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1 Linear Metric Interpolation Distortion
Proposition 1.1. Given 𝑔𝑡 = (1 − 𝑡)𝐼 + 𝑡 · 𝑔𝜙 , the eigenvalues of

the intermediate metric 𝑔𝑡 are linear interpolations of the eigenvalues
of the target metric 𝑔𝜙 , and are linear functions of 𝑡 .

Proof. We express 𝑔𝜙 in the diagonal form 𝑉Λ𝜙𝑉
⊤, where 𝑉 is

the orthonormal eigenvector matrix and Λ𝜙 is the diagonal matrix
of eigenvalues. We can also diagonalize 𝐼 as 𝑉 𝐼𝑉⊤, which is valid
because 𝑉 satisfies 𝑉𝑉⊤ = 𝐼 .

𝑔𝑡 = (1 − 𝑡)𝑉 𝐼𝑉⊤ + 𝑡𝑉Λ𝜙𝑉⊤

= 𝑉
(
(1 − 𝑡)𝐼 + 𝑡Λ𝜙

)
𝑉⊤ .

(1)

From this, we find that the eigenvalues of𝑔𝑡 are linearly interpolated
as:

Λ𝑡 = (1 − 𝑡)𝐼 + 𝑡Λ𝜙 ,
and the 𝑖-th eigenvalue 𝜆𝑡,𝑖 , is linear function of 𝑡 :

𝜆𝑡,𝑖 = (1 − 𝑡) + 𝑡𝜆𝜙,𝑖 = 1 + 𝑡 (𝜆𝜙,𝑖 − 1). (2)

□

Corollary 1.2. Given 𝑔𝑡 = (1 − 𝑡)𝐼 + 𝑡 · 𝑔𝜙 , the conformal and
area distortions induced by 𝑔𝑡 are:

𝐾𝑡 (𝑝) =

√︄
𝜆𝑡,1
𝜆𝑡,2

=

√︄
1 + 𝑡 (𝜆𝜙,1 − 1)
1 + 𝑡 (𝜆𝜙,2 − 1) , (3)

𝐷𝑡 (𝑝) =
√︁
𝜆𝑡,1 · 𝜆𝑡,2 =

√︃(
1 + 𝑡 (𝜆𝜙,1 − 1)

) (
1 + 𝑡 (𝜆𝜙,2 − 1)

)
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2 Square-Root Metric Interpolation Distortion
Proposition 2.1. Given𝑔𝑡 = ((1−𝑡)·𝐼0.5+𝑡 ·𝑔0.5

𝜙
)2, the eigenvalues

of the intermediate metric 𝑔𝑡 can be expressed as:

𝜆𝑡,𝑖 = (1 + 𝑡 (
√︃
𝜆𝜙,𝑖 − 1))2 .

Proof. We express 𝑔𝜙 in the diagonal form 𝑉Λ𝜙𝑉
⊤, where 𝑉 is

the orthonormal eigenvector matrix and Λ𝜙 is the diagonal matrix
of eigenvalues. We can also diagonalize 𝐼 as 𝑉 𝐼𝑉⊤, which is valid
because 𝑉 satisfies 𝑉𝑉⊤ = 𝐼 .

𝑔𝑡 =

(
(1 − 𝑡) · (𝑉 𝐼𝑉⊤)0.5 + 𝑡 · (𝑉Λ𝜙𝑉⊤)0.5

)2
=

(
(1 − 𝑡) · (𝑉 𝐼0.5𝑉⊤) + 𝑡 · (𝑉Λ0.5

𝜙
𝑉⊤)

)2
=

(
𝑉 ((1 − 𝑡)𝐼0.5 + 𝑡Λ0.5

𝜙
)𝑉⊤

)2
= 𝑉

(
(1 − 𝑡)𝐼0.5 + 𝑡Λ0.5

𝜙

)2
𝑉⊤ .

