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Information transfer between triangle meshes is of great importance in com-

puter graphics and geometry processing. To facilitate this process, a smooth
and accurate map is typically required between the two meshes. While such

maps can sometimes be computed between nearly-isometric meshes, the

more general case of meshes with diverse geometries remains challenging.

We propose a novel approach for direct map computation between triangle

meshes without mapping to an intermediate domain, which optimizes for

the harmonicity and reversibility of the forward and backward maps. Our

method is general both in the information it can receive as input, e.g. point

landmarks, a dense map or a functional map, and in the diversity of the

geometries to which it can be applied. We demonstrate that our maps exhibit

lower conformal distortion than the state-of-the-art, while succeeding in

correctly mapping key features of the input shapes.
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1 INTRODUCTION
Mapping 3D shapes to one another is a basic task in computer

graphics and geometry processing. Correspondence is needed, for

example, to transfer artist-generated assets such as texture and pose

from one mesh to another [Sumner and Popović 2004], to com-

pute in-between shapes using shape interpolation [Heeren et al.

2012; Von-Tycowicz et al. 2015], and to carry out statistical shape

analysis [Munsell et al. 2008]. In these applications, desirable cor-

respondences satisfy some basic key properties: They should be

smooth to avoid introducing geometric noise during transfer; they

should preserve semantic features to ensure that key features are put

in correspondence; and they should be reversible, namely invariant

to which of the two shapes is chosen as the source.

Many existing approaches to shape mapping focus on generat-

ing maps with low global distortion (e.g. preserving pairwise dis-

tances [Sahillioğlu and Yemez 2011]) at the expense of large local

distortion, which reduces the quality of the correspondence and hin-

ders downstream applications. On the other hand, approaches that

minimize local distortion measures mostly require an intermediate

domain and construct the final map as a composition through this
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domain (e.g. [Aigerman and Lipman 2016]). While such methods

minimize distortion of the maps into the intermediate domain, the

distortion of the composed map can be large. This problem is exacer-

bated when the input shapes have significantly different geometric

features, such as four-legged animals with different dimensions, e.g.

a cat and a giraffe. In this case, the isometric distortion of the optimal

map is expected to be large, and thus minimizing the distortion of

the two maps into an intermediate domain is quite different from

minimizing the distortion of the composition.

We propose a novel approach for computing a smooth and re-

versible map between surfaces that are not isometric to each other,

without requiring an intermediate domain. We incorporate seman-

tic information by starting from some user guidance given in the

form of sparse landmark constraints or a functional correspondence.

Our main contribution is the formulation of an optimization prob-

lem whose objective is to minimize the geodesic Dirichlet energy
of the forward and backward maps, while maximizing their re-

versibility. We compute an approximate solution to this problem

using a high-dimensional Euclidean embedding and an optimiza-

tion technique known as half-quadratic splitting [Geman and Yang

1995]. We demonstrate that our maps have considerably lower local

distortion than those from state-of-the-art methods for the diffi-

cult case of non-isometric deformations. We further show that our

maps are semantically accurate by measuring their adherence to

self-symmetries of the input shapes, their agreement with ground-

truth when the deformation is known, and their compatibility with

human-generated segmentations.

1.1 Related Work
The shape correspondence literature is vast, and we refer the reader

to recent surveys for a thorough review of the state-of-the-art in

geometry-driven [Tam et al. 2013; Van Kaick et al. 2011] and data-

driven [Xu et al. 2016] shape correspondence. We will focus our

related work overview on methods for computing maps between

triangular meshes that can handle shapes that are far from being

related by an isometric deformation. In this realm, we characterize

methods by the type of input they require and the type of output

they generate. We therefore distinguish between vertex-to-vertex
maps that yield a correspondence between the source and target

vertices of the triangular meshes, precisemaps that map every vertex

on the source to a point on the triangulated surface of the target, and
generalized maps that put in correspondence functions or probability

distributions.

Fully-automatic methods. Kim et al. [2011] suggested one of the

first fully automatic methods for non-isometric shape matching,

that consistently generated high-quality outputs on a benchmark of

shapes. This approach, denoted by BIM, generates a precise map as

a blending of conformal maps, with blending weights optimized to
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minimize isometric distortion. While providing excellent results in

many cases, BIM is limited to genus-zero surfaces and can introduce

large distortions for some shapes. Recently, Zheng et al. [2017]

suggested to map between high-genus surfaces with the same genus,

by decomposing the surfaces using a pants decomposition, and then

computing harmonic maps between a set of intermediate cylindrical

domains. This leads to a piecewise harmonic map between the input

surfaces, which is further relaxed using geodesic heat flow. While

this approach can be used without user intervention, if a globally

semantic map is needed then accurate input landmarks are required,

and it is limited to shapes of the same genus. Finally, Lähner et al.

[2017] suggested a method that computes vertex-to-vertex maps

based on a set of matching descriptors and pairwise distances. While

the method is robust to topological changes, it may leave areas

unmapped, and is therefore less appropriate for applications such

as texture transfer.

The functional map approach, introduced by Ovsjanikov et al.

[2012], was originally designed for nearly-isometric shapes but has

since been extended to non-isometric matching [Burghard et al.

2017; Kovnatsky et al. 2015, 2013]. This method generates a gener-

alized map which puts in correspondence the function spaces on

the mapped shapes. Nogneng and Ovsjanikov [2017] recently sug-

gested a method that computes functional maps using fewer input

descriptors by formulating commutativity constraints, and Huang

and Ovsjanikov [2017] suggested to use adjoint functional maps to

improve and analyze correspondences. Using a hybrid approach,

Maron et al. [2016] optimize jointly for a functional map and sparse

correspondences, which are then extended to a dense vertex-to-

vertex map. Finally, Solomon et al. [2016] compute a generalized

map, which puts in correspondence probability distributions on

the input shapes, by minimizing the Gromov–Wasserstein distance

between the shapes.

While generalized maps are beneficial for challenging mapping

problems, such as mapping between shapes of different genus, ex-

tracting a precise map is a necessary post-processing step if the

output map is to be used for transferring high-frequency data such

as textures, normals, or deformations. Furthermore, when the shapes

are geometrically different and the optimal map is not expected to

be isometric, the shape correspondence problem is ill-posed without

additional semantic information. Such information can be given in

the form of landmark constraints or an initial generalized map, from

which a refined dense map can be computed.

