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Parallel Transport on the Cone Manifold of SPD
Matrices for Domain Adaptation

Or Yair , Student Member, IEEE, Mirela Ben-Chen, and Ronen Talmon , Member, IEEE

Abstract—In this paper, we consider the problem of domain
adaptation. We propose to view the data through the lens of co-
variance matrices and present a method for domain adaptation us-
ing parallel transport on the cone manifold of symmetric positive-
definite matrices. We provide rigorous analysis using Riemannian
geometry, illuminating the theoretical guarantees and benefits of
the presented method. In addition, we demonstrate these benefits
using experimental results on simulations and real-measured data.

Index Terms—Positive definite matrices, domain adaptation,
transfer learning, parallel transport.

I. INTRODUCTION

THE increasing technological sophistication of current data
acquisition systems gives rise to complex, multimodal

datasets in high-dimension. As a result, the acquired data do not
live in a Euclidean space, and applying analysis and learning al-
gorithms directly to the data often leads to subpar performance.

To facilitate the analysis and processing of such data, one ap-
proach is to observe complex high-dimensional data through the
lens of objects with a known non-Euclidean geometry. Notable
examples of such objects are Symmetric and Positive Definite
(SPD) matrices, which live on a cone manifold with a Rieman-
nian metric. One of the most common forms of SPD matrices is
a covariance matrix, which captures the linear relations between
the different data coordinates. These relations are typically sim-
ple to compute, and therefore, recently, have become popular
features in many applications in computer vision, medical imag-
ing, and machine learning [1]–[4]. In particular, in [5], [6], the
Riemannian geometry of covariance matrices was studied and
exploited for medical imaging and physiological signal analysis.

Typically, Riemannian geometry is used to map objects from
the non-Euclidean manifold to a linear Euclidean space by pro-
jection onto a tangent plane of the manifold. In existing work,
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the use of Riemannian geometry is usually limited to a single
tangent plane. This indicates a hidden assumption that the SPD
matrices corresponding to the data are confined to a local region
of the manifold. However, the SPD matrices of the data often
do not live in a small neighborhood on the manifold, and thus
the resulting calculations may be inaccurate.

One such particular scenario, in which SPD matrices span
a large portion of the cone manifold, occurs when the data
comprise multiple domains corresponding to multiple sessions,
subjects, batches, etc. For example, we will show that in a Brain-
Computer-Interface (BCI) experiment, the covariance matrices
of data acquired from a single subject in a specific session cap-
ture well the overall geometric structure of the data. Conversely,
when the data consist of measurements from several subjects or
several sessions, then the covariance matrices do not live in the
same region of the manifold.

Often, multi-domain data pose significant challenges to learn-
ing approaches. For example, in the BCI experiment, it is chal-
lenging to train a classifier based on data from one subject (ses-
sion) and apply it to data from another subject (session). This
problem is largely referred to as domain adaptation or trans-
fer learning, and it has attracted a significant research effort in
recent years [7], [8].

Broadly, in domain adaptation, the main idea is to adapt a
given model that is well performing on a particular domain, to a
different yet related domain [7], [8]. Specifically, in the context
of the cone manifold of SPD matrices, previous work proposed
(geometric) mean subtraction as a simple method for domain
adaption of BCI data [6]. Although this approach provided rea-
sonable results for overcoming the differences between multiple
sessions of a single subject, we show here that it fails to over-
come the differences between multiple subjects. In [3], a Parallel
Transport (PT) approach was proposed, which can be applied
either directly to the data, or to a generative model of the data
to reduce the computational load for large datasets. However,
their approach considers a general Riemannian manifold. Since
there is no closed-form expression of PT on Riemannian mani-
folds, besides the sphere manifold and the manifold of all SPD
matrices [1], [4], no specific scheme or algorithm was provided.
We note that PT can be approximated using Schild’s Ladder [9],
an approach that has been used extensively on the manifold of
imaging data [4], [5], [9], [10].

In this paper, we propose a domain adaptation method us-
ing the analytic expression of PT on the cone manifold of
SPD matrices. We claim that this is a natural and efficient so-
lution for domain adaptation, which enjoys several important
benefits. First, the solution is specially designed for SPD
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matrices, which have proven to be good features of data in a
gamut of previous work [5], [6], [10]. Second, the analytic form
of PT on the cone manifold circumvents approximations. Third,
PT can be efficiently implemented, in contrast to the compu-
tationally demanding Schild’s Ladder approximation. We es-
tablish the mathematical foundation of the proposed domain
adaptation method. To this end, we provide new results in the
geometry of SPD matrices. In addition, we show applications
to both simulation and real recorded data, obtaining improved
performance compared to the competing methods.

We note that an important requirement of the presented do-
main adaptation is that the covariance matrices are strictly pos-
itive. Indeed, positive semi-definite matrices lie at the boundary
of the cone manifold of SPD matrices, and applying PT is not
possible; technically, PT involves the inverse of SPD matrices,
which does not exist if the matrices are only positive semi-
definite. This requirement entails that a sufficient number of
samples needs to be available, so that the covariance matrices
are positive and can be accurately estimated. Specifically, if
the number of samples over time is smaller than the dimension
of the observations, the associated covariance matrices are low
rank and only positive semi-definite. In order to relax this re-
quirement and to promote strictly positive covariance matrices,
some regularization could be considered, or alternatively, di-
mensionality reduction methods could be applied to preprocess
the data.

Broadly, the use of positive semi-definite matrices may arise
in many other situations as well. One prominent case is when
positive semi-definite kernel functions are used as features in-
stead of the covariance matrices. Using kernel functions could
be highly beneficial since kernels can naturally accommodate
nonlinear relationship between the data samples. In addition, in
contrast to the covariance, kernel functions have the ability to
capture the dynamics of time series.

In [11], an extension of the Riemannian framework to pos-
itive semi-definite matrices with a fixed rank was presented,
which includes the corresponding Riemannian metric and the
geodesic path. While this work allows the extension of some of
the concepts presented in this paper, the main ingredient, PT, is
still lacking and needs to be developed. This extends the scope
of this paper and will be addressed in future work.

In parallel to our study, recent work [12] has proposed a
scheme for transfer learning using the Riemannian geometry
of SPD matrices, with a tight connection to the present work.
We will show that the affine transformation proposed in [12]
can be recast as PT. In this paper we provide the mathematical
foundation to analyze this transport, we discuss the advantage
of our solution compared to [12], and we point out the special
case in which the two methods coincide.

In this paper we present an unsupervised approach for domain
adaptation. Due to the lack of labeled data and of prior statistical
models, the criterion of successful adaptation is not explicitly
defined. As a result, the relatedness of two domains [13], that
is the definition of a measure of how much two domains are
related is challenging and is not provided in the present work.
This is an important component in domain adaptation, since the
adaptation of unrelated domains could lead to poor, or even ‘neg-

ative’, results. This problem will be the subject of future work,
focusing on the statistical moments (or the principal directions)
of the obtained joint representation. The alignment between the
moments of the representation of two domains will facilitate the
definition of relatedness and adaptation refinement.

This paper is organized as follows. In Section II, we present
preliminaries on the Riemannian geometry of SPD matrices.
In Section III, we formulate the problem, present the proposed
domain adaptation method, and provide mathematical analy-
sis and justification. Section IV shows experimental results on
both simulation and real data. Finally, we conclude the paper in
Section V.

