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Figure 1: Geodesic distances (a) may not have desired properties such as smoothness. We present a general framework for
regularized geodesic distances. Shown here are three examples of regularizers: (b,c) smoothness, (d) alignment to a vector field,
and (e) boundary invariance.

ABSTRACT
We propose a general convex optimization problem for computing

regularized geodesic distances. We show that under mild conditions

on the regularizer the problem is well posed. We propose three

different regularizers and provide analytical solutions in special

cases, as well as corresponding efficient optimization algorithms.

Additionally, we show how to generalize the approach to the all
pairs case by formulating the problem on the product manifold,

which leads to symmetric distances. Our regularized distances com-

pare favorably to existing methods, in terms of robustness and ease

of calibration.

CCS CONCEPTS
• Computing methodologies -> Shape analysis.
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1 INTRODUCTION
Distance computation is a central task in shape analysis. Distances

are required for many downstream geometry processing appli-

cations, including shape correspondence, shape descriptors and

remeshing. In many cases, however, exact geodesic distances are

not required, and a distance-like function suffices. Moreover, it is

often required to regularize the distance-like function to improve

performance of a downstream application.

The geometry processing community has proposed myriad meth-

ods for computing geodesic distances [Crane et al. 2020], including

some regularized distances [Crane et al. 2013; Solomon et al. 2014].

However, a unified framework, including a controlled and easily

calibratable approach to regularization is still missing.
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We propose a flexible convex optimization framework for com-

puting regularized geodesic distances. We show that under rela-

tively mild conditions, our formulation has a minimizer that con-

verges to the geodesic distance as the regularization weight van-

ishes. Furthermore, we propose a variety of regularizers, demon-

strate their applicability, and provide corresponding efficient opti-

mization algorithms. Finally, we formulate the all-pairs problem,

as a special case of our framework on the product manifold. This
formulation has the additional advantage that the resulting regular-

ized distances are symmetric with respect to swapping the source

and target points.

1.1 Related Work
The work on geodesic distances is vast, and a full review is out of

scope. See the recent surveys [Crane et al. 2020; Peyré et al. 2010].

Geodesic Distances. Some approaches (e.g., MMP [Mitchell et al.

1987], MMP extension [Surazhsky et al. 2005], VTP [Qin et al. 2016],

and others) compute the exact polyhedral geodesic distance on a

triangle mesh. Other methods, e.g., Fast Marching [Kimmel and

Sethian 1998], take a variational approach and compute approxi-

mate geodesic distances. More recently, convex optimization ap-

proaches have been suggested for computing approximate geodesic

distances [Belyaev and Fayolle 2020, 2015] and for computing the

cut locus [Générau et al. 2022a,b]. Our approach is also framed

as a convex optimization problem, but incorporates an additional

general regularization term.

Regularization. Exact geodesic distances have some shortcom-

ings in applications, e.g., the geodesic distance from a point 𝑝 is

not smooth near the cut locus of 𝑝 . The heat method [Crane et al.

2013] computes smoothed geodesic distances, where the smooth-

ing is controlled by a time parameter. The earth mover’s distance

(EMD) [Solomon et al. 2014] can also be used to compute geodesic

distances, optionally smoothed by projecting on a reduced spectral

basis. Compared to the heat and EMD methods, our framework

allows for a more direct control on the smoothness parameter. For

triangle meshes, another option is to compute the graph-based dis-

tances on the graph of the triangulation with a Dirichlet or Hessian

regularization [Cao et al. 2020]. This approach is, however, triangu-

lation dependent, and requires the use of 2-ring neighborhoods for

accurate results. Furthermore, we provide theoretical results that

guarantee that our optimization problem is well-posed for general

regularizers under some mild conditions, providing mathematical

footing required for future work to design additional regularizers.

1.2 Contributions
Our main contributions are:

• A convex optimization problem for extracting regularized geo-

desic distances, with theoretical results for a general regularizer

under some mild conditions.

• Examples of regularizers with corresponding theoretical results

and efficient optimization algorithms.

• The all-pairs generalization, with a scalable optimization scheme.

2 BACKGROUND
2.1 Geodesic Distances by Convex Optimization
Variational characterizations of the geodesic distance function are

natural from several perspectives. From probability, they relate to

large deviation estimates for the heat equation, as shown by Varad-

han [1967]. From a purely PDE perspective, they can be constructed

as the largest viscosity subsolution to the Eikonal equation, using

Ishii’s extension of the Perron method to Hamilton-Jacobi equation

[Ishii 1987]. Recently, it was shown [Belyaev and Fayolle 2020, 2015]

how the geodesic distance 𝑢 on a domain Ω from a source point 𝑥0
can be computed by solving the convex optimization problem

Minimize𝑢 −
∫
Ω 𝑢 (𝑥) dVol(𝑥)

subject to |∇𝑢 (𝑥) | ≤ 1 for all 𝑥 ∈ Ω \ {𝑥0}
𝑢 (𝑥0) = 0.

(1)

As explained by Belyaev et al. [2020], we can thus use convex opti-

mization methods, e.g. ADMM, to approximate geodesic distances.

Intuitively, since the function 𝑢 is maximized, the gradient norm

reaches the maximal allowed value, which is 1. Therefore, while

not constraining it directly, the solution will fulfill |∇𝑢 | = 1 at every

point in the domain and thus will be a geodesic distance. The big

advantage of this formulation, as opposed to directly constraining

|∇𝑢 | = 1, is that this optimization problem is convex. Furthermore,

the point constraint 𝑢 (𝑥0) = 0 may be relaxed to 𝑢 (𝑥0) ≤ 0 without

changing the solutions to the problem. To see why, note that if

𝜙 : 𝑀 → R is such that |∇𝜙 (𝑥) | ≤ 1 for all 𝑥 ∈ Ω \ {𝑥0} and
𝜙 (𝑥0) < 0, then the function

˜𝜙 := 𝜙 − 𝜙 (𝑥0) will satisfy the two

constraints in (1) and have a strictly smaller objective functional

than 𝜙 since 𝜙 < ˜𝜙 everywhere.

