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1 PROOFS REGARDING ANALYTICAL
SOLUTIONS (SECTION 3.1)

In this section we justify the formulas for the solutions to the

problems in Section 3.1. Essential to these computations is the

obstacle problem. For flat geometries or for general𝑀 but with 𝛼

sufficiently small, the solution to problem (3) is the same as the

solution to the obstacle problem with obstacle given by 𝑑 (𝑥, 𝐸). The
obstacle problem in this case takes the form

Minimize𝑢 𝛼E(𝑢) −
∫
𝑀
𝑢 (𝑥) dVol(𝑥)

subject to 𝑢 (𝑥) ≤ 𝑑 (𝑥, 𝐸) for all 𝑥 ∈ 𝑀. (S1)

The equivalence between this problem and problem (3) is a classical

fact in the casewhere𝑀 is an open domain ofR𝑛 and 𝐸 = 𝜕𝑀 , in this

classical setting problem (3) is known as the elastic-plastic torsion

problems. The equivalence in the situation 𝑀 is a Riemannian

manifold is a more recent result and can be found in [Générau et

al. 2022]. In the general Riemannian case the equivalence between

problem (3) and the obstacle problem might not hold for all values

of 𝛼 , but it will hold for all 𝛼 smaller than some 𝛼0 = 𝛼0 (𝑀).

1.1 Analytical Solution for the Circle
We now prove the formula for the solution to the minimization

problem in the case of𝑀 = S1 (Section 3.1). Recall that in Section

3.1 we have identified S1 with the real numbers modulo 2𝜋 .
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We claimed the solution where the source point is at 𝑥 = 0 is

given by the formula

𝑢𝛼 (𝑥) =

𝑥 if 0 ≤ 𝑥 ≤ 𝐿

𝜋 − 1

2
𝛼 − 1

2𝛼 (𝑥 − 𝜋)2 if 𝐿 ≤ 𝑥 ≤ 2𝜋 − 𝐿
2𝜋 − 𝑥 if 𝑥 ≥ 𝐿

(5)

(recall 𝑥 is the unique representative of 𝑥 in the interval [0, 2𝜋)
modulo 2𝜋 ), where 𝐿(𝛼) is given by

𝐿(𝛼) = (𝜋 − 𝛼)+ . (6)

We are going to show the function 𝑢𝛼 is a solution to the obstacle

problem (S1), which in this case reduces to

Minimize𝑢 𝛼
∫
2𝜋

0
|𝑢 ′ |2 𝑑𝑥 −

∫
2𝜋

0
𝑢 (𝑥) 𝑑𝑥

subject to 𝑢 (𝑥) ≤ 𝑑 (𝑥, 0) for all 𝑥 ∈ [0, 2𝜋]
(S2)

The function 𝑑 (𝑥, 0) for 𝑥 ∈ [0, 2𝜋] is equal to
𝑑 (𝑥, 0) = min{|𝑥 |, |𝑥 − 2𝜋 |} = 𝜋 − |𝑥 − 𝜋 |.

The classical theory for the obstacle problem (see [Petrosyan et al.

2012]) says that if a function 𝑢 is of class 𝐶1,1
in the entire domain

(i.e. its gradient is Lipschitz continuous), is of class𝐶2
in the interior

of {𝑢 < 𝑑 (𝑥, 0)}, and solves

𝛼𝑢 ′′ + 1 ≥ 0 in the sense of distributions,

𝛼𝑢 ′′ + 1 = 0 in the interior of {𝑢 < 𝑑 (𝑥, 0)},
then that function 𝑢 will be the solution to the obstacle problem

(S2). Let us verify this in our current example. First, by direct com-

putation we can see 𝑢 has a continuous derivative in (0, 2𝜋), and

𝑢 ′(𝑥) =


1 if 0 ≤ 𝑥 ≤ 𝐿

− 1

𝛼 (𝑥 − 𝜋) if 𝐿 ≤ 𝑥 ≤ 2𝜋 − 𝐿
−1 if 𝑥 ≥ 𝐿

(S3)

We emphasize this function is continuous even at 𝑥 = 𝐿, 2𝜋 − 𝐿.
Next, this function is twice differentiable away from 𝑥 = 𝐿, 2𝜋 − 𝐿
and in particular it is twice differentiable in the set {𝑢 < 𝑑 (𝑥, 0)} =
(𝐿, 2𝜋 − 𝐿). We have

𝑢 ′′(𝑥) =


0 if 0 ≤ 𝑥 < 𝐿

− 1

𝛼 if 𝐿 < 𝑥 < 2𝜋 − 𝐿
0 if 𝑥 > 𝐿

(S4)

This shows that 𝛼𝑢 ′′ + 1 = 0 in {𝑢 < 𝑑 (𝑥, 0)}. Lastly, since 𝑢 is

differentiable everywhere this means that as a measure the func-

tion 𝑢 ′′ is equal to −(1/𝛼)𝜒 (𝐿,2𝜋−𝐿) (𝑥), 𝜒 denoting the indicator
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function. It follows that 𝛼𝑢 ′′ + 1 ≥ 0 in the sense of distributions.

This proves that 𝑢 is indeed the solution to the obstacle problem,

and in turn, of problem (3) in the case𝑀 = S1 and 𝐸 = {0}.
That is, the function 𝑢𝛼 is of class 𝐶2

away from 𝑥 = 𝐿, 2𝜋 − 𝐿
and 𝑢 ′′𝛼 is continuous everywhere except at 𝐿, 2𝜋 − 𝐿. From here

follows that 𝛼𝑢 ′′𝛼 + 1 is well defined as a measure, and that always

≥ 0 and is exactly zero in the interval (𝐿, 2𝜋 − 𝐿). This shows that
𝑢𝛼 solves

min{𝛼𝑢 ′′𝛼 + 1, (𝜋 − |𝑥 − 𝜋 |) − 𝑢𝛼 } = 0.

Lastly, we prove the function 𝑢𝛼 (𝑥,𝑦) is indeed a metric.

