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Abstract

Shape collections are widely used in many geometry processing and computer graphics applica-

tions. Such collections can be obtained by deforming a given 3D model or by sampling a 3D

animation. Given two shape collections, e.g. two characters in similar poses, often rises the

need to match the semantically corresponding shapes. This matching can assist in transferring

information between the two collections. For instance, transferring shape annotations in order to

allow pose labeling. A more common challenge is to automatically find the pointwise map, also

known as correspondence, between non-isometric shapes, e.g. the two different non-isometric

shapes from the two collections. In general, it is a very difficult problem, that has been tackled by

many different approaches and often requires additional input such as landmarks or descriptors.

This pointwise mapping can assist in transferring pointwise data, allowing for example texture

transfer between non-isometric shapes.

We propose a method to automatically match two shape collections with a similar shape

space structure, and compute the inter-maps between the collections. Given the intra-maps in

each collection, which are often easier to compute since the shapes within the collection are

isometric, we extract the corresponding shape difference operators, and use them to construct

an embedding of the shape space of each collection. We then align the two shape spaces, and

use the knowledge gained from the alignment to compute the inter-maps by formulating an

appropriate optimization problem.

Unlike existing approaches for collection alignment, our method is applicable to small and

large collections alike, and requires no parameter tuning. Furthermore, unlike most approaches

for non-isometric correspondence, our method uses solely the variation within the collection to

extract the inter-maps, and therefore does not require landmarks, descriptors or any additional

input. We demonstrate that we achieve high matching accuracy rates, and compute high quality

maps on non-isometric shapes, which compare favorably with automatic state-of-the-art methods

for non-isometric shape correspondence. Furthermore, we show that in some cases, it is possible

to automatically obtain a high quality map using our method even without requiring a collection,

i.e. for two shapes only, by using collection composition.

1
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Chapter 1

Introduction

A shape space contains variations of a given 3D model, for example, a sampling of an animation,

or a character in different poses. Such spaces can arise when animators generate blend shapes

for standard poses (smile, frown, A-pose, T-pose, etc.) or use rigged models for generating

walking or running cycles. In many applications, a few such shape spaces are given (e.g. a

walking cycle of a man and a woman), and it is required to transfer information between them.

For example, transferring shape annotations such as pose labeling, or transferring point-wise

data such as texture.

Often, it is possible to automatically obtain a high quality correspondence between variations

of a single model, i.e., maps within the shape space, or shape collection, which we denote

by intra-maps. On the other hand, correspondences between shapes in different collections,

which we denote as inter-maps, are harder to compute, as these models will often have large

non-isometric deformations.

Automatic computation of correspondences between non-rigid and non-isometric shapes is

an active research problem. Most existing methods for computing a correspondence between

non-isometric shapes require some additional semantic input, such as corresponding landmark

points, and are therefore not fully automatic. We, on the other hand, leverage the cues of the

variations within the collection as the semantic information, and use them to design a completely

automatic method.

We draw our inspiration from a recent approach to this problem [SBC14], which similarly

leverages shape variations as the semantic cues. Unfortunately, many aspects of that approach

introduce technical difficulties which make the method not robust and impractical in many cases,

derailing the hope for a completely automatic method. Specifically, a large sampling of shapes

is required in both collections, as well as hand tuning of multiple dataset-dependent parameters.

Practically, the existing approach yields low quality maps which are not on-par with state of the

art correspondence methods.

While working in the same general setting, we propose very different design choices, leading

to a considerably more robust system. Our method is simple to implement, completely automatic,

and applicable to any mesh topology, yielding significantly better results. Additionally, our

method extracts high quality pointwise maps between non-isometric shapes, generating maps

3
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Figure 1.1: Given two shape collections with different shapes (cat and lion) in various poses and

the intra-collection maps (top and bottom), our algorithm automatically finds a matching between

the poses (the poses are color coded, such that matching poses have the same color). Using this

matching, we further find an inter-collection correspondence between two automatically-chosen

shapes, one from each collection (center). We can therefore automatically extract a high-quality

non-isometric correspondence solely from the two collections, without any user input.

which surpass state-of-the-art automatic methods for non-isometric shape correspondence. Our

approach is applicable to both benchmark data-sets, e.g. FAUST, as well as rigged models

available for purchase from 3D modeling websites. Finally, it is important to note that the shape

collections we can handle are not limited to the same character in different poses, but can rather

be sets of shapes with any variations yielding similar enough shape spaces. For instance, a

collection can include different people in the same pose, then matched to a collection of the

same people in a different pose.

1.1 Related Work

Shape Collections. Collections of shapes are useful for a variety of applications. Some

examples include deformation transfer, aiming to produce shapes with desired deformations that

can be induced by given deformations in another collection. Some methods include learning

models for 3D shape processing and shape reconstruction [GYQ+18, HRA+19]. Another

example is creating a collection from one shape using modal analysis of the hessian of the mesh

as described in [HWAG09]. Other aspects of shape collection analysis exploit the idea that the

composition of maps along cycles should be identity maps, which led to the map synchronization

problem, taking maps between pairs of objects and returning improved maps that are consistent

along cycles [SLHH18]. This notion is further exploited in [NBCW+11, CRA+17] in order to

obtain high quality intra-maps, that we require as an input, and which are easier to obtain than

the inter-maps we compute. Other approaches use modular latent spaces, based on nonlinear

embedding spaces, to find the correspondences within a collection [GSDG18].

In [ROA+13] some approaches to exploring shape collections are presented, including

4
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browsing shapes by a user-defined region of interest, taking advantage of the localization

property of the shape difference operator. Shape analogies are also used in [ROA+13] to

match corresponding shapes from two collections. However, they use a brute-force search

among all the permutations of the shapes that best aligns them with the other collection,

limiting the applicability to very small collections. The shape difference operator has been

further investigated and analyzed in terms of stability [HCO18] and optimal shape collection

representation [HAGO19].

Our work generalizes the method proposed by [SBC14]. In that approach, given two shape

collections, each representing a shape space, it is assumed that the intra-maps are given, and

they are used to compute the shape variations, represented by shape difference operators. These

variations are then considered as points on a high dimensional manifold, and a non-linear

dimensionality reduction approach is used to generate a low-dimensional embedding of the

shape spaces. The shape spaces are then aligned using affine point cloud alignment. Finally, an

inter-map is computed using the alignment. This approach has several severe limitations. First,

a large sampling of shapes is required to reliably represent the diffusion map, and hand tuning of

parameters is required to align the shape spaces using an affine map. Furthermore, the existing

approach fails to obtain high accuracy rates for aligning the shape spaces, and in addition the

resulting inter-maps are of low quality and are not comparable to other correspondence methods.

We, on the other hand, have made critically different design choices, leading to an algorithm

that is more robust and yields maps comparable to other automatic methods for shape corre-

spondence. Specifically, we leverage the fact that in some cases the shape difference operators

lie on a manifold which has a closed form expression for geodesic distances, therefore, we use

these distances as a better representation of the shape space structure. Second, we use a linear

dimensionality reduction approach, which is far less sensitive to the number of shapes in the

collection. Furthermore, we use rigid alignment using a robust convex relaxation, which is

parameter-free. Finally, we add a regularization to the shape correspondence formulation, and a

post processing, which yield considerably better pointwise maps.

Automatic Correspondences. Computing shape correspondence using automatic algorithms,

i.e. when no landmarks or user input are given, acts as a benchmark for the second part of

our algorithm, aiming to obtain the correspondences between shapes in different collections.

Blended intrinsic maps (BIM) [KLF11] is an automatic method to recover the point-to-point

map between two given shapes. It often yields excellent results, however it is restricted to

genus zero shapes. Bijective and continuous ICP (BCICP) [RPWO18] tackles this problem as

well and is able to produce correspondences without landmarks. We compare our algorithm,

which uses the shape differences within the collection as the additional information required

for automatically extracting an inter-collection map, to these methods and demonstrate that we

achieve a better performance than both.

Matching Problems and Procrustes Analysis. In order to solve the matching problem, i.e.

finding the matching pairs from the two collections, one can make use of the distance matrix

5
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between the shape differences of each collection. The distances represent the differences

between the variations in the collection. One approach to solve the matching problem is to

use the method presented in [KKBL15] in order to find the best permutation on the distance

matrices’ rows and columns such that they have the same structure. The retrieved permutation

defines the pairing of shapes we wish to obtain. Unfortunately, this approach is not feasible for

large data-sets where the distance matrices are large. An improved method has been proposed

in [DML17] (see also references within for additional approaches to quadratic matching).

Instead of aligning the distance matrices, it is also possible to generate a low dimensional

embedding of the point clouds, and use Procrustes matching (PM) for the registration. We

chose to take this approach, first using linear dimensionality reduction to generate a point

cloud representation of the shape collections, and then convex semidefinite programming (SDP)

relaxation [MDK+16] for the Procrustes matching of the point clouds. This approach has a few

advantages. First, linear dimensionality reduction requires less parameters. Second, the SDP

relaxation scheme is tight leading to close to optimal results, and finally, it is very efficient,

enabling us to handle larger collection sizes.

