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Fig. 1. Interpolation of an As-Killing-As-Possible deformation, with texture and the corresponding area distortion error D, plots and histograms. Unlike
previous methods, our logarithmic blending solutions (b)(c) minimize the area distortion, in addition to the conformal distortion which all methods minimize.

We present an interpolation method for planar shapes using logarithmic
metric blending. Our approach generalizes prior work on pullback metrics to
a framework, allowing us to employ different techniques, such as logarithmic
blending of symmetric positive definite matrices, to have precise control
over both conformal and area distortions. Key contributions include general-
izing the continuous blending scheme and its adaptation to discrete mesh
interpolation through different conformal and isometric parameterizations.
Experimental results demonstrate that our method outperforms existing
techniques in achieving bounded distortions, making it a compelling choice
for applications in animation and morphing.
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1 Introduction

Shape interpolation plays a key role in many areas of graphics and
geometry processing. For example, blending two poses of the same
shape is essential for creating smooth transitions in animations,
while merging multiple shapes in a process called morphing, is
helpful for designing and exploring new forms. Since different ap-
plications have unique requirements for shape interpolation, there
is no single method that works perfectly in all cases. However, an
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important goal is to retain as much of the original geometric de-
tails of the input shapes as possible. Given that the shapes that are
blended often differ, some level of distortion is inevitable.

We generalize the recent work on blending the pullback met-
ric [Chen et al. 2013], which encodes local map distortion, into a
broader framework of two components. The blending component
interpolates the metric, ensuring smooth shape transitions while
managing conformal and area distortions. The realization compo-
nent reconstructs intermediate shapes from the blended metric,
embedding them into a geometric domain that meets the desired
interpolation properties. This enables us to provide a novel interpo-
lation solution which is pointwise bounded in both conformal and
area distortions, by modifying the blending method of the pullback
metric from linear to logarithmic.

Moreover, using our framework, we show that previously pro-
posed linear blending of the Jacobians [Alexa et al. 2000] is related
to linearly blending the root of the pullback metric, allowing us to
prove that by selecting a different realization method, this common
blending machinery is sufficient to bound conformal distortion. We
demonstrate our results on a variety of deformations: conformal,
low-distortion and high-distortion, showing that our solution pro-
duces less area distortion, while also minimizing angle distortion.

1.1 Related Work

Among the diverse techniques developed for generating smooth
transitions between 2D geometric models, intrinsic methods, and
As-Rigid-As-Possible (ARAP) methods, which focus on maintaining
the geometry structure and creating realistic deformations during
these transitions, have emerged as pivotal. While other approaches
exist, we focus on intrinsic and ARAP based solutions for their better
preservation of shapes. For an extensive review of the subject, we
refer to the work of Zhang et al. [2015].

Our findings also relate to works on interpolation of symmetric
positive definite matrices, primarily in Diffusion-Tensor Imaging.

Intrinsic Methods. Intrinsic methods use geometric properties
which are independent of the coordinate embedding, such as edge
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lengths, angles, and curvature, to guide shape interpolation. The
2D polygon interpolation method by Sederberg et al. [1993] was
the first to linearly interpolate edge lengths and angles. This edge
interpolation approach was adopted by later works to 3D mesh inter-
polation [Winkler et al. 2010]. Chen et al. [2013] introduced bounded-
distortion techniques based on the surface metric, enabling smooth
transitions with minimal conformal distortion. Later, Vaxman et al.
[2015] introduced Mébius transformations for shape interpolation,
developing a framework for interpolating conformally meshes that
are conformal-equivalent [Springborn et al. 2008], in both planar
and 3D settings. Chien et al. [2016a] proposed blending harmonic
mappings in closed form, resulting in injective, distortion-bounded
interpolations that are computationally efficient. Their approach
produced C* mappings with guaranteed bounds on both conformal
and area distortions, albeit limited to a subclass of deformations.
Aharon et al. [2019] extended metric interpolation to 3D interpola-
tion by building on Chien et al. [2016b]’s convex parametrization
framework in the discrete metric space, enabling volumetric map-
pings with bounded Jacobian singular values.

Unlike previous methods, our approach ensures both bounded
conformal and area distortions for conformal deformations, and in
practice bounds both distortions for general planar deformations.

As-Rigid-As-Possible (ARAP) Methods. ARAP methods focus on
keeping parts of the shape as rigid as possible during transitions.
This approach was introduced by Alexa et al. [2000], who showed
how to realize a linearly blended Jacobian, minimizing deviation
from the desired Jacobians. Xu et al. [2006] and Baxter et al. [2008]
explored area-weighted realization and rotational consistency.