1.2 Proof that 𝑢𝛼 (𝑥,𝑦) is a metric in S1

By definition, we have𝑢𝛼 (𝑥,𝑦) = 𝑢𝛼 (𝑥 −𝑦) where𝑢𝛼 (𝑥) is as in (5).
From here follows that 𝑢𝛼 (𝑥,𝑦) ≥ 0 for all 𝑥,𝑦, since the function

in (5) is non-negative. Moreover, the function in (5) only vanishes

at 𝑥 equal to an integer multiple of 2𝜋 (since in that case 𝑥 = 0, per

the definition of 𝑥 ), therefore 𝑢𝛼 (𝑥,𝑦) = 0 only if 𝑥 −𝑦 is a multiple

of 2𝜋 , i.e. only if 𝑥 and 𝑦 correspond to the same point in S1.
To prove symmetry, simply observe that in (5) we have 𝑢𝛼 (𝑥) =

𝑢𝛼 (−𝑥), so 𝑢𝛼 (𝑥 − 𝑦) = 𝑢𝛼 (𝑦 − 𝑥).
It remains to show 𝑢𝛼 (𝑥,𝑦) satisfies the triangle inequality. That

is, we have to prove that for any 𝑥,𝑦, 𝑧 we have

𝑢𝛼 (𝑥 − 𝑦) ≤ 𝑢𝛼 (𝑥 − 𝑧) + 𝑢𝛼 (𝑧 − 𝑦) .
By translation invariance (i.e. by symmetry) we may assume with-

out loss of generality that 𝑧 = 0. Then, all we have to prove is that

for all 𝑥,𝑦 we have

𝑢𝛼 (𝑥 − 𝑦) ≤ 𝑢𝛼 (𝑥) + 𝑢𝛼 (−𝑦).
Now, fix 𝑦 and consider the function

𝑣 (𝑥) := 𝑢𝛼 (𝑥 − 𝑦) − 𝑢𝛼 (−𝑦).
What we want to prove amounts to the inequality 𝑣 (𝑥) ≤ 𝑢𝛼 (𝑥).
The function 𝑣 (𝑥) satisfies the inequality

𝑣 (𝑥) ≤ 𝑑 (𝑥, 0), for all 𝑥,

as well as the differential inequality

𝛼𝑣 ′′ + 1 ≥ 0.

One well known characterization of the function 𝑢𝛼 (𝑥) is that it is
the largest function having these two properties. In this case we

conclude that 𝑢𝛼 (𝑥) ≥ 𝑣 (𝑥), and the triangle inequality is proved.

1.3 Analytical Solution for the Disk
To illustrate how our method handles other choices for the source

set 𝐸, we take the flat 2D disk and consider the regularized distance

to the boundary of the disk.

Using polar coordinates, we take 𝐸 = {(𝑟, 𝜃 ) |𝑟 = 𝑅}, and mini-

mize

𝛼

2

∫ 𝑅

0

∫
2𝜋

0

|∇𝑢 (𝑟, 𝜃 ) |2 𝑑𝜃𝑑𝑟 −
∫ 𝑅

0

∫
2𝜋

0

𝑢 (𝑟, 𝜃 )𝑟 𝑑𝜃𝑑𝑟

with the constraints

𝑢 (𝑅, 𝜃 ) ≤ 0 for all 𝜃 ∈ [0, 2𝜋], and
|∇𝑢 (𝑟, 𝜃 ) | ≤ 1 for all 𝑟 ∈ [0, 𝑅), 𝜃 ∈ [0, 2𝜋] .

In this case, the solution is:

Figure 1: The analytical solution for the regularized geodesic
distance using the Dirichlet regularizer on the disk (top).
We also display the gradient norm, |∇𝑢 | (bottom). Note the
different smoothing regions, whose width depends on 𝛼 .

𝑢𝛼 (𝑥) =
{

− 1

4𝛼 |𝑥 |
2 + 𝑅 − 𝛼 if |𝑥 | ≤ 2𝛼

𝑅 − |𝑥 | if 2𝛼 < |𝑥 | ≤ 𝑅
(S5)

To prove this formula, we proceed similarly to the case of S1.
This function is of class 𝐶1,1

, first note that its gradient is given by

∇𝑢𝛼 (𝑥) =
{

− 1

2𝛼 𝑥 if |𝑥 | ≤ 2𝛼

− 𝑥
|𝑥 | if 2𝛼 < |𝑥 | ≤ 𝑅

and this vector-valued function is continuous across |𝑥 | = 2𝛼 (in

fact, it is Lipscthiz continuous). Moreover, for the Laplacian of 𝑢𝛼
we have

Δ𝑢𝛼 (𝑥) =
{

− 1

𝛼 if |𝑥 | ≤ 2𝛼

− 1

|𝑥 | if 2𝛼 < |𝑥 | ≤ 𝑅

Accordingly, 𝛼Δ𝑢𝛼 + 1 ≥ 0 everywhere in the disk {|𝑥 | < 𝑅} and
𝛼Δ𝑢𝛼 + 1 = 0 exactly when 𝑢𝛼 < 𝑑 (𝑥, 𝐸) = 𝑅 − |𝑥 |. From here we

conclude that the function 𝑢𝛼 given by (S5) is the solution.

Figure 1 shows the behavior of the function on the disk. Observe

that as in the case of the circle, the solution has two regimes, one

where it matches the distance function exactly, and one where it

solves Poisson’s equation Δ𝑢 = −1/𝛼 . In this case, this results in

the cone singularity being replaced by a concave quadratic function

that is differentiable and only has a discontinuity in its second

derivative.

2 EXISTENCE AND UNIQUENESS OF THE
MINIMIZER (SECTION 3)

In our results,𝑀 is a compact 𝐶∞
submanifold of 𝑁 -dimensional

Euclidean spaceR𝑁 , fromwhere it inherits its Riemannian structure.

The function 𝐹 (𝜉, 𝑥), 𝐹 : R𝑁 × R𝑁 → R is assumed of class 𝐶1
in

(𝜉, 𝑥). We make two further structural assumptions on 𝐹 :

1) There are 𝑝 > 1 and 𝑐0,𝐶0 positive such that

𝑐0 |𝜉 |𝑝 ≤ 𝐹 (𝜉, 𝑥) ≤ 𝐶0 |𝜉 |𝑝 , ∀ 𝑥, 𝜉 ∈ R𝑁

2) The function 𝐹 is strictly convex in the first argument. This is

meant in the following sense: given vectors 𝜉1 ≠ 𝜉2 and 𝑠 ∈ (0, 1)
then we have the strict inequality for all 𝑥

𝐹 ((1 − 𝑠)𝜉1 + 𝑠𝜉2, 𝑥) < (1 − 𝑠)𝐹 (𝜉1, 𝑥) + 𝑠𝐹 (𝜉2, 𝑥) .
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From these assumptions follows in particular that 𝐹 (𝜉, 𝑥) ≥ 0 for

all 𝜉 and 𝑥 , and 𝐹 (𝜉, 𝑥) = 0 only if 𝜉 = 0. Observe that these

assumptions include all 𝐹 ’s of the forms

𝐹 (𝜉, 𝑥) = |𝐴(𝑥)𝜉 |𝑝

where 𝑝 > 1 and 𝐴(𝑥) is a smooth positive definite matrix whose

eigenvalues are uniformly bounded away from zero and infinity.

Now we prove the existence and uniqueness for the general min-

imization problem. The problem (see problem (3)) is a constrained

minimization problem in the Sobolev space𝑊 1,𝑝 (𝑀).