(4)

Hence, the eigenvalues of 𝑔𝑡 are:

Λ𝑡 =
(
(1 − 𝑡)𝐼0.5 + 𝑡Λ0.5

𝜙

)2
,

and the 𝑖-th eigenvalue 𝜆𝑡,𝑖 , is a quadratic function of 𝑡 :

𝜆𝑡,𝑖 = ((1 − 𝑡) + 𝑡
√︃
𝜆𝜙,𝑖 )2 = (1 + 𝑡 (

√︃
𝜆𝜙,𝑖 − 1))2 (5)

□

Corollary 2.2. Given 𝑔𝑡 = ((1− 𝑡) · 𝐼0.5 + 𝑡 ·𝑔0.5
𝜙

)2, the conformal
and area distortions induced by 𝑔𝑡 are:

𝐾𝑡 (𝑝) =

√︄
𝜆𝑡,1
𝜆𝑡,2

=

1 + 𝑡 (
√︃
𝜆𝜙,1 − 1)

1 + 𝑡 (
√︃
𝜆𝜙,2 − 1)

,

𝐷𝑡 (𝑝) =
√︁
𝜆𝑡,1 · 𝜆𝑡,2 = (1 + 𝑡 (

√︃
𝜆𝜙,1 − 1)) (1 + 𝑡 (

√︃
𝜆𝜙,2 − 1)) .

(6)

3 Lagrange, Smoothness, and Symmetry Properties
Lagrange Property. This property follows directly from the defini-

tion of the interpolated metrics 𝑔𝑡 . At 𝑡 = 0, all blending schemes —
linear, square-root, and logarithmic — reduce to the identity metric
𝑔0 = 𝐼 , corresponding to the undeformed source shape. Similarly, at
𝑡 = 1, the interpolated metric becomes the pullback metric 𝑔1 = 𝑔,
associated with the deformation map 𝜙 from source to target. Since
the interpolation recovers the exact input metrics at both endpoints,
we assume realizations that faithfully reproduce the corresponding
embeddings.
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Smoothness. Let 𝜙 : 𝑆0 → 𝑆1 be a continuously differentiable
map. Then the pullback metric 𝑔𝜙 is differentiable over the domain
𝑆0. Consequently, the interpolated metric 𝑔𝑡 , constructed via any of
the blending schemes (linear, square-root, or logarithmic), depends
smoothly on the interpolation parameter 𝑡 , and its derivative 𝑑𝑔𝑡

𝑑𝑡
exists. The smoothness of the realization stage further depends on
the specific parameterization method used. For instance, Chen et al.
[2013] demonstrated that conformal parameterization using CETM
leads to a smooth evolution with respect to 𝑡 . Similarly, embedding
using LSCM will lead to a smooth result. Note that in both cases, the
degrees of freedom of rigid motion (rotation and translation) need to
be specified smoothly for this to hold. For example, in LSCM the two
fixed vertices should remain the same. As ARAP can theoretically
converge to a local minima, the result may not always be smooth.
In practice, we have not encountered this problem.

Symmetry. To establish symmetry, it suffices to show that the
interpolatedmetrics are equal when represented in the same domain,
specifically:

𝑔𝜙 (𝑡 ) = 𝑔𝜙−1 (1−𝑡 ) ,

where both sides are expressed with respect to the domain 𝑆0.
Let𝜙 : 𝑆0 → 𝑆1 be a differentiable map with Jacobian 𝐽𝜙 = 𝑈 Σ𝑉𝑇 ,

so that the pullback metric is

𝑔𝜙 = 𝐽⊤
𝜙
𝐽𝜙 = 𝑉 Σ2𝑉𝑇 .

Let 𝜓 = 𝜙−1 : 𝑆1 → 𝑆0, with Jacobian 𝐽𝜓 = 𝑉 Σ−1𝑈𝑇 , yielding the
pullback metric

𝑔𝜓 = 𝐽⊤
𝜓
𝐽𝜓 = 𝑈 Σ−2𝑈𝑇 .

We define time-dependent maps 𝜙 (𝑡) : 𝑆0 → 𝑆𝑡 and𝜓 (𝑡) : 𝑆1 →
𝑆𝑡 , with 𝑡 = 1 − 𝑡 , and corresponding interpolated metrics:

𝑔𝜙 (𝑡 ) = 𝑉Λ𝜙 (𝑡 )𝑉
𝑇 , 𝑔𝜓 (𝑡 ) = 𝑈Λ𝜓 (𝑡 )𝑈

𝑇 ,

where:

Λ𝜙 (𝑡 ) = blend𝑡 (𝐼 , Σ2), Λ𝜓 (𝑡 ) = blend𝑡 (𝐼 , Σ
−2) .

To express 𝑔𝜓 (𝑡 ) with respect to 𝑆0, we pull it back via 𝜙 :

𝑔
𝑆0
𝜙−1 (𝑡 ) = 𝐽

⊤
𝜙
𝑈Λ𝜓 (𝑡 )𝑈

𝑇 𝐽𝜙 = 𝑉 ΣΛ𝜓 (𝑡 )Σ𝑉
𝑇 .