3 REGULARIZED GEODESIC DISTANCES
Given a compact surface 𝑀 and a closed set 𝐸 ⊂ 𝑀 (typically,

𝐸 = {𝑥0}), our goal is to compute a function𝑢 : 𝑀 → Rwhich is “as-
geodesic-as-possible,” but has some additional property. Depending

on the application, one may require the function to be smooth, or to

be aligned to an input direction at some points on the surface. We

assume that this additional information is encoded in a regularizer
functional of the form

E(𝑢) =
∫
𝑀

𝐹 (∇𝑢 (𝑥), 𝑥) dVol(𝑥), (2)

where 𝐹 is convex in the first argument.

Generalizing Eq.(1), we consider the following convex optimiza-

tion problem

Minimize𝑢 𝛼E(𝑢) −
∫
𝑀
𝑢 (𝑥) dVol(𝑥)

subject to |∇𝑢 (𝑥) | ≤ 1 for all 𝑥 ∈ 𝑀 \ 𝐸
𝑢 (𝑥) ≤ 0 for all 𝑥 ∈ 𝐸.

(3)

with some 𝛼 > 0. We discuss various options for E in Sections 3.1,

4 and the supplemental.

The problem (3) has a long history in the case of a domain Ω ⊂
R𝑑 with 𝐹 (∇𝑢 (𝑥), 𝑥) = |∇𝑢 (𝑥) |2, which is known as the elastic-
plastic torsion problem. This is a free boundary problem, i.e., a PDE

involving an interface, unknown a priori, across which the PDE’s

nature may change dramatically. In our case, this is reflected in two

regions for the solution 𝑢𝛼 , one where it solves a Poisson equation,
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and one where it solves the Eikonal equation. Refer to [Caffarelli

and Friedman 1979] and the book [Petrosyan et al. 2012] for more

background. For the Riemannian setting, this problem was first

studied in [Générau et al. 2022a], discussed further below.

Even under these general conditions (see the supplemental for

detailed assumptions), we show that (a) the optimization problem

has a minimizer for every 𝛼 > 0 , (b) the minimizer is unique, and

(c) they converge uniformly to the exact geodesic distance as 𝛼 → 0.

We gather these results under the next two theorems.

Theorem 3.1. There is a unique minimizer for problem (3).

Theorem 3.2. Let 𝑢𝛼 denote the minimizer to the optimization
problem (3). Then, as 𝛼 → 0

max

𝑥 ∈𝑀
|𝑑 (𝑥, 𝐸) − 𝑢𝛼 (𝑥) | → 0,

where 𝑑 (𝑥, 𝐸) is the geodesic distance from 𝑥 to the set 𝐸.

The proofs of Theorem 3.1 and Theorem 3.2, are in Supp. 2 and 3.

The unique minimizer 𝑢𝛼 provided by Thm. 3.1 is Lipschitz con-

tinuous by construction. In addition, it has two distinct regimes

in the respective regions {|∇𝑢𝛼 | = 1} and {|∇𝑢𝛼 | < 1}. For gen-
eral second order elliptic regularizers, 𝑢𝛼 will be smooth in the

interior of {|∇𝑢𝛼 | < 1}, there 𝑢𝛼 will solve the unconstrained

Euler-Lagrange equation corresponding to the objective functional

in (3), which would be a nonlinear elliptic equation. Accordingly,

standard elliptic theory guarantees that 𝑢𝛼 will be smooth in the

region where the gradient constraint is not active. In the other

region {|∇𝑢𝛼 | = 1} the function will solve the Eikonal equation in

the viscosity sense.

In the case 𝐹 = |∇𝑢 |2 (Sec. 3.1) it was proved in [Générau et al.

2022a] that for all 𝛼 < 𝛼0 (𝛼0 depending on the geometry of Ω)
the minimizer 𝑢𝛼 agrees with the geodesic distance function in

{|∇𝑢 | = 1}. Therefore, 𝑢𝛼 coincides with the distance function

everywhere save for a region around the cut locus of 𝑥0. In this

region 𝑢𝛼 solves the Poisson equation Δ𝑢𝛼 = −1/𝛼 . As shown in

[Générau et al. 2022a], as 𝛼 → 0, the open set {|∇𝑢𝛼 | < 1} shrinks
and converges to the cut locus. We expect the theorems in [Générau

et al. 2022a] to hold for general elliptic functionals (such as the 𝑝-

Laplace equation), but this entails pointwise estimates of nonlinear

elliptic equations on manifolds beyond the scope of this work.

Our regularizing functionals (Sec. 3.1, 4) correspond to elliptic

energy functionals that promote smoothness and other desirable

properties (non-negativity, symmetries) in the minimizer of (3).

Accordingly, the significance of Thm. 3.2 is in providing a smooth

approximation to the geodesic distance function solution. Moreover,

this approximation is in the 𝐿∞ metric, so the approximation error

can be made small for all 𝑥 ∈ 𝑀 provided 𝛼 is sufficiently small.

3.1 Dirichlet Regularizer
A natural regularizer (also considered in [Générau et al. 2022a,b])

is the Dirichlet energy

EDir (𝑢) =
1

2

∫
𝑀

|∇𝑢 (𝑥) |2 dVol(𝑥) . (4)

First, we look at the simple example where the solution to prob-

lem (3) using the Dirichlet energy (4) is given by an explicit formula.

We analyze the case where𝑀 is the circle S1. Fix 𝛼 > 0. We param-

eterize S1 via the map 𝑥 ↦→ (cos(𝑥), sin(𝑥)), i.e., by real numbers

modulo 2𝜋 . Moreover, we will use the group structure of S1, which
is given by R/2𝜋Z. In this case the problem amounts to looking for

a 2𝜋-periodic function 𝑢 (𝑥) that minimizes

𝛼

2

∫
2𝜋

0

|𝑢 ′(𝑥) |2 𝑑𝑥 −
∫

2𝜋

0

𝑢 (𝑥) 𝑑𝑥

among all such 2𝜋-periodic functions satisfying the constraints

𝑢 (0) ≤ 0 and |𝑢 ′(𝑥) | ≤ 1 for all 𝑥 ∈ (0, 2𝜋) .
The minimizer 𝑢 (𝑥) for this problem has a simple analytical ex-

pression, given as follows: First, given 𝑥 ∈ R we set 𝑥 = 𝑥 mod 2𝜋 .

