a singularity

as the turning number of an arbitrary small loop enclosing S minus one.

21©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



To detect a singularity, we partition the surface into non overlapping “vertex

regions” and “face regions” and then compute the turning number on every region’s

boundary (see figure 4.1 a)). The index formula for the region inside a face T123 is

If (T ) = 1
2π (ω12 + ω23 + ω31), where ωij = arg

(
zj
zi rij

)
∈ [−π,+π] represents how much

the vector field rotates from qi to qj . Similarly, the index formula for the region around

the vertex vi is Iv(vi) = 1
2π

(
Ωi +

∑
Tijk

ωjk

)
, where Tijk are the adjacent triangles to

vi and Ωi is the angle defect at vi. Note that the computed indexes can only 0, 1 or −1.

Figure 4.1 (b,c) and our video show singularities detected on several models.

a) b)

c)

Figure 4.1: Singularity computation. Positive and negative singularities are plotted in
green and red respectively. (a) The partition to vertex regions and triangle regions. (b)
singularities on the torus for a cross field. (c) Singularities on the hand for a vector
field. Note that the singularities are located in natural places.

Singularity remeshing In step 3 of the algorithm, the singularities are required to

be on vertices, which is not guaranteed by our cross field. If our cross field has singularity

on a triangle, we locate the exact location of the singularity inside the triangle and

create a new vertex at the singularity location. We solve for a and b (see App B.2) such

that M(a, b)T = B, with:

M =

(
Re (z1 − z21) Re (z1 − z31)

Im (z1 − z21) Im (z1 − z31)

)
, B =

1

2

(
Re (z1 − z21 − z31)

Im (z1 − z21 − z31)

)
,

where zij = zirij is the transported value zi from qi to qj . Then, the singularity S is

located at S = v1 + a (v2 − v1) + b (v3 − v1).
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4.2 Projection on Gradient Vector Fields

We will now address the problem of projecting a given input vector field on the space

of gradients of functions, effectively minimizing E(u) =
∫
M |∇u− U |

2, to find the

coordinate function u.

The Gradient.

Let f be a function defined the vertices of M, the variational formulation yields:

ψ = ∇f ⇔ Mz z = Gf,

where G is a ne × nv matrix whose entries are Gij = 〈〈ψi,∇ϕj〉〉. The contribution of a

triangle Tijk to G is:

Gii = ıδi
|ei|
6
, Gij = ıδj

|ej |
6
rji.

Graphical analysis Figure 4.2 provides an illustration of the gradient of the hat

function. Note that only the red vectors are computed, the others are the result of the

interpolation in the face. The 1D analogy of figure 4.2 should not be understood as exact,

as the gradient field of figure b) is not even continuous on the common edge, but should

serve more as an intuition to explain the improved results for the Laplace-Beltrami

operator below.

b) c)a)

Figure 4.2: Gradients computed with our method. a) Gradient of the height function
f(x, y, z) = z) at the south pole of the sphere. For plotting purposes we normalized the
vectors lengths. In figure a) and b), we illustrate how our gradient can be understood as
an approximation of a smooth interpolation of the orange and green points. b) Gradient
of the hat function of the green vertex. c) 1D analog figure b).

Tangential component We can show (App. B.3) that the tangential component of

the gradient corresponds to a natural finite difference approximation. Let f =
∑
fiϕi be
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a function and z = M−1
z Gf its discrete gradient. For the edge eij between the vertices

vi and vj , we have:

Re(zeij ) =
fj − fi
|eij |

. (4.1)

With (3.2) and (4.1), it is then straightforward to prove that the discrete version of

curl ◦∇ = 0 holds.

The Gradient’s Adjoint In the continuous setting, it is well known that the gradient

is the L2 adjoint of the divergence operator. Interestingly, in our complex discrete

framework, we get (see App. B.4):

Mv(divv(ψ) + ı curlv(ψ)) = −G∗z,

thus, an alternative formulation for the divergence operator, is given by minus the real

part of the adjoint of the gradient.

Laplace-Beltrami operator

To project a vector field on the space of gradients, we effectively need to solve a

Poisson equation, and thus require a Laplace-Beltrami operator. Using our gradient and

its adjoint, we can define a new discretization which has a better accuracy in terms

of convergence than the standard cotangent weight Laplacian, at virtually the same

computational cost. For a function f on M, the classical variational formulation for

the Laplace Beltrami operator is

u = −∆f ⇔ ∀v,
∫
M
v · u =

∫
M
∇v · ∇f.