Minimize𝑢 𝛼
∫
𝑀
𝐹 (∇𝑢, 𝑥) dVol(𝑥) −

∫
𝑀
𝑢 dVol(𝑥)

subject to 𝑢 ∈𝑊 1,𝑝 (𝑀)
|∇𝑢 (𝑥) | ≤ 1 for all 𝑥 ∈ 𝑀 \ 𝐸
𝑢 (𝑥) ≤ 0 for all 𝑥 ∈ 𝐸.

(3)

The space𝑊 1,𝑝 (𝑀) (1 ≤ 𝑝 < ∞) is defined as follows

𝑊 1,𝑝 (𝑀) :=
{
𝑢 : 𝑀 → R | ∇𝑢 exists as a distribution∫

𝑀
|𝑢 |𝑝 + |∇𝑢 |𝑝 𝑑𝑥 < ∞

}
Here, 𝐸 ⊂ 𝑀 is a non-empty closed subset of𝑀 . For us, the case

of chief interest is when 𝐸 = {𝑥0} for a given 𝑥0 ∈ 𝑀 .

In what follows, we will denote the objective functional by 𝐽𝛼 ,

𝐽𝛼 (𝑢) := 𝛼
∫
𝑀

𝐹 (∇𝑢, 𝑥) dVol(𝑥) −
∫
𝑀

𝑢 dVol(𝑥)

We now prove the existence and uniqueness first theorem stated

in Section 3.

Theorem 3.1. There is a unique minimizer for problem (3).

Proof. Consider a minimizing sequence {𝑢𝑘 }𝑘 . First, we claim
that without loss of generality, we can assume that for each 𝑘 ,

max

𝑀
𝑢𝑘 ≥ 0. (S7)

Indeed, if for some 𝑘0 we had 𝑢𝑘0 is non-positive in all of 𝑀 , it

would follow that

𝐽𝛼 (𝑢𝑘0 ) ≥ 0 = 𝐽𝛼 (0) .
Thus the minimizing sequence will remain a minimizing sequence

if we replace every non-positive element of the sequence with the

zero function.

Henceforth, we assume our sequence 𝑢𝑘 is such that (S7) holds

for all 𝑘 . In this case, as the 𝑢𝑘 are all 1-Lipschitz, it follows that

𝑢𝑘 (𝑥) ≥ max

𝑀
𝑢𝑘 (𝑥) − diam(𝑀) ≥ −diam(𝑀) for all 𝑘.

A similar argument—using thatmax𝑥 ∈𝐸 𝑢𝑘 (𝑥) ≤ 0 for all𝑘—provides

the inequality in the opposite direction. In conclusion,

∥𝑢𝑘 ∥𝐿∞ (𝑀) ≤ diam(𝑀) for all 𝑘.

It follows that the sequence {𝑢𝑘 }𝑘 is 1-Lipschitz and uniformly

bounded. Then, by the Arzela-Ascoli theorem there is a subsequence

𝑢 ′
𝑘
and a function 𝑢∗ in𝑀 such that

∥𝑢 ′
𝑘
− 𝑢∗∥𝐿∞ (𝑀) → 0 as 𝑘 → ∞.

Moreover, without loss of generality (we can always pass to another

subsequence where this holds)) we also have

∇𝑢 ′
𝑘
→ ∇𝑢∗ in weak-𝐿𝑝 (𝑀).

In particular,

lim

𝑘

∫
𝑀

𝑢 ′
𝑘
(𝑥) dVol(𝑥) =

∫
𝑀

𝑢∗ (𝑥) dVol(𝑥).

In this case, due to the weak convergence of ∇𝑢 ′
𝑘
, as well as the

convexity of 𝐹 in the first argument and its two-sided pointwise

bounds, we conclude that

lim inf

𝑘

∫
𝑀

𝐹 (∇𝑢 ′
𝑘
, 𝑥)dVol(𝑥) ≥

∫
𝑀

𝐹 (∇𝑢∗, 𝑥)dVol(𝑥)

Putting everything together, we ahve shown that

lim inf

𝑘
𝐽𝛼 (𝑢 ′𝑘 ) ≥ 𝐽𝛼 (𝑢∗) .

Since the 1-Lipschitz constraint as well as the constraint 𝑢𝑘 (𝑥) ≤ 0

for all 𝑥 ∈ 𝐸 are preserved by the uniform convergence, it follows

that 𝑢∗ is admissible. Moreover, the last liminf inequality says 𝑢∗
achieves the minimum of 𝐽𝛼 among all admissible functions, so 𝑢∗
is a minimizer for the problem.

The uniqueness follows from the strict convexity through a

standard argument, which we review for completeness: suppose

there are two separate minimizers 𝑢0 and 𝑢1. For each 𝑠 ∈ [0, 1] let
𝑢𝑠 = (1 − 𝑠)𝑢0 + 𝑠𝑢1 .

From the convexity assumption on 𝐹 we know that

𝐹 (∇𝑢𝑠 , 𝑥) ≤ (1 − 𝑠)𝐹 (∇𝑢0, 𝑥) + 𝑠𝐹 (∇𝑢1, 𝑥).
In terms of the functional, this gives us

𝐽𝛼 (𝑢𝑠 ) ≤ (1 − 𝑠) 𝐽𝛼 (𝑢0) + 𝐽𝛼 (𝑢1)
by merely integrating the pointwise inequality, and at the same

time

𝐽𝛼 (𝑢𝑠 ) ≥ (1 − 𝑠) 𝐽𝛼 (𝑢0) + 𝐽𝛼 (𝑢1)
Since 𝑢0 and 𝑢1 are minimizers and 𝑢𝑠 is admissible for every 𝑠 ∈
[0, 1]. This can only happen if

𝐹 (∇𝑢𝑠 , 𝑥) = (1 − 𝑠)𝐹 (∇𝑢0, 𝑥) + 𝑠𝐹 (∇𝑢1, 𝑥) ∀ 𝑥 ∈ 𝑀,
and by the assumption, this can only happen if ∇𝑢0 = ∇𝑢1 at every
𝑥 . As 𝑢0 and 𝑢1 have to agree at least at one point, 𝑥0, this means

that 𝑢0 = 𝑢1. □

3 CONVERGENCE TO THE GEODESIC
DISTANCE (SECTION 3)

In this section we prove the convergence theorem from Section 3.

Theorem 3.2. The functions 𝑢𝛼 converge uniformly to 𝑑 (·, 𝐸),
∥𝑢𝛼 − 𝑑 (·, 𝐸)∥𝐿∞ → 0 as 𝛼 → 0

+ .

Proof. We make use of an elementary but often used fact in

nonlinear PDE that says that compactness plus uniqueness of the

limiting points of a sequence in turn guarantees convergence of

the whole sequence.
1
Concretely, and in two parts, we are going

to show 1) that given any sequence 𝛼𝑘 → 0
+
we can pass to a

subsequence 𝛼 ′
𝑘
which converges uniformly to some function 𝑢∗

∥𝑢𝛼′
𝑘
− 𝑢∗∥𝐿∞ (𝑀) → 0 as 𝑘 → ∞,

1
if the sequence failed to converge as whole, there would be some 𝛿 > 0 an infinite

subsequence such that 𝑢𝛼′
𝑘
stays a distance at least 𝛿 from 𝑑 (𝑥, 𝑥0) , leading to a

contradiction
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and subsequently that 2) whatever function 𝑢∗ is obtained as one

of these limits will have to be a minimizer for problem (1). Since

that problem has as its unique solution, then 𝑢∗ = 𝑑 (𝑥, 𝑥0) for all
such subsequences.