Input: landmarks. Parameterization-based approaches compute

bijective smooth maps to a common intermediate domain, and de-

fine precise maps between arbitrary shapes as the composition of

the maps to the common domain. A variety of intermediate do-

mains have been used in the literature, e.g. the plane [Aigerman

et al. 2015], the sphere [Gu et al. 2004], the hyperbolic disk [Shi

et al. 2017] and orbifolds [Aigerman et al. 2017; Aigerman and Lip-

man 2015, 2016; Tsui et al. 2013], to mention a few. These methods

optimize the distortion of the map from the shapes to the target

domain, but the composed map is not guaranteed in general to have

low distortion. Furthermore, mapping through an intermediate do-

main places a topological restriction on the type of mapped shapes,

as they should be topologically equivalent. Alternatively, Panozzo

et al. [2013] compute a direct map between two triangle meshes

without requiring an intermediate domain. Their method computes

on-surface barycentric coordinates with respect to the source land-

marks, and then uses them with respect to the target landmarks to

compute the corresponding point on the target shape. Similar to

our approach, they use a high-dimensional Euclidean embedding

to speed up the computation. Despite excellent results, in some

cases a large number of landmarks is required to compute a correct

correspondence. More recently, Mandad et al. [2017] use landmarks

or extrinsic alignment for initialization and then optimize simul-

taneously for a generalized map and a precise map. We compare

with their approach and demonstrate that our maps achieve better

conformal distortion and adherence to the shape semantics.

Input: generalized maps. Several methods for recovery of vertex-

to-vertex maps from generalized maps have been suggested. Shtern

and Kimmel [2014] suggest a refinement technique that is based

on heat kernel alignment, Rodolà et al. [2015] use a probabilistic

model, and Vestner et al. [2017] solve a linear assignment problem.

In general, vertex-to-vertex map have higher conformal distortion

than precise maps. Alternatively, Ezuz and Ben-Chen [2017] suggest

a pointwise recovery method that generates precise maps using a

smoothness prior, based on a spectral approach. Our method does

not rely on spectral representations, and thus exhibits fewer artifacts

in complex cases.

1.2 Contributions
We present an algorithm for shape correspondence between non-

isometric triangular meshes, that has the following advantages:

• The algorithm is widely applicable, and the resulting maps

are semantic and exhibit low conformal distortion.

• The formulation is simple and efficient to optimize and thus

can be combined with additional energy terms and various

initializations.

• The maps are accurate enough for downstream applications,

such as shape interpolation and quad mesh transfer.

2 BACKGROUND: HARMONIC MAPS AND LOCAL
DISTORTION

SupposeM1,M2 ⊆ R
3
are smooth, compact surfaces with or without

boundary. Given a map ϕ12 : M1 → M2 from one into another, a

natural task is to measure the distortion ofM1 as it is mapped via

ϕ12 onto M2; this distortion measure eventually will serve as an

objective function for optimization problems whose unknown is

the correspondence ϕ12. The basic role of these distortion measures

is to evaluate whether nearby points are mapped to nearby points

under ϕ12, at least differentially, a common proxy for the quality of

the map.

In the theory of differential geometry, a key distortion measure is

theDirichlet energy E[·] (defined below) ofϕ12; minimizers of E[·] are
called harmonic maps. Intuitively, if we think ofM1 as a rubber sheet,

a harmonic map represents an equilibrium position of the sheet after

stretching it overM2 and letting it compress. The Dirichlet energy

and its minimizers find many roles in the geometry processing

literature, most prominently in surface parameterization [Lévy et al.

2002], due to its intuitivemeasurement of distortion and connections

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Reversible Harmonic Maps between Discrete Surfaces • 1:3

to notions of conformality. At the same time, theory and practice of

harmonic mapping become considerably more challenging when

M2 has areas of positive curvature; intuitively these can cause the

rubber sheet to slip or bunch, yielding singularities in gradient flow

procedures designed to uncover harmonic maps.

In this section, we describe the basic construction of the Dirich-

let energy and point out its advantages and flaws in the context

of surface-to-surface correspondence; we also provide basic con-

structions for approximating the Dirichlet energy of a map between

discrete surfaces. In §3, we then propose a modified notion of har-

monicity designed to avoid singularities and asymmetry in the

surface-to-surface correspondence pipeline.

2.1 Smooth Surfaces
Following [Nishikawa 2000; Urakawa 1993], harmonic maps be-

tween smooth surfaces are defined as the critical points of the

Dirichlet energy:

E [ϕ12] :=
1

2

∫
M1

|dϕ12 |
2 dv1, (1)

where dϕ12 is the map differential and dv1 is the volume element

of M1. E[ϕ12] measures the total stretch of M1 after it is warped

ontoM2, as measured by the integrated norm of the Jacobian dϕ12.

Formally, given an orthonormal basis {e1, e2} for TpM1 at p ∈M1,

the integrand can be expanded as

|dϕ12 |
2 =

2∑
i=1

⟨dϕ12(ei ), dϕ12(ei )⟩д2(ϕ12(p)),

where д2 is the metric ofM2.

Existence, uniqueness, and regularity of harmonic maps given

assumptions on the geometry/topology of M1 and M2 as well as

the homotopy class of ϕ12 is a key theme in the twentieth-century

differential geometry literature. A landmark paper by Eells and

Sampson [1964] proves existence of a harmonic map in each homo-

topy class under the assumption thatM2 has non-positive curvature.

The proof technique in this paper is attractive from a computational

perspective: Essentially they start with an arbitrary map in the pre-

scribed homotopy class and use an analog of gradient descent to

decrease the Dirichlet energy.