In our framework, this yields the discrete integrated operator:

L = G∗M−1
z G. (4.2)

As Figure 4.3 shows, this discretization of the Laplace-Beltrami operator is about 3

times more accurate than the standard cotangent weight discretization, and still does not

use any higher order lattice subdivision contrary to quadratic or cubic finite elements.

However, it is also less sparse than the cotangent weight formulation as it acts on

the 2 ring of each vertex, so it is approximately 1.3 times slower. Similarly to the

connection Laplacian’s convergence (figure 3.2), our discretization has the best ratio

of accuracy-to-computation time, compared to all standard discretizations including

quadratic and cubic finite elements discretization.
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102 104

10-2

a) Error as a function
of number of vertices

10-2 100

10-2

c) Error as a function
of time

ours cotangent quadratic cubic

102 104

10 -1

10 0

b) Time as a function
of number of vertices

Figure 4.3: Convergence of the first 16 eigen-values of the Laplace-Beltrami operator on
the sphere, on a regular triangulation with non-lumped mass matrices. The a’) graph is
a zoom on the green rectangle of graph a). Note in c) that our new discretization has
the best ratio accuracy-to-complexity compared to all previous standard discretizations
including quadratic and cubic finite elements.

Results Once we completed the steps 1-3 of the algorithm, we minimize the energy

E(u, v) = Ez(u) + Eız(v) using

Ez(u) = uTLu+ 2 Re(G∗z)Tu+ z∗Mz z

where z represents the propagated direction U of the cross field. Figure 4.4 shows

results we obtained this framework using the solver [GO15]. Note, that our goal is

not to claim better results than state-of-the-art quad meshing methods, but simply

to demonstrate that our piecewise-linear vector field representation is indeed feasible

for use for quad-meshing applications, which were so far limited to piecewise constant

representations.

Figure 4.4: Quadrangulation on several simple meshes.
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Chapter 5

Transport

Finally, for our last application, we show how our representation can be used in

conjunction with the recently proposed operator representation of tangent vector

fields [ABCCO13]. Specifically, we provide a discretization of the covariant derivative

operator, and use it to simulate the parallel transport of a vector field, similarly to what

was done in [AOCBC15].

5.1 Covariant derivative

If we denote z, w amd x the discrete complex values of ψ, ω and χ, we have:

χ = ∇ωψ ⇔ Mz x = Dωz

with

(Dω)ij = 〈〈ψi,∇ωψj〉〉 ,

where the contribution of the triangle Tijk is

(Dω)ii = 0 , (Dω)i6=j = −δj
|ej |
3

Im(ωirij)rji

Following [AOCBC15], we compute the backward parallel transport of the vector field

ψ0 along ω, using:

∂

∂t
Mzψ(p, t) +Dw ψ(p, t) = 0, ψ(p, 0) = ψ0,

whose closed-form solution is then given by:

ψ(t, p) = exp(tM−1
z Dω)ψ0(p).

We implemented this equation on the sphere with a simple turning vector field

transported along itself. To add some regularization, as the solution quickly diverges, we

smooth the resulting vector field at every step, using the connection Laplacian (similarly
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to [AOCBC15]). Figure 5.1 and the accompanying video shows the resulting transported

vector field. Note, that we get results comparable to [AOCBC15], without the need to

transport the norm of the vector field separately as has been done there.

a) b)

c) d)

Figure 5.1: Parallel transport using the covariant derivative. We transported the vectors
of the first illustration 1, 2 and 3 times around the globe along their circle latitude.
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Chapter 6

Relation to other discretizations

In this section we provide a detailed discussion of the main differences between our

method and existing representations.For a detailed survey on how to compute the

operators in each discretization, we refer the reader to [dGDT15].

6.1 Face-Based Piecewise constant vector fields

As mentioned in the introduction, piecewise constant vector fields probably provide the

most popular discretization. Using the same complex construction of section 2.2, it is

straightforward to generalize it to n-vector fields. Our main advantage with respect to

this approach is the robust computation of derivatives, such as the connection Laplacian

and the covariant derivative.