Indeed, first, note that the 1-Lipschitz constraint and the fact

that 𝑢𝛼𝑘 (𝑥0) = 0 for all 𝑘 implies that the sequence 𝑢𝛼𝑘 lies in a

compact subset of 𝐶 (𝑀). Therefore, there is a subsequence 𝛼 ′
𝑘
and

a 1-Lipschitz function 𝑢∗ ∈ 𝐶 (𝑀) such that

𝑢𝛼′
𝑘
→ 𝑢∗ uniformly in𝑀.

Now, let 𝜙 : 𝑀 → R be a 1-Lipschitz function such that 𝜙 (𝑥0) ≤ 0.

Since 𝜙 is admissible for (3) for every 𝛼 ′
𝑘
, it follows that

−
∫
𝑀

𝑢𝛼′
𝑘
dVol(𝑥) ≤ 𝛼 ′

𝑘

∫
𝑀

𝐹 (∇𝑢𝛼′
𝑘
, 𝑥)dVol(𝑥) −

∫
𝑀

𝑢𝛼′
𝑘
𝑑𝑥

≤ 𝛼 ′
𝑘

∫
𝑀

𝐹 (∇𝜙, 𝑥)dVol(𝑥) −
∫
𝑀

𝜙 𝑑𝑥.

On the other hand, by the 1-Lipschitz constraint∫
𝑀

𝐹 (∇𝜙, 𝑥)dVol(𝑥) ≤ 𝐶Vol(𝑀) .

This means in particular that

−
∫
𝑀

𝑢∗dVol(x) = lim

𝑘

∫
𝑀

𝑢𝛼′
𝑘
dVol(𝑥)

≤ lim

𝑘

{
𝛼 ′
𝑘

∫
𝑀

𝐹 (∇𝜙, 𝑥)dVol(𝑥) −
∫
𝑀

𝜙 𝑑𝑥

}
= −

∫
𝑀

𝜙 (𝑥) 𝑑𝑥.

This shows that 𝑢∗ solves the minimization problem (1), and this

problem has a known solution, so𝑢∗ = 𝑑 (·, 𝐸). In summary we have

shown that given any sequence 𝛼𝑘 → 0 there is a subsequence 𝛼 ′
𝑘

such that 𝑢𝛼′
𝑘
→ 𝑑 (·, 𝐸) uniformly in𝑀 , finishing the proof. □

4 ANALYTICAL SOLUTION FOR THE HESSIAN
REGULARIZER IN 1D (HESSIAN
REGULARIZER, SECTION 4.2)

In 1𝐷 , the Hessian energy is the same as the bilaplacian energy,

and the optimization problem is:

Minimize𝑢
𝛼
2

∫
2𝜋

0
|𝑢 ′′(𝑥) |2 d𝑥 −

∫
2𝜋

0
𝑢 (𝑥) d𝑥

subject to |𝑢 ′(𝑥) | ≤ 1 for all 𝑥 ∈ (0, 2𝜋)
𝑢 (0) ≤ 0.

The minimizer 𝑢 (𝑥) is (for 𝑥 ∈ [0, 2𝜋]):

𝑢 (𝑥) =


𝑥 if 0 ≤ 𝑥 ≤ 𝜋 − 𝑐

1

24𝛼 (𝑥 − 𝜋)4 − 𝑐2

4𝛼 (𝑥 − 𝜋)2

+𝜋 − 𝑐 + 5𝑐4

24𝛼

if 𝜋 − 𝑐 ≤ 𝑥 ≤ 𝜋 + 𝑐

2𝜋 − 𝑥 if 𝑥 ≥ 𝜋 + 𝑐

where 𝑐 =
3
√
3𝛼 .

Note that the function and smoothing region are different than

the ones in the Dirichlet regularizer case.

5 EXISTENCE AND UNIQUENESS OF A
MINIMIZER (PRODUCT MANIFOLD
FORMULATION, SECTION 6)

In Section 6 we introduced the following problem.

Minimize 𝛼E𝑀×𝑀 (𝑈 ) −
∫
𝑀×𝑀 𝑈 (𝑥,𝑦) dVol(𝑥,𝑦)

subject to 𝑈 ∈𝑊 1,2 (𝑀 ×𝑀)
|∇1𝑈 (𝑥,𝑦) | ≤ 1 in {(𝑥,𝑦) | 𝑥 ≠ 𝑦}
|∇2𝑈 (𝑥,𝑦) | ≤ 1 in {(𝑥,𝑦) | 𝑥 ≠ 𝑦}
𝑈 (𝑥,𝑦) ≤ 0 on {(𝑥,𝑦) | 𝑥 = 𝑦}

(12)

Theorem 6.1. There is a unique minimizer in problem (12).

Proof. At the big picture level this proof is basically the same

as that of existence and uniqueness of a minimizer for problem (3).

We only highlight the points where things are different.

Therefore, take a minimizing sequence 𝑈𝑘 . Arguing similarly as

before we can assume without loss of generality that

max

𝑀×𝑀
𝑈𝑘 ≥ 0 for all 𝑘.

Now,𝑈𝑘 is 1-Lipschitz in each variable 𝑥 and 𝑦, separately, so, if for

some 𝑘 (𝑥0, 𝑦0) is a point where 𝑈𝑘 (𝑥0, 𝑦0) ≥ 0, then for all other

(𝑥,𝑦) we have
𝑈𝑘 (𝑥,𝑦) ≥ 𝑈𝑘 (𝑥,𝑦0) − 𝑑 (𝑦,𝑦0)

≥ 𝑈𝑘 (𝑥0, 𝑦0) − 𝑑 (𝑥, 𝑥0) − 𝑑 (𝑦,𝑦0)
≥ 𝑈𝑘 (𝑥0, 𝑦0) − 2diam(𝑀) .

On the other hand, since 𝑈𝑘 (𝑥, 𝑥) ≤ 0 for all 𝑥 and 𝑦, we have,

using the 1-Lipschtz condition in the first variable

𝑈𝑘 (𝑥,𝑦) ≤ 𝑈𝑘 (𝑥, 𝑥) + 𝑑 (𝑥,𝑦)
≤ 𝑑 (𝑥,𝑦) ≤ diam(𝑀) .

Putting all this together we have

∥𝑈𝑘 ∥𝐿∞ (𝑀) ≤ 2diam(𝑀) for all 𝑘.
This means our sequence {𝑈𝑘 }𝑘 is uniformly bounded and equicon-

tinuous (in fact, uniformly Lipschitz) in the compact space𝑀 ×𝑀 .