II. PRELIMINARIES ON RIEMANNIAN GEOMETRY OF

SPD MATRICES

In this section we provide the preliminaries regarding SPD
matrices, and we refer the reader to the book [14] for a detailed
exposition of this topic. We note that in this paper we focus
on covariance matrices, however the statements also hold for
general SPD matrices. By definition, an SPD matrix P ∈ Rn×n

has only strictly positive eigenvalues. An alternative definition is
that for any vector v �= 0 the quadratic form is strictly positive,
i.e., vT Pv > 0.

A. Metric and Distance

The definition of an SPD matrix entails that the collection
of all SPD matrices constitutes a convex half-cone in the vec-
tor space of real n × n symmetric matrices. This cone forms a
differentiable Riemannian manifold M equipped with the fol-
lowing inner product

〈S1 ,S2〉TP M =
〈
P− 1

2 S1P
− 1

2 ,P− 1
2 S2P

− 1
2

〉
(1)

where TPM is the tangent space at the point P ∈ M, S1 ,S2 ∈
TPM, and 〈·, ·〉 is the standard Euclidean inner product oper-
ation. The symmetric matrices S ∈ TPM in the tangent plane
live in a linear space, and therefore, we can view them as vec-
tors (with a proper representation). Throughout this paper, we
interchangeably use the terms vectors and symmetric matrices
when referring to S ∈ TPM.

This Riemannian manifold is a Hadamard manifold, namely,
it is simply connected and it is a complete Riemannian manifold
of non-positive sectional curvature. Manifolds with non-positive
curvature have a unique geodesic curve between any two points,
a property that will later be exploited. Specifically, the unique
geodesic curve between any two SPD matrices P 1 ,P 2 ∈ M is
given by [14, Thm 6.1.6]

ϕ(t) = P
1
2
1

(
P

− 1
2

1 P 2P
− 1

2
1

)t

P
1
2
1 , 0 ≤ t ≤ 1 (2)

The arc-length of the geodesic curve defines the following Rie-
mannian distance on the manifold [14]:

d2
R (P 1 ,P 2) =

∥∥∥log
(
P

− 1
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2 P 1P
− 1

2
2

)∥∥∥
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=
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λi

(
P
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2

2 P 1P
− 1

2
2

))
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Fig. 1. The cone manifold of 2 × 2 SPD matrices. The black dots mark the
boundary of the cone (i.e., matrices with eigenvalue zero). Each magenta curve
is the geodesic between pairs of matrices (blue circles and green squares). All the
geodesic curves are of the same length (i.e., the Riemannian distance between
all the pairs is equal).

where P 1 ,P 2 ∈ M, ‖ · ‖F is the Frobenius norm, log(P ) is
the matrix logarithm, and λi(P ) is the i-th eigenvalue of P . We
additionally denote by d

dt ϕ(t) = ϕ′(t) ∈ Tϕ(t)M the velocity
vector of the geodesic at t ∈ [0, 1]. Figure 1 presents an illus-
tration of the geodesic curve and the Riemannian distance. The
cone manifold of 2 × 2 SPD matrices can be displayed in R3 ,
since any symmetric matrix P = (x y

y z ) is positive if and only
if x > 0, z > 0 and y2 < xz.

B. Exponential and Logarithm Maps

The Logarithm map, which projects an SPD matrix P i ∈ M
to the tangent plane TPM at P ∈ M, is given by

Si = LogP (P i) = P
1
2 log

(
P− 1

2 P iP
− 1

2
)
P

1
2 ∈ TPM

The Exponential map, which projects a vector Si ∈ TPM back
to the manifold M is given by

P i = ExpP (Si) = P
1
2 exp

(
P− 1

2 SiP
− 1

2
)
P

1
2 ∈ M (3)

An important property relates the Logarithm and Exponential
maps to the geodesic curve. Formally, let P 1 ,P 2 ∈ M, and
consider the (unique) geodesic ϕ(t) from P 1 to P 2 . The initial
velocity ϕ′(0) ∈ TP 1 M is given by the Logarithm map ϕ′(0) =
LogP 1

(P 2). Similarly, the Exponential map projects the initial
velocity vector ϕ′(0) back to P 2 , namely, P 2 = ExpP 1

(ϕ′(0)).

C. Riemannian Mean

The Riemannian mean P of a set {P i |P i ∈ M} is defined
using the Fréchet mean:

P � arg min
P∈M

∑
i

d2
R (P ,P i) (4)

A special case is the Riemannian mean P of two SPD matri-
ces P 1 ,P 2 ∈ M, which has a closed-form expression, and is
located at the midpoint of the geodesic curve:

P = ϕ( 1
2 ) = P

1
2
1

(
P

− 1
2

1 P 2P
− 1

2
1

) 1
2

P
1
2
1

Generally, for more than two matrices, the solution of the opti-
mization problem (4) can be obtained by an iterative procedure.
Barachant et al. [6] presented an algorithm based on [15] for
estimating the Riemannian mean. For completeness, we include
their algorithm in Appendix F.

Given a set {P i |P i ∈ M} and its Riemannian mean P , there
is a commonly used approximation of the Riemannian distances
onM in the neighborhood of P . Specifically, the approximation
of the Riemannian distance d2

R is given by:

d2
R

(
P i ,P j

)
≈

∥∥S̃i − S̃j

∥∥2
F

(5)

where S̃i = P
− 1

2 LogP (P i)P
− 1

2 . For more details on the ac-
curacy of this approximation, see [2].

III. DOMAIN ADAPTATION WITH PARALLEL TRANSPORT

A. Overview

Let X (1) = {x(1)
i (t)}N1

i=1 and X (2) = {x(2)
i (t)}N2

i=1 be two
subsets of N1 and N2 high-dimensional time series, respectively,
where x

(k)
i (t) ∈ RD . Suppose each subset lives in a particular

domain, which could be related to the acquisition modality,
session, deployment, and set of environmental conditions. In
our notation, the superscript k denotes the index of the subset,
the subscript i denotes the index of the time-series within each
subset, and t represents the time axis of each time-series.

Our exposition focuses only on two subsets, and the gener-
alization for any number of subsets is discussed at the end of
this section. In addition, we consider here time-series, but our
derivation does not take the temporal order into account, and
therefore, the extension to other types of data, where t is merely
a sample index, e.g., images, is straight-forward.

Analyzing such data typically raises many challenges. For
example, a long-standing problem is how to efficiently compare
between high-dimensional point clouds, and particularly, time-
series. When the data are measured signals, sample comparisons
become even more challenging, since such high-dimensional
measured data usually contain high levels of noise.

In particular, in our setting, we face an additional challenge,
since the data is given in different domains; comparing time-
series from the same subset is a difficult task by itself, even more
so is comparing time-series from two subsets from different
domains.

Our goal is to find a new joint representation of the two subsets
in an unsupervised manner. Broadly, we aim to devise a low-
dimensional representation in a Euclidean space that facilitates
efficient and meaningful comparisons. For the purpose of eval-
uation, we associate the time-series x

(k)
i (t) with labels y

(k)
i and

define “meaningful” comparisons with respect to these labels.
More concretely, we evaluate the joint representation by the Eu-
clidean distance between the new representation of any two
time-series with similar corresponding labels, independently
of the time-series respective domain. We emphasize that the
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proposed approach is unsupervised and it does not depend
on the labels, which are only considered for the purpose of
evaluation.

Devising such a new representation will facilitate efficient
and accurate domain adaptation schemes. Specifically, given a
subset {x(1)

i (t)}N1
i=1 with corresponding labels {y(1)

i }N1
i=1 , we

could train a classifier based on the new derived representation
of the subset. Then, when another unlabeled subset {x(2)

i (t)}N2
i=1

becomes available, we could apply the trained classifier to the
derived (joint) representation of the latter subset.