6.2 Vertex-based sampling

Vertex based sampling was first introduced in [ZMT06] and extended by [KCPS13] and

[dGDT15]. Sampling tangent vector fields on vertices might seem natural, especially in

the plane where the linear basis can be directly constructed. However, on curved surfaces,

the tangent plane at a vertex is not well-defined, which complicates the definition of a

linear vertex-based vector field basis. The original approach to define the tangent space

at the vertex used a geodesic polar map. Based on the idea presented in [Cra13], we

propose an alternative, yet equivalent, point of view which we find more intuitive.

The inflation-deflation method. Consider the vertex v of the tetrahedron of figure

6.1. Contrary to what we did in figure 2.1, it is impossible here to directly define a

coherent intrinsic notion of tangent space by just unfolding. In order to compensate for

the angle deficiency, we need to: (1) Unfold and inflate the mesh around the vertex; (2)

Define the basis on the inflated mesh; (3) Deflate and fold the mesh back to its original

structure; and (4) Multiply by the hat basis function. This procedure is illustrated in

figure 6.2 and the final result on the folded mesh is shown in figure 6.3 (a).
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� missing

b)?a)
v

v

c)

Figure 6.1: Vertex unfolding and inflation of a tetrahedron mesh. a) No clear definition
of tangent space. b) Vertex unfolding of the tetrahedron. c) Inflated mesh. Compare to
figure 2.1 where the unfolding was done without distortion. Our tangent space should
encode the fact that the red and blue vectors are opposite to each others in a), which b)
does not encode but c) does.

Figure 6.2: The inflation-deflation procedure to define the vertex based basis.
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Closed form expression Although neither [ZMT06], [KCPS13] nor [dGDT15] pro-

vided a closed form expression of the basis, we propose the following concise expression

(App. B.5):

ψi(p) = ϕi(p) e
−ı arg(p)(si−1),

where p ∈ C is the point on the unfolded mesh of figure 6.1 b), i is the index of the

vertex v, and si is the angle deficiency rescaling factor si = 2π∑
T3vi

αi
.

Treating the discontinuity The produced vector field is not linear, and is not even

continuous as illustrated in figure 6.3. The discontinuity of the resulting basis on vertices

prevents a direct computation of the Dirichlet energy on a triangle, as the derivative

diverges near the vertex. [ZMT06] alleviated the problem of the divergent Jacobian

by cutting off an arbitrary small triangular region at the problematic vertices (see the

dark green area in figure 6.3 b)). [KCPS13] proposed a more rigorous approach by

computing the integrals on the curved inflated mesh (see figure 6.3 c)) which drastically

complicates the integration formulas.

Conversion to and from If conversion to or from the vertex representation is needed,

we provide here a simple method. Because of the complexity of the vertex based basis,

instead of proposing the complicated formulas resulting from the variational formulation,

we propose a simple average as a conversion: average of adjacent edge values to convert

to vertices, and average the 2 vertex values to convert to edges. To do so, we only need

to compute rve the transport coefficient from a vertex v to the midedge point of an

adjacent edge e (remember that rev = r̄ve). If we note θ the oriented angle between

~Xv and ~Xe on the unfolded mesh, we have rve = e−ısθ where s is the angle deficiency

rescaling factor of v.

a) b) c)

Figure 6.3: a) Top view of the tetrahedron on which we plotted the resulting basis of the
inflation-deflation procedure. b) Focus on the green face to highlight the discontinuity of
the produced vector field at the vertex. c) The curved green triangle used by [KCPS13]
to bypass the discontinuity of (b). The triangle is obtained by pushing the curvature of
the 3 adjacent vertices to the triangle.
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6.3 Discrete one-forms

Discrete one-forms [Hir03] require storing coefficients on edges, thus several analogies

to our method can be drawn. To understand the main differences between the two

frameworks, we will show that discrete one-forms can only represent the specific subset

of divergence free vector fields.

6.3.1 Analogies between the two constructions.

A discrete one-form provides a proxy to a vector field, by storing on every edge the

integral of the dot product of the vector field and the unit edge direction. Let e be an

oriented edge of M, the stored coefficient ce is ce =
∫
e〈w(p), ~Xe〉dp, where ~Xe is the

unit norm vector in the direction of e. Note the difficulty of handling n-vector fields

with this representation, as the technique to raise a complex number to the power n to

alleviate the direction uncertainty is no longer available.