Thus, proving symmetry reduces to verifying:

ΣΛ𝜓 (1−𝑡 )Σ = Λ𝜙 (𝑡 ) .

Linear Blending.

Σ · Λ𝜓 (1−𝑡 ) · Σ = Σ ·
[
(1 − (1 − 𝑡))𝐼 + (1 − 𝑡)Σ−2

]
· Σ

= Σ ·
[
𝑡𝐼 + (1 − 𝑡)Σ−2

]
· Σ

= 𝑡Σ2 + (1 − 𝑡)𝐼 = Λ𝜙 (𝑡 ) .

(7)

Logarithmic Blending.

Σ · Λ𝜓 (1−𝑡 ) · Σ = Σ · Σ−2(1−𝑡 ) · Σ
= Σ2𝑡 = Λ𝜙 (𝑡 ) .

(8)

Square-Root Blending.

Σ · Λ𝜓 (1−𝑡 ) · Σ = Σ ·
[
𝑡𝐼 + (1 − 𝑡)Σ−1

]2 · Σ
= [𝑡Σ + (1 − 𝑡)𝐼 ]2 = Λ𝜙 (𝑡 ) .

(9)

4 Log Edge Length Interpolation From Discrete Conformal
Factors

4.1 Discrete Conformal Factors
A pair of triangular meshes (𝑆, 𝑆) are considered Conformally Equiv-
alent (CETM) [Springborn et al. 2008] if they have the same connec-
tivity and if there exists a set of discrete conformal factors𝑢 : 𝑉 → R
such that their edge lengths (𝑙, 𝑙) satisfy the relation:

𝑙𝑖 𝑗 = 𝑒
𝑢𝑖+𝑢𝑗

2 𝑙𝑖 𝑗 .

This is a discrete analog of Conformally Equivalent Domains.
Discrete conformal factors are fundamental in establishing a combi-
natorial notion of conformal structures, as explored in Luo’s combi-
natorial Yamabe flow [Luo 2004].

A pair of triangles 𝑓𝑖 𝑗𝑘 ∈ 𝑆, 𝑓𝑖 𝑗𝑘 ∈ 𝑆 are always considered CETM
(as long as their orientation is preserved), as appropriate discrete
conformal factors 𝑢𝑓 : 𝑉{𝑖, 𝑗,𝑘 } → R can be extracted using the
logarithm of the edge length ratios [Springborn et al. 2008]:

𝑢𝑓 ,𝑖 = ln

(
𝑙𝑖 𝑗

𝑙𝑖 𝑗
· 𝑙𝑘𝑖
𝑙𝑘𝑖

·
𝑙 𝑗𝑘

𝑙 𝑗𝑘

)
.

Given a pair of meshes with the same connectivity, the discrete
conformal factors 𝑢𝑓 exist per face (𝑓𝑖 𝑗𝑘 , 𝑓𝑖 𝑗𝑘 ). However, a global
𝑢 : 𝑉 → R exists if and only if the pair of meshes are CETM.

4.2 Linear Blending of Discrete Conformal Factors
With the notion of discrete conformal factors and CETM, we can
leverage the equivalence between the geometrical blending of met-
rics and the linear blending of conformal factors, as established in
our paper Proposition 3.3, Equation (10).
Since each pair of faces is CETM, we propose linearly blending

the corresponding discrete conformal factors:

𝑢 (𝑓 , 𝑡) = 𝑡 · 𝑢𝑓
. This induces new intermediate edge lengths:

𝑙𝑖 𝑗 (𝑓 , 𝑡) = 𝑒
𝑡 ·𝑢𝑓 ,𝑖+𝑡 ·𝑢𝑓 ,𝑗

2 𝑙𝑖 𝑗 . (10)

We show that the intermediate edge lengths are consistent between
adjacent faces as the exponential factor can be expressed by the edge
lengths of source and target, eliminating 𝑢𝑓 from the expression.

