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Abstract

Shape collections are widely used in many geometry processing and computer graphics applica-
tions. Such collections can be obtained by deforming a given 3D model or by sampling a 3D
animation. Given two shape collections, e.g. two characters in similar poses, often rises the
need to match the semantically corresponding shapes. This matching can assist in transferring
information between the two collections. For instance, transferring shape annotations in order to
allow pose labeling. A more common challenge is to automatically find the pointwise map, also
known as correspondence, between non-isometric shapes, e.g. the two different non-isometric
shapes from the two collections. In general, it is a very difficult problem, that has been tackled by
many different approaches and often requires additional input such as landmarks or descriptors.
This pointwise mapping can assist in transferring pointwise data, allowing for example texture
transfer between non-isometric shapes.

We propose a method to automatically match two shape collections with a similar shape
space structure, and compute the inter-maps between the collections. Given the intra-maps in
each collection, which are often easier to compute since the shapes within the collection are
isometric, we extract the corresponding shape difference operators, and use them to construct
an embedding of the shape space of each collection. We then align the two shape spaces, and
use the knowledge gained from the alignment to compute the inter-maps by formulating an
appropriate optimization problem.

Unlike existing approaches for collection alignment, our method is applicable to small and
large collections alike, and requires no parameter tuning. Furthermore, unlike most approaches
for non-isometric correspondence, our method uses solely the variation within the collection to
extract the inter-maps, and therefore does not require landmarks, descriptors or any additional
input. We demonstrate that we achieve high matching accuracy rates, and compute high quality
maps on non-isometric shapes, which compare favorably with automatic state-of-the-art methods
for non-isometric shape correspondence. Furthermore, we show that in some cases, it is possible
to automatically obtain a high quality map using our method even without requiring a collection,

i.e. for two shapes only, by using collection composition.
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Chapter 1

Introduction

A shape space contains variations of a given 3D model, for example, a sampling of an animation,
or a character in different poses. Such spaces can arise when animators generate blend shapes
for standard poses (smile, frown, A-pose, T-pose, etc.) or use rigged models for generating
walking or running cycles. In many applications, a few such shape spaces are given (e.g. a
walking cycle of a man and a woman), and it is required to transfer information between them.
For example, transferring shape annotations such as pose labeling, or transferring point-wise
data such as texture.

Often, it is possible to automatically obtain a high quality correspondence between variations
of a single model, i.e., maps within the shape space, or shape collection, which we denote
by intra-maps. On the other hand, correspondences between shapes in different collections,
which we denote as inter-maps, are harder to compute, as these models will often have large
non-isometric deformations.

Automatic computation of correspondences between non-rigid and non-isometric shapes is
an active research problem. Most existing methods for computing a correspondence between
non-isometric shapes require some additional semantic input, such as corresponding landmark
points, and are therefore not fully automatic. We, on the other hand, leverage the cues of the
variations within the collection as the semantic information, and use them to design a completely
automatic method.

We draw our inspiration from a recent approach to this problem [SBC14], which similarly
leverages shape variations as the semantic cues. Unfortunately, many aspects of that approach
introduce technical difficulties which make the method not robust and impractical in many cases,
derailing the hope for a completely automatic method. Specifically, a large sampling of shapes
is required in both collections, as well as hand tuning of multiple dataset-dependent parameters.
Practically, the existing approach yields low quality maps which are not on-par with state of the
art correspondence methods.

While working in the same general setting, we propose very different design choices, leading
to a considerably more robust system. Our method is simple to implement, completely automatic,
and applicable to any mesh topology, yielding significantly better results. Additionally, our

method extracts high quality pointwise maps between non-isometric shapes, generating maps
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Figure 1.1: Given two shape collections with different shapes (cat and lion) in various poses and
the intra-collection maps (top and bottom), our algorithm automatically finds a matching between
the poses (the poses are color coded, such that matching poses have the same color). Using this
matching, we further find an inter-collection correspondence between two automatically-chosen
shapes, one from each collection (center). We can therefore automatically extract a high-quality
non-isometric correspondence solely from the two collections, without any user input.

which surpass state-of-the-art automatic methods for non-isometric shape correspondence. Our
approach is applicable to both benchmark data-sets, e.g. FAUST, as well as rigged models
available for purchase from 3D modeling websites. Finally, it is important to note that the shape
collections we can handle are not limited to the same character in different poses, but can rather
be sets of shapes with any variations yielding similar enough shape spaces. For instance, a
collection can include different people in the same pose, then matched to a collection of the

same people in a different pose.

1.1 Related Work

Shape Collections. Collections of shapes are useful for a variety of applications. Some
examples include deformation transfer, aiming to produce shapes with desired deformations that
can be induced by given deformations in another collection. Some methods include learning
models for 3D shape processing and shape reconstruction [GYQ™'18, HRAT19]. Another
example is creating a collection from one shape using modal analysis of the hessian of the mesh
as described in [HWAGO9]. Other aspects of shape collection analysis exploit the idea that the
composition of maps along cycles should be identity maps, which led to the map synchronization
problem, taking maps between pairs of objects and returning improved maps that are consistent
along cycles [SLHH18]. This notion is further exploited in [NBCW ™11, CRA"17] in order to
obtain high quality intra-maps, that we require as an input, and which are easier to obtain than
the inter-maps we compute. Other approaches use modular latent spaces, based on nonlinear
embedding spaces, to find the correspondences within a collection [GSDG18].

In [ROA"13] some approaches to exploring shape collections are presented, including

4



browsing shapes by a user-defined region of interest, taking advantage of the localization
property of the shape difference operator. Shape analogies are also used in [ROAT13] to
match corresponding shapes from two collections. However, they use a brute-force search
among all the permutations of the shapes that best aligns them with the other collection,
limiting the applicability to very small collections. The shape difference operator has been
further investigated and analyzed in terms of stability [HCO18] and optimal shape collection
representation [HAGO19].

Our work generalizes the method proposed by [SBC14]. In that approach, given two shape
collections, each representing a shape space, it is assumed that the intra-maps are given, and
they are used to compute the shape variations, represented by shape difference operators. These
variations are then considered as points on a high dimensional manifold, and a non-linear
dimensionality reduction approach is used to generate a low-dimensional embedding of the
shape spaces. The shape spaces are then aligned using affine point cloud alignment. Finally, an
inter-map is computed using the alignment. This approach has several severe limitations. First,
a large sampling of shapes is required to reliably represent the diffusion map, and hand tuning of
parameters is required to align the shape spaces using an affine map. Furthermore, the existing
approach fails to obtain high accuracy rates for aligning the shape spaces, and in addition the
resulting inter-maps are of low quality and are not comparable to other correspondence methods.

We, on the other hand, have made critically different design choices, leading to an algorithm
that is more robust and yields maps comparable to other automatic methods for shape corre-
spondence. Specifically, we leverage the fact that in some cases the shape difference operators
lie on a manifold which has a closed form expression for geodesic distances, therefore, we use
these distances as a better representation of the shape space structure. Second, we use a linear
dimensionality reduction approach, which is far less sensitive to the number of shapes in the
collection. Furthermore, we use rigid alignment using a robust convex relaxation, which is
parameter-free. Finally, we add a regularization to the shape correspondence formulation, and a

post processing, which yield considerably better pointwise maps.

Automatic Correspondences. Computing shape correspondence using automatic algorithms,
i.e. when no landmarks or user input are given, acts as a benchmark for the second part of
our algorithm, aiming to obtain the correspondences between shapes in different collections.
Blended intrinsic maps (BIM) [KLF11] is an automatic method to recover the point-to-point
map between two given shapes. It often yields excellent results, however it is restricted to
genus zero shapes. Bijective and continuous ICP (BCICP) [RPWO18] tackles this problem as
well and is able to produce correspondences without landmarks. We compare our algorithm,
which uses the shape differences within the collection as the additional information required
for automatically extracting an inter-collection map, to these methods and demonstrate that we

achieve a better performance than both.