Then,

𝑢𝛼 (𝑥) =


𝑥 if 0 ≤ 𝑥 ≤ 𝐿

𝜋 − 1

2
𝛼 − 1

2𝛼 (𝑥 − 𝜋)
2

if 𝐿 ≤ 𝑥 ≤ 2𝜋 − 𝐿
2𝜋 − 𝑥 if 𝑥 ≥ 𝐿

(5)

Here, 𝐿 = 𝐿(𝛼) is defined by

𝐿(𝛼) = (𝜋 − 𝛼)+ . (6)

This expression approximates the distance to the point correspond-

ing to 𝑥 = 0. Observe that for 𝛼 > 𝜋 the functions 𝑢𝛼 are all equal

to 𝑢𝜋 . In general, the solution 𝑢𝛼 has two regimes or regions, one

region where it matches the geodesic distance function exactly, and

one where it is solving Poisson’s equation𝑢 ′′𝛼 = −1/𝛼 and therefore

matches a concave parabola, with the condition that𝑢𝛼 is𝐶1
across

these two regions. This is the standard condition for solutions to the

obstacle problem (see [Petrosyan et al. 2012]), which is intrinsically

related to (3) in this particular case (see Supplemental 1 for further

discussion).

The inset figure shows the behavior

of the function on the circle. Note the

smoothing region, whose width de-

pends on the smoothing parameter 𝛼

and matches (5)-(6).

Thanks to the group structure of S1

and the invariance of the problem under the group action (in other

words, by symmetry), we obtain a corresponding formula when the

source point is any point 𝑦 ∈ S1. In particular, if 𝑢𝛼 (·, 𝑦) represents
the solution to the problem with source at 𝑦, then

𝑢𝛼 (𝑥,𝑦) = 𝑢𝛼 (𝑥 − 𝑦), ∀ 𝑥,𝑦 (7)

We highlight a notable fact about these functions in a theorem.

Theorem 3.3. For every 𝛼 > 0, the function 𝑢𝛼 (𝑥,𝑦) given by
(5)-(7) defines a metric on S1.

This theorem will be proved in the supplemental. For a general

𝑀 , it is not clear whether one can expect 𝑢𝛼 (𝑥,𝑦) to be a metric.

At the very least, it might be that Theorem 3.3 may generalize

to other groups or homogeneous spaces. In Section 6 we discuss

an extension of problem (3) to the product manifold 𝑀 ×𝑀 that

treats all pairs (𝑥,𝑦) at once, producing an approximation𝑈𝛼 (𝑥,𝑦)
that we can prove will be symmetric in (𝑥,𝑦). We do not prove

this general formulation has the triangle inequality but Figure 12

provides some encouragement in that direction.

Another simple example for whichwe can compute the analytical

solution is the disk. We discuss it in the Supplemental, Section 1.

For general triangle meshes, we provide the discrete formulation

in Section 5. Figure 5 shows the behavior of our computed distance
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Dirichlet & Vector Field Alignment

Figure 2: Vector field alignment regularization. (a) Dirichlet
regularized distance. The two marked vector directions are
not aligned with the regularized distance. (b) An interpolated
and (c) localized vector field based on the two directions. (d-g)
The corresponding regularized distance, using both Dirichlet
and vector field alignment (Sec. 4.1), using two regularization
weights.

using the Dirichlet energy as 𝛼 changes. We plot the normalized

error between 𝑢𝛼 and 𝑢0, showing the solution converges smoothly

towards 𝑢0. We also show the result for three 𝛼 values. For each

𝛼 , we see both the level sets of the distance function (right), and

the norm of the gradient |∇𝑢 | (left). As 𝛼 increases the smoothing

area around the cut locus becomes larger. Note that far from the

cut locus the norm of the gradient is exactly one, showing that our

regularized distance is exactly a geodesic distance function there.

4 REGULARIZERS
In Section 3.1 and Supplemental 1 we discussed two analytical

examples using the Dirichlet energy (4) as the regularizer. In this

section we discuss other possible regularizers in various geometries

(not using analytical formulas). The first of those functionals is

included in the class (2) covered by our theorems and is motivated

by the question of alignment to a given vector field. The other one

is a Hessian functional that falls outside the theorems in our work

but for which we make several numerical experiments and which

raises interesting theoretical questions. Lastly, we discuss one more

example of a regularizer in Supplemental 6, with a non-quadratic

regularizer that takes advantage of the general form of E in (3).

4.1 Vector Field Alignment
In addition to smoothing, one might want to align the isolines of

the distance function to a given direction. We can align ∇𝑢 with

the line field 𝑉 (𝑥) represented as a 3D vector at each point 𝑥 using

the following regularizer:

E(𝑢) = 1

2

∫
𝑀

|∇𝑢 (𝑥) |2 + 𝛽 ⟨𝑉 (𝑥),∇𝑢 (𝑥)⟩2 dVol(𝑥), (8)

Here, (𝑉 (𝑥),∇𝑢 (𝑥)) refers to the Riemmanian metric in𝑀 , which

amounts to the usual inner product between vectors when𝑀 is a

surface in R3, for example. Note the additional parameter 𝛽 that

gives the relative weight between alignment to the vector field

𝑉 (𝑥) versus general smoothness. This is equivalent to computing a

distance function using an anisotropic smoothing term, where the

Figure 3: The distance computed using the Dirichlet energy
regularizer (left) and the curved Hessian (right). Note the
differences near the boundaries.

anisotropic metric at each point on the surface is represented in R3

using the following matrix: 𝐼 + 𝛽𝑉 where 𝐼 is the identity matrix,

and 𝑉 = 𝑉𝑉𝑇 . In terms of the Lagrangian 𝐹 (𝜉, 𝑥) in the regularizer

functional, this problem corresponds to choosing

𝐹 (𝜉, 𝑥) = |𝜉 |2 + 𝛽 ⟨𝑉 (𝑥), 𝜉⟩2 = |𝐴(𝑥)𝜉 |2

where 𝐴(𝑥) = 𝐼 + 𝛽𝑉 (𝑥).
We allow the user to either provide a line field at each point,

or specify a sparse set of directions. If needed, we interpolate the

sparse constraints to a smooth line field, as suggested by Pluta et al.