Pointwise Map Extraction from Functional Maps. Functional maps allow us to transfer

functions from one shape to another [OBCS+12, OCB+16]. When functional maps are rep-

resented using a reduced basis, such maps can provide only low frequency information about

the correspondence. However, a high-quality pointwise map should in addition be able to

transport high frequency data between the shapes. Once we retrieve the functional inter-map

using our method, we would like to extract a high-quality point-to-point inter-map. The method

described in [EBC17], proposes an efficient way to recover precise maps from functional maps.

Another recent method tackling a similar problem is based on optimizing the harmonicity and

reversibility of the forward and backward maps, known as the reversible harmonic maps (RHM)

[ESBC19]. This approach, can handle diverse geometries, and can receive as an input functional

maps or dense maps. Our method can take advantage of RHM as post-processing in order to

refine the map obtained using [EBC17]. Both [EBC17] and [ESBC19] are publicly available.

1.2 Method Outline

Our algorithm follows the general structure suggested in [SBC14], yet with some critically

different design choices. We first describe the general pipeline (see Figure 1.2), and then explain

each component separately in Section 3.

Input: Two shape collections that represent two shape spaces of different models, not neces-

sarily with the same number of shapes, and the intra-maps within each collection.

Output: (1) An injective function from the smaller collection to the larger one, which repre-

sents the matching pairs, and (2) a point-to-point inter-map for any shape in one collection to

any shape in the other.

6
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Shape Space 
Embedding

3.1

Shape Space 
Alignment 

3.2

Func. Inter-Map 
Computation 

3.3

Point to Point 
Extraction

3.4

Point Clouds×× ×Base Shape Pair ( , ) Func.Map,Collection
Collection ,

.
.

Figure 1.2: Block diagram of our algorithm, see the outline in Section 1.2.

Algorithm:

1. Use the input intra-maps to construct the shape differences between the input shapes in

the same collection (Section 2.2).

2. Use the shape differences to construct a low-dimensional shape space embedding for both

collections (Section 3.1).

3. Align the two shape spaces using Procrustes analysis to obtain the matching pairs and

automatically determine an optimal base shape in each collection (Section 3.2).

4. Use the matches and the base shapes to compute a functional inter-map for the base shape

pair (Section 3.3).

5. Recover a point-to-point inter-map from the functional map (Section 3.4).

1.3 Contributions

Our main contributions are:

• Matching corresponding pairs from two shape collections with a high rate of accuracy.

• Automatically obtaining a high-quality non-isometric inter-map between any shape in

one collection to any shape in the other.

7
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Chapter 2

Background

Our approach relies on recent techniques for shape correspondence and shape variability analysis

which we briefly review here.

2.1 Functional Maps

Functional maps [OBCS+12] have been widely used in many geometry processing applications,

especially for shape correspondence. The main observation in this framework is that we can look

at how functions on one shape are transformed to the other, rather than finding a point-to-point

map between the shapes. The space of functions can often be well represented using a compact,

yet informative, functional basis, allowing us to represent a map in this space as a change of

basis linear operator, i.e., as a compact matrix.

Given two surfaces M and N , with a map T : N → M between them, a map between

function spaces F : L2(M) → L2(N) is induced. Here, L2(·) represents the set of square

integrable real valued functions defined on the surface. F is called the functional map, mapping

functions defined on M to functions defined on N , i.e. g = F (f) = f ◦ T where f : M → R

and g : N → R. F is a linear transformation between function spaces, and given reduced bases

ΨM ,ΨN of dimensions kM , kN , for M,N , respectively, is represented as a matrix C∈R
kN×kM .

2.2 Shape Difference Operators

Given two shapes and the map between them, the shape difference operator [ROA+13] captures

the variations between the shapes. It constitutes the main tool in our algorithm, allowing us to

compare differences between shapes. This operator stores information about how a function on

one of the shapes should be modified, such that the inner product of any two functions defined

on the first surface equals to the inner product of the mapped functions on the other surface.

In that way, it captures information about how and where one shape differs from the other. In

addition, by modifying the inner product, we can quantify different types of differences, or

distortions, between the shapes.
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Given two shapes M and N , and a functional map F : L2(M) → L2(N), let hM :

L2(M)× L2(M) → R and hN : L2(N)× L2(N) → R be inner products defined on M and

N respectively, acting on two functions on the shape. Then there exists [ROA+13, Thm 2] a

unique linear operator DhM ,hN
: L2(M) → L2(M), denoted as the shape difference operator,

satisfying hM (f,DhM ,hN
(g)) = hN (F (f), F (g)) for any two functions f, g : M → R. Note

that this operator depends only on the chosen inner products on M and N and the functional

map F . Moreover, it is a linear self-map on the space of functions over M . Thus, the operators

DhM ,hN1
, DhM ,hN2

have the same domain and range L2(M), allowing us to compare the

operators even if N1 �= N2.

Two inner products that are of interest, are the area-based inner product ha(f, g) =∫
M f(x)g(x)dμ(x) and the conformal inner product hc(f, g) =

∫
M 〈∇f(x),∇g(x)〉xdμ(x).

Intuitively, the first encodes variations in area due to the map, and the second encodes variations

in angles.

Given a choice of reduced basis ΨM ,ΨN , the shape difference operators are represented

as matrices of dimensions kM × kM . Often, the eigenvectors of the Laplace-Beltrami operator

corresponding to the lowest eigenvalues are chosen for the basis Ψ, as this choice leads to a

multi-scale basis, which can represent well smooth functions using only a small number of basis

functions. In this case, the explicit expressions for the shape difference operators are[ROA+13,

Eq. (4)]:

VM,N � Dha
M ,ha

N
= F TF (2.1)

RM,N � Dhc
M ,hc

N
= (DM )−1F TDNF, (2.2)

where F is the functional map represented in the bases ΨM ,ΨN , and DM is a diagonal matrix

of the lowest non-zero kM eigenvalues of the Laplace-Beltrami operator of shape M .

10
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Chapter 3

Algorithm

We now give a detailed explanation of our algorithm and the motivation behind our design

choices.

3.1 Shape Space Embedding

Given two shape collections A = {Mi}nA
1 , B = {Ni}nB

1 , we assume that each collection

includes shapes sampled from a single shape space. We further assume, that the samplings are

“compatible” in the sense that they include similar shape variations. Then, given a choice of

two base shapes, one in each collection, MBS ∈A, NBS ∈B, we compute for each collection

separately the shape difference operators with respect to the base shapes. These operators encode

information about the variability of the collection, and the distances between them encode the

structure of the shape space.

We first select a random shape in each collection, serving as the base shape for the following

part. Later we show that the base shape can indeed be chosen randomly without affecting the

performance of the algorithm.

3.1.1 Shape difference operators computation

Once we have chosen a random base shape for each collection, we compute the shape difference

operators for all the shapes in the collection with respect to this base shape. As shown in the

previous section, shape difference operators can be computed using either the area-based inner

product (Eq. (2.1)) or the conformal inner product (Eq. (2.2)). We later show how the choice of

inner product depends on the nature of the collection. However, for typical data-sets, we choose

the conformal inner product since the variations within the collection are mostly non-conformal.

Given the intra-map between shapes within the collection, we compute the functional map

between the base shape and any other shape in the set using k1 eigenvectors of the Laplace-

Beltrami operator of the base shape, and k2 eigenvectors for the other shape. A collection of n

shapes yields a set of n shape difference matrices of size k1 × k1. Each of them represents the

11
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Base Shape

Figure 3.1: A collection of faces with varying expressions (top) with its shape differences’

principal components visualization (bottom). Since they are computed with an arbitrary sign,

both dark blue and dark orange indicate areas with high variation. The explained variance of

each component appears above it. The principal components encode the main variations within

the collection, mainly around the mouth and eyes area.

modification that needs to be done on functions on the base shape such that inner products on

the base shape equal to inner products on the other shape.

Figure 3.1 shows the principal components of the shape difference operators for a given

collection using the area-based inner product. The principal components are visualized by

testing how they act on a constant function, thus visualizing the main variations between the

shapes and their location. The percentage of the total variance explained by each principal

component is shown as well, demonstrating the significance of each component in the collection.

Now that we have the set of shape difference operators, our goal is to embed them in a

low dimensional space such that the information of the distances between the operators is best

preserved.

3.1.2 Distance matrix construction

To construct a distance matrix for a given collection, we treat separately the area-based and

conformal shape differences, as they have a different structure as operators.

Area based. The area-based shape difference operator, given by Eq. (2.1), is a symmetric

positive-definite (SPD) matrix, as long as the functional map F is an invertible matrix. We

therefore use the manifold of SPD matrices to compute the geodesic distances between the

shape difference operators. The manifold of SPD matrices has a unique shortest geodesic curve

between any two points, and its length has a closed form expression. Specifically, given two
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SPD matrices, V1, V2, their geodesic distance on the SPD manifold is [Bha09, Eq. (6.14)]:

d2SPD(V1, V2) =

n∑
i=1

log2
(
λi(V1V

−1
2 )

)
, (3.1)

where λi(V ) is the ith eigenvalue of the matrix V .