A key drawback of the Eells and Sampson proof technique from

a computational perspective, however, highlights an issue with

harmonic correspondence in the context of algorithmic mapping

between surfaces. In particular, their gradient descent procedure can

fail when the targetM2 has regions of positive curvature. Roughly,

(a) (b) (c) (d) (e)

Fig. 1. Limitations of the piecewise linear discretization of the Dirichlet
energy. (a) Source M1: a flat disk embedded in R3. (b) Target M2: enneper.
(c) Initial piecewise linear map. (d,e) Final maps that minimize the energies
in Eqs. (3). and Eq. (4), respectively. See the text for details.

this singular behavior is explained by the fact that the objective

|dϕ12 |
2
is minimized globally by dϕ12 ≡ 0, the constant map! This

observation highlights the difference between harmonic mapping

and elastic models like the ones proposed in [Chao et al. 2010;

Sorkine and Alexa 2007], which seek dϕ12 to be close to a rotation

matrix rather than to the zero matrix. We will address this issue

in our “reversible harmonic” formulation by adding the Dirichlet

energy of ϕ−1

12
for the case of diffeomorphic correspondence; this

has the added benefit of making forward maps ϕ12 and reverse maps

ϕ21 critical points of the same objective function.

2.2 Triangle Meshes
For surfaces that are discretized as triangle meshesMi , represented

by their vertex, edge and face sets (Vi , Ei , Fi ), a pointwise vertex

map ϕ12 assigns a point on a face ofM2 to each vertex ofM1. The

extension of the vertex map to the interior of faces ofM1 determines

the corresponding Dirichlet energy.

If the map is assumed to be affine on every face f ∈ F1, then the

Dirichlet energy is given by

E [ϕ12] =
1

2

∑
f ∈F1

|dϕ12 (f ) |
2

2
af , (2)

where dϕ12 (f ) ∈R
2×2

is the unique linear transformation between

f and its image triangle ϕ12(f ), and af is the area of f [Pinkall and

Polthier 1993]. Equivalently, the energy can also be written as:

E [ϕ12] :=
1

4

∑
(u ,v)∈E1

wuv ∥ϕ12 (u) − ϕ12 (v) ∥
2

2
, (3)

where wuv is the cotangent weight of the edge (u,v). This energy
is convex and quadratic in the images of the vertices of M1, and

is therefore straightforward to minimize efficiently when ϕ12 is

unrestricted, e.g. for planar parameterization [Lévy et al. 2002].

When M2 is a non-Euclidean space, ϕ12 should be restricted to

lie on M2, leading to a constrained optimization problem that is

harder to solve. In addition, a more serious issue is the linearity

assumption itself. When ϕ12 does not sample the target surfaceM2

well, the linear extension of ϕ12(V1) can be far fromM2. In this case,

minimizing the Dirichlet energy of the piecewise-affine map can

lead to incorrect results.

Consider for example, as in Figure 1, mapping a diskM1 (a) to an

enneper surfaceM2 (b) with Dirichlet boundary conditions; since the

target has negative curvature, in the smooth case [Eells and Sampson

1964] gradient flow will reach a harmonic map ϕ12 : M1 → M2.

An initial map (c) maps all the interior vertices of M1 to a single

interior vertex onM2, and the boundary of the disk is mapped to the

boundary of the enneper. Minimizing Eq. (3) using gradient descent,

the analog of Eells & Sampson’s heat flow, with the side constraint

that ϕ12(V1) is restricted to lie on M2, leads to a map (d) that is

clearly not smooth. Effectively, Eq. (3) aims to place the image of

every vertex ofM1 in the Euclidean weighted average of the image

of its neighbors. When the affine map samples the target poorly,

this strategy fails to generate an approximation of a smooth map.

Alternatively, Izeki and Nayatani [2005] suggest an intrinsic for-

mulation, the geodesic harmonic energy, which replaces the Eu-

clidean distances in Eq. (3) with the geodesic distances dM2
(·, ·),

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:4 • Danielle Ezuz, Justin Solomon, and Mirela Ben-Chen

as follows:

ED [ϕ12] :=
∑

(u ,v)∈E1

wuv d2

M2

(ϕ12 (u) ,ϕ12 (v)) . (4)

As shown in Figure 1(e), minimizing this energy instead of the

Euclidean one yields a significantly better result at the cost of having

to compute geodesic distances. Motivated by this idea, we propose

to use this energy as the main building block in a shape mapping

algorithm. We reformulate it to allow efficient optimization and

combination with other terms that address the case of positively-

curved target surfacesM2, as described in the following section.

3 REVERSIBLE HARMONIC MAPS
Notation. We represent a triangle meshM by its vertex, edge and

face sets (V, E, F ), respectively, where we denote n = |V|, and its

given embedding byV ∈Rn×3
. We denote scalar functions д :M→R

by a vector of coefficients of piecewise linear hat functions, with

д ∈Rn . The squared l2 norm of a function on the surface is given

by ∥д∥2M = дTAд, where A ∈Rn×n is the diagonal (lumped) mass

matrix of the vertices. The total area of the mesh is denoted by

s = tr(A). The squared gradient norm is given by ∥д∥2W = дTWд,
whereW is the matrix of cotangent weights. Similarly, for matrices

G ∈ Rn×k whose columns are scalar functions, we use the matrix

trace: ∥G∥2M = tr(GTAG), ∥G∥2W = tr(GTWG). When two meshes

are involved we use a subscript, e.g. Ai is the mass matrix ofMi .

3.1 Energy
While the geodesic harmonic energy can be effective, harmonic

maps in general can become degenerate and map large regions

to a single point. Indeed, the map taking all the points on M1 to

a single point on M2 is harmonic. An example of such behavior

is demonstrated in Figure 2. On the top row, the source M1 is a

sphere with a small number of triangles (a), that is mapped to a

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Collapse of a harmonic map. Top row: mapping from a low resolution
sphere (a) to a high resolution sphere, starting from the identity map (b).
The map quickly “slides” to a single hemisphere (c) and then degenerates
(d). Bottom row: the same phenomenon with more complex shapes from
SHREC’07 [Giorgi et al. 2007], where we use a sparse set of landmarks for
initialization and visualization. The final result (h) does not map any points
to the upper part of the wings and to most of the tail.

high-resolution target sphere M2. Even if the initial map is the

ground-truth map (b) between the spheres, during the optimization

the map quickly “slides over” to a single hemisphere of the target

sphere (c), and then degenerates and collapses to a single point

(d). The same phenomenon occurs for complex shapes, as shown

in the bottom row. Here, we initialized a map between two bird

shapes from SHREC’07 [Giorgi et al. 2007] (e,f) using landmarks as

specified in section 4.2. Initially (f), the tips of the wings and tail

are mapped correctly, but again they gradually slide (g) until no

vertices are mapped to most of the target’s wings or tail (h).