B. Illustrative Example

To put the problem setting and our proposed solution in con-
text, throughout the paper, we will follow an illustrative exam-
ple, taken from the brain computer interface (BCI) competition
IV (dataset IIa) [16]. Consider data from a BCI experiment
of motor imagery comprising of recordings from D = 22 Elec-
troencephalography (EEG) electrodes. The dataset contains sev-
eral subjects, where each subject was asked repeatedly to per-
form one out of four motor imagery tasks: movement of the
right hand, the left hand, both feet, and the tongue.

Let X (1) = {x(1)
i (t)}N1

i=1 be a subset of recordings acquired

from a single subject, indexed (1), where the time-series x
(1)
i (t)

consists of the signals, recorded simultaneously from the D
EEG channels during the i-th repetition/trial. Each time series
x

(1)
i (t) is attached with a label y

(1)
i , denoting the imagery task

performed at the the i-th trial. Common practice is to train
a classifier based on X (1) , so that the imagery task could be
identified from new EEG recordings. This capability could then
be the basis for devising brain computer interfaces, for example,
to control prosthetics.

Suppose a new subset X (2) = {x(2)
i (t)}N2

i=1 of recordings
acquired from another subject, indexed (2), becomes available.
Applying the classifier, trained based on data from subject (1),
to the new subset of recordings from subject (2) yields poor
results, as we will demonstrate in Section IV-B. Indeed, most
methods addressing this particular challenge, as well as related
problems, exclusively analyze data from each individual subject
separately. By constructing a joint representation for both X (1)

and X (2) , which is oblivious to the specific subject, we develop
a classifier that is trained on data from one subject and applied to
data from another subject without any calibration, i.e., without
any labeled data from the new (test) subject.

C. Covariance Matrices as Data Features

As described before, we suggest looking at the data through
the lens of covariance matrices. We denote the covariance ma-
trices by:

P
(k)
i = E

[(
x

(k)
i (t) − µ

(k)
i

)(
x

(k)
i (t) − µ

(k)
i

)T
]

where µ
(k)
i = E[x(k)

i (t)]. Typically, since the statistics of the
data is unknown, we use estimates of the covariance, such as
the sample covariance. We note that our approach is applicable
to any kind of input data given as SPD matrices. For example,
in machine learning, common practice is to use kernels which

represent an inner product between features after some non-
linear transformation [17].

By using covariance matrices as data features we enjoy a
few key benefits. First, since covariance matrices are computed
from data by averaging over time, they tend to be robust to
noise. Second, covariance matrices can be seen as a low dimen-
sional representation. Third, they have useful geometric proper-
ties and a well-developed Riemannian framework, as described
in Section II. Particularly, they have a Riemannian metric (3),
facilitating appropriate data samples comparisons, which is a
basic ingredient of many analysis and learning techniques. In
this work, we build on and extend the latter.

Recently, the usefulness of covariance matrices has been
demonstrated in the context of the BCI problem [6]. There,
Barachant et al. considered data from a single subject and pro-
posed to project the covariance matrices {P i} of the recordings
from each trial (after some whitening) into the tangent plane
of the Riemannian mean P , namely compute Si = LogP (P i).
Then, a classifier was trained on the set {Si}. Using this ap-
proach, state of the art results for motor imagery task classifica-
tion were obtained. However, when considering several subsets
from multiple domains, such as different sessions or subjects,
as reported in [6], the covariance matrices convey a domain-
specific content, which in turn poses limitations on task classifi-
cation. For multiple sessions on different days, Barachant et al.
proposed to subtract the Riemannian mean from each subset,
namely, to project each subset P (k) = {P (k)

i } to the tangent
space at its own mean. Indeed, when the train set and the test
set were obtained on different days, this mean normalization
improved the task classification rate. However, in the case of
multiple subjects, this approach is inadequate. As mentioned
before, given recordings from one subject as a train set and
recordings from another subject as a test set, the classification
of the different mental tasks based on covariance matrices fails
completely.

This illuminates the primary challenge addressed in this work
– how to build a representation so that any two covariance ma-
trices associated with the same mental task, but from possibly
different sessions or subjects, will be given a similar repre-
sentation. Importantly, since the task labels are unknown, this
objective cannot be directly imposed. In the sequel, we exploit
the Riemannian geometry of covariance matrices, and devise
such a representation in an unsupervised manner by preserving
local geometric structures.

D. Formulation

Consider two subsets P (1) and P (2) from two different do-
mains consisting of N1 and N2 covariance matrices, respec-

tively. Let P
(1)

and P
(2)

be their respective Riemannian means.
Let ϕ(t), given explicitly in (2), denote the unique geodesic from

P
(2)

to P
(1)

such that ϕ(0) = P
(2)

and ϕ (1) = P
(1)

. Finally,
let S

(k)
i be the symmetric matrix (or equivalently, the vector)

in the tangent space T
P

(k ) M, obtained by projecting P
(k)
i to

T
P

(k ) M:

S
(k)
i = Log

P
(k )

(
P

(k)
i

)
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for k ∈ {1, 2} and i ∈ {1, 2, . . . , Nk}.
Our goal now is to derive a new representation Γ(S(2)

i ) of S
(2)
i

given by the map Γ : T
P

( 2 ) M → T
P

( 1 ) M, such that {S(1)
i }

and {Γ(S(2)
i )} live in the same space. This allows us to relate

samples from the two subsets, and compute quantities such
as 〈S(1)

i ,Γ(S(2)
j )〉

P
( 1 ) . In addition, we require that the new

representation will fulfill the following properties:
1) Zero mean:

1
N2

N2∑
i=1

Γ
(
S

(2)
i

)
= 1

N1

N1∑
i=1

S
(1)
i = 0

2) Inner product preservation:〈
Γ

(
S

(2)
i

)
,Γ

(
S

(2)
j

)〉
P

( 1 ) =
〈
S

(2)
i ,S

(2)
j

〉
P

( 2 )

for all i, j ∈ {1, . . . , N2}.
3) Geodesic velocity preservation:

Γ (ϕ′(0)) = ϕ′(1) (6)

Properties (1) and (2) imply that the new representation Γ
preserves inter-sample relations, defined by the inner product.
Note that a map Γ satisfying properties (1) and (2) is not unique;
for any Γ admitting to properties (1) and (2), the composition
R ◦ Γ, where R is an arbitrary rotation within the subspace
T

P
( 1 ) M, satisfies properties (1) and (2) as well. To resolve this

arbitrary degree of freedom, we use the geodesic between two
points on the SPD manifold, which is unique [14]. Concretely,
in property (3), the two intrinsic symmetric matrices (vectors)
ϕ′(0) ∈ T

P
( 2 ) M and ϕ′(1) ∈ T

P
( 1 ) M, induced by the velocity

of the unique geodesic at the source and destination, are used to
fix a rotation and to align the subset {Γ(S(2)

i )} with the subset

{S(1)
i }.
We remark that the above properties imply that the subset

{Γ(S(2)
i )} is embedded in the 〈·, ·〉

P
( 1 ) inner product space.

In the sequel, we will describe how to circumvent the depen-

dence of the inner product space on P
(1)

and make the new
representation truly Euclidean by pre-whitening the data. Addi-
tionally, note that the mean subtraction presented in [6] admits
only properties (1) (2).

E. Domain Adaptation

First, we explicitly provide the expression for parallel trans-
port on the SPD cone manifold, and then we use it to define the
map Γ.

Lemma 1 (Parallel Transport): Let A,B ∈ M. The PT
from B to A of any S ∈ TBM is given by:

ΓB→A (S) � ESET (7)

where E = (AB−1)
1
2 .