The analogy with our construction is now clear: if z represents our complex coefficient,

then (3.2) implies ce = |e|Re(ze). Since the curl operation directly uses (3.2), the curl

operation from section 3.3 is the exactly the curl operator of DEC as both are computed

using the circulation theorem.

Interestingly, one could also work with the orthogonal version of DEC, by storing the

integral of the orthogonal component on the edge, to get the similar conjugate results.

To summarize, if we denote by DEC‖ and DEC⊥ the regular DEC framework and its

orthogonal conjugate, we get:

c‖ + ıc⊥ = |e| z

|t|
(
curl‖− ıdiv⊥

)
= Kz,

where |e|, and |t| are the diagonal mass matrices of edge lengths and triangle areas.

6.3.2 Why our construction is not just DEC‖ + ıDEC⊥

The previous identities might mislead the reader into thinking that our construction

can be assembled by using the two different DEC versions. However, replacing real

coefficients by complex ones in DEC‖ does not work, mainly because of the interpolation

basis used both in DEC and its orthogonal conjugate. Thus, building a new basis as we

have done in section 2 cannot be avoided.

The Whitney basis Let us focus on DEC‖. The Whitney basis ψe is the reconstruc-

tion basis associated to the coefficient ce of an edge e. ψe can be easily computed with

the hat basis functions:

ψeij = ϕi∇ϕj − ϕj∇ϕi,

32©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



where vi and vj are the 2 vertices of e = eij (see figure 6.4 for the construction). To get

a better intuition, we propose a new formula involving complex numbers. In a triangle

Tijk (figure 2.2), we have

ψk = δk ψij =
ı δk
2AT

(z − vk), (6.1)

where the term (z − vk) accounts for the singularity at the vertex vk, ı for the vortex

shape of the singularity, and δk for the counterclockwise or clockwise rotation of the

vector field.

b)

1

00

0 0

a)

vi vj

Figure 6.4: Whitney basis 1-forms (exceptionally, vectors are plotted at their mid
points). To construct the basis for the edge eij , we set cij = 1 and c = 0 on the others
edges. Since the integral of the dot product 〈ue, ψij〉 is null on the exterior edges, it is
natural (although not necessary) to assume that ψij is orthogonal to the exterior edges,
hence the orthogonal constraints in a) and the resulting Whitney basis in b).

Circular vector fields From equation (6.1) it is straightforward to show that any

non constant vector field produced from Whitney 1-forms on a single triangle, can be

written as:

ψ(z) = ıλ(z − ω), (6.2)

where ω ∈ C is the singularity location of the vector field, and λ ∈ R is the oriented

magnitude of the vector field. Therefore the Whitney basis only produces divergence

free vector fields. From (6.1) and (6.2), one can also prove that the singularity of a

combination of Whitney 1-forms is the barycenter of the original singularities. In other

words, if ψ = aψ1 + b ψ2, with a, b ∈ R, we get ψ(z) = ıλ (z − ω) with

λ =
α+ β

2AT
, ω =

α v1 + β v2

α+ β

where α = a δ1 and β = b δ2 are the re-oriented coefficients. See figure 6.5 for an

illustration.
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1

1

1

1

11 2

22

2

22 22

2 4

2

4

∞

Figure 6.5: The DEC reconstruction vector fields are always circular, with the singularity
being the barycenter of the vertices with the re-oriented edge coefficients as weights
(blue numbers). Note that the singularity might go to infinity yielding a constant vector
field.

Complex Whitney 1-forms ? It is therefore straightforward to show that allowing

the discrete one-form coefficient to be complex (which is equivalent to adding the

Whitney basis of DEC⊥ as an imaginary part) would not be enough to recover the

whole space of linear vector fields. The general form of such vector fields would still be

of the form (6.2), yet with λ ∈ C, which only covers a 4 dimensional space, whereas the

space of linear vector fields is of dimension 6.
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Chapter 7

Conclusion and further work

We proposed a new discretization of tangent vector fields on triangle meshes, which

is both simple to implement and widely applicable. We additionally showed how to

derive various operators which are required in the context of two important applications

- vector field design, and quadrangular remeshing. We believe that our representation

could be a viable alternative to the widely used piecewise-constant vector fields in other

applications as well.

One piece which is missing from our discretization, is a discrete Hodge decomposition

which is available for the face-based representation and the discrete one-form represen-

tation. However, due to the analogies between our framework and DEC, we are hopeful

that future research would uncover a Hodge decomposition for our representation as well.