By the Arzela-Ascoli theorem, there is a subsequence 𝑈 ′
𝑘
and a

function𝑈∗ in𝑀 ×𝑀 such that𝑈𝑘 converges uniformly to𝑈∗. In
particular, this function𝑈𝑘 will be Lipschitz and the inequalities

|∇1𝑈∗ (𝑥,𝑦) | ≤ 1 and |∇2𝑈∗ (𝑥,𝑦) |
hold for a.e. (𝑥,𝑦) ∈ 𝑀 ×𝑀 . Moreover,𝑈∗ (𝑥, 𝑥) ≤ 0 for all 𝑥 ∈ 𝑀 .

This shows that𝑈∗ is admissible for problem (12). At the same time,

the uniform convergence of the 𝑈𝑘 and the compactness of𝑀 ×𝑀
imply that

lim

𝑘

∫
𝑀×𝑀

𝑈 ′
𝑘
(𝑥,𝑦)dVol(𝑥,𝑦) =

∫
𝑀×𝑀

𝑈∗ (𝑥,𝑦)dVol(𝑥,𝑦).

Lastly, passing to another subsequence𝑈 ′′
𝑘

if needed, we have

lim inf

𝑘

∫
𝑀×𝑀

|∇1𝑈
′′
𝑘
|2 + |∇2𝑈

′′
𝑘
|2dVol(𝑥,𝑦)

≥
∫
𝑀×𝑀

|∇1𝑈∗ |2 + |∇2𝑈∗ |2dVol(𝑥,𝑦).

From here it follows that𝑈∗ is a minimizer for problem (12).

Uniqueness is proved again making use of the convexity of the

functional.
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□

A consequence of the uniqueness theorem is the symmetry of

the minimizers𝑈𝛼 :

Theorem 6.2. The function𝑈𝛼 (𝑥,𝑦) is symmetric in 𝑥 and 𝑦.

Proof. This is a direct consequence of the uniqueness of the

minimizer to problem (12) as well as the symmetry of the under the

transformation (𝑥,𝑦) ↦→ (𝑦, 𝑥). Indeed, given 𝛼 define the function

𝓋𝛼 (𝑥,𝑦) := 𝑈𝛼 (𝑦, 𝑥),
Then it is clear that 𝓋 is still admissible for problem (12) and

𝛼E𝑀×𝑀 (𝑈𝛼 ) −
∫
𝑀×𝑀

𝑈𝛼 (𝑥,𝑦) dVol(𝑥,𝑦)

= 𝛼E𝑀×𝑀 (𝓋) −
∫
𝑀×𝑀

𝓋(𝑥,𝑦) dVol(𝑥,𝑦),

so that 𝓋 also achieves the minimum of problem (12). Since there is

only one minimizer, 𝓋 = 𝑈𝛼 and the lemma follows. □

6 CONVERGENCE TO THE FULL GEODESIC
DISTANCE (PRODUCT MANIFOLD
FORMULATION, SECTION 6)

In this section we will make use of the following characterization

of the geodesic distance function 𝑑 (𝑥,𝑦).

Minimize −
∫
𝑀×𝑀 𝑣 (𝑥,𝑦) dVol(𝑥,𝑦)

subject to |∇1𝑣 (𝑥,𝑦) | ≤ 1 in {(𝑥,𝑦) | 𝑥 ≠ 𝑦}
|∇2𝑣 (𝑥,𝑦) | ≤ 1 in {(𝑥,𝑦) | 𝑥 ≠ 𝑦}
𝑣 (𝑥,𝑦) ≤ 0 on {(𝑥,𝑦) | 𝑥 = 𝑦}

(S8)

The problem (S8) clearly resembles problem (12). Accordingly, the

proof Theorem 6.3 (just as the proof of Theorem 3.2, Supplemental

3) will consist in using compactness and show all limit points of

the sequence𝑈𝛼 as 𝛼 → 0 have to be just 𝑑 (𝑥,𝑦).

Theorem 6.1. As 𝛼 → 0, we have

∥𝑑 (𝑥,𝑦) −𝑈𝛼 (𝑥,𝑦)∥𝐿∞ (𝑀×𝑀) → 0.

Proof. Let 𝛼𝑘 → 0 be any sequence. The sequence {𝑈𝛼𝑘 }𝑘 is

uniformly Lipschitz, accordingly, there is a subsequence {𝑈 ′
𝛼𝑘

}𝑘
and a function 𝑈∗ (𝑥,𝑦) such that 𝑈 ′

𝛼𝑘
→ 𝑈∗ uniformly in 𝑀 ×𝑀

as 𝑘 → ∞. We are going to show𝑈∗ must be the geodesic distance.

Indeed, let Φ(𝑥,𝑦) → R be any smooth admissible function for

problem (12). Then, for any 𝛼 > 0 we have

−
∫
𝑀×𝑀

𝑈 ′
𝛼𝑘

(𝑥,𝑦) dVol(𝑥,𝑦)

≤ 𝛼 ′
𝑘
E𝑀×𝑀 (𝑈 ′

𝛼𝑘
) −

∫
𝑀×𝑀

𝑈 ′
𝛼𝑘

(𝑥,𝑦) dVol(𝑥,𝑦)

≤ 𝛼 ′
𝑘
𝑠E𝑀×𝑀 (Φ) −

∫
𝑀×𝑀

Φ(𝑥,𝑦) dVol(𝑥,𝑦).

Taking the limit 𝛼 ′
𝑘
→ 0 with the last inequality, it follows that

−
∫
𝑀×𝑀

𝑈∗ (𝑥,𝑦) dVol(𝑥,𝑦)

≤ −
∫
𝑀×𝑀

Φ(𝑥,𝑦) dVol(𝑥,𝑦) .

Figure 2: Non-quadratic regularizer example. We compare
the results between the quadratic Dirichlet energy (left) to
using the squared 𝐿∞ norm on two meshes with different
orientations (right). See the text for details.

Since Φ is an arbitrary admissible function, it follows that 𝑈∗ =

𝑑 (𝑥,𝑦). This proves that 𝑈𝑘 converges uniformly to 𝑑 (𝑥,𝑦), and
in turn, by the same argument as in the proof of Theorem 3.2

(Supplemental 3) that𝑈𝛼 → 𝑑 (𝑥,𝑦) as 𝛼 → 0. □

7 NON-QUADRATIC REGULARIZERS
The functional 𝐹 (𝜉, 𝑥) used for the regularizer term in the mini-

mization problem (3) allows for quite general norms or powers of

norms. Using a non-isotropic norm from the ambient space, one

obtains 𝐹 ’s that have no dependence on 𝑥 but manifest behavior

that is sensitive to the position and orientation of𝑀 . We illustrate

this with some numerical experiments with

𝐹 (𝜉, 𝑥) = ∥𝜉 ∥2∞, (S9)

which satisfies all of the assumptions for Theorems 3.1 and 3.2 (as

discussed at the start of Supplemental 2). Although (S9) involves a

square, it is different from a quadratic polynomial on the entries

of 𝜉 . In fact, 𝐹 in (S9) is not differentiable for all 𝜉 , this can be

seen by writing 𝐹 in terms of the components of the vector 𝜉 , if

𝜉𝑡 = (𝜉1, 𝜉2, 𝜉3) then

∥𝜉 ∥∞ = max{𝜉2
1
, 𝜉2

2
, 𝜉2

3
}.