In our work, we propose a different approach for ARAP realization
based on Local/Global approach [Liu et al. 2008], minimizing the
deviation on the Jacobian singular values, which we find to be more
suitable for metric blending then previous approaches.

Blending Symmetric Positive Definite Matrices. Logarithmic blend-
ing of two symmetric positive definite (SPD) matrices Mj, M, de-
fined as M(t) = exp ((1 —1t) - log(M1) +t - log(M3)) (often called
geometric, log-euclidean or exponential blending), has the unique
property of interpolating the determinants of the inputs geomet-
rically [Jung et al. 2015]. While commonly used in the field of
Diffusion-Tensor Imaging to minimize scale changes and rotations
during interpolation, it is less common in computer graphics. The
most significant use of logarithmic matrix blending in the field is
by Alexa [2002], highlighting its benefits for 3D transformations.

To our knowledge, logarithmic SPD blending has not been applied
to metric blending or shape interpolation.

1.2 Contributions
Our main contributions are:

e We provide formal proofs establishing the benefits of contin-
uous logarithmic metric blending in ensuring bounded area
and conformal distortions, and its ability to flatly interpolate
the metric for conformal deformations.

e We propose conformal and isometric realizations based on
a novel use of the cotan-weights Laplace-Beltrami operator
induced by corners, for realizing a blended discrete metric.
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e We demonstrate our interpolation solution on different de-
formations types, showcasing its superiority compared to
previous approaches.

2 The Interpolation Problem

The goal of interpolating between a source and target shape is to
produce intermediate shapes with desired properties. These are
governed by two principles: First, the transition should be smooth.
Second, the intermediate shapes’ deformations, relative to the source
and target, should maintain "simplicity."

From the first principle, several fundamental properties emerge:

(1) Lagrange Property: The intermediate shapes must repro-
duce the source and target shapes at their respective frames.

(2) Smoothness Property: The transitions between frames should
occur smoothly over time.

(3) Symmetry Property: The interpolation should be invariant
to swapping the source and target shapes.

The second principle is more open to interpretation. A "simple"
interpolation implies that if the transformation between the source
and target shapes is inherently "simple" (e.g., affine, conformal, or
area-preserving), the intermediate shapes should reflect this simplic-
ity. Thus, for example, if the conformal distortion or area distortion
induced by the mapping from the source to the target is bounded,
the intermediate shapes should also have a bounded distortion. Note
that we focus exclusively on the planar case, where both the source
and target shapes lie in a plane, and the intermediate shapes are
constrained to remain planar as well.

We first propose an interpolation framework in the continuous
setting, understanding how each blending method behaves. With
this theory in mind, we design corresponding discrete blending
schemes, with the goal of obtaining similar properties.

3 The Continuous Setting

Consider two domains Sp, S; € R? and a mapping ¢ : Sp — S;.
The changes in lengths and angles induced by ¢ at any point is
characterized by a bilinear form R? x R? — R, called the pullback
metric, denoted as 9p- Since both domains are flat, it is established
that g4 = ]¢T Jg, where Jy is the Jacobian of the mapping ¢, and
]¢T represents its transpose. By definition, g is symmetric positive
definite. For a trivial mapping of a shape to itself, { f(x) = x | x € S},
the metric reduces to the identity matrix I.

The conformal distortion K(p) and area distortion D(p) of a
mapping at a point p €Sy are derived from the eigenvalues A, A3 of
the metric g4, where A1 and A; represent the maximal and minimal
eigenvalues. These distortions are commonly defined as:

K(p) = VA1/d2, D(p) =+Ai- X (1)

3.1 Metric Interpolation
We introduce the following interpolation scheme, referred to as the
"Metric Interpolation Scheme", which consists of three key stages:

(1) Metric Blending: Compute interpolated metrics g;, 0<¢ < 1.
(2) Metric Flattening: Flatten the intermediate metrics, as they
are not necessarily flat.



(3) Metric Realization: Realize the flat metric using Poisson’s
equation., i.e. find an embedding that corresponds to the metric.

This scheme was first described by Chen et al. [2013], where the
pullback metric g4 was linearly blended as:
gr=00-1)-I+t-gg. ()

We propose instead a logarithmic blending of the metric:

g9:=1"""-g4' = g4". (©)
To demonstrate the full scope of our "Metric Interpolation Scheme”,

and show the advantages of logarithmic blending over previous
works, we also propose the square-root blending variant:

gt:((l_t).IO.S_'_t.ggs.S)Z (4)

Square-root blending enables a novel analysis of As-Rigid-As-Possible
Interpolation [Alexa et al. 2000].