This lemma was presented in [1, Eq. 3.4]. The proof of the
lemma is given in Appendix A and it is based on [18]. An
illustration of the PT on the SPD manifold is presented in Fig-
ure 2. Note that the inner products between the three vectors
in the figure are preserved under the parallel transport ΓB→A

and the appearance could be misleading since the space is not
Euclidean.

Fig. 2. Illustration of the PT on the SPD manifold. A and B are two SPD
matrices, and ϕ is the unique geodesic between them. We plot three vectors in
TBM: ϕ′(0), S1 and S2 along with their corresponding parallel transported
vectors to TAM using ΓB→A .

Theorem 1: The representation Γ
P

( 2 )→P
( 1 ) (S(2)

i ) given by

the unique PT of S
(2)
i from P

(2)
to P

(1)
is well defined and

satisfies properties (1)–(3).
The proof is given in Appendix B.
Theorem 1 sets the stage for domain adaptation. We propose

a map Ψ : M → M that adapts the domain of the subset of
SPD matrices P(2) to the domain of the subset P (1) . For any
P

(2)
i ∈ P(2) , the map Ψ(P (2)

i ) is given by

Ψ
(
P

(2)
i

)
=Exp

P
( 1 )

(
Γ

P
( 2 )→P

( 1 )

(
Log

P
( 2 )

(
P

(2)
i

)))
(8)

To enhance the geometric insight, we explicitly describe the
three steps comprising the construction of Ψ:

1) Project the SPD matrix P
(2)
i to the tangent plane T

P
( 2 ) M

by S
(2)
i = Log

P
( 2 ) (P (2)

i ).

2) Parallel transport S
(2)
i from P

(2)
to P

(1)
by computing

S
(2)→(1)
i = Γ

P
( 2 )→P

( 1 ) (S(2)
i ).

3) Project the symmetric matrix S
(2)→(1)
i ∈ T

P
( 1 ) M back

to the manifold using Exp
P

( 1 ) (S(2)→(1)
i ).

The implementation of Ψ can be simplified and made more
efficient by using the following theorem.

Theorem 2: Let A,B,P ∈ M and let S = LogB(P ) ∈
TBM. Then,

ExpA (ΓB→A (S)) = EPET

where E = (AB−1)
1
2 .

In words, the “parallel transport” of an SPD matrix P ∈ M
from B to A is given the same transformation applied to S =
LogB(P ). Namely, the “parallel transport” of the SPD matrix P
from B to A is equal to projecting P to the tangent plane at B,
parallel transporting the projection to the tangent plane at A, and
then projecting back to the SPD manifold. As a consequence, we
show in the sequel that the map Ψ in (8) can be written simply
in terms of Γ. The proof of Theorem 2 is given in Appendix C.
We note that we present the theorem in a general context, since
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we did not find such a result in the literature and believe it might
be of independent interest.

Theorem 2 enables us to efficiently compute Ψ(P (2)
i ), since it

circumvents the computation of the Logarithm and Exponential
maps of the SPD matrix in steps 1 and 3 above. Instead, the
transformation defined by E is computed only once for the
entire set, and (8) can be recast as:

Ψ
(
P

(2)
i

)
= Γ

P
( 2 )→P

( 1 )

(
P

(2)
i

)
= EP

(2)
i ET (9)

where E � (P
(1)

(P
(2)

)−1)
1
2 . Note that this equality is well

defined since any tangent plane to the SPD manifold M is the
entire space of symmetric matrices [18].

Thus far in the exposition, only the uniqueness of the geodesic
curve on the manifold of SPD matrices was exploited, such that
the PT along the geodesic admits the property in (6), namely:
Γ (ϕ′(0)) = ϕ′(1). Importantly, PT specifically along the unique
geodesic curve exhibits important invariance to the “relative”
location on the manifold.

Definition 1 (Equivalent Pairs): Two pairs (A1 ,B1) and
(A2 ,B2), such that A1 ,B1 ,A2 ,B2 ∈ M, are equivalent if
there exists an invertible matrix E such that

A2 = Γ(A1) = EA1E
T

B2 = Γ(B1) = EB1E
T

We denote this relation by

(A1 ,B1) ∼ (A2 ,B2)
Lemma 2: The relation ∼ is an equivalence relation.
The proof is straight-forward as we show in the following.
� Reflexivity is satisfied by setting E to be the identity matrix.
� Symmetry: if A2 = EA1E

T then A1 = E−1A2E
−T and

analogously for B1 ,B2 .
� Transitivity: if A2 = E1A1E

T
1 and A3 = E2A2E

T
2 then

A3 = EA1E
T where E = E2E1 and analogously for

B1 ,B2 .
In other words, two pairs are equivalent if the relation of

the two matrices in the pair is given by the same transfor-
mation Γ. We interpret such equivalent pairs as matrices with
equivalent intra-relations (e.g., if (A1 ,B1) ∼ (A2 ,B2), then
dR (A1 ,B1) = dR (A2 ,B2)), but with a different global posi-
tion on the manifold. For example, each two pairs in Figure 1
are equivalent pairs.

Proposition 1: Let (A1 ,B1) be a pair of SPD matrices
A1 ,B1 ∈ M, and let [(A1 ,B1)] denote the equivalence class

[(A1 ,B1)] = {(A2 ,B2) ∈ M×M|(A2 ,B2) ∼ (A1 ,B1)},
of all matrix pairs that are equivalent to (A1 ,B1). Then, for
any (A2 ,B2) ∈ [(A1 ,B1)]:

Γ ◦ ΓB1 →A1 = ΓB2 →A2 ◦ Γ
where Γ (P ) = EPET and E is the transformation defined in
Definition 1.

The proof is given in Appendix D. Note that in this context,
we restrict the operator Γ to the SPD manifold. This restriction
is based on Theorem 2 and is well-defined since the tangent
plane is the entire space of symmetric matrices and therefore
contains the manifold.

An immediate consequence of Proposition 1 is that the do-
main adaptation via the representation Ψ is invariant to the

relative position of P
(1)

and P
(2)

on the manifold, and is con-
structed equivalently for every pair in the equivalence class

[(P
(1)

,P
(2)

)].
To demonstrate the importance of the property above, we re-

visit the illustrating BCI problem. Suppose (P A1 ,P B 1) are
the Riemannian means of the covariance matrices of Sub-
ject A and Subject B recorded in Session 1, and suppose
(P A2 ,P B 2) are the Riemannian means of the covariance ma-
trices of Subject A and Subject B recorded in Session 2. If
(P A1 ,P B 1) ∼ (P A2 ,P B 2), then there exists a transformation
Γ such that Γ encodes the relation between Session 1 and Ses-
sion 2 whereas the relation of the two subjects is encoded by
ΓP B 1 →P A 1

or by ΓP B 2 →P A 2
, depending on the session. Propo-

sition 1 guarantees the consistence of the relation between Sub-
ject A and Subject B. Namely, the Riemannian mean of Subject
B in Session 2 can be related to the Riemannian mean of Subject
A in Session 1 using the relation between the sessions (given
by Γ) and the relation between the two subjects (given either
by ΓP B 1 →P A 1

or by ΓP B 2 →P A 2
), independently of the relative

location of the means on the manifold.