Conformal. The conformal shape difference matrices, given by Eq. (2.2), are not SPD, and

we therefore use the Euclidean distances between the vectorized matrices.

Figure 3.2 shows the distance matrices obtained for the Sumner data-set (Figure 1.1), where

the shapes are ordered correspondingly for better visualization. The distance matrix for the set

of cats (collection A) has a similar structure to the distance matrix computed for the set of lions

(collection B). In both sets we use the shape differences operators derived for the conformal

inner product, since the variations within each collection are mainly non-conformal. Hence,

in this case, the conformal shape differences capture more reliably the information about the

variations compared to the area-based shape differences.

3.1.3 Dimensionality reduction

To solve the matching problem, we first apply multidimensional scaling (MDS) [Mea92] on the

distance matrix obtained in order to embed the operators in a d-dimensional space, the shape

space embedding. The dimension d is determined such that the energy accumulated in this

d-dimensional space is at least β of the total energy, for both shape collections. The energy of

each dimension is defined as the variance explained by this dimension using PCA. For instance,

choosing β = 0.95 means that we use at least 95% of the total energy for both collections. In

this case, we lose only up to 5% of the information regarding the variations, but store it in a

space of dimension in the range of 3-8 for typical data-sets.

1 2 3 4 5 6 7 8 9 10
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8
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1 2 3 4 5 6 7 8 9 10

1
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3
4
5
6
7
8
9
10 0

1

2

3

4

5

Figure 3.2: Distance matrices of the collections shown in Figure 1.1, computed for the con-

formal shape differences. For better visualization, in both collections the shapes are ordered

correspondingly. Note that the collection of cats (collection A) and the collection of lions

(collection B) have similar distance matrices, which we use for matching the collections.
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3.2 Shape Space Alignment

After constructing the shape space embedding of each collection, our goal is to align them such

that we can match shapes from the two collections. We treat the two shape space embeddings as

two point clouds, and assume that the distance matrices of the two collections are similar, so that

we can use rigid alignment. In this setting, the alignment problem is known as the Procrustes

matching problem, formulated as follows.

We are given two point clouds P and Q of dimension d and n1, n2 points respectively,

P ∈ R
d×n1 , Q ∈ R

d×n2 , where we assume, without loss of generality, that n1 ≤ n2. Our

goal is to find a linear isometry (an orthogonal transformation) R ∈ O(d) and a permutation

X ∈ Πn2×n1 , minimizing the distance between the point clouds:

d(P,Q) = min
X,R

||RP −QX||2F
s.t.

X ∈ Πn2×n1 , R ∈ O(d).

(3.2)

Since n1 ≤ n2, this formulation matches every point in P to exactly one point in Q, where

some points in Q can remain unmatched.

This is in general a difficult, non-convex problem, however, recently, a very effective

convex relaxation to the problem has been proposed [MDK+16], which we leverage to find the

alignment.

Let X∗, R∗ be the optimal solutions of the optimization problem (3.2), then the alignment

error d(P ∗, Q∗) provides a quantitative measure of the success of the alignment process. We

define the normalized alignment error:

ê =
||R∗P −QX∗||F
||P ||F + ||Q||F , (3.3)

which is invariant to the dimensions of the point clouds. We will later use this error to evaluate

the matching accuracy of our results.

Optimal Base Shape Selection. The point clouds P̃ = R∗P ∈R
d×n1 and Q̃ = QX∗∈R

d×n1

include only pairs of matching shapes after the alignment. The closest pair of points in P̃ , Q̃

are the two shapes which are most likely to have been matched correctly. Therefore, we select

these as the new base shapes MBS , NBS , and the shape difference operators are recomputed

with respect to them, yielding a better input for the next part of the algorithm.

3.3 Functional Inter-Map Computation

The next goal of the algorithm is to compute the functional map between the newly chosen base

shapes of the two collections, thus retrieving the inter-map correspondence.
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Shape analogies. We use the shape analogies constraint presented in [SBC14], taking advan-

tage of the similarity between the shape difference matrices of matching pairs. More precisely,

let {(Mi, Ni) |Mi ∈ A, Ni ∈ B , i = 1, . . . , n}, be the n = min{nA, nB} matched pairs ex-

tracted by the shape space alignment. Recall that (MBS , NBS) are the pair of base shapes of

the two collections, defined as the closest matching pair. Our goal is to find a matrix C, the

functional map between the base shapes.

Our main assumption is that the shape difference operators of matching shapes in both

collections, i.e., VMBS ,Mi and VNBS ,Ni act similarly on functions. Hence, first applying a

map between the collections, and then applying the shape difference operator, should yield a

similar function to first applying the shape difference and then mapping the function to the other

collection.

Regularization. Differently from [SBC14], we observe that without a regularization term the

optimization results are unstable, leading to poor functional maps. This is especially evident for

areas on the shapes with none or few variations, where the shape differences do not hold any

information. To handle this problem, we adopt the regularization term that forces the functional

map to commute with the Laplace-Beltrami operator [OBCS+12].

Optimization problem. Our optimization problem is therefore:

min
C∈RkB×kA

n∑
i=1

(‖CV A
BS,i − V B

BS,iC‖2F + ‖CRA
BS,i −RB

BS,iC‖2F
)

+α‖CΔA
BS −ΔB

BSC‖2F ,
(3.4)

where kA = kB = k1, n is the number of matching pairs, V A
BS,i is the area based shape

difference from the base shape in A to Mi∈A, ΔA
M is a diagonal matrix with the eigenvalues of

the Laplace-Beltrami operator of shape M ∈A, and α is a parameter controlling the regularizer.

To solve this optimization problem we observe that the objective is linear in the elements of

C, resulting in a homogeneous linear system that is solved using SVD.

As proposed in [OBCS+12, SBC14], we apply iterative refinement as post-processing to

the minimizer of Eq. (3.4) in order to refine the solution so that it better represents a point-to-

point map. The refinement process is effectively ICP in eigenspace, where the solution of the

optimization problem is used as initialization.

Finally, we compute the functional map, FNj ,Mi between any two shapes in the two collec-

tions, Mi∈A and Nj∈B using the following composition:

FNj ,Mi = FB
j,BSCNBS ,MBS

FA
BS,i, (3.5)

where the functional map CNBS ,MBS
: L2(MBS) → L2(NBS) is the computed inter-map,

i.e. the minimizer of Eq. (3.4), and the functional maps FA
BS,i : L

2(Mi) → L2(MBS) and

FB
j,BS : L2(NBS) → L2(Nj) are the input intra-maps within the collections.
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Figure 3.3: A functional map computed using our algorithm and its visualization using function

transfer. Note that the map is of high quality in the areas where the shape differences are

informative, i.e. areas with more variations (the ”face” of the apple and the orange). On the

other hand, the functional map is distorted in areas where there is no information in the shape

differences (the side of the apple and orange) since there are no variations within the set. When

recovering the point-to-point map these distortions are fixed (see Figure 5.5).

In Figure 3.3 we visualize the computed functional map and demonstrate it with a specific

function transferred from the apple (center) to the orange (right) from a data-set of rigged shapes

(top and bottom). Note that a high quality map can be derived for the areas where the shape

differences hold the information about the shapes, i.e. areas with more variations such as the

”face” of the apple and the orange. However, the map might be distorted in areas where there is

no information in the shape differences, such as the side of the apple and orange, since there are

no variations within the set in these regions. Our last step is to recover the point-to-point map,

which additionally alleviates theses issues.

3.4 Recovering a Point-to-Point Inter-Map

The final step of our algorithm is to produce a point-to-point map using the functional map we

computed. As we aim for a high quality map that can be used to transport textures, we use a

recent map reconstruction approach [EBC17] to obtain a vertex-to-point map.

Some data-sets require post-processing of the point-to-point map using Reversible Harmonic

Maps (RHM) [ESBC19]. This post-processing scheme is especially effective in areas on the

shape where there are few or no variations within the collection, such that the shape difference

operators contain no information for these areas. As a result, in these regions, the shape analogy

constraints are not effective, resulting, locally, in a poor map. Post-processing using a map

smoothing algorithm allows us to smoothly interpolate the map in such regions. To make a fair

comparison, we also apply post-processing using RHM to all the methods that we compare to.
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Chapter 4

Analysis

In this section we evaluate the different design choices that we made, and investigate the

properties of our approach. We show that the initial choice of base shapes can indeed be random,

without affecting the algorithm’s performance. We also discuss the considerations of choosing

shape difference operators derived from area-based inner product and conformal inner product.

We explain and demonstrate the advantage of using the Riemannian distance for the area-based

shape differences rather than the Euclidean approximation. Finally we show our algorithm’s

ability to handle collections of different size.

4.1 Resilience to Base Shape Choice

We show that our method is resilient to the choice of base shape, thus we can select it randomly,

without requiring additional input.