This is a convex function of (𝜉1, 𝜉2, 𝜉3), it is smooth in the open set

{|𝜉𝑖 | ≠ |𝜉 𝑗 | if 𝑖 ≠ 𝑗}, but it is not differentiable along the boundary

of this set.

In Fig. 2, we see how the regularized geodesics with E using (S9)

look like for different orientations. Observe the anisotropic effects

as the pipe is rotated as well as the flatter level curves.

8 DISTANCES TO A FIXED SOURCE ADMM
DERIVATION (SECTION 5.4)

In Section 5.4 we present the augmented Lagrangian used to derive

the ADMM algorithm.
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𝐿(𝑢,𝑦, 𝑧) = −𝐴𝑇V𝑢 + 𝛼
2
𝑢𝑇𝑊𝑢 +

∑︁
𝑓 ∈F

𝜒 ( |𝑧𝑓 | ≤ 1)+∑︁
𝑓 ∈F

𝑎𝑓 𝑦
𝑇
𝑓
((G𝑢)𝑓 − 𝑧𝑓 ) +

𝜌
√
𝐴

2

∑︁
𝑓 ∈F

𝑎𝑓 | (G𝑢)𝑓 − 𝑧𝑓 |2,

where 𝑎𝑓 is the area of the face 𝑓 , 𝜌 ∈ R is the penalty parameter,

and 𝑦 ∈ R3𝑚 is the dual variable or Lagrange multiplier.

The ADMM algorithm iterates between three stages [Boyd et

al. 2011, Section 3]: 𝑢-minimization, 𝑧-minimization, and updating

the dual variable. Where using this formulation, both 𝑢 and 𝑧 have

closed-form solutions.

The ADMM algorithm alternates between these three steps:

(1) 𝑢𝑘+1 = [𝛼𝑊 + 𝜌
√
𝐴𝑊𝐷 ]−1 [𝐴V − D𝑦𝑘 + 𝜌

√
𝐴D𝑧𝑘 ]

(2) 𝑧𝑘+1
𝑓

= Proj( 1

𝜌
√
𝐴
𝑦𝑘
𝑓
+ (G𝑢𝑘+1)𝑓 ,B3) for all 𝑓 ∈ F

(3) 𝑦𝑘+1 = 𝑦𝑘 + 𝜌
√
𝐴(G𝑢𝑘+1 − 𝑧𝑘+1),

where Proj(𝑧𝑓 ∈ R3,B3) is equal to 𝑧𝑓 /|𝑧𝑓 | if |𝑧𝑓 | > 1, and 𝑧𝑓
otherwise.

We consider our algorithms to have convergedwhen ∥𝑟𝑘 ∥ ≤ 𝜖𝑝𝑟𝑖
and ∥𝑠𝑘 ∥ ≤ 𝜖𝑑𝑢𝑎𝑙 , where 𝑟𝑘 and 𝑠𝑘 are the primal and dual residuals,

resp. And 𝜖𝑝𝑟𝑖 , 𝜖𝑑𝑢𝑎𝑙 are the primal and dual feasibility tolerances,

resp. These quantities can be computed as follows:

𝑟𝑘 =
√︁
𝑀FG𝑢

𝑘 −
√︁
𝑀F𝑧

𝑘

𝑠𝑘 = 𝜌D(𝑧𝑘 − 𝑧𝑘−1)
𝜖𝑝𝑟𝑖 =

√
3𝑚𝜖𝑎𝑏𝑠𝐴 + 𝜖𝑟𝑒𝑙

√
𝐴max(∥

√︁
𝑀FG𝑢

𝑘 ∥, ∥
√︁
𝑀F𝑧

𝑘 ∥)
𝜖𝑑𝑢𝑎𝑙 =

√
𝑛𝜖𝑎𝑏𝑠𝐴 + 𝜖𝑟𝑒𝑙

√
𝐴∥D𝑦∥ .

In all our experiments, we set 𝜖𝑎𝑏𝑠 = 5 ·10−6, 𝜖𝑟𝑒𝑙 = 10
−2
, and 𝜌 = 2.

We define 𝜌 , the residuals and feasibility tolerances such that they

are scale-invariance, as explained in Section 7.1.

In addition, to accelerate the convergence, we also use the vary-

ing penalty parameter and over-relaxation, exactly as described in

[Boyd et al. 2011, Sections 3.4.1, 3.4.3].

9 SYMMETRIC ALL-PAIRS ADMM
DERIVATION (SECTION 6.2)

Our discrete optimization problem, as introduced in Section 6.2, is:

Minimize𝑈 −𝐴𝑇V𝑈𝐴V +
1

2
𝛼 Tr

(
𝑀V

(
𝑈𝑇𝑊𝐷𝑈 +𝑈𝑊𝐷𝑈𝑇

) )
subject to | (∇𝑈 (𝑖,·) )𝑓 | ≤ 1 for all 𝑓 ∈ F , 𝑖 ∈ V

|(∇𝑈 ( ·, 𝑗) )𝑓 | ≤ 1 for all 𝑓 ∈ F , 𝑗 ∈ V
𝑈𝑖,𝑖 ≤ 0 for all 𝑖 ∈ V,

where𝑋𝑖, 𝑗 denotes the (𝑖, 𝑗)-th element of a matrix𝑋 ,𝑋 (𝑖,·) denotes
the 𝑖-th row, and 𝑋 ( ·, 𝑗) the 𝑗-th column.

Our derivation is based on the consensus problem [Boyd et al .

