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Abstract 
Much effort is invested in generating natural deformations of three-dimensional shapes. Deformation transfer sim-
plifies this process by allowing to infer deformations of a new shape from existing deformations of a similar shape. 
Current deformation transfer methods can be applied only to shapes which are represented as a single component 
manifold mesh, hence their applicability to real-life 3D models is somewhat limited. We propose a novel deforma-
tion transfer method, which can be applied to a variety of shape representations – tet-meshes, polygon soups and 
multiple-component meshes. Our key technique is deformation of the space in which the shape is embedded. We ap-
proximate the given source deformation by a harmonic map using a set of harmonic basis functions. Then, given a 
sparse set of user-selected correspondence points between the source and target shapes, we generate a deformation 
of the target shape which has differential properties similar to those of the source deformation. Our method re-
quires only the solution of linear systems of equations, and hence is very robust and efficient. We demonstrate its 
applicability on a wide range of deformations, for different shape representations.  
 

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry 
and Object Modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism 

 

 

 
1.  Introduction 

Creating a natural deformation of a 3D shape is a difficult 
and time-consuming task. The body of research devoted to 
3D shape deformation is huge, and yet the problem is still 
not considered solved. This problem could be significantly 
alleviated by reusing existing deformations of similar 
shapes to generate new deformations. In their influential 
paper, Sumner and Popovic [SP04] described how to reuse 
deformations using an approach called "deformation trans-
fer" (DT). The setup is as follows: Given a source reference 
shape in some pose, a set of deformed source poses, and a 

target reference shape in a pose similar to the source refer-
ence pose, generate a set of deformed target poses, which 
are "analogous" in some way to the source deformations. 
For example, if we are given a horse as the source refer-
ence pose, keyframes of a gallop animation as deformed 
source poses, and a dog as the target reference shape, the 
output of the deformation transfer are keyframes of a gal-
loping dog. The DT method successfully transfers deforma-
tions, however, it is only applicable to single component 
manifold triangle meshes. As real-life models more than 
often do not fall into this category – for example: multiple-
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component meshes, polygon soups, and tetrahedral volu-
metric meshes, the DT method is somewhat limited.  

Recently, new methods for shape deformation (not de-
formation transfer) have been proposed [JSW05, LLCO08, 
WBCG09, BCWG09, SSP07, BPWG07]. These deform the 
ambient space the shape “lives” in, instead of the shape 
itself. Such methods are very versatile, since they can be 
applied to any 3D shape representation, and are not limited 
to manifold triangular meshes. In this paper we propose to 
combine the two ideas to facilitate spatial deformation 
transfer. This allows us to transfer a deformation between 
various shape representations. For example, we can use a 
skeleton-driven animation as the input deformation, and 
transfer it to a multiple-component model. Hence, our 
method is much more versatile than the original DT ap-
proach.  

The deformation transfer process consists of two basic 
components: 1) Analysis of the source deformation, to 
extract the "essence" of the deformation, and 2) Synthesis 
of a deformation of the target shape using the same "es-
sence", thus mimicking the source deformation. In order to 
transfer the information from the source to the target 
shapes, some sparse correspondence between the two refer-
ence shapes is needed. For example, a foot corresponds to a 
foot, a nose to a nose and so on.  

Given such a correspondence, we propose novel methods 
for the analysis and synthesis components of the deforma-
tion transfer. First, we enclose the source and target refer-
ence shapes with two polyhedral domains - cages. Then, to 
analyze the source deformation, we project the deformation 
onto a linear space of harmonic maps on the source cage. 
We use the harmonic basis functions proposed in the recent 
"Variational Harmonic Maps" (VHM) deformation method 
[BCWG09], and show that many deformations can be ap-
proximated this way with a relatively small error. The main 
advantage of such a representation, is that the differential 
properties of the deformation, such as the Jacobians, can be 
computed analytically and easily transferred to the target 
deformation. Hence, we consider the Jacobians of the map-
ping at the correspondence points to be the "essence" of the 
deformation, and transfer this to the target shape. For the 
synthesis of the target deformation, we use a method simi-
lar to VHM deformation (yet linear), which, in essence, is 
just a reversal of the analysis procedure.  