In [SBC14] the result strongly depended on the choice of base shape in each collection, i.e.

a bad base shape choice led to poor matching and poor functional maps. Our algorithm, on the

other hand, is able to match corresponding pairs successfully, even when the choice of base

shape is random. With a random choice of base shape in each collection, the chosen shapes (in

most cases) do not represent a matching pair. Yet, the first part of our algorithm, aiming to match

pairs of the two collections, is barely affected. The second part of the algorithm, producing the

functional map, is affected by the choice of base shape, however it benefits from the result of

Table 4.1: Resilience to Base Shape Choice: corresponding base shape pair. Results are averaged

over all corresponding base shape choices.

Result\Data-Set Blend Shapes Sumner Rigged FAUST

Average matching accuracy 99.88% 100% 100% 87.9%

Average normalized alignment error 0.1542 0.1950 0.0566 0.3383

Rate of corresponding base shapes after alignment 40/40 10/10 10/10 86/100
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Table 4.2: Resilience to Base Shape Choice: non-corresponding base shape pair. Results are

averaged over non-corresponding base shape choices.

Result\Data-Set Blend Shapes Sumner Rigged FAUST

Average matching accuracy 99.25% 100% 100% 85.5%

Average normalized alignment error 0.2012 0.3119 0.1481 0.3555

Rate of corresponding base shapes after alignment 39/40 10/10 10/10 85/100

the first part by using the computed matched pairs.

Shape space alignment. To demonstrate the invariance of our approach to the choice of base

shape, we test all possible base shape choices on a few datasets, and compare with the ground

truth. We test both the case that the base shapes correspond, i.e., represent the same pose

(Table 4.1), and the case where the base shapes do not correspond (Table 4.2). For each possible

choice of base shapes, we run the algorithm and measure a few performance indicators. Matching

accuracy represents the percent of shapes that were matched correctly to the corresponding

shape in the second collection, and it is averaged over all choices of base shape pair. The

normalized alignment error, defined in Eq. (3.3), indicates how well the two point clouds are

aligned after applying the rigid transformation. It is also averaged over all experiments. Finally,

as discussed previously, after alignment we choose the pair with the smallest distance as the

new base shape pair. The rate of corresponding base shapes after alignment indicates in how

many cases the chosen base shape pair after alignment indeed represents a corresponding pair.

For the FAUST data set we averaged the result over 10 subset pairs, each subset containing 10

shapes referring to the same person.

Note that for tested data-sets, the choice of base shapes, and whether or not the base

shapes correspond, does not significantly affect the average matching accuracy nor the rate of

corresponding base shapes chosen after alignment. The reason is that the principal components

derived from PCA do not significantly depend on the base shape choice, causing only small

variations in the shape space, that our alignment procedure can handle. Although the average

normalized alignment error is larger for non-corresponding base shapes, the matching accuracy

is hardly affected, meaning that we can still align successfully the two point clouds. These

results also demonstrate that in most cases the new chosen base shape pair is a corresponding

pair.

Inter-map computation. In the second part of the algorithm, it is more important to have

corresponding base shapes. Figure 4.1 shows that the functional map computation has preferable

results for corresponding base shapes, resulting in a less noisy functional map matrix, which is

more similar to the ground truth. This motivates our choice to leverage the alignment results

from the first part of the algorithm, and choose a new pair of base shapes which are more likely
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Corresponding base shapes (1)

Non-corresponding base shapes (2)

Corresponding base shapes map (1) Non-corresponding base shapes map (2)
Figure 4.1: Functional maps and their visualization for corresponding and non-corresponding

base shapes. Corresponding base shapes lead to a higher quality functional map (e.g. arms area).

to match for computation of the functional inter-map.

4.2 Area-based vs. Conformal Shape Differences

The choice of using area-based or conformal shape difference operators depends on the nature

of the data-set. For collections in which the variations between the shapes are area preserving

but not conformal (e.g. the same person in different poses, Figure 4.2), it is beneficial to use

the conformal shape difference operator, as it better captures the variations in such a collection.

Similarly, for collections with conformal variations but not area preserving (e.g. different people

in the same pose, Figure 4.3) we would rather use the area-based shape differences.

Figure 4.4 demonstrates how the choice of shape difference type affects the performance of

the algorithm, in the case of data-sets in which each collection has non-conformal variations

and in the case of non-area-preserving variations. We show the matching accuracy (top) and the

normalized alignment error (bottom left), defined in Eq. (3.3), as a function of the dimension of

the shape space. Note that for non-conformal variations, using the conformal shape difference

operators yields better results, using a lower shape space dimension, and vice versa for the

non-area-preserving case.

Figure 4.4 (bottom, right) shows the cumulative energy, defined as the sum of variances

explained up to a certain dimension by using PCA. We demonstrate that for a collection with

mostly area variations (same pose), the area based shape difference explains the data using

less principal components than the conformal shape difference. For the data-set with the non-

conformal variations, the number of principal components required to explain the data is similar
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Base Shape

Figure 4.2: An example of a shape collection with non-conformal variations (top) and their first

three conformal shape differences’ principal components (bottom). The explained variance of

each component is shown above it. Note that the variations are located around the joints area,

where motion occurs, mainly in the shoulders area (first and second principal components) and

the right knee area (third principal component).

Base Shape

Figure 4.3: An example of a shape collection with non-area-preserving variations (top) and their

first three area based shape differences’ principal components (bottom). The explained variance

of each component is shown above it. In this collection, the variations are located around the

areas where people differ, mostly hips, torso and abdominal area. For example, the second

principal component corresponds to greater abdominal area at the expense of thicker arms (or

vice versa).
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Figure 4.4: Comparison of our results for two collection types, with shape difference operators

based on two different inner products. Note that for a collection with the same person but in

different poses (Figure 4.2), the conformal shape differences show better performance. On the

other hand, for a collection with the same pose of different people (Figure 4.3) the area-based

shape differences perform better. See the text for details.

for conformal and area-based shape differences.

Note that even if the distances between the shape differences are similar for the two collec-

tions, the low-dimensional embedding can be unstable, in the sense that the principal components

are only defined up to sign. Furthermore, even if the shape differences are exactly the same,

if there are two principal components that have a similar explained variance, their order can

be arbitrary. However, as we seek a rigid transformation that matches the two sets (including

orientation-reversing transformations), our method is robust to these instabilities. If, however,

we take a considerably smaller number of dimensions, some principal components that appear

in one collection might not be present in the other. This leads to the non-monotonic behavior of

the performance graphs in Figure 4.4 with respect to the embedding dimension.

4.3 SPD Riemannian Distance vs. Euclidean Distance

Now we explain why it is beneficiary to take advantage of the fact that the area-based shape

difference operators are Symmetric Positive-Definite (SPD) matrices, by using the expression

for the Riemannian distance on this manifold (Eq. (3.1)).

Figure 4.5 shows the distance matrices computed using SPD distance vs. Euclidean distance

(using the same color-bar) for various collections. The difference matrix (absolute value)

between the two distance matrices is shown as well. It is clear that we get different results for

the two distance types. Note that the largest difference between the two matrices is around 15%

of the distance. Therefore, we conclude that Euclidean distance is an approximation since it

does not take into account the manifold curvature. Thus, we would rather use the SPD distance

in order to avoid approximations. It is important to mention that it is easy to compute and does

not increase our algorithm’s timing. Also note that we get different distance matrices for the cat

and lion from Sumner dataset (Figure 4.5a, 4.5b) compared to those in the main paper (Figure

4) since here we use the area-based shape differences rather than the conformal.

Due to the reason that a collection of different people in the same pose (Figure 4.3) has

mainly non area preserving variations, we could test the effect of distance type choice on
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(a) Distance matrices for the cat in Sumner dataset.
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(b) Distance matrices for the lion in Sumner dataset.
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(c) Distance matrices for various people in the same pose from FAUST dataset.

Figure 4.5: Distance matrices computed using SPD Riemannian distance, using Euclidean

distance and their difference (absolute value).

the algorithm’s performance. Figure 4.6 demonstrates the matching accuracy and normalized

alignment error (as in Figure 4.4) for matching collections of various people in the same pose.

The result was averaged over all possible collection combinations (45 in total) and plotted

vs. the shape space dimension. Using SPD distance leads to higher matching accuracy and

lower alignment error. Thus, we can indeed see that using SPD distance gives slightly, however

consistent, better performance than the Euclidean distance approximation.
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Figure 4.6: Matching accuracy and normalized alignment error vs. shape space dimension for

SPD and Euclidean distance for various people in the same pose from FAUST dataset.
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4.4 Collections of different size

Now we treat the case of collections of different size, where some of the shapes in the bigger

collection do not have a match in the smaller collection. Our algorithm naturally handles this

case, since we find a permutation matrix that selects points from the larger collection’s point

cloud such that they align better with the rotated smaller point cloud (see Eq. (3.2)). We analyze

how the excess shapes in the bigger collection affect our results. We split the answer into two

cases.