Intuitively, in the discrete case, we can think ofM1 as an elastic

fishnet instead of a continuous rubber sheet, stretched overM2 and

allowed to compress. Then, in addition to the usual degeneracies in

the smooth case, the target surface can effectively “slip through” one

of the holes in the net, allowing the map to degenerate to a single

point. To prevent this, we minimize the geodesic harmonic energies

of both the forward and backward maps, together with a reversibil-
ity constraint relating both maps. As we later demonstrate, this

approach is highly effective in generating non-degenerate harmonic

maps.

Smoothness. Given two trianglemeshesM1,M2, andmapsϕ12,ϕ21,

the total harmonic energy of both forward and backward maps is

given by

ED [ϕ12,ϕ21] =
∑

i , j ∈{1,2}
i,j

1

sj
ED

[
ϕi j

]
, (5)

where ED is given in Equation (4).

Reversibility. We define the reversibility energy similarly to [Ezuz

and Ben-Chen 2017; Kovnatsky et al. 2013] as:

ER [ϕ12,ϕ21] =
∑

i , j ∈{1,2}
i,j

1

s2

i

∑
pi ∈Vi

d2

Mi

(
ϕ ji

(
ϕi j (pi )

)
,pi

)
Ai (pi ).

(6)

The reversibility energy prevents the maps from collapsing. In the

smooth case, if the reversibility energy is bounded pointwise, it eas-

ily follows that the maps are close to being injective and surjective,

as we show in the Appendix. For both energies, care is required to

handle correctly meshes of different scales, hence the normalization

by si , the total area ofMi .

Finally, the full energy is given by:

E [ϕ12,ϕ21] = αED [ϕ12,ϕ21] + (1 − α)ER [ϕ12,ϕ21] , (7)

where the parameterα ∈ [0, 1] controls the trade-off between smooth-

ness and reversibility. Note that while in the continuous setting exact

reversibility might be desired, this will not be the case in the discrete

setting described in section 3.2. Thus we enforce reversibility as a

soft constraint controlled by the parameter α .
To demonstrate the effect of the different components of the

energy we compute a map between a disk and a folded disk, using

different values of α . In the initial map all the interior vertices of

the disk are mapped to a single interior vertex of the folded disk,

and the boundary of the source is mapped to the boundary of the

target. During the optimization the mapped boundary vertices are

not constrained to lie on the boundary of the target.
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Fig. 3. Preventing collapse with reversibility. For different α values, we measure the discrete geodesic Dirichlet energy and the sum of relative mapped area
(ideally 2). We visualize some of the results using texture transfer (left), and show the final values as a function of α (right). Note that when α is small the
Dirichlet energy is high, and when α is large the map collapses, as is evident by the zero total area. Finally, taking α = 5 · 10

−4 leads to a good balance
between the energy components.

Figure 3 shows the results, where we visualize the maps using

texture transfer (left), and quantitatively evaluate them using the

discrete geodesic Dirichlet energy from Eq. (4) (center right) as

well as the sum of the total area of the images of the forward and

backward maps (right). The graphs show the final values of these

quantities as a function of the parameter α , where the energy is

normalized with respect to its value in the first iteration.

The figure demonstrates the trade-off that the parameter α con-

trols, e.g. taking α = 0 models reversibility only, leading to a high

Dirichlet energy. On the other hand, taking α =1 models harmonic-

ity only, and leads to a map that collapses the image to a single

point, as is evidenced by the final total area which is zero. In general,

if α is too small, the map has a high Dirichlet energy and thus is

more distorted locally, and if α is too large the map collapses. Taking

α = 5 ·10
−4
, as we did for all the experiments except for Figure 3,

leads to a balance between the harmonic energy and reversibility.

Minimizing the energy in Eq. (7) requires computing the gradient

of the geodesic distances with respect to the forward and backward

maps, as well as tracing vector fields on the surface, which are both

computationally heavy. We therefore apply two approximations to

address these issues.

3.2 Energy approximation
3.2.1 Notation. Any point p ∈M can be represented uniquely

using its barycentric coordinates ωl (p), l ∈ {1, .., 3} with respect to

the face f (p) = (v1,v2,v3) ∈F it lies on. We denote by λ(p) ∈R1×n

the row vector that is zero everywhere except at the vertices of

f (p), where we have λ(p)[vl ] = ωl (p). In addition, we denote the

feasible row set of M , i.e. the set of all possible such vectors, by

P = {λ(p) | p ∈ M}. Finally, the feasible set of all possible precise

maps from M1 to M2 is given by P12 = {P12 ∈ R
n1×n2 | P12(l, :) ∈

P2, ∀l ∈ {1..n1}}, where P(l, :) denotes the l-th row of the matrix P .
Thus, any map ϕ12 can be represented using a matrix P12, by setting

P12(l, :) = λ2(ϕ12(vl )), ∀l ∈ {1..n1}, which, by definition, is in the

feasible set P12. Furthermore, the matrix P12V2 ∈ R
n1×3

represents

the images of the verticesV1 under the map ϕ12.

3.2.2 High-dimensional embedding. As we have seen, if the tar-
get space is Euclidean then the geodesic distances are Euclidean

distances, and the optimization is simple and efficient. Following

similar ideas in the literature [Bronstein et al. 2006], we therefore

suggest to use a high-dimensional Euclidean embedding as a proxy

for fast geodesic distance computation.

Given a meshM , we seek an embedding x : V → Rm , form ≪ n
such that the Euclidean distance ∥x (u) − x (v) ∥ approximates well

the geodesic distance dM (u,v), for all u,v ∈ V . The literature on

such embeddings is quite vast, and we chose to leverage the method

suggested by Panozzo et al. [2013] that relies on multidimensional

scaling [Cox and Cox 2000]. Any other embedding method could be

used as well, as long as the geodesic distances are well approximated.

We tookm = 8 in all our experiments, following Panozzo et al. [2013].

Our goal now is to compute a harmonic map between the high-

dimensional Euclidean embeddings. We denote by X ∈ Rn×m the

matrix whose rows are the embeddings x(v),∀v ∈V . Rewriting the

harmonic and reversibility energies in terms of the high-dimensional

embeddings, and in matrix form, leads to:

E (P12, P21) =
∑

i , j∈{1,2}
i,j

α
1

sj
∥Pi jX j ∥

2

Wi
+ (1−α)

1

s2

i
∥Pi jPjiXi −Xi ∥

2

Mi
.