[2021, Section 5.5.4]. Optionally, we scale the interpolated line field

with a geodesic Gaussian (the geodesic distance is computed with

our method without regularization).

Figure 2 shows the results. Starting from two vectors (a), we

interpolate a line field (b), or a localized line field (c), and compute

the resulting vector field aligned regularized distance for two reg-

ularization parameters 𝛽 (d-g). The gradient norm shows where

the function deviates from being a geodesic distance as its isolines

align to the prescribed directions.

4.2 Hessian for Natural Boundary Conditions
For the Dirichlet regularizer, if we do not impose any boundary

conditions on the problem, the minimizer will have zero Neumann

boundary values (sometimes called “natural boundary conditions”

in FEM). Recently, Stein et al. [2020] suggested using the Hessian

energy instead, given by

E(𝑢) = 1

2

∫
𝑀

|∇2𝑢 (𝑥) |2 dVol(𝑥). (9)

Here, we use the Frobenius norm of the matrix ∇2𝑢 (accordingly,

this norm relies on the Riemannian metric of𝑀). This energy yields

natural boundary conditions, making the result more robust to holes

or mesh boundaries. In the Supplemental, Section 4, we show the

analytical solution for the simple case of the circle.

Figure 3 demonstrates this, using the Dirichlet energy (left) and

the curved Hessian (right). For each method, the left image shows

the level sets of the function, and the right image shows the norm

of the gradient |∇𝑢 |. Note the difference near the mesh boundaries,

where using the Dirichlet energy leads to zero Neumann conditions,

meaning that the isolines are perpendicular to the boundary, and

the distance is smoothed, whereas when using the Hessian energy

the distance is unaffected by the boundary.
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5 OPTIMIZATION VIA ADMM
5.1 Notation
Discretely, we represent surfaces using trianglemeshes𝑀 = (V, F ),
whereV are the vertices, F are the faces, and𝑛 = |V|,𝑚 = |F |. We

use a piecewise-linear discretization of functions on the mesh with

one value per vertex; hence, functions are represented as vectors of

length 𝑛. Vector fields are piecewise constant per face and can be

represented in the trivial basis in R3 or in a local basis per face; we

represent them using vectors of length R3𝑚 or R2𝑚 , respectively.

Vertex and face areas are denoted by𝐴V ∈ R𝑛, 𝐴F ∈ R𝑚 , where

the area of a vertex is a third of the sum of the areas of its adjacent

faces. The diagonal matrices𝑀V ∈ R𝑛×𝑛 ,𝑀F ∈ R3𝑚×3𝑚 contain

𝐴V , 𝐴F on their corresponding diagonals (repeated 3 times for

𝐴F ). The total area of the mesh is 𝐴. We use standard differential

operators [Botsch et al. 2010, Chapter 3]. In particular, our formu-

lation requires the cotangent Laplacian𝑊𝐷 ∈ R𝑛×𝑛 , the gradient
G ∈ R3𝑚×𝑛 , and the divergence D = G

𝑇𝑀F ∈ R𝑛×3𝑚 .

5.2 Optimization Problem
In this setting, the optimization problem in Eq. (3), becomes:

Minimize𝑢 −𝐴𝑇V𝑢 + 𝛼𝐹𝑀 (G𝑢)
subject to | (G𝑢)𝑓 | ≤ 1 for all 𝑓 ∈ F

𝑢𝑖 ≤ 0 for all 𝑖 ∈ 𝐸,
(10)

where 𝐸 here is a subset of vertex indices where the distance should

be 0, and 𝐹𝑀 is a convex function that acts on the gradient of 𝑢.

Note that this problem is convex whenever 𝐹 is convex, since the

objective will be convex, the first constraint is a second-order cone

constraint, and the second constraint is a linear inequality.

5.3 Quadratic Objectives
In practice, the objectives we consider are quadratic, leading to the

following optimization problem

Minimize𝑢 −𝐴𝑇V𝑢 +
𝛼
2
𝑢𝑇𝑊𝑢

subject to | (G𝑢)𝑓 | ≤ 1 for all 𝑓 ∈ F
𝑢𝑖 ≤ 0 for all 𝑖 ∈ 𝐸.

(11)

Different functionals correspond to different weight matrices𝑊 .

To use the Dirichlet energy in Eq. (4), we set𝑊 to the cotangent

Laplacian matrix𝑊𝐷 . For the vector field alignment objective in
Eq. (8) we construct the anisotropic smoothing matrix𝑊𝑉 = D(𝐼 +
𝛽𝑉 )G, where 𝐼 ∈ R3𝑚×3𝑚 , and𝑉 ∈ R3𝑚×3𝑚 is block diagonal, with

the 3 × 3 block of face 𝑓 ∈F given by 𝑉𝑓𝑉
𝑇
𝑓
(see also Section 4.1).

Finally, to use the Hessian regularizer in Eq. (9) we take𝑊 to be

the curved hessian matrix [Stein et al. 2020], denoted by𝑊𝐻 .