𝑙𝑖 𝑗 = 𝑒
𝑢𝑓 ,𝑖+𝑢𝑓 ,𝑗

2 𝑙𝑖 𝑗

𝑙𝑖 𝑗

𝑙𝑖 𝑗
= 𝑒

𝑢𝑓 ,𝑖+𝑢𝑓 ,𝑗
2

Rewriting expression (10) for the intermediate edge lengths:

𝑙𝑖 𝑗 (𝑓 , 𝑡) = 𝑒
𝑡 ·𝑢𝑓 ,𝑖+𝑡 ·𝑢𝑓 ,𝑗

2 𝑙𝑖 𝑗 =

(
𝑒
𝑢𝑓 ,𝑖+𝑢𝑓 ,𝑗

2

)𝑡
𝑙𝑖 𝑗 =

(
𝑙𝑖 𝑗

𝑙𝑖 𝑗

)𝑡
𝑙𝑖 𝑗 .

This shows that the desired intermediate edge lengths are provided
by the simple geometric blending of the source and target edge
lengths:

𝑙𝑖 𝑗 (𝑡) = 𝑙1−𝑡𝑖 𝑗 𝑙𝑡𝑖 𝑗 . (11)
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5 Local/Global As-Equiareal-As-Possible
Singular Values and Energy

Based on the work of Liu et al. [2008], the local global algorithm
finds an embedding that minimizes:

𝐸 (𝑢, 𝐿) =
|𝐹 |∑︁
𝑓 =1

𝐴𝑓 ∥ 𝐽𝑓 (𝑢) − 𝐿𝑓 ∥2𝐹 ,

where 𝑢 is the embedding of the mesh in 2D, and 𝐿𝑓 are 2 × 2
matrices constrained to a class of matrices based on the desired
parametrization type, i.e. conformal or rigid. Further, 𝑓 ∈ 𝐹 are the
faces of the mesh to flatten, with 𝐴𝑓 the face area, and 𝐽𝑓 (𝑢) the
Jacobian of the linear mapping of face 𝑓 .
To find the best 𝑢, 𝐿 we fix 𝐿 to be the set of matrices which

minimize the energy the most for the respective 𝑢.
The best fitting similar and rigid 𝐿 are known from Procrustes

analysis, and are provided by the Singular Value Decomposition on
𝐽𝑓 = 𝑈 𝐽𝑓 Σ𝐽𝑓 𝑉

⊤
𝐽𝑓
, where 𝑈 𝐽𝑓 ,𝑉𝐽𝑓 are unitary matrices, and Σ𝐽𝑓 is the

diagonal matrix of the singular values 𝑑𝑖𝑎𝑔(𝜎1,𝐽𝑓 , 𝜎2,𝐽𝑓 ):

• ARAP: 𝐿𝑓 = 𝑈 𝐽𝑓 · 𝑑𝑖𝑎𝑔(1, 1) ·𝑉⊤
𝐽𝑓

• ASAP: 𝐿𝑓 = 𝑈 𝐽𝑓 · 𝑑𝑖𝑎𝑔(
𝜎1,𝐽𝑓 +𝜎2,𝐽𝑓

2 ,
𝜎1,𝐽𝑓 +𝜎2,𝐽𝑓

2 ) ·𝑉⊤
𝐽𝑓

Because 𝐽𝑓 , 𝐿𝑓 have the same singular vectors, the energy also
equals the distance of singular values of the matrices:

𝐸 (𝑢) =
|𝐹 |∑︁
𝑓 =1

𝐴𝑓 ∥Σ𝐽𝑓 − Σ𝐿𝑓 ∥
2
𝑓

𝐸 (𝑢) =
|𝐹 |∑︁
𝑓 =1

𝐴𝑓

[
(𝜎1,𝐽𝑓 − 𝜎1,𝐿𝑓 )

2 + (𝜎2,𝐽𝑓 − 𝜎2,𝐿𝑓 )
2
]
,

substituting 𝜎1,𝐿𝑓 , 𝜎2,𝐿𝑓 with the relevant new singular values.
Finding the best fitting 𝐿𝑓 that preserves the area, which means

its singular values satisfy the relation 𝜎1,𝐿𝑓 = 1
𝑘
, 𝜎2,𝐿𝑓 = 𝑘 for some

positive 𝑘 , requires minimizing an energy which leads to solving a
fourth degree polynomial:

min
𝑘
𝐸𝑢 (𝑘) = min

𝑘
[(𝜎1,𝐽𝑓 − 1

𝑘
)2 + (𝜎2,𝐽𝑓 − 𝑘)2]

Although it is possible to solve this numerically, this does not lead
to a closed form energy function. Instead, we suggest minimizing
the Log-Euclidean distance which leads to a simple solution.