Matching Problems and Procrustes Analysis. In order to solve the matching problem, i.e.

finding the matching pairs from the two collections, one can make use of the distance matrix



between the shape differences of each collection. The distances represent the differences
between the variations in the collection. One approach to solve the matching problem is to
use the method presented in [KKBL15] in order to find the best permutation on the distance
matrices’ rows and columns such that they have the same structure. The retrieved permutation
defines the pairing of shapes we wish to obtain. Unfortunately, this approach is not feasible for
large data-sets where the distance matrices are large. An improved method has been proposed
in [DML17] (see also references within for additional approaches to quadratic matching).
Instead of aligning the distance matrices, it is also possible to generate a low dimensional
embedding of the point clouds, and use Procrustes matching (PM) for the registration. We
chose to take this approach, first using linear dimensionality reduction to generate a point
cloud representation of the shape collections, and then convex semidefinite programming (SDP)
relaxation [MDK™16] for the Procrustes matching of the point clouds. This approach has a few
advantages. First, linear dimensionality reduction requires less parameters. Second, the SDP
relaxation scheme is tight leading to close to optimal results, and finally, it is very efficient,

enabling us to handle larger collection sizes.

Pointwise Map Extraction from Functional Maps. Functional maps allow us to transfer
functions from one shape to another [OBCS™ 12, OCB™16]. When functional maps are rep-
resented using a reduced basis, such maps can provide only low frequency information about
the correspondence. However, a high-quality pointwise map should in addition be able to
transport high frequency data between the shapes. Once we retrieve the functional inter-map
using our method, we would like to extract a high-quality point-to-point inter-map. The method
described in [EBC17], proposes an efficient way to recover precise maps from functional maps.
Another recent method tackling a similar problem is based on optimizing the harmonicity and
reversibility of the forward and backward maps, known as the reversible harmonic maps (RHM)
[ESBC19]. This approach, can handle diverse geometries, and can receive as an input functional
maps or dense maps. Our method can take advantage of RHM as post-processing in order to
refine the map obtained using [EBC17]. Both [EBC17] and [ESBC19] are publicly available.

1.2 Method Outline

Our algorithm follows the general structure suggested in [SBC14], yet with some critically
different design choices. We first describe the general pipeline (see Figure 1.2), and then explain

each component separately in Section 3.

Input: Two shape collections that represent two shape spaces of different models, not neces-

sarily with the same number of shapes, and the intra-maps within each collection.

Output: (1) An injective function from the smaller collection to the larger one, which repre-
sents the matching pairs, and (2) a point-to-point inter-map for any shape in one collection to

any shape in the other.
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Figure 1.2: Block diagram of our algorithm, see the outline in Section 1.2.

Algorithm:

1. Use the input intra-maps to construct the shape differences between the input shapes in

the same collection (Section 2.2).

2. Use the shape differences to construct a low-dimensional shape space embedding for both

collections (Section 3.1).

3. Align the two shape spaces using Procrustes analysis to obtain the matching pairs and

automatically determine an optimal base shape in each collection (Section 3.2).

4. Use the matches and the base shapes to compute a functional inter-map for the base shape
pair (Section 3.3).

5. Recover a point-to-point inter-map from the functional map (Section 3.4).

1.3 Contributions
Our main contributions are:

e Matching corresponding pairs from two shape collections with a high rate of accuracy.

e Automatically obtaining a high-quality non-isometric inter-map between any shape in

one collection to any shape in the other.
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Chapter 2
Background

Our approach relies on recent techniques for shape correspondence and shape variability analysis

which we briefly review here.

2.1 Functional Maps

Functional maps [OBCS™ 12] have been widely used in many geometry processing applications,
especially for shape correspondence. The main observation in this framework is that we can look
at how functions on one shape are transformed to the other, rather than finding a point-to-point
map between the shapes. The space of functions can often be well represented using a compact,
yet informative, functional basis, allowing us to represent a map in this space as a change of
basis linear operator, i.e., as a compact matrix.

Given two surfaces M and N, withamap 7" : N — M between them, a map between
function spaces F : L?(M) — L?(N) is induced. Here, L?(-) represents the set of square
integrable real valued functions defined on the surface. F’ is called the functional map, mapping
functions defined on M to functions defined on N, i.e. g = F(f) = foT where f : M — R
and g : N — R. F'is a linear transformation between function spaces, and given reduced bases

W, Uy of dimensions kyy, kn, for M, N, respectively, is represented as a matrix C' € REnxkar

2.2 Shape Difference Operators

Given two shapes and the map between them, the shape difference operator [ROA™ 13] captures
the variations between the shapes. It constitutes the main tool in our algorithm, allowing us to
compare differences between shapes. This operator stores information about how a function on
one of the shapes should be modified, such that the inner product of any two functions defined
on the first surface equals to the inner product of the mapped functions on the other surface.
In that way, it captures information about how and where one shape differs from the other. In
addition, by modifying the inner product, we can quantify different types of differences, or

distortions, between the shapes.



Given two shapes M and N, and a functional map F : L?>(M) — L?(N), let hys :
L*(M) x L*(M) — Rand hy : L?(N) x L?(N) — R be inner products defined on M and
N respectively, acting on two functions on the shape. Then there exists [ROA™13, Thm 2] a
unique linear operator Dy, .+ L?(M) — L?(M), denoted as the shape difference operator,
satisfying har(f, Dhyy oy (9)) = v (F(f), F(g)) for any two functions f, g : M — R. Note
that this operator depends only on the chosen inner products on M and N and the functional
map F'. Moreover, it is a linear self-map on the space of functions over M. Thus, the operators
Dhyr by s Dhoag b, have the same domain and range L%(M), allowing us to compare the
operators even if N # No.

Two inner products that are of interest, are the area-based inner product h?(f,g) =
Joy f(x)g(x)dp(x) and the conformal inner product he(f,g) = [,,(Vf(x), Vg(x))zdu(z).
Intuitively, the first encodes variations in area due to the map, and the second encodes variations
in angles.

Given a choice of reduced basis ¥y, ¥, the shape difference operators are represented
as matrices of dimensions kj; X k7. Often, the eigenvectors of the Laplace-Beltrami operator
corresponding to the lowest eigenvalues are chosen for the basis W, as this choice leads to a
multi-scale basis, which can represent well smooth functions using only a small number of basis

functions. In this case, the explicit expressions for the shape difference operators are[ROA ™13,
Eq. @)

Vi £ Dpa pa = F'F 2.1
RyN £ Dpe e, = (DM) ' FTDNF, (2.2)

where F is the functional map represented in the bases W, ¥y, and DM is a diagonal matrix

of the lowest non-zero kj; eigenvalues of the Laplace-Beltrami operator of shape M.
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Chapter 3
Algorithm

We now give a detailed explanation of our algorithm and the motivation behind our design

choices.

3.1 Shape Space Embedding

Given two shape collections A = {M;}14, B = {N;}®, we assume that each collection
includes shapes sampled from a single shape space. We further assume, that the samplings are
“compatible” in the sense that they include similar shape variations. Then, given a choice of
two base shapes, one in each collection, Mpg € A, Npg € B, we compute for each collection
separately the shape difference operators with respect to the base shapes. These operators encode
information about the variability of the collection, and the distances between them encode the
structure of the shape space.

We first select a random shape in each collection, serving as the base shape for the following
part. Later we show that the base shape can indeed be chosen randomly without affecting the

performance of the algorithm.

3.1.1 Shape difference operators computation

Once we have chosen a random base shape for each collection, we compute the shape difference
operators for all the shapes in the collection with respect to this base shape. As shown in the
previous section, shape difference operators can be computed using either the area-based inner
product (Eq. (2.1)) or the conformal inner product (Eq. (2.2)). We later show how the choice of
inner product depends on the nature of the collection. However, for typical data-sets, we choose
the conformal inner product since the variations within the collection are mostly non-conformal.