(8)

Note that the weights in the harmonic energy, given now in matrix

form inWi , remain the same for the high-dimensional embedding,

since the embedding is nearly isometric.

Target Texture Optimized map
Input Embedding 

Optimized map
High Dim. Embedding 

Fig. 4. The importance of the high dimensional embedding. For these shapes,
geodesic and Euclidean distances are significantly different, thus using the
input vertex positions in R3 during the optimization results in a highly
distorted map (center). The high dimensional embedding that approximates
the geodesic distances leads to a better map (right).
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Figure 4 demonstrates the importance of the high dimensional

embedding. For shapes where the geodesic distances are consider-

ably different than Euclidean distances in R3
, e.g., the spring shapes

from SHREC’07 [Giorgi et al. 2007], using the three-dimensional

input Euclidean embedding in the optimization leads to a highly dis-

torted map (center). Specifically, neighboring vertices on the source

shape are mapped to different coils of the target spring, which are

extrinsically close but intrinsically far. On the other hand, by using

the high dimensional embedding, the geodesic Dirichlet energy is

well approximated leading to an improved map (right).

3.2.3 Half quadratic splitting. While Equation (8) can be min-

imized using gradient descent, we found, similarly to [Ezuz and

Ben-Chen 2017], that it is more efficient to use the half quadratic
splitting optimization method [Geman and Yang 1995] (see also

e.g. [Wang et al. 2008; Zoran and Weiss 2011]). We introduce aux-

iliary variables Xi j ∈ R
ni×m

, which estimate the images of the

verticesVi given by Pi jX j . Substituting, the energies are:

ĒD (Xi j ) =
1

sj
∥Xi j ∥

2

Wi
, ĒR (Pi j ,X ji ) =

1

s2

i
∥Pi jX ji − Xi ∥

2

Mi
, (9)

for i, j ∈ {1, 2}, i , j. In addition, we need soft constraints for the

auxiliary variables:

ĒQ (Pi j ,Xi j ) =
1

sisj
∥Xi j − Pi jX j ∥

2

Mi
, (10)

where we again normalize by sisj to retain scale invariance.

The full energy is now:

Ē (P12, P21,X12,X21) =∑
i , j ∈{1,2}

i,j

αĒD (Xi j ) + (1 − α)ĒR (Pi j ,X ji ) + βĒQ (Pi j ,Xi j ), (11)

where β controls the accuracy of the auxiliary variables and func-

tions as a step size. When using the half-quadratic splitting opti-

mization scheme, the update schedule for β is often tailored per

application, with the general guideline of increasing β as the itera-

tions advance [Wang et al. 2008]. In our case, we often initialize the

optimization with a highly degenerate map, e.g. as obtained from

a sparse set of landmarks, and therefore the value of β during the

first iterations should be small enough so that the map can change

significantly. As the iterative solution approaches a local optimum,

β can increase, as less modification is required. The final value of β
should be large enough to ensure Pi j and Xi j correspond. In all of

our experiments, we took β = 5 · 10
−3k where k is the optimization

iteration number for the first 100 iterations, and then kept the value

of β fixed until convergence.

3.3 The optimization problem
Our optimization problem is now given by:

minimize

P12,P21,X12,X21

Ē(P12, P21,X12,X21)

subject to P12 ∈P12, P21 ∈P21,
(12)

where Pi j is the feasible set of precise maps fromMi toMj . Despite

the two approximations that we used, solving this optimization

problem succeeds in decreasing the total discrete Dirichlet energy

from Eq. (4) while preventing the map from collapsing, as is illus-

trated in Figure 5. In addition to the energy, we show the initial map

that was created from landmarks as described in section 4.2, and

the intermediate map at a few iterations.

4 OPTIMIZATION
Our optimization problem has block structure, in the sense that if

some of the variables are kept fixed it becomes a linear least squares

problem. We therefore chose to use block coordinate descent (see

e.g. [Xu and Yin 2013]) as the optimization algorithm.

4.1 Block coordinate descent
In each sub-iteration we solve for one of the matrices Xi j , Pi j , while
keeping the others fixed. Since the energy is quadratic in all the

variables, every sub-iteration involves a relatively simple optimiza-

tion problem, with the only complication arising because of the

non-convex feasible sets Pi j .

Optimizing for Xi j . When P12, P21 are fixed, the optimization

problem is a linear least squares minimization of the form ∥AXi j −

B∥2
2
, with known matrices A and B, where A is sparse, which we

solve using a direct method. The system is highly over-constrained,

as even if Pji degenerates, the system is well-conditioned due to the

term ĒQ , as long as the vertex areas of the meshMi do not vanish.

Optimizing for Pi j . When X12,X21 are fixed, the energy has the

form ∥Pi jA − B∥
2

2
, where A,B are known, with the constraints that

Pi j ∈Pi j . Following [Ezuz and Ben-Chen 2017], the optimization is

done by solving for every row of Pi j separately. Intuitively, we can
think of B as a high-dimensional embedding of the faces ofMj , and

of A as a high-dimensional point cloud. The optimal Pi j projects
each point inA to its closest point on the faces given by B. As shown
in [Ezuz and Ben-Chen 2017], this process is guaranteed to find Pi j
which are globally optimal when Xi j are kept fixed.

Stopping criterion. The alternating descent guarantees that the

energy is reduced at every iteration, since the sub-iterations find a

global optimum of the reduced optimization problems. In practice,

we stopped the optimization when the change of energy was less

than 10
−9
, or after a maximum of N = 200 iterations. In most cases,

we have observed convergence of the energy to high precision even

when early stopping after N iterations was used.

We provide the details of the alternating descent in Algorithm 1.

ALGORITHM 1: Alternating minimization.

Input: Two triangles meshes M1, M2, initial P12, P21, X12, X21

Output: P12, P21

For k = 1 . . . N
For i = 1, 2

j = 3 − i
Pi j ← argmin

P∈Pi j
ĒR (P , X ji ) + ĒQ (P , Xi j )

Xi j ← argmin

X ∈Rni ×m
ĒD (X ) + ĒR (Pji , X ) + ĒQ (Pi j , X )

end
end
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Fig. 5. Optimization of Eq. (12), starting from landmarks. The discrete Dirich-
let energy in Eq. (4) decreases, and the final map, visualized by texture
transfer, is semantic and not distorted locally.