3.2 Lagrange, Smoothness and Symmetry Properties

The straightforward derivation of the Lagrange, smoothness, and
symmetry properties is provided in Supplemental Sec. 3.

3.3 Bounded Distortion Properties

A desired property for interpolation is simplicity. In this context,
simplicity is achieved when the distortions induced by the interme-
diate deformations are bounded between the distortions of the target
deformation and the identity deformation. We define the distortion
error as the log distance from the allowed distortion range.

Kerr = Dist(In(K;), [0, In(K)]) ®)
Derr = Dist(In(Dy), [0,In(Dy)]) ©
0, if min(a,b) < x < max(a,b),

Dist(x, [a,b]) = {x — min(a,b), if x < min(a,b),
x —max(a,b) if x > max(a,b).

This distortion error measures deviation from the allowable dis-
tortion range, as is implied by the source and target shapes. It is
expressed logarithmically to make the error symmetric for expan-
sion and contraction. This ensures that the error remains consistent
if the source and target are swapped.

3.3.1 Logarithmic Blending.

ProrosrITION 3.1. Giveng; = g¢t, the eigenvalues of the intermedi-
ate metric are geometric interpolations of the target metric eigenvalues:

At,l' = A;,i (7)
ProoF. By definition of SPD matrix exponentiation. O

COROLLARY 3.2. Given g; = g¢t, the conformal and area distor-
tions induced by g; are geometric interpolations of the corresponding
distortions induced by g4. Consequently, both distortions are bounded.

Proor.

t
//b 1 At A1 :
K, =.]— = = 2| =K
t(p) ez Aq&,zt Mgz » (D)

t
Di(p) = o1 Arz = JAga' Mg’ = (g Agz) = Dy(p)f
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Fig. 2. Interpolation of a simple equi-areal deformation. The source has unit
area, and is stretched in one axis and squeezed in the second by a factor of
4. The resulting target also has unit area. Different interpolation schemes
lead to different intermediate area values, with only logarithmic blending
preserving the area.

Since both distortions are exponential functions and monotonic,
they are bounded by the distortion from the source to the target. O

3.3.2 Linear Blending.

Chen et al. [2013] proved bounds on conformal distortion for the
continuous setting using the properties of linearly blended SPD ma-
trices. However, they did not derive explicit interpolation formulas
for eigenvalues and distortions. For linear blending, the eigenvalues
and distortions are:

1+t(Agq—1)
Ai=1+t(Ag; —1), Ki(p) = \/% ®)

Di(p) = \J(1+ (g1 = D) (1+ t(Agz ~ 1)

3.3.3 Square-Root Blending.
For square-root blending, the interpolation formulas are:

i = (1+1(fAgs - D)2

Di(p) = (1+1t(JAp1 = D) (1 +t(\fAp2 = 1)

Both blending proofs are derived by diagonalizing g, (see Supple-
mental Sections 1 and 2).

As with linear blending, the conformal distortion is monotonic
and bounded for 0 < ¢t < 1, due to the convexity of linear-fractional
functions when the denominator is positive [Boyd and Vanden-
berghe 2004, example (3.32)]. The area function is a quadratic func-
tion, hence the monotonicity depends on Ay ; and A 5.

In Fig. 2, we show how only logarithmic blending maintains the
area of a rectangle interpolating a simple equiareal deformation.

3.4 Flat Interpolation Property

A significant challenge of the interpolation scheme is that the inter-
mediate metrics are not necessarily flat. A well-known trade-off of
flattening curved surfaces is that flattening the metric may induce
either angle distortion or area distortion, or both, depending on the
chosen approach. For a general deformation and blending method,
the intermediate metric will accumulate curvature. Uniquely, we
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Table 1. Properties of continuous blending methods. *conformal only.

Property Root Linear  Logarithmic
Lagrange/Smooth/Symmetry . . .
Pre-Realization Bounded Angle-Dist . . .
Pre-Realization Bounded Area-Dist o o .
Flat Interpolation o o Conformal®

show that when the deformation is conformal and the blending
method is logarithmic, the intermediate metric is flat.
Conformally Equivalent Domains: Two domains Sy, S are
conformally equivalent if there exists a smooth function u: Sy —
R, called the conformal scaling factor, such that g; = e**go. The
conformal scaling factor satisfies Au = e?“Ky — Ky, known as the
Yamabe equation. For flat input domains, this simplifies to Au = 0.