Given the intra-map between shapes within the collection, we compute the functional map
between the base shape and any other shape in the set using k; eigenvectors of the Laplace-
Beltrami operator of the base shape, and k9 eigenvectors for the other shape. A collection of n

shapes yields a set of n shape difference matrices of size k1 x kj. Each of them represents the

11
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Figure 3.1: A collection of faces with varying expressions (top) with its shape differences’
principal components visualization (bottom). Since they are computed with an arbitrary sign,
both dark blue and dark orange indicate areas with high variation. The explained variance of
each component appears above it. The principal components encode the main variations within
the collection, mainly around the mouth and eyes area.

modification that needs to be done on functions on the base shape such that inner products on

the base shape equal to inner products on the other shape.

Figure 3.1 shows the principal components of the shape difference operators for a given
collection using the area-based inner product. The principal components are visualized by
testing how they act on a constant function, thus visualizing the main variations between the
shapes and their location. The percentage of the total variance explained by each principal

component is shown as well, demonstrating the significance of each component in the collection.

Now that we have the set of shape difference operators, our goal is to embed them in a
low dimensional space such that the information of the distances between the operators is best

preserved.

3.1.2 Distance matrix construction

To construct a distance matrix for a given collection, we treat separately the area-based and

conformal shape differences, as they have a different structure as operators.

Area based. The area-based shape difference operator, given by Eq. (2.1), is a symmetric
positive-definite (SPD) matrix, as long as the functional map F’ is an invertible matrix. We
therefore use the manifold of SPD matrices to compute the geodesic distances between the
shape difference operators. The manifold of SPD matrices has a unique shortest geodesic curve

between any two points, and its length has a closed form expression. Specifically, given two

12



SPD matrices, V71, Vo, their geodesic distance on the SPD manifold is [Bha09, Eq. (6.14)]:

dipp(Vi, V) = Zlog VAV ), (3.1)

where \;(V) is the i’ eigenvalue of the matrix V.

Conformal. The conformal shape difference matrices, given by Eq. (2.2), are not SPD, and
we therefore use the Euclidean distances between the vectorized matrices.

Figure 3.2 shows the distance matrices obtained for the Sumner data-set (Figure 1.1), where
the shapes are ordered correspondingly for better visualization. The distance matrix for the set
of cats (collection .A) has a similar structure to the distance matrix computed for the set of lions
(collection B). In both sets we use the shape differences operators derived for the conformal
inner product, since the variations within each collection are mainly non-conformal. Hence,
in this case, the conformal shape differences capture more reliably the information about the

variations compared to the area-based shape differences.
3.1.3 Dimensionality reduction

To solve the matching problem, we first apply multidimensional scaling (MDS) [Mea92] on the
distance matrix obtained in order to embed the operators in a d-dimensional space, the shape
space embedding. The dimension d is determined such that the energy accumulated in this
d-dimensional space is at least 3 of the total energy, for both shape collections. The energy of
each dimension is defined as the variance explained by this dimension using PCA. For instance,
choosing 8 = 0.95 means that we use at least 95% of the total energy for both collections. In
this case, we lose only up to 5% of the information regarding the variations, but store it in a

space of dimension in the range of 3-8 for typical data-sets.

Collection A Collection B

s

12345678910 12345678910

SOONOU DS WN
SOONOUDAWN

-
-

Figure 3.2: Distance matrices of the collections shown in Figure 1.1, computed for the con-
formal shape differences. For better visualization, in both collections the shapes are ordered
correspondingly. Note that the collection of cats (collection A) and the collection of lions
(collection B) have similar distance matrices, which we use for matching the collections.
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3.2 Shape Space Alignment

After constructing the shape space embedding of each collection, our goal is to align them such
that we can match shapes from the two collections. We treat the two shape space embeddings as
two point clouds, and assume that the distance matrices of the two collections are similar, so that
we can use rigid alignment. In this setting, the alignment problem is known as the Procrustes
matching problem, formulated as follows.

We are given two point clouds P and () of dimension d and np, ne points respectively,
P e RdX”I,Q € R9%"2 where we assume, without loss of generality, that n; < ng. Our
goal is to find a linear isometry (an orthogonal transformation) R € O(d) and a permutation

X € I1I,,,xn,, minimizing the distance between the point clouds:

— mi _ 2
d(P, Q) = min||[RP — QX[[z
s.t. (3.2)
X €Il,xn, » R € O(d).

Since n; < ng, this formulation matches every point in P to exactly one point in (), where
some points in ) can remain unmatched.

This is in general a difficult, non-convex problem, however, recently, a very effective
convex relaxation to the problem has been proposed [MDK ™ 16], which we leverage to find the
alignment.

Let X*, R* be the optimal solutions of the optimization problem (3.2), then the alignment
error d(P*, Q*) provides a quantitative measure of the success of the alignment process. We

define the normalized alignment error:

|R*P — QX™[|r
1Pl +[1QF

6 — (3.3)
which is invariant to the dimensions of the point clouds. We will later use this error to evaluate

the matching accuracy of our results.

Optimal Base Shape Selection. The point clouds P = R*P ¢ R%™ and Q = QX * e R4*™
include only pairs of matching shapes after the alignment. The closest pair of points in P,Q
are the two shapes which are most likely to have been matched correctly. Therefore, we select
these as the new base shapes Mpg, Npg, and the shape difference operators are recomputed

with respect to them, yielding a better input for the next part of the algorithm.

3.3 Functional Inter-Map Computation

The next goal of the algorithm is to compute the functional map between the newly chosen base

shapes of the two collections, thus retrieving the inter-map correspondence.
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Shape analogies. We use the shape analogies constraint presented in [SBC14], taking advan-
tage of the similarity between the shape difference matrices of matching pairs. More precisely,
let {(M;, N;) | M; € AN, € B,i = 1,...,n}, be the n = min{n 4, ng} matched pairs ex-
tracted by the shape space alignment. Recall that (Mpg, Npg) are the pair of base shapes of
the two collections, defined as the closest matching pair. Our goal is to find a matrix C, the
functional map between the base shapes.

Our main assumption is that the shape difference operators of matching shapes in both
collections, i.e., Vargg v, and Vg N, act similarly on functions. Hence, first applying a
map between the collections, and then applying the shape difference operator, should yield a
similar function to first applying the shape difference and then mapping the function to the other

collection.

Regularization. Differently from [SBC14], we observe that without a regularization term the
optimization results are unstable, leading to poor functional maps. This is especially evident for
areas on the shapes with none or few variations, where the shape differences do not hold any
information. To handle this problem, we adopt the regularization term that forces the functional

map to commute with the Laplace-Beltrami operator [OBCS™12].

Optimization problem. Our optimization problem is therefore:

n

min Z (\|0Vé43,¢ — VEs.Cll7 + HCRéS,i — REs,Cl%)
CerR™s7 A (o) (3.4)

+a|| CALs — ABsCll%,

where k4 = kp = ki, n is the number of matching pairs, Vé45,i is the area based shape
difference from the base shape in A to M; € A, Af/[ is a diagonal matrix with the eigenvalues of
the Laplace-Beltrami operator of shape M € A, and « is a parameter controlling the regularizer.

To solve this optimization problem we observe that the objective is linear in the elements of
C, resulting in a homogeneous linear system that is solved using SVD.

As proposed in [OBCS™ 12, SBC14], we apply iterative refinement as post-processing to
the minimizer of Eq. (3.4) in order to refine the solution so that it better represents a point-to-
point map. The refinement process is effectively ICP in eigenspace, where the solution of the
optimization problem is used as initialization.