Finally, we believe that our representation brings us somewhat closer to the ultimate

goal of providing a complete and unified framework for handling discrete functions and

discrete vector fields in geometry processing applications.
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Appendix A

Computation of matrix indices

Let us note 〈〈ψi, ψj〉〉ijk the hermitian product restricted to the triangle Tijk, and 〈·, ·〉r
the real part of 〈·, ·〉. Let us also note ui the complex coefficients of ~Xi in the basis ~XT ,

hi the height of the vertex vi in a triangle Tijk and Aijk the area of Tijk.

A.1 Some general identities

Before starting the computation with specific operators, here are some results which we

will use in all the following computations. In a triangle T , we have for all i, j:∫
T
φi =

AT
3

∫
T
φ2
i =

AT
3

∫
T
φiφj = 0 ∇φi = −2ıδi

1

hi
~Xi 〈ui, uj〉 = rji

Note also that 2Aijk = |ei|hi.

A.2 Mass matrix Mz

We want to compute Mz = 〈〈ψi, ψj〉〉ij . Note that (Mz)ij 6= 0 only if i and j are adjacent.

In Tijk, we have

〈〈ψi, ψj〉〉ijk =

∫
Tijk

〈φiui, φjuj〉 = 〈ui, uj〉
∫
Tijk

φiφj = 0

〈〈ψi, ψi〉〉ijk =

∫
Tijk

〈φiui, φiui〉 =

∫
Tijk

φ2
i = Aijk/3

A.3 Connection Laplacian Lc

Note that ∇ψi is constant on each triangle. In the plane, we have

∇ψi = ∇(φiui) =

(
∂φi
∂x ui,x

∂φi
∂x ui,y

∂φi
∂y ui,x

∂φi
∂y ui,y

)
=

(
∂φi
∂x ui
∂φi
∂y ui

)
= ∇φi ui
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where the notation ∇φi ui ∈ C2 is maybe abusive, but we leave the reader check that

the calculus are the same when dealing with full matrices in R2×2.

We can now derive the expressions. We have:

〈〈∇ψi,∇ψi〉〉ijk = Aijk ‖∇φi ui‖2

= Aijk ‖∇φi‖2

= |ei|2 /Aijk

and

〈〈∇ψi,∇ψj〉〉ijk = Aijk 〈∇φi ui,∇φjui〉

= Aijk ui 〈∇φi,∇φj〉r uj

= Aijk
2

hi

2

hj
cos(π − αk)ui uj

= −|ei| |ej |
Aijk

cos(αk)rji.

A.4 Gradient operator G

We want to compute 〈〈ψi,∇ϕj〉〉ijk, but note first that one should not get confused

between i which is an index for the complex edge basis ψi and j which is an index of

the function basis ϕi.

We have:

〈〈ψi,∇ϕj〉〉ijk =

∫
Tijk

〈
φiui, ıδj

1

hj
uj

〉
=
Aijk

3

〈
ui,

1

hj
ıδjuj

〉
= ıδj

|ej |
6
rji

〈〈ψi,∇ϕi〉〉ijk =

∫
Tijk

〈
φiui, ıδi

1

hi
ui

〉
=
Aijk

3

〈
ui,

1

hi
ıδiui

〉
= ıδi

|ei|
6

A.5 Covariant derivative

We want to compute (Dω)ij = 〈〈ψi,∇ωψj〉〉. Let us first compute ∇ωψj on Tijk. We

have

∇ωψj = ∇ωiψi+ωjψj+ωkψk
ψj = ∇ωiψi

ψj +∇ωjψj
ψj +∇ωkψk

ψj .

We have

∇ωiψi
ψj = ∇ωiφiui(φjuj) = φi (∇ωiuiφj)uj = φi 〈∇φj , ωiui〉r uj .
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So, putting it together, we get:

〈〈ψi,∇ωψj〉〉ijk =

∫
T

〈
ψi,∇ωiψi+ωjψj+ωkψk

ψj
〉

=

∫
T

〈
ψi,
∑
k

∇ωkψk
ψj

〉

=
∑
k

∫
T

〈
ψi, φk 〈∇φj , ωkuk〉r uj

〉
=
∑
k

∫
T
φiφk 〈∇φj , ωkuk〉r 〈ui, uj〉

=
∑
k

〈∇φj , ωkuk〉r 〈ui, uj〉
∫
T
φiφk

= 〈∇φj , ωiui〉r 〈ui, uj〉
∫
Tijk

φiφi + 0

= 〈∇φj , ωiui〉r rji
AT
3

=
AT
3

Re

(
−2δj

1

hj
ıuj ωiui

)
rji

= −δj
2AT
3hj

Re (−ı uj ωiui) rji

= −δj
|ej |
3

Im(ωirij)rji

If we consider the case j = i, we get:

〈〈ψi,∇ωψj〉〉ijk = −δi
|ei|
3

Im(ωi)

Therefore on a closed mesh, if we note Tijk and Tijl the 2 adjacent triangles to eij , we

have:

〈〈ψi,∇ωψj〉〉 = 〈〈ψi,∇ωψj〉〉ijk + 〈〈ψi,∇ωψj〉〉ijl

= −
(
δijki + δijli

) |ei|
3

Im(ωi)

= 0

since an edge has the right orientation with one its adjacent triangle and the wrong

orientation with the other one.

Note however that on a non closed mesh, the diagonal term would be non zero for

the boundary edges.
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Appendix B

Other proofs

B.1 Integral property

Note that φi = 1 on ei. We then have:∫
ei

ψi(p)dp =

∫
ei

φi(p) ~Xidp =

(∫
ei

1dp

)
~Xi = |ei| ~Xi∫

ei

ψj(p)dp =

∫
ei

φj(p) ~Xjdp =

(∫
ei

φj(p)dp

)
~Xj = 0

because φj is symmetric on ei.

B.2 Singularity remeshing formula

We are looking for a, b such that S = v1 + a (v2 − v1) + b (v3 − v1). We know that S

being a singularity implies ∑
i=1,2,3

ψi(S) = 0

We have then

0 =
∑

i=1,2,3

ψi(S) =
∑

i=1,2,3

ziXiφi(S) =
∑

i=1,2,3

ziri1φi(a, b)

with

φ1(a, b) = 1− 2ϕi(a, b) = 1− 2(1− a− b) = 2a+ 2b− 1

φ2(a, b) = 1− 2ϕi(a, b) = 1− 2a

φ3(a, b) = 1− 2ϕi(a, b) = 1− 2b

Note that we arbitrarily decided to convert the vector values in the X1 basis, thus

the ri1.
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B.3 Tangential component of our gradients

Let e = eij be the edge between the vertices vi and vj , and to simplify notations. Let f

be a function on vertices and let us note te the tangential component of its gradient

on e. Remember that Mz is real and diagonal, and that f is real.

We have:

te = Re((M−1
z Gf)e) =

1

(Mz)e

nv∑
k=1

Re(Ge,k)fk

Let us call Tijk and Tijl the 2 adjacent triangles to eij . We have:

nv∑
k=1

Re(Ge,k)fk =
Aijk

3

(
fi Re 〈uij ,∇ϕi〉+ fj Re 〈uij ,∇ϕj〉+ fk

=0︷ ︸︸ ︷
Re 〈uij ,∇ϕk〉

)
+
Aijl

3
...

=
Aijk

3

(
− fi

sinαj
hi

+ fj
sinαi
hj

)
+
Aijl

3
...

=
Aijk

3

(
− fi

hk/|ei|
hi

+ fj
hk/|ej |
hj

)
+
Aijl

3
...

=
hk
6

(−fi + fj) +
hl
6

(−fi + fj)...

=
hk + hl

6
(fj − fi)

and we also have

(Mz)eij = (Aijk +Aijl)/3.

Combining the two results, we get:

te =
3

Aijk +Aijl

hk + hl
6

(fj − fi)

=
6

|eij |hk + |eij |hl
hk + hl

6
(fj − fi)

=
fj − fi
|eij |

.