4.4.1 Small collections

For small collections, e.g. containing five shapes, adding an excess shape can significantly

affect the shape space of the resulting extended collection. This happens since the variations

of the added shape are not always explained by a linear combination of the existing principal

components. Hence, the newly computed principal components are significantly different,

leading to very different shape space embeddings for the two collections, yielding poorer

matching accuracy after aligning the two point clouds. Figure 4.7 (left) shows the matching

accuracy for various small data-sets. Starting from collections of five shapes each, we added

one shape at a time to one of the collections and tested the matching accuracy averaged over all

possible choices of base shapes for the two collections. Finally, the bigger collection had twice

as many shapes as the original. It can indeed be seen that the matching accuracy is significantly

affected and decreases quickly. The notation A,B and C for the Blend Shapes data-set refers

to three different subsets from this data-set. Note that each collection in the FAUST data-set

contains up to ten shapes, thus it is treated as a small collection.

4.4.2 Large collections

In the case of large collections, containing twenty shapes for instance, it is likely that the

variations of the added shapes can be described using a linear combination of the existing

principal components. In this case the shape space is not significantly affected, and adding

shapes is equivalent to adding points to the point cloud without moving the original points.

Figure 4.7 (right) demonstrates this, as the matching accuracy is less affected in this case. Here

we start with original collections of size twenty and add up to twenty more shapes to one of the

collections resulting in a collection which has twice as many shapes as the original. Despite this,

the matching accuracy decreases only to 65− 85%, depending on the data-set. Also note that

due to the linear dimensionality reduction, we do not have a strict limit on the largest collection

size. However, the point cloud alignment timing will be the performance bottle neck for very

large data-sets.
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Figure 4.7: Matching accuracy for collections of different size. Note the considerable effect on

the matching accuracy for small collections (left) in contrast to large collections (right).
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Chapter 5

Experimental Results

In this section we show some results of our algorithm, compare it to the previous shape collection

matching method, and to other automatic correspondence methods. We show that our method

automatically computes high-quality maps, which compare favorably to existing automatic

methods, given even two small collections or short animations, and even for less-than-perfect

matching results.

5.1 Implementation details

Parameters. Our algorithm does not require data-dependent parameter tuning and we fixed

the parameters to k1 = 50 eigenfunctions on the base shape and k2 = 3k1 = 150 eigenfunctions

on the other shape when computing the shape difference operators resulting in 50× 50 matrices.

The matching part has been done with conformal shape differences, unless stated otherwise.

We set β = 0.95 to determine the shape space dimension and α = 0.1 for the Laplacian

commutativity in the energy we minimize (after normalizing both terms to have the same

Frobenius norm). We run the ICP refinement of the functional map until the biggest change in

the functional map matrix elements is smaller than 10−10. We set the number of iterations in

the RHM post-processing to 200, as recommended by the authors.

Timing. Our timings are comparable to other automatic methods for computing correspon-

dences. Implemented with MATLAB, on a desktop machine with an Intel Core i7 @3.4GHz

processor, the first part of the algorithm matches the pairs of the two collections of 10 shapes

each, with shapes of 5K − 8K vertices in 45 seconds. The second part of the algorithm extracts

the point-to-point inter-map in 130 seconds. The RHM post-processing takes 220 seconds on

our machine. For most data-sets, it is possible to use smaller functional map matrices, e.g.

k1 = 30 and k2 = 3k1 = 90 without significantly decreasing the performance and obtaining

both matches and an inter-map in approximately 75 seconds.

Limitations. We assume that the collections will lead to a similar point cloud structure of the

shape space embedding, i.e., the variations within each collection should be similar. We also
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require non-symmetric shape space embeddings to allow unambiguous rigid alignment. For

shape spaces that require a very high dimensional embedding (12 and greater) alignment using

PM-SDP [MDK+16] can be slow.

5.2 Comparison with [SBC14]

The goal of this section is to compare our method and [SBC14] which we drew our inspiration

from. Here we give comparisons of the matching accuracy and functional maps quality obtained

using our algorithm compared to that of [SBC14]. In Appendix A we give additional comparison

with [SBC14] to emphasize the differences in the methods and show the pointwise maps obtained

by them.

5.2.1 Comparison: Matching Corresponding Shapes

In the previous Section, Table 4.1 and Table 4.2 showed our algorithm’s matching accuracy on

four different data-sets, regardless of the base shape choice and demonstrated the robustness of

our algorithm on several data-sets. For the FAUST data-set, it was enough to mistake only two

pairs to decrease the matching accuracy to 80%, since every collection contains ten shapes.

Now we compare our algorithm to the only method known to us having the same goal of

matching corresponding pairs from two collections. We test our algorithm and the method

in [SBC14] on the Blend Shapes data-set with varying collection size. The results appear in

Table 5.1 and show that in contrast to [SBC14], our method does not require large data-sets

for successful matching and we get perfect matching for any collection size. Our results were

averaged over 100 random initial base shapes choices since our algorithm selects a base shape

randomly.

Table 5.1: Blend Shapes data-set: Matching accuracy comparison to [SBC14]

Collection Size\Method SBC14 Ours

20 shapes 35% 99.47%

25 shapes 36% 99.78%

35 shapes 63% 99.54%

40 shapes 90% 99.41%

5.2.2 Functional Map Comparison

Figure 5.1 shows the quality of our functional map compared to that of [SBC14], for the case

of 40 shapes. Note that our map is better, even though the matching accuracy of [SBC14] is

90%. It is clear that using the regularization term of the Laplacian commutativity in Eq. (3.4)

significantly improves the results, allowing us to obtain a functional map very similar to the

ground truth.
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Figure 5.1: Comparing the functional maps obtained using our algorithm and [SBC14] using

function transport (top), and comparison to the ground truth matrix (bottom). Our algorithm

obtains a high-quality functional map, very similar to the ground truth.

5.3 Comparison: Point-to-Point Inter-Map Computation

Now we demonstrate and evaluate the computation of the point-to-point inter-map between

the two base shapes, one from each collection. For the qualitative comparison, we show the

texture on the target mesh we map to and the ground truth, if it exists, of the source mesh

we map from. We compare our method to other automatic methods: BIM [KLF11] and

BCICP [RPWO18]. For all methods, we show the results with and without post-processing

using RHM for map refinement. For the quantitative evaluation we measure the map smoothness

through its conformal and area distortions, and its semantic accuracy, using the distance to the

ground truth correspondence, when given.

5.3.1 Quality Metrics

Conformal distortion. We use the definition given in [HG00, Eq. (3)] for the conformal

distortion of a single triangle fMBS
∈ FMBS

: κ(f) =
σMBS
σNBS

+
σNBS
σMBS

where σMBS
≥ σNBS

are the singular values of the linear transformation which maps fMBS
from MBS to NBS .

We subtract 2 such that the minimal conformal distortion is zero and visualize the result as a

cumulative graph showing the percentage of triangles with less than a certain distortion value.

Area distortion. The area distortion is computed by measuring the distortion in the area

of each triangle caused by the map from MBS to NBS . For each triangle we compute∣∣∣log
(
A(PNBS,MBS

fMBS
)

A(fNBS
)

)∣∣∣ where A(fNBS
) denotes the area of a triangle fNBS

∈ FNBS
and
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A(PNBS ,MBS
fMBS

) the area of that triangle mapped by PNBS ,MBS
, the extracted point-to-point

inter-map. We visualize the result as a cumulative graph showing the percentage of triangles

with less than a certain area distortion value.

Distance from ground truth. When a ground truth map is given, we measure the distance

from the ground truth using the protocol suggested by [KLF11, Section 8.2]. For every mapped

vertex, we measure its geodesic distance from the ground truth location, relative to the square

root of the total area of NBS , and visualize the percent of vertices whose distortion is less than a

given value.

5.3.2 Setup

Choice of pairs. We always compute the map between the automatically computed base

shapes after alignment. Since the initial choice of base shapes is random, the pair with the

smallest distance after alignment may vary, resulting in a different pair of shapes (one from

each collection) that we map between. Therefore, We average the results obtained by running

the algorithm n times, where n equals the (smaller) collection size. For n experiments, we

compute the correspondence for the computed base shape pair, where each base shape pair can

be considered at most once. This procedure gives a set of m ≤ n pairs, on which we run the

other methods and average the results. As shown in Table 4.1 and Table 4.2, in most cases we

indeed get a corresponding base shape pair.

Parameters for comparison methods. For BIM, we use the default parameters (no need to

set them maually). When applying BCICP we use the parameters recommended by the authors

[RPWO18]: k1 = k2 = 50 (the number of eigenfunctions used for each shape), the weight

for the orientation-preserving term was set to 0.1 and we used 10 iterations for the BCICP

refinement step. For the FAUST data-set we set the time-scale parameter for computing the

WKS descriptors to 100 and the skip size for the computed descriptors to 10. For all the other

data-sets, we use the parameters suggested for the non-isometric TOSCA data-set, i.e. the

time-scale parameter for the WKS descriptors was set to 50.

Mesh normalization. While our method does not require all the meshes to have the same

surface area, other methods do, hence we normalized all the meshes to the same area.