min
𝑘
𝐸𝑢 (𝑘) = min

𝑘
[(ln(𝜎1,𝐽𝑓 ) − ln( 1

𝑘
))2 + (ln(𝜎2,𝐽𝑓 ) − ln(𝑘))2]

= min
𝑘

[(ln(𝜎1,𝐽𝑓 ) + ln(𝑘))2 + (ln(𝜎2,𝐽𝑓 ) − 𝑙𝑛(𝑘))
2]

To find the minimum we take the derivative 𝑑
𝑑𝑘
𝐸𝑢 (𝑘):

𝑑

𝑑𝑘
𝐸𝑢 (𝑘) =

2
(
ln(𝜎1,𝐽𝑓 ) + ln(𝑘)

)
𝑘

−
2
(
ln(𝜎2,𝐽𝑓 ) − ln(𝑘)

)
𝑘

=

2
(
ln(𝜎1,𝐽𝑓 ) − ln(𝜎2,𝐽𝑓 ) + 2 ln(𝑘)

)
𝑘

=

2
(
ln(

𝜎1,𝐽𝑓
𝜎2,𝐽𝑓

) + 2 ln(𝑘)
)

𝑘

And solve for 𝑑
𝑑𝑘
𝐸𝑢 (𝑘) = 0, 𝑘 > 0:

2
(
ln(

𝜎1,𝐽𝑓
𝜎2,𝐽𝑓

) + 2 ln(𝑘)
)

𝑘
= 0

ln(
𝜎1,𝐽𝑓
𝜎2,𝐽𝑓

) + 2 ln(𝑘) = 0

ln(𝑘) = 1
2
ln(

𝜎2,𝐽𝑓
𝜎1,𝐽𝑓

)

𝑘 =

√︄
𝜎2,𝐽𝑓
𝜎1,𝐽𝑓

=
𝜎2,𝐽𝑓√︁
𝜎1,𝐽𝑓 𝜎2,𝐽𝑓

(12)

Hence our AEAP singular values:

𝜎1,𝐿𝑓 =
𝜎1,𝐽𝑓√︁
𝜎1,𝐽𝑓 𝜎2,𝐽𝑓

, 𝜎2,𝐿𝑓 =
𝜎2,𝐽𝑓√︁
𝜎1,𝐽𝑓 𝜎2,𝐽𝑓

(13)

To stop the algorithm when it converged we need to compute an
energy. We substitute the singular values in the global Euclidean
energy with our AEAP singular values

𝜎1,𝐽𝑓√
𝜎1,𝐽𝑓 𝜎2,𝐽𝑓

,
𝜎2,𝐽𝑓√
𝜎1,𝐽𝑓 𝜎2,𝐽𝑓

to

obtain an energy:

𝐸 =

|𝐹 |∑︁
𝑓 =1

𝐴𝑓

[
(𝜎1,𝐽𝑓 −

𝜎1,𝐽𝑓√︁
𝜎1,𝐽𝑓 𝜎2,𝐽𝑓

)2 + (𝜎2,𝐽𝑓 −
𝜎2,𝐽𝑓√︁
𝜎1,𝐽𝑓 𝜎2,𝐽𝑓

)2
]

=

|𝐹 |∑︁
𝑓 =1

𝐴𝑓


(
𝜎1,𝐽𝑓 (

√︁
𝜎1,𝐽𝑓 𝜎2,𝐽𝑓 − 1)√︁
𝜎1,𝐽𝑓 𝜎2,𝐽𝑓

)2
+

(
𝜎2,𝐽𝑓 (

√︁
𝜎1,𝐽𝑓 𝜎2,𝐽𝑓 − 1)√︁
𝜎1,𝐽𝑓 𝜎2,𝐽𝑓

)2
=

|𝐹 |∑︁
𝑓 =1

𝐴𝑓

[
𝜎1,𝐽𝑓
𝜎2,𝐽𝑓

(√︁𝜎1,𝐽𝑓 𝜎2,𝐽𝑓 − 1)2 +
𝜎2,𝐽𝑓
𝜎1,𝐽𝑓

(√︁𝜎1,𝐽𝑓 𝜎2,𝐽𝑓 − 1)2
]

=

|𝐹 |∑︁
𝑓 =1

𝐴𝑓

[(
𝜎1,𝐽𝑓
𝜎2,𝐽𝑓

+
𝜎2,𝐽𝑓
𝜎1,𝐽𝑓

)
(√︁𝜎1,𝐽𝑓 𝜎2,𝐽𝑓 − 1)2

]
.