Finally, we compute the functional map, Fy; a7, between any two shapes in the two collec-
tions, M; € A and INV; € B using the following composition:

Fy; M; = F]'I,SBSCNB&MBSFEAS,@" (3.5)

7

where the functional map Cn, ¢ nys @ L?(Mps) — L?(Npg) is the computed inter-map,
i.e. the minimizer of Eq. (3.4), and the functional maps Fﬁsvi : L2(M;) — L*(Mpg) and

FPBuq : L*(Nps) — L*(N;) are the input intra-maps within the collections.
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Figure 3.3: A functional map computed using our algorithm and its visualization using function
transfer. Note that the map is of high quality in the areas where the shape differences are
informative, i.e. areas with more variations (the “face” of the apple and the orange). On the
other hand, the functional map is distorted in areas where there is no information in the shape
differences (the side of the apple and orange) since there are no variations within the set. When
recovering the point-to-point map these distortions are fixed (see Figure 5.5).

In Figure 3.3 we visualize the computed functional map and demonstrate it with a specific
function transferred from the apple (center) to the orange (right) from a data-set of rigged shapes
(top and bottom). Note that a high quality map can be derived for the areas where the shape
differences hold the information about the shapes, i.e. areas with more variations such as the
“face” of the apple and the orange. However, the map might be distorted in areas where there is
no information in the shape differences, such as the side of the apple and orange, since there are
no variations within the set in these regions. Our last step is to recover the point-to-point map,

which additionally alleviates theses issues.

3.4 Recovering a Point-to-Point Inter-Map

The final step of our algorithm is to produce a point-to-point map using the functional map we
computed. As we aim for a high quality map that can be used to transport textures, we use a
recent map reconstruction approach [EBC17] to obtain a vertex-to-point map.

Some data-sets require post-processing of the point-to-point map using Reversible Harmonic
Maps (RHM) [ESBC19]. This post-processing scheme is especially effective in areas on the
shape where there are few or no variations within the collection, such that the shape difference
operators contain no information for these areas. As a result, in these regions, the shape analogy
constraints are not effective, resulting, locally, in a poor map. Post-processing using a map
smoothing algorithm allows us to smoothly interpolate the map in such regions. To make a fair

comparison, we also apply post-processing using RHM to all the methods that we compare to.
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Chapter 4
Analysis

In this section we evaluate the different design choices that we made, and investigate the
properties of our approach. We show that the initial choice of base shapes can indeed be random,
without affecting the algorithm’s performance. We also discuss the considerations of choosing
shape difference operators derived from area-based inner product and conformal inner product.
We explain and demonstrate the advantage of using the Riemannian distance for the area-based
shape differences rather than the Euclidean approximation. Finally we show our algorithm’s

ability to handle collections of different size.

4.1 Resilience to Base Shape Choice

We show that our method is resilient to the choice of base shape, thus we can select it randomly,
without requiring additional input.

In [SBC14] the result strongly depended on the choice of base shape in each collection, i.e.
a bad base shape choice led to poor matching and poor functional maps. Our algorithm, on the
other hand, is able to match corresponding pairs successfully, even when the choice of base
shape is random. With a random choice of base shape in each collection, the chosen shapes (in
most cases) do not represent a matching pair. Yet, the first part of our algorithm, aiming to match
pairs of the two collections, is barely affected. The second part of the algorithm, producing the

functional map, is affected by the choice of base shape, however it benefits from the result of

Table 4.1: Resilience to Base Shape Choice: corresponding base shape pair. Results are averaged
over all corresponding base shape choices.

Result\Data-Set Blend Shapes Sumner Rigged FAUST
Average matching accuracy 99.88% 100% 100% 87.9%
Average normalized alignment error 0.1542 0.1950  0.0566  0.3383
Rate of corresponding base shapes after alignment  40/40 10/10 10/10 86/100
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Table 4.2: Resilience to Base Shape Choice: non-corresponding base shape pair. Results are
averaged over non-corresponding base shape choices.

Result\Data-Set Blend Shapes Sumner Rigged FAUST
Average matching accuracy 99.25% 100% 100% 85.5%
Average normalized alignment error 0.2012 0.3119  0.1481 0.3555
Rate of corresponding base shapes after alignment  39/40 10/10 10/10  85/100

the first part by using the computed matched pairs.

Shape space alignment. To demonstrate the invariance of our approach to the choice of base
shape, we test all possible base shape choices on a few datasets, and compare with the ground
truth. We test both the case that the base shapes correspond, i.e., represent the same pose
(Table 4.1), and the case where the base shapes do not correspond (Table 4.2). For each possible
choice of base shapes, we run the algorithm and measure a few performance indicators. Matching
accuracy represents the percent of shapes that were matched correctly to the corresponding
shape in the second collection, and it is averaged over all choices of base shape pair. The
normalized alignment error, defined in Eq. (3.3), indicates how well the two point clouds are
aligned after applying the rigid transformation. It is also averaged over all experiments. Finally,
as discussed previously, after alignment we choose the pair with the smallest distance as the
new base shape pair. The rate of corresponding base shapes after alignment indicates in how
many cases the chosen base shape pair after alignment indeed represents a corresponding pair.
For the FAUST data set we averaged the result over 10 subset pairs, each subset containing 10
shapes referring to the same person.

Note that for tested data-sets, the choice of base shapes, and whether or not the base
shapes correspond, does not significantly affect the average matching accuracy nor the rate of
corresponding base shapes chosen after alignment. The reason is that the principal components
derived from PCA do not significantly depend on the base shape choice, causing only small
variations in the shape space, that our alignment procedure can handle. Although the average
normalized alignment error is larger for non-corresponding base shapes, the matching accuracy
is hardly affected, meaning that we can still align successfully the two point clouds. These
results also demonstrate that in most cases the new chosen base shape pair is a corresponding

pair.

Inter-map computation. In the second part of the algorithm, it is more important to have
corresponding base shapes. Figure 4.1 shows that the functional map computation has preferable
results for corresponding base shapes, resulting in a less noisy functional map matrix, which is
more similar to the ground truth. This motivates our choice to leverage the alignment results

from the first part of the algorithm, and choose a new pair of base shapes which are more likely
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Figure 4.1: Functional maps and their visualization for corresponding and non-corresponding
base shapes. Corresponding base shapes lead to a higher quality functional map (e.g. arms area).

to match for computation of the functional inter-map.

4.2 Area-based vs. Conformal Shape Differences

The choice of using area-based or conformal shape difference operators depends on the nature
of the data-set. For collections in which the variations between the shapes are area preserving
but not conformal (e.g. the same person in different poses, Figure 4.2), it is beneficial to use
the conformal shape difference operator, as it better captures the variations in such a collection.
Similarly, for collections with conformal variations but not area preserving (e.g. different people
in the same pose, Figure 4.3) we would rather use the area-based shape differences.

Figure 4.4 demonstrates how the choice of shape difference type affects the performance of
the algorithm, in the case of data-sets in which each collection has non-conformal variations
and in the case of non-area-preserving variations. We show the matching accuracy (top) and the
normalized alignment error (bottom left), defined in Eq. (3.3), as a function of the dimension of
the shape space. Note that for non-conformal variations, using the conformal shape difference
operators yields better results, using a lower shape space dimension, and vice versa for the
non-area-preserving case.

Figure 4.4 (bottom, right) shows the cumulative energy, defined as the sum of variances
explained up to a certain dimension by using PCA. We demonstrate that for a collection with
mostly area variations (same pose), the area based shape difference explains the data using
less principal components than the conformal shape difference. For the data-set with the non-

conformal variations, the number of principal components required to explain the data is similar
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Figure 4.2: An example of a shape collection with non-conformal variations (top) and their first
three conformal shape differences’ principal components (bottom). The explained variance of
each component is shown above it. Note that the variations are located around the joints area,
where motion occurs, mainly in the shoulders area (first and second principal components) and
the right knee area (third principal component).
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Figure 4.3: An example of a shape collection with non-area-preserving variations (top) and their
first three area based shape differences’ principal components (bottom). The explained variance
of each component is shown above it. In this collection, the variations are located around the
areas where people differ, mostly hips, torso and abdominal area. For example, the second
principal component corresponds to greater abdominal area at the expense of thicker arms (or
vice versa).
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Figure 4.4: Comparison of our results for two collection types, with shape difference operators
based on two different inner products. Note that for a collection with the same person but in
different poses (Figure 4.2), the conformal shape differences show better performance. On the
other hand, for a collection with the same pose of different people (Figure 4.3) the area-based
shape differences perform better. See the text for details.

for conformal and area-based shape differences.