5.4 Efficient Optimization Algorithm
We derive an alternating direction method of multipliers (ADMM)

algorithm [Boyd et al. 2011] to solve the optimization problem

in Eq. (11) efficiently. We reformulate the optimization problem,

adding an auxiliary variable 𝑧 ∈ R3𝑚 representing the gradient of

the distance function G𝑢. This leads to:

Minimize𝑢 −𝐴𝑇V𝑢 +
1

2
𝛼𝑢𝑇𝑊𝑢 +

∑︁
𝑓 ∈F

𝜒 ( |𝑧𝑓 | ≤ 1)

subject to (G𝑢)𝑓 = 𝑧𝑓 for all 𝑓 ∈ F
𝑢𝑖 ≤ 0 for all 𝑖 ∈ 𝐸,

where 𝜒 (·) is the indicator function, i.e., 𝜒 ( |𝑧𝑓 | ≤ 1) = ∞ if |𝑧𝑓 | > 1

and 0 otherwise.

The corresponding augmented Lagrangian is:

𝐿(𝑢,𝑦, 𝑧) = −𝐴𝑇V𝑢 +
𝛼
2
𝑢𝑇𝑊𝑢 +

∑︁
𝑓 ∈F

𝜒 ( |𝑧𝑓 | ≤ 1)+∑︁
𝑓 ∈F

𝑎𝑓 𝑦
𝑇
𝑓
((G𝑢)𝑓 − 𝑧𝑓 ) +

𝜌
√
𝐴

2

∑︁
𝑓 ∈F

𝑎𝑓 | (G𝑢)𝑓 − 𝑧𝑓 |2,

where 𝑎𝑓 is the area of the face 𝑓 , 𝜌 ∈ R is the penalty parameter,

and 𝑦 ∈ R3𝑚 is the dual variable or lagrange multiplier.

The ADMM algorithm consists of iteratively repeating three

steps [Boyd et al. 2011, Section 3]. First, we perform𝑢-minimization,

then 𝑧-minimization, and finally the dual variable, 𝑦, is updated.

The full derivation of the three steps appears in Supplemental 8,

and the resulting algorithm in Algorithm 1.

Algorithm details. Note that the first step, the 𝑢-minimization,

includes solving a linear system with a fixed coefficient matrix,

which is pre-factored and used for all the ADMM iterations, as well

as all distance computations. To enforce the constraint 𝑢𝐸 ≤ 0, we

eliminate the relevant columns from the linear system and solve

for 𝑢𝑖 for all 𝑖 ∈ V \ {𝐸}. We project intermediate 𝑧 values to

the unit ball, i.e. Proj(𝑧𝑓 ∈ R3,B3) is equal to 𝑧𝑓 /|𝑧𝑓 | if |𝑧𝑓 | >
1, and 𝑧𝑓 otherwise. We use the stopping criteria suggested by

Boyd et al. [2011, Section 3.3.1], formulated for our problem. See

Supplemental 8 for details.

Efficiency. We compare our approach with a solution imple-

mented using commercial software, i.e., CVX [Grant and Boyd

2008, 2014] with the MOSEK solver [ApS 2019]. Table 1 provides

a comparison of the running times, measured on a desktop ma-

chine with an Intel Core i9. For the optimization using CVX and

MOSEK, we report both the total running times and the solver

running times. Our optimization scheme yields at least an order of

magnitude improvement.

Figure 4 shows our result for multiple sources: three isolated

points, a vertex sampling of a path, and the boundary. Additional

results are shown in Section 7 and in the Supplemental.

ALGORITHM 1: ADMM.

input :𝑀,𝛼,𝑊 , 𝐸

output :𝑢 ∈ R𝑛 - distance to 𝐸

initialize 𝜌 ∈ R ; // penalty parameter

𝑧 ← 03𝑚 ; // auxiliary variable, G𝑢 = 𝑧

𝑦 ← 03𝑚 ; // dual variable

𝜌 ← 𝜌
√
𝐴

while algorithm did not converge do // See Supp. 8
solve

(
𝛼𝑊 + 𝜌𝑊𝐷

)
𝑢 = 𝐴V − D𝑦 + 𝜌D𝑧 s.t. 𝑢𝐸 = 0

𝑧𝑓 ← Proj( 1
𝜌
𝑦𝑓 + (G𝑢)𝑓 ,B3) for all 𝑓 ∈ F

𝑦 ← 𝑦 + 𝜌 (G𝑢 − 𝑧)
end
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Figure 4: Distance to multiple sources: (a) 3 points, (b) a ver-
tex sampling of a path, and (c) the boundary. We show the
distance and the gradient norm.

Table 1: Running times for computing the distance from a
single source.

Model |F | ADMM CVX (sec)

(sec) Total MOSEK

Pipe, Fig 5 10K 0.075 1.16 0.36

Moai, Fig 8 43K 1.01 5.93 2.25

Armadilo, Supp. 10 346K 1.89 37.3733 21.88

Gardet, Supp. 10 989K 5.22 132.91 87.83

Dragon, Supp. 10 2349K 7.66 347.73 230.02

Sea star, Supp. 10 3500K 11.16 572.56 380.36

6 SYMMETRIC ALL-PAIRS FORMULATION
In Section 3.1 we observed how the problem (3) produces a new

metric on S1. It is not clear if problem (3) produces such a result in

general. Part of the problem is how (3) treats the 𝑥 and the source

𝑦 (if 𝐸 = {𝑦}) differently. If one is interested in approximating the

full geodesic distance function 𝑑 (𝑥,𝑦) it is of interest to have a for-

mulation that works directly in all of𝑀 ×𝑀 and which is naturally

symmetric. This leads to the following variation on problem (3).