4.2 Initialization
Our method is general and can receive as input various initial data.

Depending on the input, we describe the initialization of the vari-

ables Pi j ,Xi j . Given a pointwise map ϕ12 : V1 → M2 its corre-

sponding matrix representation is given by P12(l, :) = λ2(ϕ12(vl ))
for l ∈ {1, ..,n1}. Similarly, given a matrix representation Pi j ∈ Pi j ,
we have that ϕi j (vl ) = (Pi jVj )(l, :) ∈Mj . Therefore, in the following

refer to Pi j or ϕi j according to which notation is more convenient.

Pointwise map. Given a pointwise map P12 we approximate an

inverse map P21 by taking ϕ21(v2) = argminv ∈V1

∥ϕ12(v) − v2∥.

Then, the initialization of Xi j is Pi jX j .

Functional map. The term functional map [Ovsjanikov et al. 2012]
denotes a map between scalar functions. It is a linear operator

that can be represented using a matrix when scalar functions are

represented in a linear basis. Let Ψi ∈ R
ni×ki

be a matrix whose

columns are basis functions of a subspace of scalar functions onMi ,

where each function is piecewise linear and is defined by values

assigned to vertices. Given a pointwise map that maps vertices

of M1 to points on M2, the corresponding functional map C12 ∈

Rk1×k2
maps functions on M2 to functions on M1, represented in

the reduced basis. Therefore, given two functional maps C12 and

C21, we initialize Xi j = ΨiCi jΨ
†
j X j . Optimizing Pi j does not require

initialization. Figure 9 shows results where functional maps were

used for initialization.

Landmarks. Given r input landmark pairs {(pi ,qi )} where pi ∈
V1,qi ∈V2 and i ∈ {1, .., r }, we first construct a rough initial point-

wise map P12 and then use it to initialize the rest of the variables,

as previously described. We first compute the geodesic Voronoi

diagram onM1 with centers pi , and then set ϕ12(v) = qi , ∀v ∈ Ci ,
where Ci is the geodesic cell corresponding to the center pi . Note
that this initialization is highly degenerate, as all the points onM1

are mapped to the landmarks qi on M2, yet it is enough for our

needs. In Figure 5 initialization using input landmarks is visualized.

4.3 Limitations
Using the projection step when optimizing for Pi j has some limita-

tions. First, as discussed in [Panozzo et al. 2013], such a projection is

not smooth. Furthermore, the closest point on the high-dimensional

embedding of the triangle mesh might not be unique, therefore the

solution of the optimization for Pi j might alternate between two

configurations with the same energy. Thus, while the energy is

guaranteed to converge, we do not have a similar guarantee for the

convergence of the solution. In practice, we have not encountered

a case where these limitations posed a practical problem. In future

work it could be possible to handle the first issue using a Phong

projection, as in [Panozzo et al. 2013], and the second issue using an

additional regularization that penalizes diverting from the current

solution.

Since we optimize for both

harmonicity and reversibility

we cannot guarantee conver-

gence to a smooth harmonic

map; this is likely a fruitful av-

enue for future work. In addi-

tion, our method does not con-

sider extrinsic features such as edges and corners, and hence such

features will not necessarily be mapped to each other. An example is

shown in the inlined figure, where our map between the two folded

disks is smooth, but the edge features do not correspond.

4.4 Timing
The most expensive step in the optimization process is the projec-

tion on a triangle mesh for optimizing Pi j . However, this procedure
is highly parallelizable since the projection of each point is inde-

pendent of the other points. We used CUDA 8 to implement the

projection in parallel, while the rest of the optimization method was

written in MATLAB. On a desktop machine with a TITANX GPU

and an Intel Core i7 processor, 200 optimization iterations of our

method, for shapes with 5K vertices, took around 115 seconds.

5 RESULTS
To validate our method we have compared with a variety of state-

of-the-art mapping techniques, in accordance with the type of input

they can accept. In addition, we show applications to shape interpo-

lation and quad mesh transfer.

5.1 Quality metrics
To evaluate the quality of a map we measure its smoothness through

its conformal distortion and its semantic accuracy, using the dis-

tance to the ground truth, when given. We also use alternative

measures, such as symmetry and compatibility with ground truth

segmentations, when no dense ground truth map is available.

Conformal distortion. We use the definition by Hormann and

Greiner [2000, Eq. (3)] for the conformal distortion of a single trian-

gle f ∈F1: κ(f )=
σ1

σ2

+
σ2

σ1

, where σ1 ≥σ2 are the singular values of

the linear transformation which maps f fromM1 toM2. We subtract

2 so that the minimal conformal distortion is zero and visualize the

result as a cumulative graph showing the percentage of triangles

with less than a certain distortion value.

Distance from ground truth. When a ground truth map is given,

we measure the distance from the ground truth using the protocol

suggested by Kim et al. [2011, Section 8.2]. For every mapped vertex,

we measure its geodesic distance from the ground truth location,
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Fig. 6. Quantitative comparison on the SHREC dataset, measuring, from left to right: conformal distortion, compatibility with symmetries and distance from
ground truth landmarks. Note that we achieve a better conformal distortion, and comparable symmetry geodesic error. Furthermore, note that WA and HOT
do not modify their input landmarks, while our method and VMTP do. Compared to VMTP we achieve a better landmark geodesic error.

relative to the square root of the total area ofM2, and visualize the

percent of vertices whose distortion is less than a given value.

Compatibility with segmentations. For some datasets ground truth

labeled segmentations are available. In this case, for every pair of

shapes and a given map we measure the consistency of the seg-

mentation with respect to the map. This is done by computing the

relative vertex area of vertices that are mapped to a face that belongs

to the same segment as the source vertex.