Note that even if the distances between the shape differences are similar for the two collec-
tions, the low-dimensional embedding can be unstable, in the sense that the principal components
are only defined up to sign. Furthermore, even if the shape differences are exactly the same,
if there are two principal components that have a similar explained variance, their order can
be arbitrary. However, as we seek a rigid transformation that matches the two sets (including
orientation-reversing transformations), our method is robust to these instabilities. If, however,
we take a considerably smaller number of dimensions, some principal components that appear
in one collection might not be present in the other. This leads to the non-monotonic behavior of

the performance graphs in Figure 4.4 with respect to the embedding dimension.

4.3 SPD Riemannian Distance vs. Euclidean Distance

Now we explain why it is beneficiary to take advantage of the fact that the area-based shape
difference operators are Symmetric Positive-Definite (SPD) matrices, by using the expression
for the Riemannian distance on this manifold (Eq. (3.1)).

Figure 4.5 shows the distance matrices computed using SPD distance vs. Euclidean distance
(using the same color-bar) for various collections. The difference matrix (absolute value)
between the two distance matrices is shown as well. It is clear that we get different results for
the two distance types. Note that the largest difference between the two matrices is around 15%
of the distance. Therefore, we conclude that Euclidean distance is an approximation since it
does not take into account the manifold curvature. Thus, we would rather use the SPD distance
in order to avoid approximations. It is important to mention that it is easy to compute and does
not increase our algorithm’s timing. Also note that we get different distance matrices for the cat
and lion from Sumner dataset (Figure 4.5a, 4.5b) compared to those in the main paper (Figure
4) since here we use the area-based shape differences rather than the conformal.

Due to the reason that a collection of different people in the same pose (Figure 4.3) has

mainly non area preserving variations, we could test the effect of distance type choice on
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(b) Distance matrices for the lion in Sumner dataset.
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(c) Distance matrices for various people in the same pose from FAUST dataset.

Figure 4.5: Distance matrices computed using SPD Riemannian distance, using Euclidean
distance and their difference (absolute value).

the algorithm’s performance. Figure 4.6 demonstrates the matching accuracy and normalized

alignment error (as in Figure 4.4) for matching collections of various people in the same pose.

The result was averaged over all possible collection combinations (45 in total) and plotted

vs. the shape space dimension. Using SPD distance leads to higher matching accuracy and

lower alignment error. Thus, we can indeed see that using SPD distance gives slightly, however

consistent, better performance than the Euclidean distance approximation.
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Figure 4.6: Matching accuracy and normalized alignment error vs. shape space dimension for
SPD and Euclidean distance for various people in the same pose from FAUST dataset.
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4.4 Collections of different size

Now we treat the case of collections of different size, where some of the shapes in the bigger
collection do not have a match in the smaller collection. Our algorithm naturally handles this
case, since we find a permutation matrix that selects points from the larger collection’s point
cloud such that they align better with the rotated smaller point cloud (see Eq. (3.2)). We analyze
how the excess shapes in the bigger collection affect our results. We split the answer into two

cases.

4.4.1 Small collections

For small collections, e.g. containing five shapes, adding an excess shape can significantly
affect the shape space of the resulting extended collection. This happens since the variations
of the added shape are not always explained by a linear combination of the existing principal
components. Hence, the newly computed principal components are significantly different,
leading to very different shape space embeddings for the two collections, yielding poorer
matching accuracy after aligning the two point clouds. Figure 4.7 (left) shows the matching
accuracy for various small data-sets. Starting from collections of five shapes each, we added
one shape at a time to one of the collections and tested the matching accuracy averaged over all
possible choices of base shapes for the two collections. Finally, the bigger collection had twice
as many shapes as the original. It can indeed be seen that the matching accuracy is significantly
affected and decreases quickly. The notation A, B and C' for the Blend Shapes data-set refers
to three different subsets from this data-set. Note that each collection in the FAUST data-set

contains up to ten shapes, thus it is treated as a small collection.

4.4.2 Large collections

In the case of large collections, containing twenty shapes for instance, it is likely that the
variations of the added shapes can be described using a linear combination of the existing
principal components. In this case the shape space is not significantly affected, and adding
shapes is equivalent to adding points to the point cloud without moving the original points.
Figure 4.7 (right) demonstrates this, as the matching accuracy is less affected in this case. Here
we start with original collections of size twenty and add up to twenty more shapes to one of the
collections resulting in a collection which has twice as many shapes as the original. Despite this,
the matching accuracy decreases only to 65 — 85%, depending on the data-set. Also note that
due to the linear dimensionality reduction, we do not have a strict limit on the largest collection
size. However, the point cloud alignment timing will be the performance bottle neck for very

large data-sets.
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Chapter 5

Experimental Results

In this section we show some results of our algorithm, compare it to the previous shape collection
matching method, and to other automatic correspondence methods. We show that our method
automatically computes high-quality maps, which compare favorably to existing automatic
methods, given even two small collections or short animations, and even for less-than-perfect

matching results.

5.1 Implementation details

Parameters. Our algorithm does not require data-dependent parameter tuning and we fixed
the parameters to k1 = 50 eigenfunctions on the base shape and ky = 3k; = 150 eigenfunctions
on the other shape when computing the shape difference operators resulting in 50 x 50 matrices.
The matching part has been done with conformal shape differences, unless stated otherwise.
We set 5 = 0.95 to determine the shape space dimension and o = 0.1 for the Laplacian
commutativity in the energy we minimize (after normalizing both terms to have the same
Frobenius norm). We run the ICP refinement of the functional map until the biggest change in
the functional map matrix elements is smaller than 10~'°. We set the number of iterations in

the RHM post-processing to 200, as recommended by the authors.

Timing. Our timings are comparable to other automatic methods for computing correspon-
dences. Implemented with MATLAB, on a desktop machine with an Intel Core i7 @3.4GHz
processor, the first part of the algorithm matches the pairs of the two collections of 10 shapes
each, with shapes of 5K — 8K vertices in 45 seconds. The second part of the algorithm extracts
the point-to-point inter-map in 130 seconds. The RHM post-processing takes 220 seconds on
our machine. For most data-sets, it is possible to use smaller functional map matrices, e.g.
k1 = 30 and k2 = 3k; = 90 without significantly decreasing the performance and obtaining

both matches and an inter-map in approximately 75 seconds.

Limitations. We assume that the collections will lead to a similar point cloud structure of the

shape space embedding, i.e., the variations within each collection should be similar. We also
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require non-symmetric shape space embeddings to allow unambiguous rigid alignment. For
shape spaces that require a very high dimensional embedding (12 and greater) alignment using
PM-SDP [MDK™16] can be slow.

5.2 Comparison with [SBC14]

The goal of this section is to compare our method and [SBC14] which we drew our inspiration
from. Here we give comparisons of the matching accuracy and functional maps quality obtained
using our algorithm compared to that of [SBC14]. In Appendix A we give additional comparison
with [SBC14] to emphasize the differences in the methods and show the pointwise maps obtained

by them.