F. Extension to K Subsets

Overall, by Theorem 2, for a general number of subsets K ≥
2, we can apply PT using Ψ (9) directly to the SPD matrices
P (k) = {P (k)

i } without projections to and from the tangent
plane. Let P̂ denote the Riemannian mean of Riemannian means

(centroids) {P (k)}K
k=1 of the subsets, namely,

P̂ = arg min
P

K∑
k=1

d2
R

(
P ,P

(k)
)

Each subset P(k) is then parallel transported from its corre-

sponding centroid P
(k)

to P̂ . Formally, let Γ(k)
i denote P

(k)
i

after applying PT, which is given by

Γ(k)
i = Γ

P
(k )→P̂

(
P

(k)
i

)
, ∀i, k

and let S̃
(k)
i be the projection of Γ(k)

i to the Euclidean tangent
space (5):

S̃
(k)
i = log

(
P̂

− 1
2 Γ(k)

i P̂
− 1

2

)

This projection, which is further discussed in [6], can be inter-

preted as (i) data whitening by Γ̃
(k)
i = P̂

− 1
2 Γ(k)

i P̂
− 1

2 , and (ii)
projection to TIM where I is the identity matrix. The projected

symmetric matrices (vectors) S̃
(k)
i indeed reside in a Euclidean

space. The proposed algorithm is given in Algorithm 1.
We conclude this section with two remarks. First, since the

matrices S̃
(k)
i are symmetric, only their upper (or lower) trian-

gular part with a gain factor of
√

2 applied to all non-diagonal el-
ements could be taken into account. Second, alternative choices
of P̂ could also be used, for example, the identity matrix. Indeed,
recently [12] proposed to align datasets for transfer learning in a
similar context using the identity matrix as P̂ . However in [12],
the alignment appeared as an empirical affine transformation,
whereas in this work, we provide the geometrical justification
and rigorous mathematical analysis. In case of two domains,
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Algorithm 1: Domain Adaptation Using Parallel Transport
for SPD Matrices.

Input: {P (1)
i }N1

i=1 , {P
(2)
i }N2

i=1 , . . . , {P
(K )
i }NK

i=1 where P
(k)
i

is the SPD matrix associated with the i-th element (e.g.,
high-dimensional time-series) in the k-th subset.

Output: {S̃(1)
i }N1

i=1 , {S̃
(2)
i }N2

i=1 , . . . , {S̃
(K )
i }NK

i=1 where S̃
(k)
i

is the new representation of P
(k)
i in a Euclidean space.

1) For each k ∈ {1, 2, . . . ,K}, compute P
(k)

the
Riemannian mean of the subset {P (k)

i }.

2) Compute P̂ , the Riemannian mean of {P (k)}K
k=1 .

3) For all k and all i, apply Parallel Transport using (7):

Γ(k)
i = Γ

P
(k )→P̂

(
P

(k)
i

)
.

4) For all k and all i, project the transported matrix to
the tangent space via:

S̃
(k)
i = log

(
P̂

− 1
2 Γ(k)

i P̂
− 1

2

)
.

P̂ can be any point on the geodesic between the centroids of
the two domains. Setting such target points leads to the same
representation.

In case of more than two domains, we set P̂ to be the mean
of the centroids for two reasons. First, applying PT to the mean
point leads to the minimal transportation along the SPD cone
manifold. Second, this choice is invariant to the sizes of subsets,
and therefore, can better support unbalanced datasets.

We remark that, in the case of two subsets with means P A ∈
M and P B ∈ M, the affine transformation presented in [12]
can be interpreted as two consecutive applications of PT: from
P B to I and then from I to P A . The arbitrary choice of I as an
intermediate point introduces dependence of the algorithm on
the global position on the manifold. Indeed, such a procedure,
which can be expressed by ΓI→P A

◦ ΓP B →I does not admit the
invariance property specified in Proposition 1.

Interestingly, the method proposed in [12] coincides with the
present work, namely, ΓP B →P A

= ΓI→P A
◦ ΓP B →I when the

identity matrix I is on the geodesic ϕ between P B and P A .
In this case, the matrices P A and P B commute and they have
the same eigenvectors (see Appendix E). From a data analysis
perspective, when P A and P B are two covariance matrices of
two subsets, this implies that the subsets have the same principal
components.

We set P̂ as the Riemannian mean of the centroids so that the
overall transport applied to the covariance matrices is minimal.
This choice is motivated by the assumption that transporting ac-
cumulates distortions. This is a straight-forward generalization
of the two subsets case, where the parallel transport is carried
out along the shortest path (unique geodesic curve).

IV. EXPERIMENTAL RESULTS

In this section we show the results of Algorithm 1 for both
a synthetic example and for real data. The code for the syn-
thetic example is available online at https://github.com/oryair/
ParallelTransportSPDManifold.

A. Toy Problem

We generate time series in R2 , so that their covariance matri-
ces are in R2×2 . Since the covariance matrices are symmetric,
this particular choice enables us to visualize them in R3 . Con-
cretely, any 2 × 2 symmetric matrix A = (x y

y z ) can be visu-
alized in R3 using (x, y, z) ∈ R3 . A is positive-definite if and
only if: x, z > 0 and y2 < xz. These conditions establish the
cone manifold of 2 × 2 SPD matrices.

Consider the set of hidden multi-dimensional times series
{si [n]}100

i=1 , given by:

si [n] =
[

sin (2πf0n/T )
cos (2πf0n/T + φi)

]
, n = 0, . . . , T − 1

where f0 = 10, T = 500, and φi is uniformly drawn from
[−π/2, 0]. Namely, each time-series si [n] consists of two os-
cillatory signals and is governed by a 1-dimensional hidden
variable φi , the initial phase of the oscillations. Indeed, the pop-
ulation covariance of si [n] is

1
2

[
1 − sin (φi)

− sin (φi) 1

]

which depends only on φi , and therefore, when presenting the
population covariances of the time-series si [n] in R3 , two co-
ordinates are fixed and only one varies with i.

We generate two observable subsets, X (k) = {x(k)
i [n]}100

i=1 ,
k = 1, 2 such that:

x
(k)
i [n] = M (k)si [n]

where M (1) is randomly chosen, and M (2) = 1.5(−1 0
0 1 )M (1) .

The two subsets X (1) and X (2) can be viewed as two different
observations of {si [n]} through two unknown observation func-
tions M (1) and M (2) . For example, X (1) and X (2) can repre-
sent two different batches, and M (1) and M (2) can represent
the discrepancy between two different sessions of a particular
experiment. For each x

(k)
i [n], we compute its sample covariance

matrix by

P
(k)
i = 1

T

∑
n

x
(k)
i [n]

(
x

(k)
i [n]

)T = M (k)P si

(
M (k))T

where P si
denotes the inaccessible sample covariance of si [n],

which is given by:

P si
= 1

T

T −1∑
n=0

si [n] (si [n])T

Our goal is to obtain a new representation of the observed data
both in X (1) and X (2) , which circumvents the effect of M (1)

and M (2) . Moreover, in the new representation, we aspire to as-
sociate two observations from possibly different subsets which
have a similar initial phase φi .

In Figure 3 we plot the 2 × 2 SPD matrices in R3 , where the
black points mark the boundaries of the cone manifold. The red
line marks the center of the cone, given by αI for α ∈ [0, 2],
and the blue point on the red line indicates the identity matrix
I , namely, where α = 1.

Figure 3(a) presents the two subsetsP (k) = {P (k)
i }, k = 1, 2

of accessible sample covariance matrices, colored by φi (left)
and by k (right). We observe that the two subsets P(1) and
P (2) are completely separated, while each subset has a similar

https://github.com/oryair/ParallelTransportSPDManifoldgithub.com/oryair/ParallelTransportSPDManifold
https://github.com/oryair/ParallelTransportSPDManifoldgithub.com/oryair/ParallelTransportSPDManifold
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Fig. 3. Synthetic example, applying Steps (1)–(3) of Algorithm 1. (a) Scatter

plot of P(k ) colored by φi (left) and by k (right). (b) Scatter plot of {Γ(k )
i }

obtained by Algorithm 1 colored by φi (left) and by k (right). Note that in
the new representation (b), the two subsets are aligned, namely the discrepancy
caused by M(1) and M(2) is removed while the intrinsic structure given by
φi is preserved.

structure governed by the values of φi . We apply Steps (1)–(3)
of Algorithm 1 to the subsets P(k) to obtain {Γ(k)

i }.