5.3.3 Blend Shapes data-set

We use our method to compute the correspondences for the Blend Shapes data-set (using 10

shapes) and the results appear in Figure 5.2. For this data-set, our algorithm did not benefit from

RHM refinement while the other methods did. It is seen both qualitatively and quantitatively

that our method achieves the best performance while the others fail to compute a high-quality
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Figure 5.2: Blend Shapes data-set - qualitative (top) and quantitative (bottom) comparison. Our

method compared to other automatic methods - BIM [KLF11] and BCICP [RPWO18], with

and without final refinement using RHM. Our method yields high-quality maps, while others

suffer from distortions or do not resolve symmetry ambiguities.

map or resolve symmetry ambiguities (BCICP flips the upper part of the head while maintaining

the correct orientation of the bottom part).

5.3.4 FAUST data-set

For the FAUST data-set, we use the ten subsets that represent ten different people as collections

and use all the subset pairs to evaluate our algorithm (45 combinations in total). For the chosen

base shapes in each subset pair we compute the resulting map using the comparison methods.

When RHM is not used, BIM obtains preferable results. However, after the refinement our

method achieves similar conformal and area distortion, yet the smallest distance from the ground

truth (Figure 5.3 (c)). Note, that BIM is only applicable to genus zero shapes, whereas our

method (including the RHM post-processing) is applicable to any mesh topology.

Qualitatively, Figure 5.3 (a) shows that our algorithm refined with RHM obtains the highest

quality map. Note that the feet and hands areas are closer to the ground truth than BIM. On the
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(a) Our algorithm refined with RHM obtains the highest quality map: Note that the feet and hands areas

are closer to the ground truth than BIM. BCICP cannot completely resolve symmetry ambiguity, flipping

the hands.
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(b) Despite imperfections of our results on the hands and feet, our map refined with RHM leads to a

smaller geodesic error.
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(c) Quantitative results.

Figure 5.3: FAUST - qualitative and quantitative comparison: Our method and other automatic

methods - BIM and BCICP, with and without final refinement using RHM.
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other hand, BCICP cannot completely resolve the symmetry ambiguity, flipping the right arm

with the left one, while maintaining the correct orientation for the other parts. In Figure 5.3

(b), despite imperfections of our method on the hands and feet, our map refined with RHM

still obtains the smallest geodesic error. We conjecture that BCICP has difficulties resolving

symmetry ambiguities. In our case, the base shape pairs computed by our algorithm are, in most

cases, corresponding pairs, yielding more symmetric shapes for both the source and the target

than in averaging over all random pairs in this data-set (most of the shapes in this data-set are

extrinsically symmetric). Moreover, BCICP appears to be very sensitive to the parameters of the

WKS descriptors, which need to be tuned for each data-set separately.

5.3.5 Sumner data-set

The Sumner data-set does not have ground truth correspondences, hence we show only conformal

and area distortion as well as a qualitative visualization. For this data-set, after RHM refinement

we get conformal distortion similar to that of BIM and a smaller area distortion. The qualitative

results in Figure 5.4 show that we indeed get high-quality maps. Since every time we run the

algorithm we might get two different shapes that we put in correspondence, we get a different

choice of base shape pair than in Figure 1.1, demonstrating the results on another pair.
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Figure 5.4: Sumner, qualitative and quantitative comparison: Our method and other automatic

methods - BIM and BCICP, with and without final refinement using RHM. Note that we achieve

conformal distortion similar to BIM, yet a better area distortion. The qualitative comparison

indeed shows that our result is preferable.
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5.3.6 Rigged fruit data-set

We acquired this dataset on TurboSquid, and the ground truth map is not available. In this

data-set all the shapes are symmetric, hence, the maps obtained cannot distinguish between

left and right. However, note that BIM also flips the map upside-down, which is fixed using

RHM refinement. In this data-set, when no RHM refinement is applied, our method yields the

best map since it is not as noisy as BCICP and does not flip up and down as BIM. After RHM

refinement good results are obtained for all methods (see figure 5.5).

������

���	 ��� �����

���	������ ��������� �����������

(a) Note that BIM flips the map upside-down, which is fixed using refinement with RHM.
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(b) Quantitative results.

Figure 5.5: Rigged fruit - qualitative and quantitative comparison. Our method and other

automatic methods - BIM and BCICP, with and without final refinement using RHM.
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5.4 Inter-Map Computation using Composition of Maps

We now demonstrate that it is possible to obtain the inter-map from any shape in collection A to

any shape in collection B using the map composition in Eq. 3.5, exploiting the inter-map for the

corresponding base shapes and the given intra-maps. Figure 5.6 shows the case of an inter-map

for non-corresponding shapes. First, we show the case of an inter-map computed directly for the

two shapes (as if they were chosen as base shapes). As explained in section 4.1, this case of

non-corresponding base shapes yields poorer maps as indeed can be seen. Second, we visualize

the map obtained using Eq. 3.5 where the base shapes are corresponding (as in Figure 5.3). In

this case, the computed maps are of high-quality. We also compare to the results obtained using

BIM and BCICP. In all cases maps are visualized after RHM post-processing.

Target Ground Truth Direct Map Ours BIM BCICP

Figure 5.6: Composition of maps. Using map composition we can get a high-quality inter-map

for non-corresponding shapes rather than computing the map directly for those shapes. All

visualized maps include post-processing with RHM. See the text for details.
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5.5 Inter-Map Computation with Low Matching Accuracy

After we showed that the cross collection map computation using our method leads to good

results both qualitatively and quantitatively, we test the resilience of this part of the algorithm

when the matching accuracy, determined in the first part of the algorithm, is low. Using the

ground truth of the matches, we set them manually to obtain the desired accuracy and test

the results of the map computation. The matching accuracy affects the analogies constraints

(Eq. (3.4)), since we use also wrong matches as constraints. We show that our approach can

handle wrong matching in the first phase of the algorithm and still retrieve high-quality maps.

In Figure 5.7 we demonstrate the experiment for FAUST data-set, all the results and

visualizations include RHM refinement. Note that starting from 80% accuracy it is possible to

obtain high-quality maps. In other words, the algorithm can tolerate the wrong matching of two

pairs, when we use collections with ten shapes.

������ ������������ ��� �!""���"# $� �!""���"# %� �!""���"# &� �!""���"#
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Figure 5.7: FAUST - qualitative (top) and quantitative (bottom) comparison for varying matching

accuracy derived from the first part of our algorithm. We manually set the matches to allow

varying accuracy and test the derived map from the second part of the algorithm. Note that

starting from 80% we get high-quality maps. All results include RHM as post-processing
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Figure 5.8: Blend shapes - qualitative (with RHM post-processing, top) and quantitative (without

RHM post-processing, bottom) comparison for varying matching accuracy derived from the

first part of our algorithm. We manually set the matches to allow varying accuracy and test the

derived map from the second part of the algorithm. It is possible to obtain a high-quality refined

map with matching accuracy as low as 40%.

Figure 5.8 shows the same experiment for the Blend Shapes data-set (using 40 shapes).

Here we visualize the maps after RHM refinement, all achieving similar conformal and area

distortion and high-quality maps Figure 5.8 (top). We conclude that in spite of the low matching

accuracy, RHM refinement is able to recover a map very similar to the ground truth. Hence, to

show the differences between different matching accuracies, we plotted the conformal and area

distortion for the results without RHM refinement, Figure 5.8 (bottom). It is seen that for this

data-set high-quality maps can be obtained even when the matching accuracy is as low as 40%.

Since this data-set has more shapes than in FAUST (40 shapes in contrast to 10 in FAUST), we

have more terms in the energy function (Eq. (3.4)) and since the variations within the shapes are

localized to the face region, it is possible to recover the functional map with lower matching

accuracy.

5.6 Inter-Map Computation for Varying Collection Size

We evaluate the computed map depending on the collection size, especially for small collections,

i.e. with collection size as low as 2 or 3. We demonstrate that computing correspondences using

our method is possible for such small collections, allowing us to retrieve high-quality maps

even when only few shapes are given. We tested our algorithm for varying collection size and

examined the map retrieved.

In Figure 5.9 we see that for the Blend Shapes data-set it is possible to get a high-quality

map using any collection size varying from 2 to 40. For the case with 2 shapes, we set the

matches manually since aligning point clouds with two points each has 50% success rate as
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they are necessarily symmetric. Results are shown without RHM refinement. This result means

that we can get the cross collection map when we have only three shapes in each collection, or

two with manual matching, and still get higher-quality map than other methods, with very low

timing, since for smaller collection size the time needed for our algorithm notably decreases.

It is important to mention that matching accuracy remained as high as 100% in all cases of

collection sizes, even for 3 shapes only (except the manual matching for the case with 2 shapes).
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0

20
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60

80

100

Figure 5.9: Blend Shapes - quantitative comparison for varying collection size without RHM

post-processing. Note that we can obtain a high-quality map with collections containing 2

shapes only.