We demonstrate the applicability of our method by trans-
ferring deformations from different input representations to 
various output representations. We show additionally, that 
for manifold meshes, our method performs comparably to 
the original DT method, while avoiding the need to com-
pute a dense correspondence between the meshes. Further-
more, our method is efficiently implemented on the GPU, 
hence the entire deformation transfer process may be done 
in real-time: the user can manipulate the correspondence 
points to interactively control the result of the deformation 
transfer. Moreover, it is possible to simultaneously deform 
two shapes at interactive rates, by deforming one shape and 
transferring the deformation to the other.   

1.1. Previous work 

Since quite a few shapes are involved in the deformation 
transfer process, some terminology is in order. A deforma-
tion transfer method receives as input a source reference 
pose, a deformed source pose and a target reference pose. 
The output of the deformation transfer is a deformed target 
pose. Typically many deformed source poses are given, 
usually the keyframes of an animation sequence. Deforma-
tion transfer can be applied to each of them independently, 
resulting in keyframes of the target animation sequence. 
See Figure 1 for an illustration. 

 
Figure 1: Terminology of deformation transfer. (top left) 
Source reference pose. (top right) source deformed pose. 
(bottom left) target reference pose. (bottom right) target 
deformed pose – the output of the deformation transfer 
process. 

The deformation transfer problem can be decomposed 
into two independent sub-problems – analyzing the source 
deformation, and synthesizing a new deformation for the 
target shape. The output of the analysis step is a descriptor 
of the deformation, having some desirable invariance prop-
erties. For example, it should be invariant to global transla-
tions and/or rotations of both the reference and deformed 
poses. Once such a descriptor is generated, it is applied to 
the target reference pose to create a new deformation.  

One of the most popular deformation descriptors is the 
so-called deformation gradient. When the deformation is 
given by two triangular meshes with the same (“compati-
ble”) triangle structure, the deformation gradient of a trian-
gle is the unique affine transform which maps the tetrahe-
dron spanned by the source reference triangle and its nor-
mal vector to the tetrahedron spanned by the corresponding 
deformed triangle and its scaled normal. Since, for triangle 
meshes, the deformation function (on the surface) is a 
piecewise linear deformation, mapping triangles to trian-
gles, the deformation gradient is just the (piecewise-
constant) Jacobian of the deformation function. This de-
formation descriptor is invariant to global translations, and 
is widely used for deformation transfer [SP04, ZRKS05, 
XZY*07], shape editing [YZX*04, SA07, BSPG06] and 
shape blending [SZGP05]. However, such a deformation 
descriptor can only be extracted when the source reference 
and deformed poses are given as compatible triangle mesh-
es. Our method can be considered a generalization of this 

Output 
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approach. We approximate the given source deformation 
by a harmonic mapping of 3D space, whose Jacobian has a 
closed form expression. Hence, we can compute the Jaco-
bian of the deformation for any point inside the source 
cage, and transfer it to the target deformation. 

Once the deformation gradient information has been 
computed, the deformation of the target shape can be gen-
erated by applying any shape deformation method which 
takes advantage of these gradients. The most straightfor-
ward way to do this on a triangular mesh, which was em-
ployed in [SP04, ZRKS05, SZGP05, YZX*04], is to solve 
a Poisson problem, i.e. to find a mesh whose gradients 
(relative to the target reference mesh) are as similar as pos-
sible, in the least-squares sense, to the deformation gradi-
ents of the source deformation. To solve this problem, the 
gradients of all the target triangles are required. Since usu-
ally the correspondence given by the user is a sparse corre-
spondence, only a sparse set of gradients can be transferred 
from the source to the target mesh. Hence, in order to per-
form deformation transfer in practice, one of the following 
two methods must be used. Either [SP04] generate a dense 
correspondence from the source to the target reference 
poses, and transfer all the gradients from the source defor-
mation, or [ZRKS05] transfer the gradients only at the 
correspondence points, and then propagate these (i.e. inter-
polate them) to the rest of the target mesh.  