Figure 3(b) presents {Γ(k)
i }, colored by φi (left) and k (right).

Now we observe that in the new representation, the two subsets
are aligned, namely the discrepancy caused by M (1) and M (2)

is removed while the intrinsic structure given by φi is preserved.
As a result, we can associate covariance matrices from different
batches but with similar underlying φi values. Note that this
was accomplished by Algorithm 1 in a completely unsupervised
manner, without access to the hidden “labels” φi .

B. BCI - Motor Imagery

As described in Section III, we use data from the BCI com-
petition IV [19]. The dataset contains EEG recordings acquired
by 22 EEG electrodes from 9 subjects, where the data from each
subject was recorded on 2 different days of experiments. The
experiment protocol consists of repeated trials, where in each
trial the subject was asked to imagine performing one out of
four possible movements: (i) right hand, (ii) left hand, (iii) both
feet, and (iv) tongue. Overall, in a single day, each movement
was repeated 72 times by each subject, and therefore, the dataset
contains 288 trials from each subject in each day of experiments.

We remark that all the algorithms participating in the compe-
tition reported on poor classification results for particular four
subjects. Since our goal is not to improve the classification of
the data from each subject, we excluded these four subjects
(indexed 2, 4, 5, 6).

Initially, focusing on the data from a single subject, we show
that Algorithm 1 builds a representation of the data which en-
ables us to train a classifier with data from one day of experi-
ments and apply it to data from the other day of experiments.
Then, we further show that Algorithm 1 builds a representa-

Fig. 4. Representation of a single subject’s (#8) recordings from different

days. (a) Scatter plot of the “baseline” {B(k )
i } colored by the different day

(left) and by the mental task (right). (b) Scatter plot of {S̃(k )
i } obtained by

Algorithm 1 colored by the different day (left) and by the mental task (right).
Note the difference between the different days of experiments is completely
removed. More importantly, we further observe that the new representations
of the two subsets are aligned, i.e., we obtain similar representations of two
recordings associated with the same mental task, regardless of their respective
sessions (days of experiments).

tion that allows us to train a classifier based on data from one
subject and apply it to data from a different subject without
any additional labeled trials. Finally, we extend the latter result
and show the performance on multiple subjects. For visualiza-
tion purposes, we apply tSNE [20] to the obtained data from
the different methods. In all the tSNE applications, we set the
perplexity parameter to 20.

1) Single Subject – Different Days: In the first experiment,
we process the recordings of Subject 8 (arbitrarily chosen) from
the two days of experiments. We report that the results for the
other 4 subjects were similar. We denote the subsets of trial
recordings from day k = 1, 2 by X (k) = {x(k)

i }288
i=1 . From the

recordings of each trial i, we compute the sample covariance
matrix P

(k)
i ∈ R22×22 , and denote P (k) = {P (k)

i }.
To highlight the challenge, we first compute P̂ , the Rie-

mannian mean of all covariance matrices (from both sub-
sets). Then, we project the matrices onto TP̂M by computing

B
(k)
i = LogP̂ (P (k)

i ). For visualization purpose, we apply tSNE

to the vectors {B(k)
i }. Figure 4(a) presents the two dimensional

representation of the vectors obtained by the tSNE algorithm.
Namely, each point in the figure is the representation of a vector
B

(k)
i . On the left, the points are colored according to the dif-

ferent days (indexed by k = 1, 2), and on the right, the points
are colored according to the mental task. We observe that, sim-
ilarly to the toy problem, the recordings from the different days
are completely separated. This implies that one cannot train a
classifier from the recordings from day 1 and apply it to the
recordings from day 2.
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We apply Algorithm 1 to the subsets P(k) covariance matri-

ces and obtain the subsets S̃(k) = {S̃(k)
i }. The matrices S̃

(k)
i

are the new representation after applying domain adaptation
(Algorithm 1). These matrices could be transformed into feature
vectors that consist only of elements from the upper triangular
part of the matrices, exploiting the symmetry of the matrices.
By (5), these feature vectors lie in a Euclidean space, where
the Euclidean distance approximates the Riemannian distance
between the corresponding SPD matrices after Parallel Trans-
port. Since our feature vectors lie in a Euclidean space, in all
experiments we use a linear SVM classifier in order to quan-
tify the quality of the representation. Figure 4(b) presents the
two dimensional representation of the vectors S̃(k) obtained
by the tSNE algorithm. On the left, the points are colored ac-
cording to the different days, and on the right, the points are
colored according to the mental task. We observe that the dif-
ference between the different days of experiments is completely
removed. More importantly, we further observe that the new
representations of the two subsets are aligned, i.e., we obtain
similar representations of two recordings associated with the
same mental task, regardless of their respective sessions (days of
experiments).

2) Two Subjects: We repeat the evaluation, but now with the
two subsets X (k) , k = 1, 2 which were recorded from two sub-
jects, specifically, Subject 3 and Subject 8. We repeat the steps
from the previous examination. We compute P̂ , the Rieman-
nian mean of all covariance matrices (from both subsets). Then,
we project the covariance matrices onto TP̂M and apply tSNE
to obtain two dimensional representations. Figure 5(a) presents
the two dimensional representations obtained by the tSNE algo-
rithm. On the left, the points are colored by the subject index,
and on the right the points are colored according to the mental
task. Similarly to the single-subject two-sessions case, we ob-
serve that the recordings from different subjects are completely
separated in the obtained representation.

We also apply the mean transport approach presented in [6].
The mean transport is obtained by projecting each subset of co-
variance matrices P(k) to its own tangent plane T

P
(k ) M, where

P
(k)

is the Riemannian mean of the k-th subset. In other words,
we compute S

(k)
i = Log

P
(k ) (P (k)

i ). Figure 5(b) presents the
two dimensional representation obtained by the tSNE algorithm.
We observe that indeed the two subsets are not separated as in
Figure 5(a), however, the inner structure of each subset was not
preserved. Thus, this scheme is insufficient and does not support
training a classifier based on data from one subject and applying
it to data from another subject.

Finally, we apply Algorithm 1 to the subsets P(k) , and obtain

the subsets S̃(k) = {S̃(k)
i }. Figure 5(c) presents the two dimen-

sional representation of the subsets S̃(k) obtained by the tSNE
algorithm. We observe that in this representation, the subsets are
not separated. Moreover, the two subsets are aligned according
to the mental tasks, and indeed points that correspond to the
same mental task assumed a similar value in the new represen-
tation. This new representation allows us to train a classifier
using recordings from one subject and apply it to recordings
from another subject.

Fig. 5. Representation of recordings from two subjects (#3 and #8). (a) Scatter

plot of the “baseline” {B(k )
i } colored by the subject (left) and by the mental

task (right). (b) Scatter plot of the representation of {S(k )
i } obtained by the

“mean transport”, colored by the subject (left) and by the mental task (right).

(c) Scatter plot of {S̃(k )
i } obtained by Algorithm 1 colored by the subject (left)

and by the mental task (right). See the text for details.