PrOPOSITION 3.3. Given two flat domains So, S1 C R? and a con-
formal mapping ¢ : So — S1, the logarithmic blending of metrics
gr = go'"*g1" produces intermediate pullback metrics g; that are
conformal and flat, with a linearly blended conformal factor u; = ut.

ProOF. Since ¢ is conformal, there exists a conformal factor u
such that g; = e?g. Substituting into the log blending formula:

ge =90 g1t = go T (ePg0) = (%) ! g0 g0’

Simplifying, we obtain linearly interpolated conformal factors:

gt =€'go, up=ut (10)

Since u; is a scalar multiple of u by ¢, and Au = 0 since Sy and S;
are flat, the curvature induced by u; is also zero. Thus, g; is flat:

Au; = A(ut) = tAu = 0. O

This property is unique to logarithmic blending, making it partic-
ularly advantageous for interpolating flat conformal deformations.

3.5 Continuous Setting Summary

We summarize the blending methods and properties (Table 1).

Pre-flattening, both linear and square-root blendings result in
bounded conformal distortions, while logarithmic blending uniquely
ensures both bounded area and conformal distortions. Realizing both
bounds simultaneously, is impossible for non developable surfaces
as flattening the metric inherently invalidates one of them.

Logarithmic blending stands out when interpolating planar con-
formal domains. In addition to preserving both conformal and area
distortion bounds pre-realization, it also yields a flat metric, thus
preserving these properties post-realization. This makes it superior
to linear or square-root blending for such cases.

LEMMA 3.4. For conformal deformations, logarithmic metric blend-
ing achieves post-flattening deformations that bound conformal and
area distortion.

Proor. Immediate from Corollary 3.2 and Proposition 3.3 O
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4 The Discrete Setting

Consider two planar triangular meshes, S = (V,E, F) and S =
(V, E,F), where V, V € R?, and both meshes share the same con-
nectivity and face orientation. We abuse the usual notation slightly,
and denote by V both the vertex set and its embedding in R?.

The deformation function ¢ is defined on the vertices as ¢:V —
R, such that V=¢ (V). We extend the mapping linearly to the faces
using barycentric coordinates. This extends ¢ to a piecewise linear
function ¢:S — S, defined throughout the mesh domain.

Using this piecewise linear extension, the discrete metric is de-
fined as g = ]fT]f, where Jris the piecewise constant Jacobian of
the mapping on face f. The conformal and area distortions are then
computed per face using the eigenvalues of the piecewise metric:

Kp=\Api/Ape Dy =\Ap1-Are (11)

where Af 1, A5 are the maximal and minimal eigenvalues of g¢.
Given a scalar 0 < t < 1, our objective is to generate an interme-

diate mesh S; = (V;, E, F) such that the properties established in the

continuous setting are preserved in the discrete setting.

5 Blending

Our discrete solution is divided into two components, the blend-
ing component, and the realization component. For the blending
component, we propose two approaches: a discrete metric blending
approach, and an edge length blending approach.

The realization component depends on the blending approach
chosen. For the discrete metric blending, we propose novel con-
formal, equiareal and isometric realizations. The edge blending
approach is more limited, allowing only conformal realization using
the scheme proposed by Chen et al. [2013]. We explore the edge
length approach to show that our logarithmic blending is superior
independently of the realization component, as we simply swap the
blending formula in an existing solution.

5.1 Discrete Metric Blending

A straightforward way to discretize the continuous metric blending
is to blend the discrete piecewise metric, according to Eq. (7), (8) and
(9). We use the spectral decomposition g¢ = VA fo-r , to compute

the matrix exponentiation and addition operators (see Alg. 1).
Alternatively, it is possible to blend the Jacobians directly (see
Alg. 2). We define the Jacobian interpolation that corresponds to
the respective metric interpolations using the Singular Value De-
composition (SVD) Jr = UfoVJ;'—, where A = %2. We prefer this
over the polar decomposition, commonly used in animation [Alexa
et al. 2000], for simplicity: the relation between the g formulas and
the J; formulas is clearer with SVD, as these are related through

g(t) = J(t) T J(t). Thus, for blending Jacobians we have:

Logarithmic: J@) =UstvT (12)
Linear: J)=U((1-t)-P+t-32)"vT  (13)
Square-Root: JO=U(@Q—-t)-I+t-5)VT (14)

We note that Eq. (14) is the common linear blending of Jacobians,
used in ARAP interpolation [Alexa et al. 2000] (albeit in the polar
decomposition form), and other previous work.