(14)
We note that since we’re using the Log Euclidean objective for the

local step, it is not clear that the global energy should be monotoni-
cally decreasing, and the convergence of this local/global scheme is
not guaranteed. However, we experimentally found that it was in-
deed monotonically decreasing in our examples, and the embedding
converged using this scheme to an to area-preserving map.

6 Computation Times
Table 1 presents a comparison of computation times between edge
length squared blending methods and metric blending methods. All
experiments were performed in MATLAB on a system equipped
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Table 1. Computation times in seconds for various meshes, deformation
types and parameterizations.

Edge Length Blending Metric Blending
BFF CETM LSCM LG-ARAP LG-AEAP

Stage/Mesh (Fig. 1) Flamingo Low-Distortion #faces = 818
Preprocess – 0.00081
Blending 0.00004 0.00969
Realization 0.00375 0.02921 0.00665 0.49061 2.6886

Stage/Mesh (Fig. 5) Colorbar Conformal #faces = 468
Preprocess – 0.00055
Blending 0.00003 0.00577
Realization 0.00249 0.02049 0.00395 0.08179 12.634

Stage/Mesh (Fig. 6) Troll Low-Distortion #faces = 1586
Preprocess – 0.00113
Blending 0.00006 0.01835
Realization 0.00618 0.08014 0.01232 1.0785 28.586

Stage/Mesh (Fig. 7) Raptor Low-Distortion #faces = 4554
Preprocess – 0.00259
Blending 0.00009 0.05264
Realization 0.01644 0.45418 0.03365 5.0381 5.0943

Stage/Mesh (Fig. 7) Cat High-Distortion #faces = 1590
Preprocess – 0.00120
Blending 0.00006 0.02028
Realization 0.00650 0.09110 0.01517 0.43985 25.443

Stage/Mesh (Fig. 7) Blue-Monster High-Distortion #faces = 1573
Preprocess – 0.00127
Blending 0.00007 0.01992
Realization 0.00694 0.08719 0.01301 0.54159 23.129

Stage/Mesh (Fig. 8) Cactus Low-Distortion #faces = 4982
Preprocess – 0.00263
Blending 0.00010 0.05702
Realization 0.02034 0.48316 0.03861 2.7470 3.5787

Stage/Mesh (Fig. 9) Horse High-Distortion #faces = 2670
Preprocess – 0.00159
Blending 0.00008 0.03191
Realization 0.01016 0.18787 0.02051 0.92910 17.075

Stage/Mesh (Fig. 10) Giraffe Low-Distortion #faces = 1583
Preprocess – 0.00115
Blending 0.00007 0.02082
Realization 0.00692 0.08770 0.01335 3.5590 38.033

t=0.5 t=0.5 t=0.5

Low-Distortion
Target

(a) Linear
     BFF

(b) Logarithmic 
     BFF

(c) Logarithmic 
     LG-ARAP

Source

0 0.5
100
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104

-0.5 0 0.5
100

102

104

0 0.5
100

102

104

-0.5 0 0.5
100

102

104

0 0.5
100

102

104

-0.5 0 0.5
100

102

104

-0.5 0 0.5

Fig. 1. Interpolation of an As-Killing-As-Possible deformation, with texture
and the corresponding conformal and area distortion errors𝐾𝑒𝑟𝑟 , 𝐷𝑒𝑟𝑟 plots
and histograms. Logarithmic BFF (b) and LG-ARAP (c) bound area distortion
better than linear BFF (a).

with an Intel Core i7-10850H CPU @ 2.70GHz. For CETM, the op-
timization is terminated after 10 iterations, whereas our proposed
methods, LG-ARAP and LG-AEAP, employ adaptive stopping cri-
teria based on convergence: either when the energy ratio satisfies
𝐸 (iter)/𝐸 (iter − 1) ≥ 0.999 or the energy drops below 1 × 10−7.
Typically, LG-ARAP converges within 10 to 50 iterations, while
LG-AEAP may require over 400 iterations.

Overall, BFF is approximately twice as fast as LSCM and several
orders of magnitude faster than CETM and Local-Global methods.
Although CETM and Local-Global exhibit similar per-iteration times
to LSCM, their total computation times are higher due to the larger
number of iterations required for convergence. As shown in Fig. 1,
logarithmic edge length BFF offers a faster alternative to LG-ARAP
in low-distortion scenarios, trading off some precision for signifi-
cantly improved computation time.
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