2011, Section 7], where we split𝑈 into two variables 𝑋, 𝑅 ∈ R𝑛×𝑛
to represent the gradient along the columns and rows, and use a

consensus auxiliary variable𝑈 ∈ R𝑛×𝑛 to ensure consistency. We

also add two auxiliary variables 𝑍,𝑄 ∈ R3𝑚×𝑛
representing the

gradients along the columns and rows, i.e., G𝑋,G𝑅. We enforce

the diagonal constraint on the consensus variable𝑈 to avoid solv-

ing huge linear systems. This leads to the following optimization

problem:

Minimize𝑈 − 1

2
𝐴𝑇V𝑋𝐴V − 1

2
𝐴𝑇V𝑅𝐴V +

1

2
𝛼 Tr

(
𝑀V

(
𝑋𝑇𝑊𝐷𝑋 + 𝑅𝑇𝑊𝐷𝑅

) )
+∑︁

𝑓 ∈F

∑︁
𝑖∈V

𝜒 ( | (𝑍 ( ·,𝑖) )𝑓 | ≤ 1) +∑︁
𝑓 ∈F

∑︁
𝑖∈V

𝜒 ( | (𝑄 ( ·,𝑖) )𝑓 | ≤ 1)

subject to (G𝑋 ( ·,𝑖) )𝑓 = (𝑍 ( ·,𝑖) )𝑓 for all 𝑓 ∈ F , 𝑖 ∈ V
(G𝑅 ( ·,𝑖) )𝑓 = (𝑄 ( ·,𝑖) )𝑓 for all 𝑓 ∈ F , 𝑖 ∈ V
𝑋 = 𝑈

𝑋 = 𝑈

𝑅 = 𝑈𝑇

𝑈𝑖,𝑖 ≤ 0 for all 𝑖 ∈ V
𝑈 ≥ 0,

where 𝜒 (𝑍 ( ·,𝑖) )𝑓 | ≤ 1) = ∞ if 𝑍 ( ·,𝑖) )𝑓 | > 1 and 0 otherwise.

The corresponding augmented Lagrangian is:

𝐿(𝑈 ,𝑌, 𝑍 ) = − 1

2
𝐴𝑇V𝑋𝐴V − 1

2
𝐴𝑇V𝑅𝐴V +

1

2
𝛼 Tr

(
𝑀V

(
𝑋𝑇𝑊𝐷𝑋 + 𝑅𝑇𝑊𝐷𝑅

) )
+∑︁

𝑓 ∈F

∑︁
𝑖∈V

𝜒 ( | (𝑍 ( ·,𝑖) )𝑓 | ≤ 1) +∑︁
𝑓 ∈F

∑︁
𝑖∈V

𝜒 ( | (𝑄 ( ·,𝑖) )𝑓 | ≤ 1) +

Tr

(
𝑀V

(
𝑌𝑇𝑀F (G𝑋 − 𝑍 ) + 𝑆𝑇𝑀F (G𝑅 −𝑄)

) )
+

𝜌1
√
𝐴

2
Tr

(
𝑀V

(
G𝑋 − 𝑍

)𝑇
𝑀F

(
G𝑋 − 𝑍

) )
+

𝜌1
√
𝐴

2
Tr

(
𝑀V

(
G𝑅 −𝑄

)𝑇
𝑀F

(
G𝑅 −𝑄

) )
+

Tr

(
𝐻𝑇

(
𝑋 −𝑈

)
𝑀V

)
+ Tr

(
𝐾𝑇

(
𝑅 −𝑈𝑇

)
𝑀V

)
+

Tr

(
𝐻𝑇

(
𝑋 −𝑈

)
𝑀V

)
+

𝜌2
√
𝐴−1

2
Tr

( (
𝑋 −𝑈

)𝑇
𝑀V

(
𝑋 −𝑈

)
𝑀V

)
+

𝜌2
√
𝐴−1

2
Tr

( (
𝑅 −𝑈𝑇

)𝑇
𝑀V

(
𝑅 −𝑈𝑇

)
𝑀V

)
,

where 𝜌1, 𝜌2 ∈ R are the penalty parameters, and 𝑌, 𝑆 ∈ R3𝑚×𝑛
,

𝐻,𝐾 ∈ R𝑛×𝑛 are the dual variables.

The ADMM algorithm for this optimization problem consists of

three stages. In the first stage, we optimize for 𝑍, 𝑅. In the second

step, we minimize the auxiliary variables 𝑍,𝑄,𝑈 . Finally, in the

third step, we update the dual variables added in the augmented

Lagrangian.

(1)

𝑋𝑘+1 =

(
(𝛼 + 𝜌1

√
𝐴)𝑊𝐷 + 𝜌2

√
𝐴−1𝑀V

)−1(
1

2
𝐴V𝐴𝑇V𝑀

−1
V − D𝑌𝑘 +

𝜌1
√
𝐴
√
𝐴D𝑧𝑘 −𝑀V𝐻𝑘 + 𝜌2

√
𝐴−1𝑀V𝑈 𝑘

)
𝑅𝑘+1 =

(
(𝛼 + 𝜌1

√
𝐴)𝑊𝐷 + 𝜌2

√
𝐴−1𝑀V

)−1(
1

2
𝐴V𝐴𝑇V𝑀

−1
V − D𝑆𝑘 +

𝜌1
√
𝐴D𝑄𝑘 −𝑀V𝐾𝑘 + 𝜌2

√
𝐴−1𝑀V𝑈 𝑘𝑇

)
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(2) (𝑍𝑘+1( ·,𝑖) )𝑓 =

Proj

(
1

𝜌1
√
𝐴
(𝑌𝑘( ·,𝑖) )𝑓 + (G𝑋𝑘+1( ·,𝑖) )𝑓 ,B

3

)
for all 𝑖 ∈V, 𝑓 ∈F

(𝑄𝑘+1( ·,𝑖) )𝑓 =

Proj

(
1

𝜌1
√
𝐴
(𝑆𝑘( ·,𝑖) )𝑓 + (G𝑅𝑘+1( ·,𝑖) )𝑓 ,B

3

)
for all 𝑖 ∈V, 𝑓 ∈F

𝑈 𝑘+1 = max

(
𝐻𝑘+𝐾𝑘𝑇

2𝜌2
√
𝐴−1 + 𝑋𝑘+1+𝑅𝑘𝑇

2
, 0

)
𝑈 𝑘+1
𝑖,𝑖

= 0 for all 𝑖 ∈ V

(3) 𝑌𝑘+1 = 𝑌𝑘 + 𝜌1
√
𝐴
(
G𝑋𝑘+1 − 𝑧𝑘+1

)
𝑆𝑘+1 = 𝑆𝑘 + 𝜌1

√
𝐴
(
G𝑅𝑘+1 −𝑄𝑘+1

)
𝐻𝑘+1 = 𝐻𝑘 + 𝜌2

√
𝐴−1 (𝑋𝑘+1 −𝑈 𝑘+1)

𝐾𝑘+1 = 𝐾𝑘 + 𝜌2
√
𝐴−1 (𝑅𝑘+1 −𝑈 𝑘𝑇 )

Similarly to Section 5.4, the first steps include solving a linear

system with the same coefficient matrix, which can be pre-factored

to accelerate the computation.