Algorithm 1: Discrete Metric Blending

Input: Target face metric g5, timestep ¢
Output: Intermediate metric g ()
1 [Af, V¢] = Spectral(gy);
2 switch blending mode do
3 Logarithmic: g7 (t) = VfAftVJI;
4 Linear: gf(t):Vf((l—t)-I+t-Af) VfT;
5 Square-Root: gp(t) =Vp((1—1t) - 1%+t - A%S)szT;

Algorithm 2: Discrete Jacobian Blending

Input: Target face jacobian Jf, interpolation timestep ¢
Output: Intermediate jacobian Jg (¢)
1 [Up, 2, V7] = SVD(Jy);
2 switch blending mode do
3 Logarithmic: J(t) = UpSf' VT
. 0.5
4 Linear: Jr(¢) = Up((1-1¢) ~12+t-2;) VeTs
5 Square-Root: Jp(¢t) =Up ((1—¢t) - I+t -%f) V§T;

Validity. Chen et al. [2013] shows that it is enough for our new
metrics to be SPD, which they are, to produce positive edge lengths

/e;'—j - g(t) - e;; that fulfill the triangle inequality.

It is important to note that intermediate metrics/Jacobians that
belong to adjacent faces do not necessarily agree on the change
imposed on the shared edge. Namely J (¢) - eij # J5; (¢) - eij, where
fi, f> share the edge e;;. Thus, we also discuss edge length blending,
that does not suffer from this limitation.

5.2 Edge Length-Squared Blending

Compatible edge lengths might be desirable as it adds geometrical
meaning to the intermediate mesh such as curvature, and increases
the number of geometrical processing tools available.

Chen et al. [2013] demonstrated that their linear metric blending
produces compatible edge lengths between neighboring faces, as
the interpolated edge lengths are independent of face selection:

llej (D11 = (1= 1) llegj | + tll&;511*. (15)

In addition to being exactly equivalent, it also has the same struc-

ture as Eq. (2). Inspired by this, we propose to use the structures of

Eq. (3), (4) to formulate a blending scheme using the edge length-
squared. Thus, we define logarithmic edge length interpolation:

lleij (D11 = Ulesf 1D 1€ 1D = lleij (I = lleaj II* 1lés N1
(16)

Similarly, we define the square-root edge length interpolation:

2
ey (DI = ((1 = Olles P+ ”é””z) (17)

lleij (DI = (1 = 1) lleijl| + tllé; .
Additionally, logarithmic edge length interpolation can be derived
directly using the concept of "Discrete Conformal Factors" and the
linear conformal factor equation (10). See Supplemental Section 4.

Limitations of Log Edge Length Interpolation. Unlike linear and
square-root blending of edge lengths, logarithmic blending can
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Fig. 3. Average discrete Gaussian curvature of the interpolated mesh, for
different input deformations and edge blending schemes. The discrete cur-
vature of a vertex v is 360° — Xy cangles(0) @- For each deformation we show
the average curvature at time ¢ as a separate plot. For the high-distortion
Tutte deformation, logarithmic edge blending violates triangle inequality.

violate triangle inequality. This is a known pitfall when working
with discrete conformal factors [Springborn et al. 2008]. In practice,
this typically arises when the input deformation has significant angle
distortion, hence logarithmic edge blending with CETM realization
is less viable for high-distortion applications (see Fig. 3).

Length Cross-Ratio Interpolation. Vaxman et al. [2015] proposed
interpolating edge length cross-ratios, followed by realizing the
intermediate cross-ratios with As-Mgbius-As-possible nonlinear op-
timization method. In 2D, their blending is equivalent to logarithmic
edge length blending, as they mention. The main difference of their
approach from the direct edge length approach is that edge blending
allows the use of standard realization methods such as CETM/BEFF,
as Chen et al. [2013] did, which offer computational advantages.

6 Realization

The realization of a mesh given the blended metrics or edge lengths
can be done using existing intrinsic parameterizations techniques,
which find the best fitting planar positions for the vertices, flattening
and stitching the faces simultaneously.

6.1 Realization of the Interpolated Metric/Jacobians

We propose conformally realizing the discrete piecewise metric
with LSCM parameterization [Desbrun et al. 2002; Lévy et al. 2002],
for which we define a corner Laplace-Beltrami. For an equiareal or

Algorithm 3: Discrete Edge Length Blending

Input: Source and target edge lengths ||e;; ||, [|€;; ||, timestep ¢
Output: Intermediate edge length |le;; (¢)]|
1 switch blending mode do

2 Logarithmic: [le;; () || = Ile;;[|I' 7" || €:;1|"
3 Linear: [le;; () || = /(1 — ) lles; 112 + tllé:;11%;
4 Square-Root:: |le;; (¢) || = (1 — ¢)les; || + £l €:l;
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A, Integration

Fig. 4. Integration of a triangle soup is done using the corner Laplace-
Beltrami Ao, induced by the "broken" triangles.

isometric realization we propose an adaptation of the Local/Global
algorithm [Liu et al. 2008] (see Alg. 4).