Figure 5.10 shows the same experiment for Sumner data-set. Note that the conformal and

area distortion of the map are not affected when we decrease the number of shapes, neither is the

matching accuracy. Our results include post-processing using RHM. As in the demonstration

for the Blend Shapes data-set, we set the matches manually for the case with 2 shapes in a

collection, to handle the case of symmetric shape space.
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Figure 5.10: Sumner, quantitative comparison, varying collection size. All results include RHM

post-processing. Note that we obtain a high-quality map even for collections with only two

shapes.
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5.7 Regularization Effect

In order to show that at least one analogy is needed, and the functional map using Eq. (3.4) for

the case of 2 shapes in a collection is not recovered solely due to the regularization term, we

demonstrate the quality of the functional map retrieved for varying α, the parameter controlling

the weight of the regularization term, and for varying collection size from the Blend Shapes data-

set. We measure the error of the optimized functional map CNBS ,MBS
(after ICP refinement),

and plot the error as a function of α (Figure 5.11). The error is given by the distance from the

ground truth functional map CGT , namely ‖CNBS ,MBS
− CGT ‖F .

We can conclude that:

• For α = 0 (no regularization), the error is negatively correlated with the collection size:

the larger the collection, the smaller the error. In other words, the more analogies we

have, the higher-quality functional map we can infer (see the numbers on the vertical axis

showing the decreasing error as the collection size increases).

• There exists a range of α, for any collection size, for which we can get the same best-

optimized functional map with the same error, i.e., with good regularization we can

decrease the dependency on the collection size (around 0.1 ≤ α ≤ 0.15).

• For larger α than in the optimal range, optimization is more tolerant as the collection size

increases since more analogies give more information.

• Using no analogies at all, relying on the regularization term only (equivalent to α → ∞),

cannot yield a good functional map. For all the graphs, as α increases the error indeed

converges to the error value with no analogies term (the black horizontal line).

Hence, we deduce that the analogies are indeed required, yet a small number of analogies

is sufficient in order to retrieve a high-quality map, which is advantageous, since less data is

needed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Figure 5.11: Functional map error for varying regularizer weight and several collection sizes.

See the text for details.
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Chapter 6

Correspondence between Two Shapes

In this section, we handle the problem of correspondence between two shapes only, i.e., each

collection has only one shape, and show that our method can yield correspondences without

requiring a whole collection. As previously shown, in order to obtain a pointwise inter-map,

our algorithm requires collections of at least two shapes, since we need at least one analogy to

solve the optimization problem (Eq. (3.4)). However, if only one shape is given we can create a

collection from this shape using the method introduced in [HWAG09] by using modal analysis.

Therefore, we perform pre-processing to the pipeline shown in Figure 1.2 in the following

way: Each of the two given shapes acts as an input to the method proposed in [HWAG09, Sec.

4], where the Hessian of the shape is computed, for which the eigen-vectors corresponding to

non-zero eigen-values act as the modes of the shape. By adding these modes to the given mesh,

we can create a whole new collection out of one shape.

Figure 6.1 demonstrates the collections obtained from a given single shape (left column).

One can notice that if the shapes are not too non-isometric, we obtain similar collections for

which the shape difference operators can be computed and then it is possible to align the two

collections. Note that even though shape (3) is in different pose than (1,2,4,5), the computed

modes are similar and yield collections with similar analogies, such that it is possible to align

them and solve the optimization problem (Eq. (3.4)).

Once we obtained two collections we can apply our algorithm and compute the inter-map

for the two given shapes, acting as base shapes. Notice that the algorithm also matches the

newly composed shapes which is necessary for solving the optimization problem. However,

this matching is hidden from the user and is not returned as an output, since the input was not

comprised of collections.

In order to allow the composed collections to be matched in a way that enables us to compute

an inter-map, we need to assume that the two new shape spaces, derived from the new collections,

can be aligned. In other words, it requires the modes of the two shapes to be similar enough,

though not necessarily in the same order. To obtain such similar modes, we generally need

similar shapes, i.e., neither in too different poses nor too non-isometric.

Figure 6.2 shows our algorithm’s performance on inputs of two shapes only. We show

the pointwise map obtained, with and without RHM refinement. We also show the optimized
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Original ShapeOriginal Shape

(1)

(2)

(3)

(6)

(5)

(4)

(9)

(8)

(10)

(7)

Figure 6.1: Input shapes (left column) and the collections created using their modes by comput-

ing the Hessian matrix as explained in [HWAG09].
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functional map, the corresponding ground truth (if it exists) and an example of function transfer

for better visualization. In most cases, we obtain a high-quality map which can be well refined

by post-processing with RHM.

Note that Figure 6.2:(2) shows an example of a map which is flipped in the upper part, how-

ever, post-processing with RHM fixes it and returns a high-quality consistent map. Figure 6.2:(3)

shows that even if the shapes are not in the same pose we can still get an excellent map since

we get similar modes yielding similar analogies (see Figure 6.1:(1-5)). However, Figure 6.2:(6)

gives an example for which our algorithm fails to obtain a good map. If carefully examined,

it can be seen in Figure 6.1:(9-10) that many shapes do not correspond, hence, aligning and

inferring analogies is now challenging and it is hard to obtain a high-quality map in this case.

We conclude that these two shapes are not isometric enough to apply this method successfully.
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(1)

Target Source Source+RHM Ground Truth  Optimized Ground Truth Function Transfer

(6)

(5)

(4)

(3)

(2)

Functional MapsPointwise Maps

Figure 6.2: Correspondence between two shapes - qualitative results on various data-sets. The

computed pointwise map is shown with and without RHM post-processing, as well as the

optimized and ground truth functional maps (if it exists).
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Chapter 7

Conclusion

In this work, we presented a robust and simple to implement method for matching two shape

collections with high rates of accuracy. Unlike previous approaches, our method can perfectly

handle small and large collections alike, while for the latter we maintain high accuracy rates

even when one of the collections contains excess shapes that do not need to be matched, thus

allowing to handle various noisy sampling of the shape space.

Furthermore, a high-quality inter-map is obtained using only the analogies as the seman-

tic information, allowing our algorithm to serve as a fully-automatic method for computing

correspondences, surpassing other state-of-the-art automatic methods for non-isometric shape

correspondence. As an additional proof of its robustness, we showed that even if not every

shape has a match or matching was imperfect, the second step of the algorithm, computing the

inter-map, is resilient to it. Finally, the variation within the collection can be large, and both

quasi-isometric or non-isometric making our approach applicable to various data-sets.

We believe that our approach can serve as an important new tool in the shape analysis and

correspondence toolbox. Future work and generalizations include using other inner product

metrics to tailor the shape differences for specific applications [CO19], and using better regular-

ization constraints [RPWO19]. Moreover, it might be beneficial to use multiple base shapes, and

to learn the shape differences operators from data. Finally, since the functional map approach is

agnostic to the geometry representation, it can be interesting to apply our approach to settings

where the data has an intrinsic parametric structure allowing to generate many corresponding

instances, e.g. parametric CAD models.
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Appendix A

Additional Comparison with SBC14

A.1 Algorithm Outline Comparison

In the next page, we give an outline of the two methods and emphasize the differences (in bold).

From the comparison one can conclude that:

• Computing the shape irregularity index for all shapes in both collections is computation-

ally costly compared to random base shape choice and recomputing the shape difference

operators using the optimal base shape. Therefore, we decrease the running time without

reducing our algorithm’s performance.

• Non-linear dimensionality reduction is sensitive to the collection size and requires large

collections in order to obtain reasonable results. However, we use linear dimensionality

reduction and are thus resilient to the collection size, enabling the algorithm to handle

small and large collections alike.

• Our alignment method is parameter free in contrast to CPD used in SBC14. Hence, our

method does not require data-set dependent parameters, allowing it to be more robust and

completely automatic.

• Solving the optimization problem without a regularization term leads to poor and

unstable results. While, as previously demonstrated, our methods achieves high quality

and stable inter-maps.

• Recovering a pointwise map (steps 6-7 in our method) was not applicable using [SBC14],

as demonstrated in Section A.2.
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Our Algorithm:

1. Use the input intra-maps to construct

the shape differences between the input

shapes in the same collection.

2. Use the shape differences to construct a

low-dimensional shape space embedding

for both collections:

(a) Choose a base shape randomly.

(b) Compute the shape difference oper-

ator for each shape with respect to

the randomly chosen base shape.

(c) Construct the shape space by em-

bedding the shape difference oper-

ators in a low dimension space by

linear dimensionality reduction us-

ing SPD distance and multidimen-
sional scaling (MDS) [Mea92].

3. Align the two shape spaces using

Procrustes analysis (by convex
semidefinite programming (SDP)
relaxation [MDK+16]) to obtain the

matching pairs and automatically de-
termine an optimal base shape in each
collection.

4. For each collection, recompute the
shape difference operators with re-
spect to the new base shape.

5. Use the matches and the base shapes to

compute a functional inter-map for the

base shape pair by solving an optimiza-

tion problem with an analogies term and

a regularization term.