The first method is somewhat problematic, as generating 
a dense correspondence between unrelated meshes is a 
difficult problem in itself. On the other hand, the second 
method cannot be applied directly to spatial deformation 
transfer, as it will require the computation of harmonic 
coordinates on the interior of the shape, which is computa-
tionally expensive. Hence, we opt for a different approach 
altogether. We pose the deformation transfer problem as a 
regular shape deformation problem, where a sparse set of 
orientation constraints are “learned” from the source de-
formation, as opposed to the traditional deformation sce-
nario, where a sparse set of positional constraints are ob-
tained interactively from a user. In fact, from this point of 
view, deformation transfer is even simpler than shape de-
formation, as one of the most difficult challenges in shape 
deformation is to infer orientations from positional con-
straints (which are much more user-friendly than orienta-
tion constraints). In practice, we generate the target defor-
mation by modifying slightly the recently proposed space 
deformation method "Variational Harmonic Maps" (VHM) 
of Ben-Chen et al. [BCWG09]. 

For completeness’ sake, we give a brief overview of the 
VHM method. To apply the VHM deformation to a shape, 
one should supply also a polyhedral cage enclosing the 
shape, and a set of positional and/or Jacobian constraints 
that the deformed shape should satisfy. By solving a non-
linear optimization problem on the cage, the VHM method 
finds a harmonic map which satisfies the constraints, ex-
pressed as a linear combination of harmonic basis func-
tions. Both the Jacobian and Hessian of the deformation 
map can be computed using closed-form expressions. The 
harmonic map is then used to deform the given shape. 

A similar application to deformation transfer is motion 
retargeting - adapting motion capture data to characters 
with different proportions [Gle98]. Although this applica-
tion is somewhat similar to ours, motion retargeting algo-
rithms cannot be applied directly in our setup, where the 
animation is not represented by skeletal movement, rather 
by the raw geometry of the keyframe shapes. 

1.2. Method overview 

The spatial deformation transfer method receives as input a 
source reference pose, a deformed source pose, and a target 
reference pose. The output of the process is a deformed 
target pose, such that the target deformation mimics the 
source deformation. See for example, Figure 1. The first 
step in the process is to generate cages for the source and 
target reference poses. Once the cages are computed, the 
source poses are analyzed, to compute the best approximat-
ing harmonic maps of the deformation. Given a sparse set 
of corresponding landmarks between the source and target 
reference poses, we compute the Jacobian of the source 
deformation at the source landmarks, and transfer them to 
the corresponding target landmarks. Finally, we seek a 
harmonic map of the target cage, which best approximates 
these constraints at the target landmarks, using a variant of 
VHM. The whole process may be user-guided, in the sense 
that the user may interactively modify the corresponding 
landmarks on the source reference shape, until the desired 
result is obtained. 

The rest of the paper is organized as follows. In the next 
Section, we explain how the source deformation is ap-
proximated using a harmonic map, in order to extract the 
deformation gradients. In Section 3, we show how to use 
these gradients to synthesize the target deformation. Sec-
tion 4 presents various deformation transfer examples, and 
comparisons with the original DT method. We conclude 
with a discussion and some future research directions in 
Section 5. 
 
2. Deformation analysis by harmonic projection 

The first step in the deformation transfer process is to ana-
lyze the source deformation. To be as general as possible, 
we assume the input poses are given as a collection of 
points. Hence, S = {p1, p2, ..., pm | pi ∈ R3} is the set of m 
points of the reference source pose, and 

3
1 2{ , ,..., | }m iS p p p p R= ∈% % % % % is the corresponding set of 

points of some deformed source pose. Our goal is to find a 
smooth function f, which maps the reference source pose to 
the deformed pose: f(pi) = ip% . If an analytic description of 
such a function is available, we can compute its Jacobian 
matrices, and use them as our deformation descriptor.  

This analysis can be considered an interpolation prob-
lem, and, as is common in these cases [Kyt95], we try to 
approximate f as a linear combination of a set of basis func-
tions. Inspired by the recent work indicating that harmonic 
functions generate pleasing deformations [JMD*07, 
LLCO08, WBCG09, ZRKS05, WSLG07], we choose as 
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our basis functions the harmonic functions successfully 
used for shape deformation in the VHM method 
[BCWG09]. To compute these functions, the shape should 
be contained in a polyhedral mesh – a cage, which largely 
determines the character of the basis functions. Denote by 
CS = {VS, FS} a cage enclosing the reference source shape 
S, where VS are the vertices, and FS the faces of CS, and by 
Ωs the interior of Cs.  