Compatibility with symmetry. For some datasets a ground truth

map is only known for a subset of the points, yet a full intrinsic

symmetry can be computed for every shape separately. We assume

that a good map should respect the intrinsic symmetries of the

source and target shapes, given by S1, S2, respectively. We therefore

Fig. 7. Qualitative results, from input landmarks. From left to right: target
texture, our method, HOT [Aigerman and Lipman 2016], WA [Panozzo et al.
2013] and VMTP [Mandad et al. 2017]. See the text for details.

use these symmetries as input, and measure the compatibility of

the map ϕ12 with the symmetries, given by the geodesic distance

dM2
(S2(ϕ12(v1)),ϕ12(S1(v1))),∀v1 ∈V1.We visualize the result using

a cumulative graph, similarly to the ground truth error. To compute

the symmetries we use the method by Kim et al. [2011]. We also

manually filtered the results to use only the accurate symmetries.

5.2 Dataset: SHREC, input: landmarks
We use the BIM benchmark [Kim et al. 2011] that provides more

than 200 pairs of highly non-isometric shapes from the SHREC

dataset [Giorgi et al. 2007] with user-verified landmarks. We com-

pare our method with a state of the art parameterization based

method [Aigerman and Lipman 2016] (HOT) and the weighted av-

erages method [Panozzo et al. 2013] (WA). Both receive as input

landmark points, which are not modified during the optimization,

and generate precise maps. In addition we compare to the recent

method by Mandad et al. [2017] (VMTP), that similarly gets as in-

put landmark points, yet can modify them during the optimization.

Since VMTP requires uniform isotropic meshes, we recursively add

edges using the longest edge bisection method to meshes with less

than 10K vertices, before applying VMTP. All the methods we com-

pare with produce precise maps, as vertex-to-vertex maps induce

high local distortion. As input to our method we also use the user

defined landmarks, and extend them to a full initial map as described

in section 4.2. The landmarks are not used after the initialization.

Quantitative results are shown in Figure 6, where we measure

conformal distortion, compatibility with symmetries and distance

from the ground truth landmarks. Note that our method achieves

the best conformal distortion. In addition, the distance from the

ground truth landmarks is also improved when compared to the

other method which modifies them (VMTP). As shown in section 5.3,

the option to modify the input landmarks is valuable when the input

is not completely reliable. In terms of compatibility with symmetry,

our method is comparable with existing techniques, notably achiev-

ing a better ratio of perfect matches with about 15% of the vertices

exactly symmetric for our method, where the next best method has

less than 10% exactly symmetric vertices. On this dataset ground

truth segmentations are also available [Chen et al. 2009; Kaloger-

akis et al. 2010], and measuring the relative mapped area which

is compatible with the segmentations we have HOT: 90.39%, WA:
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Fig. 8. Mapping SHREC quadrupeds by our method, starting from noisy landmarks. Our method is only slightly affected by the noise even when the landmark
modification is severe.

90.35%, VMTP: 81.8%, our method: 89.62%. Therefore, this measure

also demonstrates that our maps are as compatible semantically as

existing techniques, while being considerably more conformal.

Qualitative results are shown in Figure 7, where we have selected

a subset of pairs to visually show the differences between the maps.

In every row we show, from left to right, the target texture, and the

results of our method, HOT, WA and VMTP.

5.3 Dataset: SHREC quadrupeds, input: noisy landmarks
In many cases, the selection of the landmarks by the user has some

variability (see, e.g. [Chen et al. 2012]), and it might be better to treat
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Fig. 9. Qualitative and quantitative comparison starting with a functional
map computed from landmarks. From left to right: target texture, [Ezuz
and Ben-Chen 2017] (DND), our method. Notice the difference at the cup
handle and the legs.

these landmarks as guidelines rather than exact ground truth. Our

approach is compatible with this notion, since our method only uses

the landmarks for initialization, and their final location will, in most

cases, vary from their initial one. To check the sensitivity of our ap-

proach to the landmark locations, we repeated the experiment from

section 5.2 with various landmark modifications. Figure 8 shows the

landmark geodesic error of the output maps when starting from the

noisy landmarks compared to starting from the original landmarks.

We ran the experiment on the “quadrupeds” class (20 pairs) from

the SHREC dataset and did the following modifications: (a) moved

every landmark randomly to a vertex in its 5-ring neighborhood,

(b) switched between the two eyes, or mapped both eyes onM1 to

a single eye on M2, and (c) mapped both feet on M1 to the same

foot onM2. In addition to the error graph we show some example

maps, as well as the input noisy landmarks. As the figure shows,

our results are not sensitive to landmark noise, and even a relatively

severe modification, such as mapping both feet to the same foot,

yields good qualitative and quantitative results.

5.4 Dataset: SHREC two pairs, input: functional map
The functional map [Ovsjanikov et al. 2012] machinery is quite

versatile, and allows to compute generalized maps in a variety of

cases. Our method can also be used to extract a precise pointwise

map from a given functional map. We use the SHREC dataset with

its landmark data from the BIM benchmark [Kim et al. 2011], and

use the landmarks to compute a functional map using the Wave

Kernel Map and the Wave Kernel Signature [Aubry et al. 2011]. Any

other recent method for computing functional maps could be used

as well. We provide the functional map as input to our approach

and the recent map deblurring approach [Ezuz and Ben-Chen 2017]

(DND), which is the only other method that recovers precise maps

from a functional map. Specifically, we used the consistency ex-

tension of DND with α = 0.8. Figure 9 qualitatively visualizes the

difference between the methods for two pairs of shapes. Note the

map improvement on the handle of the cup and the legs of the cow.

We also show graphs of the conformal distortion and ground-truth

error of the landmarks.
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M1 M2

Fig. 10. Qualitative result, caricatures. M2 was generated by deforming M1 [Sela et al. 2015], and the deformation defines a ground truth map. M2 was
remeshed so that the source and target shapes do not have the same connectivity.

5.5 Dataset: caricatures, input: landmarks
One of the advantages of our formulation is its simplicity, that leads

to flexibility in adding additional components to the energy. For

example, in some cases it can be beneficial to add weak landmark

constraints, to encourage feature points to remain in the neighbor-

hood of the input landmarks.

Weak landmark constraints. Given pairs of matching landmarks

pi ∈V1,qi ∈V2, i = 1 . . . r , we add the following term to the energy:

γ
r∑
i=1

A1(pi )∥X12 (pi , :)−X2 (qi ) ∥
2

M2

+A2(qi )∥X21 (qi , :)−X1 (pi ) ∥
2

M1

.