Consider the manifold𝑀 ×𝑀 with the product metric inherited

from𝑀 . Naturally, given a function𝑈 : 𝑀 ×𝑀 → R we can fix 𝑦 ∈
𝑀 and consider the function 𝑥 ↦→ 𝑈 (𝑥,𝑦) or fix 𝑥 ∈ 𝑀 and consider

the function 𝑦 ↦→ 𝑈 (𝑥,𝑦). We define ∇1𝑈 (𝑥,𝑦) and ∇2𝑈 (𝑥,𝑦) to
be the respective gradients for these functions in𝑀 . Equivalently,

from the decomposition 𝑇 (𝑀 ×𝑀) (𝑥,𝑦) = (𝑇𝑀)𝑥 ⊕ (𝑇𝑀)𝑦 we see

that ∇𝑀×𝑀𝑈 (𝑥,𝑦) = (∇1𝑈 ,∇2𝑈 ).
With this notation, consider the minimization problem

Minimize𝑈 𝛼E𝑀×𝑀 (𝑈 ) −
∫
𝑀×𝑀 𝑈 (𝑥,𝑦) dVol(𝑥,𝑦)

subject to |∇1𝑈 (𝑥,𝑦) | ≤ 1 in {(𝑥,𝑦) | 𝑥 ≠ 𝑦}
|∇2𝑈 (𝑥,𝑦) | ≤ 1 in {(𝑥,𝑦) | 𝑥 ≠ 𝑦}
𝑈 (𝑥,𝑦) ≤ 0 on {(𝑥,𝑦) | 𝑥 = 𝑦}

(12)

Here, we are focusing on the Dirichlet energy functional

E𝑀×𝑀 (𝑈 ) :=
1

2

∫
𝑀×𝑀

|∇1𝑈 (𝑥,𝑦) |2 + |∇2𝑈 (𝑥,𝑦) |2 dVol(𝑥,𝑦)

The optimization problem (12) is a natural extension of (3) if one is

interested in the full geodesic distance function. Indeed, for 𝛼 = 0,

problem (12) has only oneminimizer, the geodesic distance function.

6.1 Theoretical Results
Our discussion suggests that the solutions to (12), to the extent they

exist, should converge to the geodesic distance as 𝛼 → 0. The next

two theorems, counterparts to Theorems 3.1 and 3.2, address this.

Theorem 6.1. There is a unique minimizer for problem (12).

(See Supplemental 5 for a proof).

Wewill denote the uniqueminimizer for this problem by𝑈𝛼 (𝑥,𝑦).
The motivation for (12) was in part finding a way to guarantee the

symmetry of the resulting regularization, and so we have the fol-

lowing theorems, proved in Supplemental 5.

Theorem 6.2. The function𝑈𝛼 (𝑥,𝑦) is symmetric in 𝑥 and 𝑦.

Theorem 6.3. As 𝛼 → 0, we have

∥𝑑 (𝑥,𝑦) −𝑈𝛼 (𝑥,𝑦)∥𝐿∞ (𝑀×𝑀) → 0.

Analogously to Theorem 3.2, this last theorem guarantees the

functions𝑈𝛼 provide a uniform approximation to the full geodesic

distance 𝑑 (𝑥,𝑦) provided 𝛼 is chosen adequately.

6.2 Scalable Optimization
Discretely, we represent 𝑈 as an 𝑛 × 𝑛 matrix. We also express

∇1𝑈 (𝑥,𝑦),∇2𝑈 (𝑥,𝑦) as gradients over the row and columns of𝑈 ,

i.e., G𝑈 and G𝑈𝑇 . The optimization problem in Eq. (12) becomes:

Minimize𝑈 −𝐴𝑇V𝑈𝐴V +
1

2
𝛼 Tr

(
𝑀V

(
𝑈𝑇𝑊𝐷𝑈 +𝑈𝑊𝐷𝑈

𝑇
) )

subject to | (∇𝑈 (𝑖,·) )𝑓 | ≤ 1 for all 𝑓 ∈ F , 𝑖 ∈ V
|(∇𝑈 ( ·, 𝑗) )𝑓 | ≤ 1 for all 𝑓 ∈ F , 𝑗 ∈ V
𝑈𝑖,𝑖 ≤ 0 for all 𝑖 ∈ V,

(13)

where𝑋𝑖, 𝑗 denotes the (𝑖, 𝑗)-th element of a matrix𝑋 ,𝑋 (𝑖,·) denotes
the 𝑖-th row, and 𝑋 ( ·, 𝑗) the 𝑗-th column.

The complexity here is significantly higher than computing the

distance of all points to a closed set. A naive formulation of the

ADMM for this problem leads to a per-iteration linear solve with a

system matrix of size 𝑛2 ×𝑛2. To reduce it to 𝑛 solves with a system

matrix of size 𝑛 × 𝑛, we derive a second ADMM algorithm, Alg. 2

(see Supp), scalable to larger meshes. The symmetric formulation

in Equation (12) arises naturally in this derivation.

Figure 6 shows an example of distances computed using this ap-

proach. The fixed source formulation (Alg. 1) (left) is not symmetric.

We can symmetrize the distance matrix (center), but this leads to

ALGORITHM 2: Symmetric All-Pairs ADMM.