5.2.1 Comparison: Matching Corresponding Shapes

In the previous Section, Table 4.1 and Table 4.2 showed our algorithm’s matching accuracy on
four different data-sets, regardless of the base shape choice and demonstrated the robustness of
our algorithm on several data-sets. For the FAUST data-set, it was enough to mistake only two
pairs to decrease the matching accuracy to 80%, since every collection contains ten shapes.
Now we compare our algorithm to the only method known to us having the same goal of
matching corresponding pairs from two collections. We test our algorithm and the method
in [SBC14] on the Blend Shapes data-set with varying collection size. The results appear in
Table 5.1 and show that in contrast to [SBC14], our method does not require large data-sets
for successful matching and we get perfect matching for any collection size. Our results were
averaged over 100 random initial base shapes choices since our algorithm selects a base shape

randomly.

Table 5.1: Blend Shapes data-set: Matching accuracy comparison to [SBC14]

Collection Size\Method SBC14 Ours

20 shapes 35% 99.47%
25 shapes 36% 99.78%
35 shapes 63% 99.54%
40 shapes 90% 99.41%

5.2.2 Functional Map Comparison

Figure 5.1 shows the quality of our functional map compared to that of [SBC14], for the case
of 40 shapes. Note that our map is better, even though the matching accuracy of [SBC14] is
90%. It is clear that using the regularization term of the Laplacian commutativity in Eq. (3.4)
significantly improves the results, allowing us to obtain a functional map very similar to the

ground truth.
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Figure 5.1: Comparing the functional maps obtained using our algorithm and [SBC14] using
function transport (top), and comparison to the ground truth matrix (bottom). Our algorithm
obtains a high-quality functional map, very similar to the ground truth.

5.3 Comparison: Point-to-Point Inter-Map Computation

Now we demonstrate and evaluate the computation of the point-to-point inter-map between
the two base shapes, one from each collection. For the qualitative comparison, we show the
texture on the target mesh we map to and the ground truth, if it exists, of the source mesh
we map from. We compare our method to other automatic methods: BIM [KLFI11] and
BCICP [RPWO18]. For all methods, we show the results with and without post-processing
using RHM for map refinement. For the quantitative evaluation we measure the map smoothness
through its conformal and area distortions, and its semantic accuracy, using the distance to the

ground truth correspondence, when given.

5.3.1 Quality Metrics

Conformal distortion. We use the definition given in [HG00, Eq. (3)] for the conformal
oM ON
ﬁ + ﬁ where oy, > 0Ny

are the singular values of the linear transformation which maps fir, from Mpg to Npg.

distortion of a single triangle far,s € Frpg : (f) =

We subtract 2 such that the minimal conformal distortion is zero and visualize the result as a

cumulative graph showing the percentage of triangles with less than a certain distortion value.

Area distortion. The area distortion is computed by measuring the distortion in the area

of each triangle caused by the map from Mpg to Npg. For each triangle we compute

A(PNpo,MpgfMpe)
o (s

) ’ where A(fn,) denotes the area of a triangle fy,, € Fn,s and
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A(PnNyg.Mps [ ps) the area of that triangle mapped by P, ¢ M, the extracted point-to-point
inter-map. We visualize the result as a cumulative graph showing the percentage of triangles

with less than a certain area distortion value.

Distance from ground truth. When a ground truth map is given, we measure the distance
from the ground truth using the protocol suggested by [KLF11, Section 8.2]. For every mapped
vertex, we measure its geodesic distance from the ground truth location, relative to the square
root of the total area of Npg, and visualize the percent of vertices whose distortion is less than a

given value.

5.3.2 Setup

Choice of pairs. We always compute the map between the automatically computed base
shapes after alignment. Since the initial choice of base shapes is random, the pair with the
smallest distance after alignment may vary, resulting in a different pair of shapes (one from
each collection) that we map between. Therefore, We average the results obtained by running
the algorithm n times, where n equals the (smaller) collection size. For n experiments, we
compute the correspondence for the computed base shape pair, where each base shape pair can
be considered at most once. This procedure gives a set of m < n pairs, on which we run the
other methods and average the results. As shown in Table 4.1 and Table 4.2, in most cases we

indeed get a corresponding base shape pair.

Parameters for comparison methods. For BIM, we use the default parameters (no need to
set them maually). When applying BCICP we use the parameters recommended by the authors
[RPWOI1S]: k1 = ke = 50 (the number of eigenfunctions used for each shape), the weight
for the orientation-preserving term was set to 0.1 and we used 10 iterations for the BCICP
refinement step. For the FAUST data-set we set the time-scale parameter for computing the
WKS descriptors to 100 and the skip size for the computed descriptors to 10. For all the other
data-sets, we use the parameters suggested for the non-isometric TOSCA data-set, i.e. the

time-scale parameter for the WKS descriptors was set to 50.

Mesh normalization. While our method does not require all the meshes to have the same

surface area, other methods do, hence we normalized all the meshes to the same area.

5.3.3 Blend Shapes data-set

We use our method to compute the correspondences for the Blend Shapes data-set (using 10
shapes) and the results appear in Figure 5.2. For this data-set, our algorithm did not benefit from
RHM refinement while the other methods did. It is seen both qualitatively and quantitatively

that our method achieves the best performance while the others fail to compute a high-quality
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Figure 5.2: Blend Shapes data-set - qualitative (top) and quantitative (bottom) comparison. Our
method compared to other automatic methods - BIM [KLF11] and BCICP [RPWO18], with
and without final refinement using RHM. Our method yields high-quality maps, while others
suffer from distortions or do not resolve symmetry ambiguities.

map or resolve symmetry ambiguities (BCICP flips the upper part of the head while maintaining

the correct orientation of the bottom part).

5.3.4 FAUST data-set

For the FAUST data-set, we use the ten subsets that represent ten different people as collections
and use all the subset pairs to evaluate our algorithm (45 combinations in total). For the chosen
base shapes in each subset pair we compute the resulting map using the comparison methods.
When RHM is not used, BIM obtains preferable results. However, after the refinement our
method achieves similar conformal and area distortion, yet the smallest distance from the ground
truth (Figure 5.3 (c)). Note, that BIM is only applicable to genus zero shapes, whereas our
method (including the RHM post-processing) is applicable to any mesh topology.
Qualitatively, Figure 5.3 (a) shows that our algorithm refined with RHM obtains the highest
quality map. Note that the feet and hands areas are closer to the ground truth than BIM. On the
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(a) Our algorithm refined with RHM obtains the highest quality map: Note that the feet and hands areas
are closer to the ground truth than BIM. BCICP cannot completely resolve symmetry ambiguity, flipping

the hands.
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smaller geodesic error.
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(c) Quantitative results.

Figure 5.3: FAUST - qualitative and quantitative comparison: Our method and other automatic
methods - BIM and BCICP, with and without final refinement using RHM.
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other hand, BCICP cannot completely resolve the symmetry ambiguity, flipping the right arm
with the left one, while maintaining the correct orientation for the other parts. In Figure 5.3
(b), despite imperfections of our method on the hands and feet, our map refined with RHM
still obtains the smallest geodesic error. We conjecture that BCICP has difficulties resolving
symmetry ambiguities. In our case, the base shape pairs computed by our algorithm are, in most
cases, corresponding pairs, yielding more symmetric shapes for both the source and the target
than in averaging over all random pairs in this data-set (most of the shapes in this data-set are
extrinsically symmetric). Moreover, BCICP appears to be very sensitive to the parameters of the

WKS descriptors, which need to be tuned for each data-set separately.