6.1.1 Corner Laplace-Beltrami Operator. The intermediate metric
and Jacobians are piecewise constant, and thus there doesn’t nec-
essarily exist an embedding that realizes the metric with the con-
nectivity of the input mesh. However, if we consider each triangle
separately, such an embedding does exist, and is easy to realize
triangle-wise as a "triangle soup”, see Fig. 4. The term "triangle
soup” usually relates to the case where the connectivity of the mesh
is broken, whereas in our case the embedding is broken: the coordi-
nate functions are discontinuous, and multi-valued at the vertices,
i.e., are corner functions (a function of the vertex and the face).

Given the interpolated Jacobians, we reconstruct the deformed
edges (up to global translation) using e;; ¢ () = Jp(t) - eij, where
ejj,r () is the half edge e;; that belongs to the triangle f at time ¢. If
only the interpolated metric is given, we reconstruct a triangle up to
global rotation and translation using the new edge lengths. In both
cases, the information we have about the interpolated triangles is
enough to construct a Corner Laplace-Beltrami Operator.

This operator is built, as is standard, by summing per triangle
contributions. Namely, given two faces fi, fo which share an edge
eij the entry A;;(t) is computed by summing the per triangle con-
tribution of e;; . ;; . Unlike the case of a standard mesh, the
edge lengths of two half edges belonging to the same edge may
be different, but this does not affect the computation. We denote
this operator by Acor. Interestingly, this operator is symmetric and
local, similarly to the standard cotan LB operator. Further, the usual
decomposition of the cotan LB operator as A = %ETA?E, where

E e R3FIXIVI g sparse matrix encoding the rotated half edges,
and Ap € R3IFIX3IF] jg 5 diagonal matrix of face areas, still holds.
This is true because each half edge has a separate row in E. Hence,

_1
xTAx = ||A Fe Ex||? > 0, and thus the corner Laplacian is also PSD.

6.1.2  Conformal Realization. LSCM is an intrinsic parameteriza-
tion method, which requires only a Laplace-Beltrami operator. We
therefore use our Ao, operator with LSCM to generate a conformal
embedding of the interpolated Jacobians or metric. As LSCM has a
free parameter of global scaling, we add a global area normalization
to the interpolated mesh, by scaling it to have the same total area
as the triangle soup. This operation does not affect the conformal
distortion, as it is not affected by global scaling.

6.1.3  Isometric realization. To trade off the conformal distortion for
area distortion when realizing the interpolated mesh, we propose a
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variant of the Local/Global parameterization by Liu et al. [2008]. In

brief, the steps of Local/Global parameterization are:

(1) Given a 3D mesh Msp, flatten the faces to a triangle soup Msoup.

(2) Compute an initial parameterization of M3p, denoted M,p, us-
ing other techniques, e.g., LSCM.

(3) Compute Jacobians of the Msoyp — M3p transformation.

(4) Local Step: Modify the singular values of the Jacobians such that
the Jacobians will be more rigid or conformal.

(5) Global Step: Integrate the Jacobians using the Laplace-Beltrami
and angles of Msp to achieve a new parameterization Myp.

(6) Compute the energy E, if not converged, repeat steps (3) to (6).

The algorithm setting for steps (4) and (6) for As-Rigid-As-Possible
(ARAP) parameterization is given by [Liu et al. 2008]:

opp(i+1) =opp(i+1) =1, (18)

|F| 2 2
E(i)= ) Ay [(Ul,f(i)—l) +(op ) -1) ] (19)
=

where i is the optimization iteration, |F| is the number of faces of
M, Ay is the area of the face f in the triangle soup, and oy f, 05 f
are the singular values of the Jacobian of f.

We suggest a variant of steps (4) and (6) for equiareal parameteri-
zation, termed "Local/Global As-Equiareal-As-Possible” (AEAP) to
show the possible area-bounding benefits of logarithmic blending:

‘Tz,f(i)

Ao (Do (i)

) (oo p() —1D*  (21)

1f(i)

Jour oy ()
E(z)—ZAf o) oD

aa,£ (1) Gl,f(i)
Our selected AEAP singular values are area-preserving oy p(i +1) -
0y, (i+1) = 1, while minimizing error in Log-Euclidean metric.

opp(i+1) = oy, p(i+1) = (20)

2 2
(10017 () = In(o, i+ 1))+ (In(o (1) = In(o (i + 1))

Additionally, they preserve the aspect ratio which avoids unneces-
sary angle distortion. For derivation see Supplemental Sec. 5.