B.4 Gradient adjoint

Let us focus in the discrete matrix case first. We have:

〈〈ψ,∇f〉〉 = z∗Mz

(
M−1
z Gf

)
= z∗Gf
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Now we want to transform this matrix expression to be a dot product of vertex functions,

so we artificially insert the vertex mass matrix and develop:

〈〈ψ,∇f〉〉 = z∗GM−1
v Mvf

= (M−1
v G∗z)∗Mvf

= Re((M−1
v G∗z)∗Mvf) + ı Im((M−1

v G∗z)∗Mvf)

= M−1
v Re((G∗z)∗)Mvf + ıM−1

v Im((G∗z)∗)Mvf

= M−1
v Re(G∗z)TMvf − ıM−1

v Im(G∗z)TMvf

In the smooth case, we know from the Green formula (also called Stokes formula) that

〈〈divψ, f〉〉 = −〈〈ψ,∇f〉〉

〈〈curlψ, f〉〉 = 〈〈Jψ,∇f〉〉

Therefore, by identification, we get

div z = −M−1
v Re(G∗z)

curl z = −M−1
v Im(G∗z)

B.5 Inflation-Deflation closed form expression

Let s be the angle defect rescaling factor, and let z = aeıθ be a point inside the unfolded

mesh. The inflated point point zi is

zi = aeısθ

On all the inflated points we then associate the same basis vector q(z) = q. When zi

deflates to its deflated version zd = z, the same transformation is applied to q(z) which

becomes qd(z) what we want. Note that the angle between the point z and q(z) stays

the same while deflating. The norm being also preserved, we have a constant ratio

zi
qi

=
zd
qd

Therefore

qd = qi
zd
zi

= qi
aeıθ

aısθ
= qie

ıθ(1−s)

Remember that qi is constant. We can choose qi = 1 for simplicity as the choice of the

basis is arbitrary. Multiplying by the hat function yields

qd(z) = ϕ(z)eı arg(z)(1−s)

which is our formula.
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symmetry direction field design. ACM Trans. Graph., 27(2):10:1–

10:13, May 2008.

[SW12] A. Singer and H.-T. Wu. Vector diffusion maps and the connec-

tion laplacian. Communications on Pure and Applied Mathematics,

65(8):1067–1144, 2012.

46©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



[War06] Max Wardetzky. Discrete Differential Operators on Polyhedral

Surfaces–Convergence and Approximation. PhD thesis, Freie Univer-

sitat Berlin, 2006.

[WLKT09] Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. State of

the art in example-based texture synthesis. In Eurographics 2009,

State of the Art Report, EG-STAR, pages 93–117. Eurographics

Association, 2009.

[ZMT06] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Vector

field design on surfaces. ACM Transactions on Graphics (TOG),

25(4):1294–1326, 2006.

47©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



מדוייק. גם הוא ובנוסף פשוט, ולכן לינארי, הינו הזה הייצוג הקשת. על הוקטורי השדה הטלת של

ניתן כיצד ברור לא וקטוריים, שדות של הקודמים לייצוגים בניגוד עיקרי: חיסרון לו יש זאת, למרות

וקטור במקום כאשר וקטוריים שדות של הכללה הם N-Rosy שדות .N-Rosy שדות זו בשיטה לייצג

צורה יש 4-Rosy לשדה למשל, מעגלית. סימטריים וקטורים N לשייך מאפשרים הם נקודה בכל יחיד

בעיקר פוטוריאליסטי, לא רינדור ועבור מחדש, שילוש עבור למשל שימושיים N-Rosy שדות צלב. של

כלליים. וקטוריים לשדות בניגוד בקלות, העקמומיות כיווני עם אותם ליישר שניתן בגלל

האחרות, מהשיטות פחות לא חזקה וקטוריים, שדות של פשוטה ייצוג שיטת מציעים אנחנו זו, בעבודה

על הוקטורי השדה את לדגום מציעים אנחנו .N-Rosy שדות של לייצוג בקלות אותה להכליל שניתן

בעיית מעניין, באופן הפיאות. על אותו לייצג כדי לינארית באינטרפולציה ולהשתמש הקשתות אמצעי

לינארים הם שנוצרים הוקטוריים והשדות בקלות לפתרון ניתנת המשיקים המישורים של ההגדרה

מגיעה זאת ועם הפיאות, על הייצוג בשיטת כמו מידה באותה פשוט שלנו הייצוג לכן, פיאה. כל על

בשיטת להשתמש שניתן מראים אנחנו זו, בתזה הקודקודים. על השדה של הייצוג לשיטת דומה לדיוק

של עיצוב משיקים: וקטוריים שדות של בתחום פופולריות הכי מהאפליקציות בשתיים שלנו הייצוג

בשיטה השתמשנו בנוסף, ריבועיות. פיאות עם המשטח של מחדש ודגימה משיקים וקטורים שדות

וחזק פשוט כלי נותנת שלנו השיטה כן, על לאחרונה. שהוצעו אופרטורים מבוססי יישומים עבור שלנו