3) Multiple Subjects: In the third experiment, we apply
Algorithm 1 to multiple subjects. We processed data from
five subjects (indexed 1, 3, 7, 8 and 9) and from all trials
of the mental tasks: left hand, right hand, foot, and tongue.
We denote the subsets of the recordings by X (k) = {x(k)

i } for
k = 1, 3, 7, 8, 9. As before, we compute the covariance matrices
P(k) = {P (k)

i }. We compute P̂ , the Riemannian mean of all
covariance matrices. Then, we project the covariance matrices
onto TP̂M and apply tSNE to obtain a two dimensional rep-
resentation. Figure 6(a) presents the two dimensional represen-
tation obtained by the tSNE algorithm. On the left, the points
are colored by the subject index, and on the right the points
are colored according to the mental task. As before, we ob-
serve that the recordings from different subjects are completely
separated.

Next, we apply Algorithm 1 to the five subsets of covari-
ance matrices P (k) and obtain five subsets of new representa-

tions S̃(k) = {S̃(k)
i }. Figure 5(b) presents the two dimensional

representation of the subsets S̃(k) obtained by the tSNE algo-
rithm. We observe that also in the multiple subjects scenario,
Algorithm 1 was able to center and align the subsets.
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Fig. 6. Representation of recordings from multiple subjects. (a) Scatter plot

of the “baseline” {B(k )
i } colored by the subject (left) and by the mental task

(right). (b) Scatter plot of {S̃(k )
i } obtain by Algorithm 1 colored by the subject

(left) and by the mental task (right). See the text for details.

Fig. 7. The classification accuracy obtained by the three competing methods.

To provide quantitative results, we apply a leave-one-subject-
out cross validation, namely, we trained a linear SVM classifier
based on 4 out of the 5 subjects and evaluated the classifi-
cation accuracy for each one of the three methods mentioned
in Section IV-B2. We compare the classification accuracy of
Algorithm 1 to the two other approaches denoted by: (i) “Base-
line (No Transport)”, and (ii) the “Mean Transport” approach
proposed in [6].

Figure 7 presents the classification accuracy obtained using
the three competing methods as a function of the evaluated
subject. In all cases, applying Algorithm 1 to the data dramati-
cally improved the classification accuracy. In addition, Figure 8
presents the confusion matrices per subject. For example, the
second row presents the performance of the three algorithms
when subject #3 was tested. Figure 8 (left) presents the con-
fusion matrices obtained from the data without applying any
transportation (“Baseline”). Figure 8 (center) presents the con-
fusion matrices obtained by the “Mean Transport” approach.
Figure 8 (right) presents the confusion matrices obtained by
Algorithm 1. We observe that Algorithm 1 obtains significantly

better classification results compared with the “Baseline” and
“Mean Transport” algorithms. In addition, the confusion matri-
ces highlight the challenge in training a classifier from multiple
subject data. For example, in subject #7, the confusion matrices
in Figure 8 (left) and (center), the “foot” mental task falsely
dominated the prediction (it was predicted 227 and 288 times,
respectively, whereas it was performed only 72 times). This im-
plies that the decision regions of the classifiers are completely
misaligned with the data from a new unseen subject.

C. Sleep Stage Identification

Here, we demonstrate the applicability of Algorithm 1 to
real medical signals. Specifically, we address the problem of
sleep stage identification. Typically, for this purpose, data are
collected in sleep clinics with multiple multimodal sensors, and
then, analyzed by a human expert. There are six different sleep
stages: awake, REM, and sleep stages 1–4, indicating shallow
to deep sleep.

The data we used is available online in [21] and described in
detail in [22]. A single patient’s night recording contains sev-
eral measurements including two EEG channels and one elec-
trooculography (EOG) channel sampled at 100[Hz]. We used
recordings from three subjects. We split each subject’s night
into non-overlapping 30 seconds windows. We omit the awake
and sleep stage 4 windows due to too few occurrences. For vi-
sual purposes, we kept only windows corresponding to REM
and stage 3.

We denote the i-th window of the k-th subject by x
(k)
i (t)

with its corresponding covariance matrix P
(k)
i ∈ R3×3 . We

first compute P̂ , the Riemannian mean of all covariance ma-
trices (from the three subsets). Then, we project the matri-
ces onto TP̂M by computing S

(k)
i = LogP̂ (P (k)

i ). For vi-

sualization purposes, we apply PCA to the vectors {S(k)
i }

and present the first three principle components. Since the
covariance matrices in this experiment are of size 3 × 3, di-
mension reduction using PCA was sufficient. It was preferred
here over tSNE since it better preserves the global geometry of
the data.

Figure 9(a) presents the three dimensional representation of
the vectors obtained by PCA. Namely, each point in the figure
is the representation of a vector S

(k)
i . On the left, the points are

colored according to the different subjects, and on the right, the
points are colored according to the sleep stage. We observe that
the points are clustered according to the different subjects. We
apply Algorithm 1 to the three subsets {P (k)

i } of covariance

matrices and obtain the subsets {S̃(k)
i }. Figure 9(b) presents the

two dimensional representation of the vectors {S̃k)
i } obtained by

PCA. On the left, the points are colored according to the different
subjects, and on the right, the points are colored according to the
sleep stage. Now we observe that the data is clustered according
to the sleep stage while the difference between the three subjects
is completely removed.

As in the Subsection IV-B3, to provide quantitative re-
sults, we train a linear SVM classifier based on Subject 1
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Fig. 8. The confusion matrices of the BCI task classification of data. (left) Baseline. (center) Mean Transport, (right) Algorithm 1.

and Subject 2 and evaluate the classification accuracy on
Subject 3. Figure 10 presents the obtained confusion matri-
ces. Figure 10 (left) presents the confusion matrix obtained
from the data without applying any adaptation (“Baseline”).
Figure 10 (center) presents the confusion matrix obtained by

the “Mean Transport” approach. Figure 10 (right) presents
the confusion matrix obtained by Algorithm 1. We observe
that using Algorithm 1 demonstrates better classification re-
sults compared with the “Baseline” and the “Mean Transport”
algorithms.
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Fig. 9. Representation of recordings for sleep stage identification. (a) Scatter

plot of the “baseline” {B(k )
i } (after PCA) colored by subject (left) and by sleep

stage (right). (b) Scatter plot of {S(k )
i } (after PCA) obtained by the “mean

transport”, colored by subject (left) and by sleep stage (right). (c) Scatter plot

of {S̃(k )
i } (after PCA) obtained by Algorithm 1 colored by subject (left) and

by sleep stage (right).

D. Mental Arithmetic Identification From EEG

In this subsection, we demonstrate the proposed domain adap-
tation on a large dataset consisting of EEG recordings from 29
subjects for the purpose of mental arithmetic identification [23]
(Dataset B). The EEG data were recorded using 30 electrodes at
1000 Hz. The EEG recordings were obtained while the subjects
were in two mental states. In the first mental state, the subjects
were instructed to perform repeated simple arithmetic calcula-
tions. In the second, baseline, state, the subjects were instructed
to rest. The experiment consisted of three sessions. Each session
comprised 20 repetitions of the above tasks. Thus, overall, the
dataset contains 60 trials per subject.

Similarly to the previous experiments, we computed the co-
variance matrix of each trial and applied Algorithm 1 and the
competing algorithms for domain adaptation in order to ac-
count for the inherent difference between the three sessions.
First we visually demonstrate the performance on a single sub-
ject. Figure 11(a) presents the two dimensional tSNE represen-
tation obtained by the “baseline” algorithm. One can notice a
clear shift in the representation of trials from Session 1 com-
pared to trials from Session 2 and 3. Figure 11(b) presents the

two dimensional tSNE representation obtained by Algorithm 1.
After applying our domain adaptation, we can observe that
the shift between the sessions is no longer apparent and
that the trials are clustered according to the mental state, as
desired.