Let : , 1..S
j S Sh R j aΩ → = , be the VHM harmonic basis 

functions defined in [BCWG09], where aS = |VS| + |FS|. The 
deformation f is defined by its coefficients wj

S on this basis: 

1
( ) ( )

Sa
S S
j j

j
f x w h x

=

=∑  

To project our deformation onto the basis, we must solve 
the following optimization problem: 

            
3

1

2

,..., 1 1 2

min ( )
S

S S
aS

am
S S

Approx j j i i
w w R i j

E w h p p
∈ = =

= −∑ ∑ %           (1)           

 
Figure 2: Reconstruction error of harmonic projection, per 
vertex, as % of the bounding box diagonal, for two sets of 
poses, including 9 cats, and 48 horses. Also shown - the 
reference pose within its cage, and a few representative 
reconstructions (purple), overlayed on the original shape 
(pink). 
This is an over-determined linear least-squares problem, 
having a closed-form solution. However, usually Sa m , 
so it is not immediately clear why such an approximation 
would be good, in the sense that the approximation error 

EApprox will be sufficiently small. To empirically justify the 
use of these basis functions, we have computed the ap-
proximation error (1) for a few sets of reference and de-
formed poses. For each source pose we computed a histo-
gram of the approximation error per vertex from all the 
poses, given by

2
( ) ( )v v vE p f p p= − . Figure 2 shows the 

resulting histograms for two sets of deformations. In addi-
tion, the figure shows a few representative deformed poses, 
overlayed with their "reconstruction" using the basis func-
tions. As is evident from the figure, the error per vertex is 
quite small, with a mean value of 0.1% of the size of the 
bounding box diagonal. In addition, the video accompany-
ing this paper shows a live interaction session, where the 
projected harmonic map mimics a skinning animation, 
demonstrating that such an animation can be accurately 
represented using a harmonic map. 

Once we have successfully approximated the source de-
formation f as a linear combination of harmonic basis func-
tions, the Jacobian of the deformation for any point inside 
the domain ΩS can be computed using the gradients of the 
VHM basis functions (whose expressions are also given in 
[BCWG09]). The Jacobian of the deformation at a point  
p ∈ ΩS is: 

1
( ) ( )

Sa
S S S

j j
j

J p w h p
=

= ∇∑  

where wj
S is a column vector, and ∇hj

S a row vector, both 
of length 3. 

Equipped with the Jacobian of the deformation, we can 
now define our deformation descriptor, which we will later 
transfer to the target pose. Since we can compute the Jaco-
bian at any point inside the domain, we have the freedom to 
choose which Jacobians to transfer. An obvious choice 
would be to densely sample the source domain, and transfer 
as many Jacobians as possible. However, this would re-
quire a dense correspondence between the source and target 
volumes, which is, in itself, a difficult problem.  

Fortunately, transferring Jacobians from the entire vol-
ume of the source shape is not necessarily the best ap-
proach for deformation transfer, as some of this informa-
tion may be misleading. Consider the case where the de-
formation of a bend of a thick bar is transformed onto a 
thin bar. To accommodate the bend, the Jacobians on the 
boundary of the thick bar must include a large scaling 
component, whereas the thin bar can bend using less scal-
ing. This phenomenon was investigated in [LCOG*07]. 
The medial axis of the bars however, will have similar 
Jacobians. Hence, it is reasonable to transfer only the Jaco-
bians on the medial axis of the source pose to the target 
pose. Motivated by the same reasons, the VHM shape de-
formation method requires only the Jacobians on the me-
dial axis of the shape to be rotations, in order to generate an 
As-Rigid-As-Possible deformation. 