(13)

The value of γ depends on the reliability of the landmarks, if the

landmarks are not accurate then γ should be small. To demonstrate

the effectiveness of this approach, we used as input the Homer

and Max Planck models, and caricatures of these models generated

using the method by Sela et al. [2015]. The caricatures have the

same triangulation as the original shapes. We remesh the caricatures

to avoid bias, and project the original caricature to the remeshed

model to generate the ground truth for validation. As input to all
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Fig. 11. Quantitative measures for the meshes in Figure 10. Note that our
method achieves a considerably better conformal distortion, while main-
taining ground truth error comparable to existing methods.

approaches, we picked 28 and 14 landmarks from the input map

for the homer and Max models respectively. For our algorithm we

added the energy in Equation (13) with γ = 1. The qualitative and

quantitative results are shown in figures 10 and 11, respectively. As

in previous experiments, we achieve considerably better conformal

distortion, with comparable ground truth error.

5.6 Robustness
We test ourmethod on horse shapes from the SHREC’10 dataset [Bron-

stein et al. 2010], which contains various shapes with geometric and

topological noise. The results are shown in the top row of Figure 12,

Target Texture  Noisy Vertex
Positions

Topological Noise
(genus 4)

Sampled
(5% #vertices)

Target Texture Uniform AnisotropicMulti-resolution

Fig. 12. Robustness to noise and sampling. Top row: a shape with various
transformations from SHREC’10 [Bronstein et al. 2010]. Bottom row: the
left shape is mapped to the same geometry with different tessellations.
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Fig. 13. Shape interpolation using our computed correspondence as input for [Heeren et al. 2014].

where we compute a correspondence between the horse in a neu-

tral pose (left) and a noisy pose: (center left) noise is added to the

vertex positions; (center right) topological noise is introduced, e.g.

between the rear feet; and (right) the mesh is sampled to 5% of the

number of vertices. We initialized our method using 19 landmarks

and obtained semantically correct results in all cases. The bottom

row shows our results for different tessellations of a shape of a head,

where one shape has uniform triangles, a second shape has larger

triangles on one half and smaller triangles on the other half, and a

third shape has highly anisotropic triangles. For initialization, we

used the identity map with additional noise. The resulting mapped

texture is smooth and similar for the different tessellations.

5.7 Application: Shape Interpolation
Existing shape interpolation methods require the input shapes to

share the same connectivity, while real data rarely satisfies this re-

quirement. Our mapping can be used to remesh the target surfaceM2

using the image of the vertices ofM1, given by P12V2, and the con-

nectivity ofM1. We used our map between two birds from SHREC

to demonstrate this application, starting from the BIM landmarks

as described in section 5.2. After remeshingM2, as a few faces had

a zero area, we iteratively moved vertices of the degenerate faces to

an average of their 1-ring neighbors until there were no degenerate

faces. We then used the shape interpolation method by Heeren et al.

[2014] to interpolate between the shapes, as shown in Figure 13.

Note that we correctly mapped the wings, head and tail of the birds,

as is evident from the natural interpolation results.

5.8 Application: Quad Mesh Transfer
Finally, we demonstrate a potential application of our correspon-

dence to quad mesh transfer of artist-generated quad meshes to

scanned meshes. In this experiment, we start from a set of 41 land-

mark points, and use weak landmark constraints with γ = 5 · 10
−5
.

Fig. 14. Quadmesh transfer using our computed correspondence. Left: input
quadmesh, right: output quadmesh. Note the preservation of the prominent
edge flows in the quad mesh, such as the fingernails and knuckles.

We choose to have a larger number of landmarks in this example to

preserve the fine features such as fingernails and joints. The results

are shown in Figure 14, with two views of the input and output

quad meshes on the left and right, respectively. Note, that the edge

flow of the output quad mesh closely follows the features of the

hand, and the special structures in the input, such as the fingernails

and knuckles, are nicely preserved in the output mesh. Such a high

quality transfer can only be achieved if the computed map has a low

conformal distortion, which leads to well preserved quad shapes.

6 CONCLUSION
We have suggested a novel correspondence method between non-

isometric shapes, which considerably improves conformal distortion

over existing techniques while preserving semantic features. Our

approach is based on an alternating minimization of a quadratic

energy, which is efficient, easy to implement, and flexible. In addition

to demonstrating effectiveness on various benchmarks, we have

shown applications to quad mesh transfer and shape interpolation.

Beyond its current utility, our formulation can serve as a frame-

work for more involved energies on the differential of the map. For

example, one can consider various metrics, such as non-isotropic,

higher order, sparsity based and data-driven. We hope that our ap-

proach can be a stepping stone to generalizing the large body of

literature on planar shape parameterization to the more general

setting of shape correspondence.
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Appendix A. Reversibility

Proposition 1. Let (M1,д1), (M2,д2) be two smooth compact Rie-
mannian surfaces, with geodesic distance functions dMi (·, ·) given by
the metrics дi , respectively, and let ϕ12 :M1→M2, ϕ21 :M2→M1 be
smooth maps. If there exists ϵ ≥ 0 such that:

dM1
(p1,ϕ21 (ϕ12 (p1))) ≤ ϵ, ∀p1 ∈ M1,

then:

(1) ϕ12 (p1) = ϕ12 (q1) ⇒ dM1
(p1,q1) ≤ 2ϵ, ∀p1,q1 ∈M1.

(2) ∀p1 ∈M1 ∃p2 ∈M2 s.t. dM1
(p1,ϕ21 (p2)) ≤ ϵ .

As a corollary of Proposition 1 we have that if the reversibility

energy defined in Equation (6) is zero, then the maps ϕ12,ϕ21 are

both injective and surjective.
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Proof. Let p1,q1 ∈M1, and set p2=ϕ12 (p1) ,q2=ϕ12 (q1). Further,

set p̂1=ϕ21 (p2), and q̂1=ϕ21 (q2).

(1) From the triangle inequality we have that dM1
(p1,q1) ≤

dM1
(p1, q̂1) + dM1

(q̂1,q1). From the assumption (1) we have

thatp2 = q2 and therefore p̂1=q̂1. Thus, we havedM1
(p1, q̂1)=

dM1
(p1, p̂1)≤ϵ and dM1

(q̂1,q1)≤ϵ , which gives the required

result.

(2) This follows trivially from the assumption of the Proposition

if we set p2 = ϕ12(p1).
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