To apply the Local/Global realization to the piecewise discrete
metric, we require three minor, but key, modifications:
o Use Msoyp instead of the input 3D mesh, skipping (1).
o Use Acor with LSCM to compute the initial Myp, skipping (2).
e Use Acor and the angles of Moy for the integration process.

6.2 Realization of the Interpolated Edge Lengths

We realize the interpolated edge lengths using CETM [Springborn
et al. 2008] as proposed by Chen et al. [2013], or the newer linear
BFF [Sawhney and Crane 2017] (Alg. 5). Both lead to a conformal
realization.

7 Results

We implemented our algorithm in MATLAB. For mesh visualization

and texture patching, we used the tool provided by Kroon [2024].
We re-implemented ARAP interpolation [Baxter et al. 2008], Lo-

cal/Global [Liu et al. 2008] and BFF [Sawhney and Crane 2017].



Algorithm 4: Discrete Metric Interpolation Scheme

Input: Triangle meshes S = (V, E, F), S=(V,EF), timestep
Output: Intermediate mesh S; = (V,, E, F)
1 for f € Fdo
2 Jr = Jacobian of transformation from V (f) to V(f);
3 Jg(t) = JacobianBlending(Jr, t);
fori € {0,1,2} do
e = V(F(i+2)) = V(f(i+1);
6 E/(f. i) =Jp(t) - eis // Compute new edge
7 L(f,i) = |E:(f. i)l ; // Compute length
8 TriangleSoup(f) = [[0,0], E;(f,2),—E;(f,1)];
9 A; = LaplaceBeltrami(L); V; = LSCM(A;);
10 if mode is ARAP or AEAP then
1 ‘ V; = LocalGlobal(A;, TriangleSoup, init = V;, mode);
12 Apply global rigid transformation on V; using external constraints;

'S

// i mod 3

@

LSCM [Lévy et al. 2002] and CETM [Springborn et al. 2008] were
obtained from the software provided by Chen et al. [2013].

We tested different combinations of blending and realization,
on deformations of various types. We generated conformal defor-
mations using Cauchy Coordinates [Weber et al. 2009], and low-
distortion deformations using As-Killing-As-Possible vector fields
[Solomon et al. 2011]. Finally, we used a Tutte embedding [Tutte
1963] to the unit circle, to generate high-distortion deformations.

Visualization. We demonstrate the differences between the differ-
ent blendings and realizations in two ways. First, we plot the distor-
tion errors over the interpolated mesh for a given t, or alternatively,
present them as a histogram, providing a complete view of the dis-
tortion for all the faces. Second, we plot the distortions K (), D(¢) in
log-space as a function of t, for a subset of the triangles. The confor-
mal distortion K() is shown for the 25 least distorted (purple) and
25 most distorted faces (red) (50 total). The area distortion D(t) is
shown for the 25 least-distorted (green), most-scaled-down (yellow),
most-scaled-up (blue) faces (75 total). A monotonic graph indicates
bounded distortion. In addition, a linear graph indicates a "constant
speed" growth of the log distortion during the interpolation, and
thus a more natural interpolation sequence.

The full tensor of possibilities: input deformation / blending /
realization is quite large, and we show only of subset of interesting
behaviors, where swapping the blending or realization components
makes a large difference to the resulting distortions. See also Sup-
plemental Sec. 6 and the accompanying video for more examples.

7.1 Blending

Here we test the three blending schemes, where we tailor the re-
alization to the input deformation. For a conformal deformation

Algorithm 5: Edge Length Interpolation Scheme

Input: Triangle meshes S = (V, E, F), S= (V, E,F), timestep ¢
Output: Intermediate mesh S; = (V, E, F)
1 fore;j € E do
2 lle;; 1l |é:; | are the edge lengths of e;; in S, S respectively;
L(e;;) = EdgeLengthBlending(|le, Il |&;):
1 V= [CETM/BFF] (L, UBoundary = 0);
5 Apply global rigid transformation on V; using external constraints;

3
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we use CETM or LSCM, for a high-distortion deformation we use
ARAP, and for a low-distortion deformation we may use any realiza-
tion. Fig. 1 shows that for a low-distortion deformation modifying
Chen et al. [2013] (a) from linear to logarithmic blending reduces
the area distortion (b). Replacing the realization with our isometric
local/global ARAP realization (c) completely eliminates the error.
Fig. 5 shows that for a conformal deformation, LSCM consistently
produces smooth and conformally bounded results for all three
blending options (b-d), as does the previous method (a). Logarith-
mic blending, however, also eliminates the area distortion (d). In
Fig. 7, we demonstrate that when realized with conformal tech-
niques (LSCM, CETM) (first row), or isometric Local/Global-ARAP
(second and third rows), all three blendings effectively constrained
conformal distortion, regardless of deformation type. However, log-
arithmic blending with LG-ARAP (d) effectively constrained both
area and conformal distortions for the high-distortion deformations
(two bottom rows), unlike linear and square-root blending (b-c).