To summarize, the deformation analysis stage contains 
the following steps. First, we generate a polyhedral cage 
enclosing the source reference pose CS (we elaborate on the 
cage generation process in Section 4). Then we project the 

Mean = 0.089 
Std = 0.136 
Vertices m = 8,431 
Cage vertices aS = 624 

Mean = 0.130 
Std = 0.236 
Vertices m = 7,207 
Cage vertices aS = 352 
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deformation on the linear subspace of harmonic maps, 
spanned by the VHM basis functions, to obtain the coeffi-
cients wj

S. Finally, we compute the medial axis of the target 
cage, using the skeleton extraction algorithm of Au et al. 
[ATC*08], and sample it. We offer the user this set of 
samples, as potential landmarks to generate the correspon-
dence to the source reference shape. The user selects the 
landmarks he is interested in, {ri

T ∈ ΩT | i = 1..k}, and 
maps them to points on the source reference shape { ri

S ∈ 
ΩS | i = 1..k }. Our deformation descriptor is the Jacobian 
matrices of f at these landmarks on the source shape: JS(ri

S).  

3. Deformation synthesis by harmonic reconstruction 

Once the deformation descriptor has been extracted from 
the source deformation, we can apply it to the target refer-
ence pose. We would like to create a deformation of the 
target reference pose, which interpolates a sparse set of 
Jacobian constraints. Thus, we reverse the analysis process: 
first, we project our deformation descriptor on the gradients 
of the VHM harmonic basis functions on the target cage, to 
find a set of coefficients wj

T. Then, we compute the de-
formed pose as a linear combination of the VHM basis 
functions using these coefficients.  

Let the target reference shape be given as a set of n 
points: T = {q1, q2, ..., qn | qi ∈ R3}, and let CT = {VT, FT} 
be a cage enclosing T with aT = |VT| + |FT|. Given the Jaco-
bians JS(ri

S) at the landmarks, we would like to solve the 
following optimization problem: 

3
1

2

,..., 1 1
min ( ) ( )

T

T T
aT

ak
T T T S S
j j i i

w w R i j F

w h r J r
∈ = =

∇ −∑ ∑  

where : , 1..T
j T Th R j aΩ → = are the VHM harmonic basis 

functions of the target cage. Unlike in the analysis step, 
here Ta k , hence the problem is under-determined. To 
regularize it, we use the same method as in VHM, requir-
ing, in addition, that the magnitude of the Hessian of the 
resulting deformation on a set of sampled points on the 
boundary of the cage be minimized. In addition, since the 
gradients determine the deformation only up to a transla-
tion, we add one of the landmarks as a single positional 
constraint. The optimization problem is now: 

3
1

2

,..., 1 1 1

min ( ) ( ) ( ( ))
T T

T T
aT

T

a ak
T T T S S T T
j j i i j jw w R i j jz CF

w h r J r H w h zλ
∈ = = =∈

∇ − +∑ ∑ ∑∫  (2) 

As the gradients and Hessians of the basis functions hj
T 

have closed-form expressions, given in [BCWG09], solv-
ing this optimization problem for the coefficients wj

T boils 
down to solving a linear system of equations. Once we 
have the coefficients, the deformed target pose is given as a 
linear combination of the harmonic basis functions, using 
these same coefficients: 

1
( )

Ta
T T

i j j i
j

q w h q
=

=∑%  

The synthesis step is thus a variant of the VHM deforma-
tion method: since we have only gradient constraints, we 

can avoid the nonlinear step in VHM whose goal is to learn 
the rotations on the medial axis of the shape, and use a 
simpler (and more efficient) linear solver.  

Figure 3 shows a horse transferred to the model of a dog, 
and the enclosing cages, and corresponding landmarks. The 
accompanying video shows the transfer of a time-periodic 
animation of the galloping horse to the dog.  

The dog model has multiple components, but our space 
deformation method is indifferent to that, and seamlessly 
transforms the deformation.  

 
Figure 3: Transferring the poses of a galloping horse to a 
multiple component robot dog, using 40 corresponding 
landmarks. The reference poses inside their cages, and the 
corresponding landmarks are shown in the leftmost column 

4. Experimental Results 

All the steps of our spatial deformation transfer boil down 
to solving two sets of linear equations – for analyzing the 
source deformation, and for synthesizing the target defor-
mation. We have implemented all the required linear alge-
braic computations, using the Intel MKL parallel library, 
where the multiplication of the large matrices were done on 
the GPU using the off-the-shelf CUDA BLAS library by 
NVIDIA. The user interaction was implemented as a 
Maya™ plug-in.  