5.3.5 Sumner data-set

The Sumner data-set does not have ground truth correspondences, hence we show only conformal
and area distortion as well as a qualitative visualization. For this data-set, after RHM refinement
we get conformal distortion similar to that of BIM and a smaller area distortion. The qualitative
results in Figure 5.4 show that we indeed get high-quality maps. Since every time we run the
algorithm we might get two different shapes that we put in correspondence, we get a different

choice of base shape pair than in Figure 1.1, demonstrating the results on another pair.
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Figure 5.4: Sumner, qualitative and quantitative comparison: Our method and other automatic
methods - BIM and BCICP, with and without final refinement using RHM. Note that we achieve
conformal distortion similar to BIM, yet a better area distortion. The qualitative comparison
indeed shows that our result is preferable.
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5.3.6 Rigged fruit data-set

We acquired this dataset on TurboSquid, and the ground truth map is not available. In this

data-set all the shapes are symmetric, hence, the maps obtained cannot distinguish between

left and right. However, note that BIM also flips the map upside-down, which is fixed using

RHM refinement. In this data-set, when no RHM refinement is applied, our method yields the

best map since it is not as noisy as BCICP and does not flip up and down as BIM. After RHM

refinement good results are obtained for all methods (see figure 5.5).
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Figure 5.5: Rigged fruit - qualitative and quantitative comparison. Our method and other
automatic methods - BIM and BCICP, with and without final refinement using RHM.



5.4 Inter-Map Computation using Composition of Maps

We now demonstrate that it is possible to obtain the inter-map from any shape in collection A to
any shape in collection B using the map composition in Eq. 3.5, exploiting the inter-map for the
corresponding base shapes and the given intra-maps. Figure 5.6 shows the case of an inter-map
for non-corresponding shapes. First, we show the case of an inter-map computed directly for the
two shapes (as if they were chosen as base shapes). As explained in section 4.1, this case of
non-corresponding base shapes yields poorer maps as indeed can be seen. Second, we visualize
the map obtained using Eq. 3.5 where the base shapes are corresponding (as in Figure 5.3). In
this case, the computed maps are of high-quality. We also compare to the results obtained using

BIM and BCICP. In all cases maps are visualized after RHM post-processing.

Target Ground Truth  Direct Map Ours

1
I

Figure 5.6: Composition of maps. Using map composition we can get a high-quality inter-map
for non-corresponding shapes rather than computing the map directly for those shapes. All
visualized maps include post-processing with RHM. See the text for details.

33



5.5 Inter-Map Computation with Low Matching Accuracy

After we showed that the cross collection map computation using our method leads to good
results both qualitatively and quantitatively, we test the resilience of this part of the algorithm
when the matching accuracy, determined in the first part of the algorithm, is low. Using the
ground truth of the matches, we set them manually to obtain the desired accuracy and test
the results of the map computation. The matching accuracy affects the analogies constraints
(Eq. (3.4)), since we use also wrong matches as constraints. We show that our approach can
handle wrong matching in the first phase of the algorithm and still retrieve high-quality maps.

In Figure 5.7 we demonstrate the experiment for FAUST data-set, all the results and
visualizations include RHM refinement. Note that starting from 80% accuracy it is possible to
obtain high-quality maps. In other words, the algorithm can tolerate the wrong matching of two

pairs, when we use collections with ten shapes.
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Figure 5.7: FAUST - qualitative (top) and quantitative (bottom) comparison for varying matching
accuracy derived from the first part of our algorithm. We manually set the matches to allow
varying accuracy and test the derived map from the second part of the algorithm. Note that
starting from 80% we get high-quality maps. All results include RHM as post-processing
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Figure 5.8: Blend shapes - qualitative (with RHM post-processing, top) and quantitative (without
RHM post-processing, bottom) comparison for varying matching accuracy derived from the
first part of our algorithm. We manually set the matches to allow varying accuracy and test the
derived map from the second part of the algorithm. It is possible to obtain a high-quality refined
map with matching accuracy as low as 40%.

Figure 5.8 shows the same experiment for the Blend Shapes data-set (using 40 shapes).
Here we visualize the maps after RHM refinement, all achieving similar conformal and area
distortion and high-quality maps Figure 5.8 (top). We conclude that in spite of the low matching
accuracy, RHM refinement is able to recover a map very similar to the ground truth. Hence, to
show the differences between different matching accuracies, we plotted the conformal and area
distortion for the results without RHM refinement, Figure 5.8 (bottom). It is seen that for this
data-set high-quality maps can be obtained even when the matching accuracy is as low as 40%.
Since this data-set has more shapes than in FAUST (40 shapes in contrast to 10 in FAUST), we
have more terms in the energy function (Eq. (3.4)) and since the variations within the shapes are
localized to the face region, it is possible to recover the functional map with lower matching

accuracy.

5.6 Inter-Map Computation for Varying Collection Size

We evaluate the computed map depending on the collection size, especially for small collections,
i.e. with collection size as low as 2 or 3. We demonstrate that computing correspondences using
our method is possible for such small collections, allowing us to retrieve high-quality maps
even when only few shapes are given. We tested our algorithm for varying collection size and
examined the map retrieved.

In Figure 5.9 we see that for the Blend Shapes data-set it is possible to get a high-quality
map using any collection size varying from 2 to 40. For the case with 2 shapes, we set the

matches manually since aligning point clouds with two points each has 50% success rate as
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they are necessarily symmetric. Results are shown without RHM refinement. This result means
that we can get the cross collection map when we have only three shapes in each collection, or
two with manual matching, and still get higher-quality map than other methods, with very low
timing, since for smaller collection size the time needed for our algorithm notably decreases.
It is important to mention that matching accuracy remained as high as 100% in all cases of

collection sizes, even for 3 shapes only (except the manual matching for the case with 2 shapes).
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Figure 5.9: Blend Shapes - quantitative comparison for varying collection size without RHM
post-processing. Note that we can obtain a high-quality map with collections containing 2
shapes only.

Figure 5.10 shows the same experiment for Sumner data-set. Note that the conformal and
area distortion of the map are not affected when we decrease the number of shapes, neither is the
matching accuracy. Our results include post-processing using RHM. As in the demonstration
for the Blend Shapes data-set, we set the matches manually for the case with 2 shapes in a

collection, to handle the case of symmetric shape space.
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Figure 5.10: Sumner, quantitative comparison, varying collection size. All results include RHM
post-processing. Note that we obtain a high-quality map even for collections with only two
shapes.
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5.7 Regularization Effect

In order to show that at least one analogy is needed, and the functional map using Eq. (3.4) for
the case of 2 shapes in a collection is not recovered solely due to the regularization term, we
demonstrate the quality of the functional map retrieved for varying «, the parameter controlling
the weight of the regularization term, and for varying collection size from the Blend Shapes data-
set. We measure the error of the optimized functional map Cn 114 (after ICP refinement),
and plot the error as a function of « (Figure 5.11). The error is given by the distance from the
ground truth functional map Ce7, namely ||Cnyq pps — Corl|F-

‘We can conclude that:

e For ao = 0 (no regularization), the error is negatively correlated with the collection size:
the larger the collection, the smaller the error. In other words, the more analogies we
have, the higher-quality functional map we can infer (see the numbers on the vertical axis

showing the decreasing error as the collection size increases).

e There exists a range of «, for any collection size, for which we can get the same best-
optimized functional map with the same error, i.e., with good regularization we can

decrease the dependency on the collection size (around 0.1 < o < 0.15).

e For larger « than in the optimal range, optimization is more tolerant as the collection size

increases since more analogies give more information.

e Using no analogies at all, relying on the regularization term only (equivalent to o — 00),
cannot yield a good functional map. For all the graphs, as « increases the error indeed

converges to the error value with no analogies term (the black horizontal line).

Hence, we deduce that the analogies are indeed required, yet a small number of analogies
is sufficient in order to retrieve a high-quality map, which is advantageous, since less data is

needed.

Functional Map Error

= 3() Shapes
w20 Shapes
10 Shapes
=2 Shapes
m— No Analogies

0 014 02 03 04 05 06 07 08 09 1

Figure 5.11: Functional map error for varying regularizer weight and several collection sizes.
See the text for details.
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Chapter 6

Correspondence between Two Shapes

In this section, we handle the problem of correspondence between two shapes only, i.e., each
collection has only one shape, and show that our method can yield correspondences without
requiring a whole collection. As previously shown, in order to obtain a pointwise inter-map,
our algorithm requires collections of at least two shapes, since we need at least one analogy to
solve the optimization problem (Eq. (3.4)). However, if only one shape is given we can create a
collection from this shape using the method introduced in [HWAGOQ9] by using modal analysis.
Therefore, we perform pre-processing to the pipeline shown in Figure 1.2 in the following
way: Each of the two given shapes acts as an input to the method proposed in [HWAGO9, Sec.
4], where the Hessian of the shape is computed, for which the eigen-vectors corresponding to
non-zero eigen-values act as the modes of the shape. By adding these modes to the given mesh,
we can create a whole new collection out of one shape.