We repeated this test for all 29 subjects and report that
a similar difference between the sessions is present in most
of the subjects. To provide a quantitative assessment of the
adaptation, we applied a leave-one-session-out cross-validation
using a linear SVM classifier to the representations obtained
from the 3 competing methods. The average classification ac-
curacy obtained for all 29 subjects is depicted in the following
table:

V. CONCLUSIONS

Analyzing complex data in high-dimension is challenging,
since such data do not live in a Euclidean space. Therefore, ba-
sic operations such as comparisons, additions, and subtractions,
which are the basis of any analysis and learning technique,
do not necessarily exist and are not appropriately defined. In
this work, we propose to view the complex data through the
lens of SPD matrices, which reside on an analytic Riemannian
manifold. Using the Riemannian geometry of SPD matrices,
we presented an approach for multi-domain data representation.
Based on this new representation, we proposed an algorithm
for domain adaptation. We extend the existing results in the
Riemannian geometry of SPD matrices and establish a frame-
work for the justification and analysis of the proposed solution.
We demonstrated the usefulness of the presented domain adap-
tation method in applications to simulation and real recorded
data.

APPENDIX A
PROOF OF LEMMA 1

Proof: The PT of S along the geodesic between B and A
is given by [18]:

ΓB→A (S) = MSMT

where M = B
1
2 exp

(
B− 1

2 1
2 LogB (A) B− 1

2

)
B− 1

2 . Now we

will show that M can be written more simply, proving a more
efficient way to compute it. We have

M = B
1
2 exp

(
B− 1

2
1
2

LogB (A) B− 1
2

)
B− 1

2

= B
1
2 exp

(
1
2

log
(
B− 1

2 AB− 1
2

))
B− 1

2

= B
1
2

(
B− 1

2 AB− 1
2

) 1
2

B− 1
2
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Fig. 10. Confusion matrices of sleep stage identification based on recordings from Subject 3. (left) Baseline, (center) Mean Transport, (right) Algorithm 1.

Fig. 11. Representation of recordings from subject #1. (a) Scatter plot obtained
by the “baseline” algorithm colored by the session (left) and by the mental state
(right). (b) Scatter plot obtained by Algorithm 1 colored by the session index
(left) and by the mental state (right). See the text for details.

and also

M 2 =
(

B
1
2

(
B− 1

2 AB− 1
2

) 1
2

B− 1
2

)2

= AB−1 = E2

and since AB−1 is similar to B− 1
2 AB− 1

2 > 0, it has only
positive eigenvalues and the square root is unique, namely
E = M . �

APPENDIX B
PROOF OF THEOREM 1

For better readability we denote A = P
(1)

and B = P
(2)

.
First we remark that ΓB→A is well defined since TPM is the
space of all symmetric matrices regardless the matrix P ,1 and
if the input S is symmetric then by definition ΓB→A(S) is
symmetric as well.

Proof of Theorem 1: Condition (1) is immediate since Γ is a
linear operation, and therefore we have

N2∑
i=1

Γ
(
S

(2)
i

)
=

N2∑
i=1

ES
(2)
i ET = E

N2∑
i=1

S
(2)
i

︸ ︷︷ ︸
=0

ET = 0

(10) shown at the bottom of this page, Conditions (2) and (3)
are derived from Lemma 1, since these are properties of PT.
For completeness, we provide their explicit proofs. Proof of
condition (2): Let A,B ∈ M and S1 ,S2 ∈ TBM and denote

1Any tangent plane to the SPD manifold M is the entire space of symmetric
matrices [18].
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E = (AB−1)
1
2 = B

1
2 (B− 1

2 AB− 1
2 )

1
2 B− 1

2 . We have

A−1E = A−1B
1
2

(
B− 1

2 AB− 1
2

) 1
2

B− 1
2

= A−1B
1
2 B− 1

2 AB− 1
2

(
B− 1

2 AB− 1
2

)− 1
2

B− 1
2

= B− 1
2

(
B− 1

2 AB− 1
2

)− 1
2

B− 1
2

Namely, A−1E is a symmetric matrix. Thus, we get that

ET A−1E = ET ET A−1 =
(
AB−1)T

A−1

=
(
B−1A

)
A−1 = B−1

and finally, we obtain〈
ES1E

T ,ES2E
T
〉

A
=

〈
ES1E

T A−1 ,A−1ES2E
T
〉

= Tr
{
ES1E

T A−1ES2E
T A−1}

= Tr
{
S1E

T A−1ES2E
T A−1E

}

= Tr
{
S1B

−1S2B
−1}

= 〈S1 ,S2〉B
Proof of condition (3): Let B ∈ M be an SPD matrix with the
following spectral decomposition: B = MΛMT . Then, we
have

d

dt
Bt =

d

dt
MΛtMT = MΛt log (Λ) MT

= MΛtMT M log (Λ) MT = Bt log (B)

Consider the geodesic ϕ(t) from B to A: ϕ(t) =
B

1
2 (B− 1

2 AB− 1
2 )tB

1
2 Thus, its velocity at t = 0 is given by

ϕ′(0) = B
1
2 log
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)
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1
2 = LogB (A) (11)

and similarly, the velocity at t = 1 is given by
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where in (∗) we pull out V = B
1
2 A− 1

2 and V −1 = A
1
2 B− 1

2

from the log, since it is a scalar function: log
(
V PV −1) =

V log (P ) V −1 .
Let U be the following unitary matrix
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Using U , we can rewrite E as:
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Finally, by combining (11), (12) and 13, we have
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APPENDIX C
PROOF OF THEOREM 2

Proof:

Ψ (P ) = ExpA (ΓB→A (S))

= ExpA
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2 is a unitary matrix, and therefore can be

pulled out of the scalar exp function. �

APPENDIX D
PROOF OF PROPOSITION 1
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APPENDIX E

In this appendix we proof that if the identity matrix I is on
the geodesic ϕ between A and B, then, the matrices A and B
commute and they have the same eigenvectors.
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Proof: if I is on the geodesic ϕ(t), then there exist some
t0 ∈ (0, 1) (if t0 = 0 or t0 = 1 the result is trivial) such that:

ϕ (t0) = A
1
2

(
A− 1

2 BA− 1
2

)t0

A
1
2 = I

Now, consider A = V ΛV T the eigenvalue-decomposition of
A. By multiplying both from the right and the left, we have

A
1
2
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A− 1

2 BA− 1
2

)t0

A
1
2 = I

(
A− 1

2 BA− 1
2

)t0

= A−1

By raising to the power of 1
t0

, and then multiplying both from
the right and the left again, we have

A− 1
2 BA− 1

2 = A− 1
t 0

⇒ B = A1− 1
t 0 = V Λ1− 1

t 0 V T

Thus, B has the same eigenvectors as A and they commute

AB = V ΛV T V Λ1− 1
t 0 V T = V ΛΛ1− 1

t 0 V T

= V Λ1− 1
t 0 V T V ΛV T = BA

�

APPENDIX F
RIEMANNIAN MEAN ALGORITHM

Algorithm 2: Riemannian Mean for SPD Matrices as
Presented in [6].

Input: a set of SPD matrices {P i ∈ M}N
i=1 .

Output: the Riemannian mean matrix P .

1) Compute the initial term P = 1
N

∑N
i=1 P i

2) do
a) Compute the Euclidean mean in the tangent

space: S = 1
N

∑N
i=1 LogP (P i)

b) Update P = ExpP

(
S

)
c) while

∥∥S
∥∥

F
> ε where ‖·‖F is the Frobenius

norm.
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