We consider our algorithms to have convergedwhen ∥𝑟𝑘 ∥ ≤ 𝜖𝑝𝑟𝑖
and ∥𝑠𝑘 ∥ ≤ 𝜖𝑑𝑢𝑎𝑙 , where 𝑟𝑘 and 𝑠𝑘 are the primal and dual residuals,

resp. And 𝜖𝑝𝑟𝑖 , 𝜖𝑑𝑢𝑎𝑙 are the primal and dual feasibility tolerances,

resp. These quantities can be computed as follows:

𝑟𝑘 =
√︁
𝑀FG𝑢

𝑘 −
√︁
𝑀F𝑧

𝑘

𝑠𝑘 = 𝜌D(𝑧𝑘 − 𝑧𝑘−1)
𝜖𝑝𝑟𝑖 =

√
3𝑚𝜖𝑎𝑏𝑠𝐴 + 𝜖𝑟𝑒𝑙max(∥

√︁
𝑀FG𝑢

𝑘 ∥, ∥
√︁
𝑀F𝑧

𝑘 ∥)
𝜖𝑑𝑢𝑎𝑙 =

√
𝑛𝜖𝑎𝑏𝑠𝐴2 + 𝜖𝑟𝑒𝑙 ∥

√︁
𝑀FD𝑌 ∥

and equivalently for 𝑅,𝑄, 𝑆 . The residuals for the consensus part

are as follows:

𝑟𝑘
1

= 𝑀V (𝑋𝑘 −𝑈 𝑘 )𝑀V
𝑟𝑘
2

= 𝑀V (𝑅𝑘 −𝑈𝑇𝑘 )𝑀V
𝑠𝑘 = 𝜌2𝑀V (𝑈 𝑘 −𝑈 𝑘−1)𝑀V

𝜖
𝑝𝑟𝑖

1
=
√
𝑛𝜖𝑎𝑏𝑠 + 𝜖𝑟𝑒𝑙max(∥𝑀V𝑋𝑘𝑀V ∥, ∥

√︁
𝑀F𝑧

𝑘
√︁
𝑀V𝑀V𝑈 𝑘𝑀V ∥)

𝜖
𝑝𝑟𝑖

2
=
√
𝑛𝜖𝑎𝑏𝑠

√
𝐴3 + 𝜖𝑟𝑒𝑙max(∥𝑀V𝑅𝑘𝑀V ∥, ∥𝑀V𝑈𝑇𝑘𝑀V ∥)

𝜖𝑑𝑢𝑎𝑙 =
√
𝑛𝜖𝑎𝑏𝑠𝐴 + 𝜖𝑟𝑒𝑙

2
(∥
√︁
𝑀V𝐻

√︁
𝑀V ∥ + ∥

√︁
𝑀V𝐾

√︁
𝑀V ∥).

We set 𝜖𝑎𝑏𝑠 = 10
−6, 𝜖𝑟𝑒𝑙 = 2 · 10−4 and 𝜌1 = 𝜌2 = 2 in all our

experiments. Note that both the penalty variables, the residuals

and feasibility thresholds are defined to be scale-invariance, as

explained in section 7.1.

In addition, to accelerate the convergence, we also use the vary-

ing penalty parameter and over-relaxation, exactly as described in

[Boyd et al. 2011, Sections 3.4.1, 3.4.3].

10 ADDITIONAL RESULTS
10.1 Additional Examples
Figure 3 shows more examples of our fixed source (Alg. 1) method

for the meshes in Table 1, Section 5.4.

Table 1: Timings in seconds for the All-Pairs distance compu-
tation on the cat model, |F | = 3898, Figure 10 (main paper).

Heat - Symmetrized Fixed-Source - Symmetrized All-Pairs

[sec] [sec] [sec]

(a) 0.77 101.625 1124.312

(b) 0.77 59.583 837.063

(c) 0.76 37.4745 794.9549

10.2 Representation Error in a Spectral Reduced
Basis

Smoother functions are better represented in a reduced basis com-

prised of the eigenvectors of the Laplace-Beltrami operator. Namely,

they require less basis functions for the same representation error.

In Fig. 4 (left) We compare the representation error in a reduced

basis of our approach, the heat method, and fast marching. Note

that our approach, both the fixed source (Alg. 1) and the all-pairs

(Alg 2.) formulations, achieves the lowest error (indicating that the

functions are smoothest in this sense). Similarly, we compare the

symmetric formulations by symmetrizing our fixed source method,

the heat method and the Fast Marching results, see Fig. 4 (right).

Here we project on the eigenvectors of the LB operator on the

product manifold. Here as well we achieve a lower error than the

alternatives. The experiment was done on the “pipe” mesh, where

we computed the full distance matrix between all pairs of vertices.

For Fig 4 (left) we projected each column of the distance matrix

(i.e., the distance from a single source vertex), and computed the

mean of the representation errors. For Fig 4 (right), we projected

the full distance matrix on the eigenvectors of the LB operator on

the product manifold.

10.3 Additional Results on Various
Triangulations

To further demonstrate the robustness of our algorithm, we show

additional results on low-quality triangulations in Figure 5. The

leftmost column corresponds to a uniform triangulation and the

other three to non-uniform triangulations. Note that the results

remain similar for the different triangulations.

10.4 Timings for the All-Pairs Formulation
Table 1 shows the running times for computing the all-pairs dis-

tances on the cat model. We compare the heat method, computed

using Geometry Central [Sharp et al. 2019] (using the precompu-

tation speed-up), our fixed source formulation (Alg. 1) and our

all-pairs approach (Alg. 2). Note that Alg. 2 has a higher memory

overhead than Alg. 1, because we are working with large dense

matrices. Therefore, in our non-optimized Matlab implementation

we may run out of memory for large meshes. We believe that a

more careful implementation can improve this considerably.

10.5 Quadratic Finite Elements
Piecewise linear elements are not good approximators of the ge-

odesic distance near the source. Intuitively, for coarse meshing,

instead of generating round isolines, PL elements lead to polyg-

onal isolines, see e.g. the output on the disk in Fig. 6 (left). Our



SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Michal Edelstein, Nestor Guillen, Justin Solomon, and Mirela Ben-Chen

Figure 3: The distance isolines and gradient norm with Dirichlet regularization for various meshes.

Figure 4: Comparison of the representation error of the
Dirichlet regularized distances in a reduced spectral basis.
See the text for details.

approach generalizes to piecewise quadratic elements in a straight-

forward way. Specifically, we replace the mass matrix, gradient and

Laplacian with the corresponding matrices for quadratic elements

[Boksebeld and Vaxman 2022, Appendix B]. The result is shown in

Figure 6 (center). Note that the quadratic elements lead to a better

approximation (compare with the analytical solution, Fig. 6 (right)).

Figure 5: The regularized geodesic distance using the Dirich-
let regularizer for various triangulations. For each triangu-
lation, we display the connectivity (top), the isoline of the
distance (middle) and the gradient norm, |∇𝑢 | (bottom). Note
that the results are qualitatively similar for all the triangula-
tions.

Figure 6: (left) Piecewise linear elements are not good ap-
proximators of geodsic distances near the source. (center)
Our approach easily generalizes to quadratic elements. Note
the improved accuracy (compare with the analytic solution
(right)).
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