To evaluate the performance of our deformation transfer 
method, we have compared it to the original DT method 
[SP04] which is applicable only to manifold meshes. In this 
section, and in the accompanying video, we show the re-
sults of this comparison. In addition, we show the applica-
tion of our method to interactive simultaneous deformation 
of two shapes, and the usefulness of the ability to transfer 
deformations from and to different shape representations.  

First we address some implementation details, which are 
necessary for using our spatial deformation transfer algo-
rithm. 

4.1. Implementation details - Caging 

The input to a surface-based deformation transfer applica-
tion is given by the source and target reference poses, and a 
deformed source pose. In our method, to apply the space 
deformation analysis and synthesis we need to envelope the 
source and target reference shapes with polyhedral cages 
CS and CT respectively.  
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Figure 4: Comparison of our spatial deformation transfer method, with DT [SP04], on a manifold triangular mesh. (top row) 
Source poses. (middle row) Result of DT. (Bottom row) Our result. Left most poses on each row are the reference poses.
Although cage-based deformation methods are quite popu-
lar [JSW05, JMD*07, LLCO08, BCWG09], to the best of 
our knowledge there are no published methods for auto-
matically generating a reasonable cage from an input 
shape.  

The cage generation problem can be posed as follows. 
Given a set of points pi ∈ R3, and a constant integer α, find 
a closed polyhedron C = {V,F}, where V are its vertices, 
and F its faces, which encloses the volume Ω, such that  
|F| < α, pi ∈ Ω for all i, and the volume of Ω is minimal. 
The volume requirement aims at keeping the cage close to 
the outer surface of the shape, as this will generally gener-
ate pleasing deformations. The upper bound on the number 
of faces is necessary, since the complexity of the deforma-
tion depends on the complexity of the cage. For example, a 
cage having a few thousand vertices is prohibitive in con-
junction with existing deformation methods. 

Our cage generation method does not solve the posed 
problem in the general case, but does provide a good heu-
ristic for automatic cage generation. It proceeds as follows: 
1. Points and normals.  Create from the input shape a 

set of points with normal directions which represent 
the shape. If the shape is given as a collection of trian-
gles (polygon soup, multiple component mesh or ma-
nifold mesh), this can be done by sampling the input 
triangles, and assigning to each sample the normal to 
the face it was sampled from. If the input shape is a 
tet-mesh, the same procedure can be done on the outer 
surface of the volume mesh. 

2. Envelope. Create an "envelope" E of the input shape, 
by applying a reconstruction algorithm such as 
[KBH06] to the points and normals found in step 1. 

3. Simplify. Simplify E, within a tolerance ε. 

4. Offset. Compute an offset position for each vertex of 
E, by moving it in the normal direction by step size s. 
The normal direction is computed as the area-
weighted average of the normals of the neighboring 
faces.  

5. Repeat. Repeat steps 2,3,4 until the simplification step 
achieves the required number of faces. 

 
Figure 5: Cage generation for the robot-dog model. Every 
row shows one iteration of the offset-reconstruction-
simplification steps. The bottom right model is the cage 
used for the deformation transfer of Figure 3 

Each time we offset the surface of the cage, the geometry 
of the shape becomes less complex, and it is easier to ap-
proximate it with a small number of faces. The ideal way to 
solve the problem would have been to compute the mini-
mal offset required to approximate the offset surface within 
tolerance ε, with less than α faces. However, this is a diffi-
cult problem and our iterated reconstruc-
tion/simplification/offset method simulates this process 
somewhat. For the cages used in our experiments, a hand-
ful of such iterations were sufficient to generate a decent 
cage.  

Offset Simplify Envelope

Offset Simplify Envelope

Offset Simplify Envelope
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(a)      (b) 

Figure 6: (a) Transferring deformations of a person to a multiple component polar bear. (b) Transferring deformations of a 
pincher to a multiple component bear. In both cases the reference poses are shown inside their cages. 
Figure 5 shows a few steps in the cage generation process, 
as well as the final cage. All of the cages shown in this 
paper, except the person in Figure 6, and the skeleton cat in 
the teaser, were generated this way.  

In some inputs, however, using the same offset for all 
points of the model is not the right way to go. For example, 
the feet of the person in Figure 6 are very close to each 
other, hence a simple offsetting method will create a cage 
with fused feet, which is certain to cause artifacts in the 
resulting deformation. Thus, a better cage generation algo-
rithm should use a varying offset, which might have to be 
user-defined. 