input :𝑀,𝛼
output :𝑈 ∈ R𝑛×𝑛 ; // dual consensus variable

initialize 𝜌1, 𝜌2 ∈ R ; // penalty parameters

𝑍,𝑄 ← 03𝑚×𝑛 ; // auxiliary variables G𝑋 = 𝑍, G𝑅 = 𝑄

𝑌, 𝑆 ← 03𝑚×𝑛 ; // dual variables

𝐻,𝐾 ← 0𝑛×𝑛 ; // dual consensus variables

𝜌1 ← 𝜌1
√
𝐴, 𝜌2 ← 𝜌2

√
𝐴−1

𝑊𝑃 ← (𝛼 + 𝜌1)𝑊𝐷 + 𝜌2𝑀V , 𝑀𝑃 ← 1

2
𝐴V𝐴𝑇V𝑀

−1
V

while algorithm did not converge do // See Supp. 9
solve for 𝑋

𝑊𝑃𝑋 =𝑀𝑃 − D𝑌 + 𝜌1D𝑍 −𝑀V𝐻 + 𝜌2𝑀V𝑈
solve for 𝑅

𝑊𝑃𝑅 =𝑀𝑃 − D𝑆 + 𝜌1D𝑄 −𝑀V𝐾 + 𝜌2𝑀V𝑈𝑇
(𝑍 (·,𝑖 ) )𝑓 ←
Proj

(
1

𝜌1
(𝑌(·,𝑖 ) )𝑓 + (G𝑋 (·,𝑖 ) )𝑓 ,B3

)
for all 𝑖 ∈V, 𝑓 ∈ F

(𝑄 (·,𝑖 ) )𝑓 ←
Proj

(
1

𝜌1
(𝑆 (·,𝑖 ) )𝑓 + (G𝑅 (·,𝑖 ) )𝑓 ,B3

)
for all 𝑖 ∈V, 𝑓 ∈ F

𝑈 = max

(
𝐻+𝐾𝑇
2𝜌2
+ 𝑋+𝑅𝑇

2
, 0

)
; 𝑈𝑖,𝑖 = 0 for all 𝑖 ∈ V

𝑌 ← 𝑌 + 𝜌1 (G𝑋 − 𝑍 ) ; 𝑆 ← 𝑆 + 𝜌1 (G𝑅 −𝑄)
𝐻 ← 𝐻 + 𝜌2 (𝑋 −𝑈 ) ; 𝐾 ← 𝐾 + 𝜌2 (𝑅 −𝑈𝑇 )

end
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visible noise in the gradient norm. The all-pairs formulation (Alg. 2)

is both symmetric and has a smooth gradient norm.

7 EXPERIMENTAL RESULTS
7.1 Scale-Invariant Parameters
The parameter 𝛼 controls the size of the smoothing area. Therefore,

scaling the mesh requires changing its value. To avoid that, and

enable more intuitive control of the smoothing area, we define a

scale-invariant smoothing parameter 𝛼 that is independent of the

mesh area or resolution. For the Dirichlet and vector field alignment

energies, we achieve that by setting 𝛼 = 𝛼
√
𝐴. For the Hessian

energy, we set 𝛼 = 𝛼
√
𝐴3

. We note that the parameter 𝛽 is already

scale-invariant, i.e., 𝛽 = ˆ𝛽 . For our ADMM algorithms (Sec. 5, 6.2)

to be scale-invariant, we normalize the penalty variables, residual

and feasibility tolerances. Figure 7 demonstrates this. We uniformly

rescale an input mesh, and use the same smoothing parameter 𝛼 .

Note that while the distances are different between the meshes, the

scale of the smoothed region, i.e., the area where the norm of the

gradient is not 1, is similar. For all our experiments we use the scale

invariant formulation, unless stated otherwise.

7.2 Comparison
In Fig. 8we compare ourDirichlet regularized distances to “Geodesics

in Heat” [Crane et al. 2013] and regularized EMD [Solomon et al.

2014], with two smoothing parameters for each. In addition, we

show the exact geodesics computed using MMP [Mitchell et al.

1987] for reference. Note that while all approaches lead to a smoother

solution compared to the exact geodesics, our approach is more

stable, in the sense that the same scale of regularization is observed

on all meshes, for the same parameters. Thus, we conjecture that

for our approach the regularization parameter is easier to tune.

Table 2 compares the running times, and the maximal error w.r.t

the MMP distance (as a % of the maximal distance). The distances

are computed with Geometry Central [Sharp et al. 2019] for the heat

method andMMP, and with aMatlab implementation of our ADMM

Algorithm 1. Note that both our method and the heat method have

comparable errors, and for both smoother solutions have larger

errors. A timing comparison for the all-pairs case is in the Supp.

We additionally show in the supplemental material a comparison

of the representation error of the different approaches in a reduced

basis (providing a quantitative measure of smoothness).

7.3 Robustness
Meshing. We demonstrate that our method is invariant to meshing,

and is applicable to non-uniform meshing without modifying 𝛼 .

Fig. 9 compares our result with the heat method, for 3 remesh-

ings of the same shape. Note that for the heat method with the

default smoothing parameter (left), the half-half mesh fails. This

is remedied by using a different parameter (center), however there

are still differences between the different meshing (note especially

the gradient norm). Using our approach (right) we get very similar

distance functions and gradient norm for all 3 meshings. Fig. 5 in

the supplemental shows additional results with bad triangulations.

Noise. Fig. 10 shows robustness to noise and bad meshing. We

add Gaussian normal noise with 𝜎 = 0.5, 0.8 of the mean edge

length, and use a remesh with highly anisotropic triangles and

self-intersections. We show the distances and the gradient norm,

all with the same 𝛼 . Note that the results are consistent between

the different meshes.

Symmetry error. Our Alg. 1 is not symmetric. Figure 11 shows

the symmetry error
1√
𝐴
|𝑑 (𝑥,𝑦) − 𝑑 (𝑦, 𝑥) | for 3 source points for

our method and the heat method. Note that for all three points, the

symmetry error is higher for the heat method.

Triangle inequality error. Our method does not guarantee that

triangle inequality holds, while EMD does. However, experimen-

tally it does hold for higher values of 𝛼 . Fig. 12 shows the triangle

inequality error of a fixed pair of vertices with respect to every

other vertex. We compare the heat method, Alg. 1, and Alg. 2. For

the first two, we symmetrize the computed distance matrix. We

show the results for three 𝑡 values for the heat method, and three

values of 𝛼 for our approach. We visualize the distance from the

chosen point using isolines. Note the difference in the error scaling

between the two methods. Further, note that for higher values of 𝛼

our approach has no violations of the triangle inequality. Table 3

shows the percentage of triplets violating the triangle inequality

for the same data. Note, that also when considering all the possi-

ble triplets, higher values of the smoothing parameter lead to less

violations.

7.4 Volumetric Distances
Our framework can compute distances on tetrahedral meshes. We re-

place the standard mass matrix, gradient, and divergence operators

with their volumetric versions, as implemented in gptoolbox [Jacob-

son et al. 2021]. Figure 13 demonstrates our Dirichlet regularized

volumetric distance on a human shape (a). We show the distance

from a point on the shoulder on two planar cuts (b,c), and the

distance from the boundary using two 𝛼 values (d,e).