משיקים. וקטוריים שדות של ועיבוד לעיצוב

ii©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



תקציר

גדול חלק בהדרגה תפסו מחשב ידי על הנוצרות תמונות ,1982 בשנת "טרון" הסרט צאת מאז

כמו אפקטים עתירי לסרטים ועד "רטטוי" כמו אנימציה מסרטי החל מודרניים. סרטים של בהפקות

"רטטוי" ל מ"טרון" העצומה ההתפתחות את סרט. בכל כמעט אותן למצוא ניתן הכוכבים", "מלחמת

גיאומטרי. עיבוד של בתחום להתקדמויות חלקית לייחס ניתן

אנימציה טקסטורות, עיבוד ביניהם למנות שניתן תחומים, תתי מספר מכיל הגיאומטרי העיבוד תחום

ולנתח לעצב היכולת על מסתמכים האלגוריתמים האלו, היישומים ברוב משטח. של מחדש ודגימה

עבור בשימוש נמצאים וקטוריים שדות למשל, למשטח. משיקים הם רבים שבמקרים וקטוריים, שדות

מחדש. דגימה עבור מנחים כקווים אפילו או נוזלים של סימולציות שיער, עיצוב טקסטורות, יצירת

שנים במשך נחקרו אותם לעבד דרכים משיקים, וקטוריים שדות להציג אינטואיטיבי שמאוד למרות

(דיסקרטיזציה) למשולשים משטחים של ההמרה עכשיו. גם להתפתח ממשיכות חדשות ושיטות רבות

מוגדר לא המשיק המישור למשל, בזהירות. מטופלים להיות שצריכים קירובים באמצעות נעשית

האלו המחקרים ביסוד שנמצאת העיקרית השאלה לכן, השילוש. של הקודקודים או הצלעות על

היתרונות ומה האפשרויות מהן לשאול טבעי בדיד?". משטח על וקטוריים שדות דוגמים "כיצד היא:

חזקה זאת ועם יותר פשוטה שונה, להגדרה אותנו הובילה זו אנליזה מהן. אחת כל של והחסרונות

וקטוריים. שדות של לדיסקרטיזציה השיטות שאר מכל פחות לא

ייצוג שיטת המשטח. של המשולשים על הוקטורים של דגימה היא פופולרית והכי הראשונה השיטה

והמישור מאחר משולש. כל על אחיד הוקטורי שהשדה ומניחה משולש לכל אחד וקטור כוללת זו

המשיק המישור הגדרת של הבעיה על מקלה הזו השיטה עצמו, המשולש את מכיל משולש של המשיק

נמוך לדיוק מובילה היא זאת, עם הנפוצים. האופרטורים רוב עבור פשוטים ביטויים כוללת ולכן

קבוע הוקטורי והשדה (מאחר חלק השדה כמה עד שמודדות ואנרגיות נגזרות בהגדרת ולבעיות יותר

מוגבלת). מאוד תהיה הנגזרת עבור שתתקבל ההגדרה בחלקים,

כדי לינארית באינטרפולציה ושימוש הקודקודים, על הוקטורי השדה של דגימה היא אחרת אופציה

של ישיר חישוב ומאפשרת יותר רב דיוק מניבה זו ייצוג שיטת המשולשים. על הוקטורים את לקבל

בהגדרת הבעיה בגלל מורכבים, יותר זו בשיטה הביטויים זאת, לעומת חלקות. אנרגיית ושל נגזרת

של הסימון מעלות, 360 אינו קודקוד כל סביב הזוויות וסכום מאחר קודקוד. בכל המשיק המישור

לא פעולה היא מחדש ההגדרה המזל, לרוע לסכום. להתאים כדי מחדש מוגדר להיות צריך זווית

אפליקציות. בהרבה בהם משימוש להרתיע שעלולים מסובכים ביטויים שמניבה לינארית

הוקטורי השדה את לדגום במקום שונה: מבט מנקודת נובעת גיאומטרי בעיבוד האחרונה האופציה

האינטגרל ערך את קשת כל על שומרים Discrete Exterior Calculus בשיטת ספציפיים, במקומות
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המחשב. למדעי בפקולטה בן־חן, מירלה פרופסור של בהנחייתה בוצע המחקר

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר
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