7.2 Realization

Here we consider the different realization approaches, while keep-
ing the blending method mostly fixed. In Figs. 9 and 7, we compare
our Local/Global realization, based on minimizing singular values
deviation, to Baxter et al. [2008]’s ARAP, which minimizes devi-
ation from target Jacobians. Our approach consistently achieves
smoother results, with lower area distortion. Fig. 6 compares our
different realizations on a low-distortion deformation, using loga-
rithmic blending. We note, as expected, that LSCM (a) minimizes the
deviation of the conformal distortion, leading to a log-linear error
graph for K(t), whereas LG-AEAP (b) minimizes the deviation of the
area distortion yielding a log linear graph of D(t). Finally, LG-ARAP
(c) balances both deviations. For a low-distortion deformation we
have the option of using edge-length blending with BFF realization,
which is faster than LSCM realization. Fig. 8 shows that for both the
square-root (a,b) and logarithmic blending (c,d) LSCM and BFF lead
to a similar conformal distortion, with BFF yielding a somewhat
lower area distortion than LSCM for log blending (d). In Fig. 10
we show that LG-AEAP (a-c) minimizes area deviation, yielding
cohesive area distortions at the expense of conformal deviation.

8 Discussion and Conclusion

Our novel logarithmic blending, combined with the Local/Global
ARAP approach, proved highly effective in minimizing both distor-
tions across a range of deformations. This method outperformed
linear and square-root blending in overall distortion control. For
low-distortion deformations, the simpler logarithmic edge length
blending using BFF is a faster alternative. Detailed computation
times are provided in Supplemental Sec. 6.

Our framework has several limitations. To address the curvature
of the interpolated mesh, we use parameterization methods that do
not guarantee pointwise area- or conformal-preserving embeddings.
Future work could explore alternative blending methods to identify
one capable of bounding these distortions while producing perfectly
flat deformations—or prove that such blending is inherently im-
possible. Unlike Chen et al. [2013], our continuous framework is
restricted to blending between a single source and a single target
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due to its reliance on the flexibility of the identity matrix I as one of
the blended metrics. Consequently, it cannot be easily extended to
multi-target or pose blending. This is another area for future work.

We believe our mathematical framework, blending techniques,
and realization methods enhance the understanding of existing inter-
polation solutions and lay the groundwork for future advancements.
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Fig. 5. Interpolation of conformal deformation. All three LSCM blendings (b-d)
produced conformal results, while logarithmic (d) additionally eliminated area
errors, as evidenced by the histograms and color plots.

Fig. 6. Logarithmic LSCM and Local/Global realizations on low-
distortion deformation. Desired distortions should be log-linear, note
how each method minimizes differently distortion deviation.
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(a) Squared-Root CETM (b) Linear CETM [Chen 2013] (c) Logarithmic CETM
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(a) ARAP [Baxter 2008] (b) Squared-Root LG-ARAP (c) Linear LG-ARAP (d) Logarithmic LG-ARAP

Fig. 7. Demonstration of all blending methods in various settings. Raptor’s deformation is conformal. The Cat and Blue Monster deformations are Tutte
embedding to circle. Note the last column in each example, where we see that logarithmic blending uniquely minimizes area distortion error D¢
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Fig. 8. Interpolation of low-distortion deformation with metric blending LSCM and edge blending BFF, both producing smooth conformal-bounded realizations.
We see that BFF realization (b)(d) produces similar results to the respective counterparts (a)(c), albeit with less area distortion.
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Fig. 9. Interpolation of high-distortion Tutte Circle Embedding with Baxter et al. [2008]’s ARAP realization and our Local Global ARAP realization. We can see
that our realization produces smoother results, and that our logarithmic blending method produces less area distortion than square-root blending method.
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Fig. 10. Interpolation of low-distortion deformation. We can see that realizing with LG-AEAP (a-c) minimize area distortion deviation, producing smooth and
cohesive area distortions for all three blendings, at the expense of added conformal distortion deviation.
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