4.2 Deformation Transfer Results 

It is natural to compare the performance of our algorithm to 
that of the original DT algorithm when the source and tar-
get meshes are manifold meshes. We state upfront that 
there are some classes of shapes for which DT’s results will 
be superior to ours. For example, our method generates less 
pleasing results for facial animations. This is because the 
source deformation typically modifies the fine details of the 
surface, and this cannot be approximated well using our 
harmonic basis functions, without using a prohibitively 
large number of vertices for the cage.  

Figure 4 compares the two methods when transferring a 
deformation of a cat to a lion. As is evident in the figure, 
on this manifold mesh our results are comparable to DT. 
Our method, however, does not require a full correspon-
dence between the meshes (as opposed to the DT method), 
and a set of only 40 landmarks suffices to transfer the gra-
dient information from the source to the target meshes.  

In addition to matching landmarks on the source and tar-
get shapes, the user can also create a correspondence be-
tween a line segment on the medial axis of the source shape 
(for example, an edge of the extracted skeleton), and a line 

segment on the target shape. These are then translated to 
point landmarks by sampling both lines. Figure 6 (a) shows 
the results of transferring deformations of a person to a 
multiple component polar bear. The deformation was trans-
ferred using only 20 line segments on the medial axis of the 
shapes, from which 80 corresponding landmarks were 
sampled.  

Figure 6 (b) and the teaser figure show more deformation 
transfers, also generated by matching corresponding line 
segments. Note that the pose of the tail of the reference 
shapes is slightly different in the cat and the skeleton cat. 
This reflects in all the deformed poses, as they are relative 
to the reference pose. This phenomenon is common to all 
deformation transfer methods, including DT.  

Our spatial deformation transfer method requires only 
the solution of linear systems of equations, hence is very 
efficient. As the accompanying video demonstrates, it is 
possible to deform a source shape using any standard de-
formation scheme (such as directly manipulating the verti-
ces, or through a skeleton rig), while simultaneously trans-
ferring the deformation to a target shape at interactive rates. 
To give a feel for the times involved, transforming a de-
formation from the horse to the robot-dog model requires 
12 ms per deformed pose. The accompanying video also 
shows the resulting animations of the skeleton cat and the 
bear models. 

5. Conclusions and discussion 

We have presented a method to extend the basic deforma-
tion transfer (DT) technique, so that it is applicable to a 
wide variety of shape representations, beyond single com-
ponent manifold triangle meshes. We showed how to ana-
lyze a given source deformation by projecting it to a linear 
subspace of harmonic functions, and how to adapt the 
VHM space deformation method to generate the target 
deformation from a sparse set of Jacobian constraints. In 
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addition, we have demonstrated that our method is ex-
tremely efficient, allowing deformation transfer at interac-
tive rates. 

As the original DT method, our approach does not use 
positional constraints (except one for fixing the transla-
tional degree of freedom), hence some artifacts may be 
present in the resulting target deformation. For example, 
feet may not touch the ground. This can be rectified, in a 
somewhat brute-force manner, by adding positional con-
straints to equation (2) – one constraint for each foot, as we 
did for the animations of the cat and the bear shown in the 
accompanying video. However, this might result in arti-
facts in the temporal domain. A better solution would be to 
extend VHM so that the deformation transfer problem is 
solved in the space-time domain, similarly to what has been 
done in [Gle98] for motion retargeting.    

An alternative to spatial deformation transfer by transfer-
ring Jacobians, can be to apply the DT [SP04] method to 
the cages, and then interpolate the deformation to the inte-
rior using some barycentric coordinate scheme. This idea 
was recently proposed in [ZLXP09], where the cages are 
defined as tetrahedral meshes. An interesting direction for 
future work would be to apply this approach in the context 
of deformation with VHM.  

Finally, the VHM basis functions might find application 
in the compression of animation sequences. For example, a 
deformed shape can be represented using the coefficients of 
the VHM basis functions, together with the reconstruction 
errors, if a lossless representation is required. This can 
greatly reduced the cost of storing a large number of de-
formed models constituting the keyframes of an animation 
sequence. 
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