7.5 Example Application: Distance Function for
Knitting

Some approaches for generating knitting instructions for 3Dmodels

require a function whose isolines represent the knitting rows [Edel-

stein et al. 2022; Narayanan et al. 2018]. Using the geodesic distance

to an initial point (or a set of points) is a good choice since the stitch

heights are constant, as are the distances between isolines. On the

other hand, this choice limits the design freedom significantly, as

designers and knitters have no control over the knitting direction

on different areas of the shape. Using regularized distances with

vector alignment solves this problem. For example, see Figure 2

and the C model. Using geodesic distances to the starting point

will result in a non-symmetric shape (a) (see also [Edelstein et al.

2022, Figure 10]. By adding 2 directional constraints (f), we obtain a

function whose isolines respect the symmetries of the shape. Note

that for the regularized distances, the gradient norm is no longer 1

everywhere, and thus the distances between isolines is not constant.

This can be addressed when knitting by using stitches of different

heights. Figure 14 shows how adding alignment to the teddy’s arm

and legs aligns the knitting rows with the creases. Crease align-

ment leads to better shaping [Edelstein et al. 2022, Section 9.3], and

prevents over-smoothing of the knit model.
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Table 2: Comparison of run-times (T) and the maximal error (𝜖) of the computed distance (in % of the maximal distance) for the
models in Figure 8.

Model |F | MMP Heat 𝑡 = 𝑒2 Heat 𝑡 = 20𝑒2 EMD 𝑑0W EMD 𝑑100W Ours 𝛼 = 0.02 Ours 𝛼 = 0.1

T (sec) T (sec) 𝜖 (%) T (sec) 𝜖 (%) 𝜖 (%) 𝜖 (%) T (sec) 𝜖 (%) T (sec) 𝜖 (%)

Homer 23K 0.255 0.031 2.47 0.030 7.76 30.33 30.31 0.3664 3.40 0.1503 11.90

Elephant 10K 0.061 0.011 4.84 0.011 11.36 11.36 15.82 0.191 2.00 0.138 5.72

Armadilo 29K 0.279 0.041 2.83 0.041 9.33 20.55 14.82 0.454 2.35 0.192 6.78

Moai 43K 1.133 0.101 1.71 0.102 5.34 26.32 26.43 0.683 1.84 0.390 8.60

Koala 9K 0.063 0.013 2.30 0.010 7.17 55.26 41.15 0.124 2.35 0.059 8.64

Table 3: Percentage of triplets violating triangle inequality
for the data in Fig. 12. Note that for our approach higher
values of 𝛼 lead to less violations.

Heat - Symmetrized Fixed-Source - Symmetrized All-Pairs

(a) 1.84 2.04 1.23

(b) 2.20 1.28 0.88

(c) 2.20 0.25 0.09

8 CONCLUSIONS AND FUTUREWORK
We presented a novel framework for constructing regularized geo-

desic distances on triangle meshes. We demonstrated the versatility

of our approach by presenting three regularizers, analyzing them,

and providing an efficient optimization scheme, as well as a sym-

metric formulation on the product manifold. The theoretical results

and experiments in this work raise a number of interesting ques-

tions for future research. One of them is whether the functions

𝑈𝛼 (𝑥,𝑦) provide metrics in general, i.e., whether they satisfy the

triangle inequality; we are not aware of results where geodesic

distances can be regularized to have smooth metrics in𝑀 ×𝑀 . An-

other theoretical question involves convergence of the minimizers

in the Hessian energy-regularized problem, as discussed in Section

4. Algorithmically, the ADMM algorithm from Section 5.4 easily

generalizes to other convex functions 𝐹𝑀 (e.g., 𝐿1 norms) in Equa-

tion 10; recent theory on nonconvex ADMM also suggests that

Algorithm 1 can be effective for nonconvex regularizers, possibly

requiring large augmentation weights 𝜌 [Attouch et al. 2010; Gao

et al. 2020; Hong et al. 2016; Ouyang et al. 2020; Stein et al. 2022;

Wang et al. 2019; Zhang et al. 2019; Zhang and Shen 2019].
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Figure 8: A qualitative comparison between our Dirichlet reg-
ularized distances, Heat method, and EMD, with two choices
of smoothing parameter per method. See the text for details.

Figure 9: Our results v.s. the heat method for different
remeshings, we show the distance function and the gradient
norm. Note that our approach leads to distances which are
very similar for the three meshes, with the same smoothing
parameter 𝛼 . See the text for details.

Figure 10: Robustness to noise and badmeshing, all distances
computed with the same 𝛼 . Note the similarities of the dis-
tances and gradient norm, despite the large normal noise and
badly shaped triangles.

Figure 11: Violation of the symmetric property for 3 source
points. Note that while our method is not symmetric by con-
struction, the symmetry error is lower than the symmetry
error for the heat method.

Figure 6: The all-pairs formulation, Alg. 2 (right), vs the fixed
source formulation, Alg. 1 (left), and its symmetrized version
(center). See the text for details.
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Figure 14: Vector field alignment of creases, useful for knit-
ting applications.

Figure 12: Triangle inequality violation. For a fixed pair of
points (visualized with the distance isolines) we compute
the triangle inequality error for all the other points. We
compare the symmetrized heat method, our symmetrized
method and the all-pairs formulation (which is symmetric
by construction). We use a few smoothing weights for each
approach. Note, that for our approach the violation reduces
as the smoothing weight grows.

Figure 13: Dirichlet regularized volumetric distances. (a) The
input tetrahedral mesh. (b,c) Two cuts showing the distance
to a point on the shoulder. (d,e) Distance to the boundary,
where (d) is more smoothed than (e), i.e. has a larger 𝛼 value.

Figure 7: Scale invariance. While the distances are different
between the uniformly scaledmodels, the area of the smooth-
ing (where the norm of the gradient is not 1) is similar for
all meshes. See the text for details.

Figure 5: A numerical solution on triangle meshes. The dis-
tance converges towards 𝑢0 as 𝛼 approaches 0. Note the dif-
ferent smoothing regions, whose width depends on 𝛼 .
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