6. Recover a point-to-point inter-
map from the functional map us-
ing [EBC17].

7. Optional: Refine the map obtained
in (6) using reversible harmonic maps
(RHM) [ESBC19].

SBC14’s Algorithm:

1. Use the input intra-maps to construct

the shape differences between the input

shapes in the same collection.

2. Use the shape differences to construct a

low-dimensional shape space embedding

for both collections:

(a) Choose a base shape using shape
irregularity index.

(b) Compute the shape difference oper-

ator for each shape with respect to

the computed base shape.

(c) Construct the shape space by embed-

ding the shape difference operators

in a low dimension space by non-
linear dimensionality reduction us-

ing diffusion maps.

3. Align the two shape spaces using affine
registration (by coherent point drift
(CPD) to obtain the matching pairs.

4. Use the matches and the base shapes to

compute a functional inter-map for the

base shape pair by solving an optimiza-

tion problem with an analogies term only.
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A.2 Pointwise Map Comparison

Now we would also like to compare the pointwise map can be extracted from the functional

map. Figure A.1 compares the obtained point-to-point map using our method and using SBC14,

with and without RHM refinement on some shapes from FAUST dataset. It can be seen that

SBC14 cannot achieve a fair map, not even as an input for RHM post-processing. Hence, we

conclude that the method of SBC14 lacks the fine tuning needed to obtain comparable pointwise

maps to state-of-the-art methods.

������ ������������ ���	 ���	������
��� 
���������

Figure A.1: FAUST - qualitative comparison with SBC14, with and without final refinement

using RHM.
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לחלוטין. אוטומטי שאינו לפתרון אלה בשיטות המיפוי בעיית פתרון את

את מחשבת וגם צורות אוספי בין שמתאימה לחלוטין אוטומטית שיטה מציעים אנו

בין המיפויים בהינתן השני. באוסף צורה לכל הראשון באוסף צורה כל בין המיפוי

שכן לחישוב יחסית פשוטים כלל בדרך כאמור שהינם אוסף, לאותו השייכות הצורות

הפרשי אופרטורי את מחלצים אנו איזומטריות, צורות בין המיפוי במציאת מדובר

משני אחד לכל צורה״ ״מרחב לבנות מנת על בהם ונעזרים לאוסף המתאימים הצורות

האפשר, ככל נמוך ממימד במרחב לשכן מנסים אנחנו הצורה מרחב את הצורות. אוספי

כך ידי על מכן, לאחר אוסף. אותו בתוך השינויים על המידע רוב את ששומר אך

נמוך, ממימד במרחב נקודות כענן הצורה במרחב האופרטורים לשיכון מתייחסים שאנו

טרנספורמציות בעזרת הנקודות ענני שני בין ביותר הטובה ההתאמה את מחפשים אנו

שיביאו פרמוטציה ומטריצת סיבוב מטריצת מחפשים אנו אחרות, במילים בלבד. קשיחות

אנו אך לפתרון קשה זו בעיה כללי, באופן הנקודות. ענני בין ביותר הטובה להתאמה

בין ההתאמה למעשה, רבה. ביעילות זו בעיה הפותרת חדשנית בשיטה שימוש עושים

לבסוף, האוספים. משני התואמים הצורות זוגות בין ההתאמה את מהווה הנקודות ענני

למצוא שמטרתה אופטימזציה בעיית להגדיר מנת על זו בהתאמה שימוש עושים אנו

בין איכותי מיפוי מתקבל כאשר מסוים. תואם צורות זוג עבור פונקציות בין המיפוי את

האוספים. משני התואמים הזוגות עבור לנקודה מנקודה המיפוי את לשחזר ניתן פונקציות

בין המיפויים את לקבל ניתן אוסף כל בתוך הנתונים והמיפויים זה מיפוי באמצעות כך

המיפויים. הרכבת בעזרת וזאת השני באוסף צורה לכל הראשון באוסף צורה כל

להתמודד יכולה שלנו השיטה צורות, אוספי בין ההתאמות למציאת קיימות לשיטות בניגוד

כתלות פרמטרים של כיוונון דורשת ואינה כאחד, וגדולים קטנים צורות אוספי עם

המיפוי למציאת הקיימות השיטות לרוב בניגוד לכך, מעבר הנתונים. הצורות באוספי

באוסף הצורות בין בשונות שימוש עושה שלנו השיטה איזומטריות, שאינן צורות בין

נוסף קלט דורש אינו ולכן שונים, מאוספים צורות בין המיפוי את לקבל מנת על עצמו

דסקריפטורים. או עניין נקודות כמו

מיפויים ומחשבת במיוחד גבוהים התאמה שיעורי משיגה שלנו שהשיטה מראים אנחנו

משתווה שלנו שהשיטה מדגימים אנו כן כמו איזומטריות. שאינן צורות בין איכותיים

איזומטריות לא צורות בין המיפוי מציאת עבור ביותר העדכניים האוטומטיים לאלגוריתמים

באמצעות לקבל ניתן מסוימים, שבמקרים מדגימים אנו לבסוף, אותם. משיגה ואף

מזוג המורכב קלט עבור אלא אוספים, שני לדרוש מבלי איכותי מיפוי שלנו השיטה

בודדת. צורה מתוך אוטומטי באופן אוסף יצירת באמצעות וזאת בלבד, צורות

iv

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



תקציר

ובגרפיקה גיאומטרי בעיבוד רבים ליישומים רחב מחקרי כבסיס משמשים צורות אוספי

תלת־מימדי מודל של דפורמציות בעזרת למשל להתקבל עשוי צורות אוסף ממוחשבת.

כמו צורות, אוספי שני בהינתן תלת־מימדית. אנימציה של דגימה באמצעות או נתון

התאמה למצוא הצורך עולה לעיתים תואמות, תנוחות במגוון דמויות שתי לדוגמא

בין מידע להעברת לשמש יכולה זו התאמה צורות. של תואמים זוגות בין סמנטית

את לסווג כך ידי ועל המותאמים הזוגות בין תיוגים להעביר ניתן למשל האוספים. שני

וכדומה). ריצה הליכה, שכיבה, (עמידה, התנוחה

מאוספים צורות זוג בין לנקודה מנקודה מיפוי אוטומטי באופן למצוא הוא נוסף אתגר

צורות בין המיפוי מציאת איזומטריות. אינן אלה צורות רבים במקרים כאשר שונים,

למצוא היא המטרה צורות, שתי בהינתן צורות: בניתוח וחשובה עיקרית משימה הינה

נחוצה הצורות בין ההתאמה הצורות. שתי על נקודות בין סמנטית התאמה בעל מיפוי

העברת כגון ממוחשבת בגרפיקה רבות באפליקציות שנפוץ דבר שלהם, משותף לניתוח

ועוד. צורות סיווג סטטיסטי, ניתוח טקסטורה, העברת דפורמציות,

מאפייני פי על עיקריים סוגים לשלושה הצורות בין המיפוי מציאת אתגר את לחלק ניתן

בין והתאמה איזומטריות צורות בין התאמה קשיחות, צורות בין התאמה הצורות:

צורות בין התאמה מציאת סמנטית. מחלקה לאותה ששייכות איזומטריות לא צורות

בעבר לעומק נחקרה והזזה, סיבוב ידי על רק מזו זו הנבדלות צורות בין כלומר קשיחות,

קטנה הינה החופש דרגות שכמות מאחר האחרים המקרים מאשר יותר פשוטה ונחשבת

התאמה הוא השני הסוג לייצוג. קל הצורות בין האפשריות הטרנספורמציות ומרחב

תלת־מימדי אוביקט אותו עבור למשל איזומטריות, כן אך קשיחות שאינן צורות בין

הלא במקרה מאשר יותר קלה זה במקרה ההתאמה מציאת שונות. בתנוחות הנמצא

והוא המיפוי עבור ברור איכות קריטריון ישנו האיזומטרי שבמקרה כיוון איזומטרי,

הצורות שתי כאשר הוא ביותר והמאתגר השלישי הסוג הגאודזיים. המרחקים שימור

הזה במקרה העיקרי האתגר איזומטריות. אינן אך סמנטית מחלקה לאותה שייכות

ההתאמה משימת שלאדם למרות ולכן, טובה התאמה עבור אחת הגדרה שאין הוא

בין מיפוי שמוצא אלגוריתם ועל קשה הינו הבעיה של מדויק מתמטי ניסוח קלה, הינה

מקומי עיוות מדד להפחית וכן סמנטית בצורה הצורות על נקודות בין להתאים הצורות

צורות בין איכותי מיפוי למצוא מנת על נוסף במידע צורך יש רבים, במקרים כלשהו.

הצורות. לשתי דומה סמנטית משמעות בעלות עניין נקודות למשל כמו איזמטריות, לא

שהופך דבר הצורות, על ידני באופן לסמנן יש כאלה עניין נקודות לקבל כדי לפעמים
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חשמל. להנדסת בפקולטה בן־חן, מירלה פרופסור של בהנחייתה בוצע המחקר

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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התואר לקבלת הדרישות של חלקי מילוי לשם

חשמל בהנדסת למדעים מגיסטר
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