Figure 6.1 demonstrates the collections obtained from a given single shape (left column).
One can notice that if the shapes are not too non-isometric, we obtain similar collections for
which the shape difference operators can be computed and then it is possible to align the two
collections. Note that even though shape (3) is in different pose than (1,2,4,5), the computed
modes are similar and yield collections with similar analogies, such that it is possible to align
them and solve the optimization problem (Eq. (3.4)).

Once we obtained two collections we can apply our algorithm and compute the inter-map
for the two given shapes, acting as base shapes. Notice that the algorithm also matches the
newly composed shapes which is necessary for solving the optimization problem. However,
this matching is hidden from the user and is not returned as an output, since the input was not
comprised of collections.

In order to allow the composed collections to be matched in a way that enables us to compute
an inter-map, we need to assume that the two new shape spaces, derived from the new collections,
can be aligned. In other words, it requires the modes of the two shapes to be similar enough,
though not necessarily in the same order. To obtain such similar modes, we generally need
similar shapes, i.e., neither in too different poses nor too non-isometric.

Figure 6.2 shows our algorithm’s performance on inputs of two shapes only. We show

the pointwise map obtained, with and without RHM refinement. We also show the optimized
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functional map, the corresponding ground truth (if it exists) and an example of function transfer
for better visualization. In most cases, we obtain a high-quality map which can be well refined
by post-processing with RHM.

Note that Figure 6.2:(2) shows an example of a map which is flipped in the upper part, how-
ever, post-processing with RHM fixes it and returns a high-quality consistent map. Figure 6.2:(3)
shows that even if the shapes are not in the same pose we can still get an excellent map since
we get similar modes yielding similar analogies (see Figure 6.1:(1-5)). However, Figure 6.2:(6)
gives an example for which our algorithm fails to obtain a good map. If carefully examined,
it can be seen in Figure 6.1:(9-10) that many shapes do not correspond, hence, aligning and
inferring analogies is now challenging and it is hard to obtain a high-quality map in this case.

We conclude that these two shapes are not isometric enough to apply this method successfully.
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Pointwise Maps Functional Maps
Target Source  Source+RHM Ground Truth Optimized Ground Truth Function Transfer

MM

Figure 6.2: Correspondence between two shapes - qualitative results on various data-sets. The
computed pointwise map is shown with and without RHM post-processing, as well as the
optimized and ground truth functional maps (if it exists).
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Chapter 7

Conclusion

In this work, we presented a robust and simple to implement method for matching two shape
collections with high rates of accuracy. Unlike previous approaches, our method can perfectly
handle small and large collections alike, while for the latter we maintain high accuracy rates
even when one of the collections contains excess shapes that do not need to be matched, thus
allowing to handle various noisy sampling of the shape space.

Furthermore, a high-quality inter-map is obtained using only the analogies as the seman-
tic information, allowing our algorithm to serve as a fully-automatic method for computing
correspondences, surpassing other state-of-the-art automatic methods for non-isometric shape
correspondence. As an additional proof of its robustness, we showed that even if not every
shape has a match or matching was imperfect, the second step of the algorithm, computing the
inter-map, is resilient to it. Finally, the variation within the collection can be large, and both
quasi-isometric or non-isometric making our approach applicable to various data-sets.

We believe that our approach can serve as an important new tool in the shape analysis and
correspondence toolbox. Future work and generalizations include using other inner product
metrics to tailor the shape differences for specific applications [CO19], and using better regular-
ization constraints [RPWO19]. Moreover, it might be beneficial to use multiple base shapes, and
to learn the shape differences operators from data. Finally, since the functional map approach is
agnostic to the geometry representation, it can be interesting to apply our approach to settings
where the data has an intrinsic parametric structure allowing to generate many corresponding

instances, e.g. parametric CAD models.
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Appendix A

Additional Comparison with SBC14

A.1 Algorithm Outline Comparison

In the next page, we give an outline of the two methods and emphasize the differences (in bold).

From the comparison one can conclude that:

e Computing the shape irregularity index for all shapes in both collections is computation-
ally costly compared to random base shape choice and recomputing the shape difference
operators using the optimal base shape. Therefore, we decrease the running time without

reducing our algorithm’s performance.

e Non-linear dimensionality reduction is sensitive to the collection size and requires large
collections in order to obtain reasonable results. However, we use linear dimensionality
reduction and are thus resilient to the collection size, enabling the algorithm to handle

small and large collections alike.

e Our alignment method is parameter free in contrast to CPD used in SBC14. Hence, our
method does not require data-set dependent parameters, allowing it to be more robust and

completely automatic.

e Solving the optimization problem without a regularization term leads to poor and
unstable results. While, as previously demonstrated, our methods achieves high quality

and stable inter-maps.

e Recovering a pointwise map (steps 6-7 in our method) was not applicable using [SBC14],

as demonstrated in Section A.2.
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Our Algorithm:

1.

Use the input intra-maps to construct
the shape differences between the input

shapes in the same collection.

. Use the shape differences to construct a

low-dimensional shape space embedding

for both collections:

(a) Choose a base shape randomly.

(b) Compute the shape difference oper-
ator for each shape with respect to

the randomly chosen base shape.

(c) Construct the shape space by em-
bedding the shape difference oper-
ators in a low dimension space by
linear dimensionality reduction us-
ing SPD distance and multidimen-
sional scaling (MDS) [Mea92].

. Align the two shape spaces using

Procrustes analysis (by convex
programming (SDP)
relaxation [MDK'16]) to obtain the

matching pairs and automatically de-

semidefinite

termine an optimal base shape in each
collection.

. For each collection, recompute the

shape difference operators with re-
spect to the new base shape.

. Use the matches and the base shapes to

compute a functional inter-map for the
base shape pair by solving an optimiza-
tion problem with an analogies term and

a regularization term.

Recover a point-to-point inter-
map from the functional map us-

ing [EBC17].

Optional: Refine the map obtained
. . . . 46

in (6) using reversible harmonic maps
(RHM) [ESBC19].

SBC14’s Algorithm:

1. Use the input intra-maps to construct

the shape differences between the input

shapes in the same collection.

. Use the shape differences to construct a

low-dimensional shape space embedding

for both collections:

(a) Choose a base shape using shape
irregularity index.

(b) Compute the shape difference oper-
ator for each shape with respect to
the computed base shape.

(c) Construct the shape space by embed-
ding the shape difference operators
in a low dimension space by non-
linear dimensionality reduction us-

ing diffusion maps.

. Align the two shape spaces using affine

registration (by coherent point drift
(CPD) to obtain the matching pairs.

. Use the matches and the base shapes to

compute a functional inter-map for the
base shape pair by solving an optimiza-

tion problem with an analogies term only.



A.2 Pointwise Map Comparison

Now we would also like to compare the pointwise map can be extracted from the functional
map. Figure A.1 compares the obtained point-to-point map using our method and using SBC14,
with and without RHM refinement on some shapes from FAUST dataset. It can be seen that
SBC14 cannot achieve a fair map, not even as an input for RHM post-processing. Hence, we
conclude that the method of SBC14 lacks the fine tuning needed to obtain comparable pointwise

maps to state-of-the-art methods.

Target Ground Truth Ours SBC14 Ours + RHM  SBC14 + RHM

MM
LA

Figure A.1: FAUST - qualitative comparison with SBC14, with and without final refinement
using RHM.
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