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Fig. 1. Interpolation of an As-Killing-As-Possible deformation, with texture and the corresponding area distortion error 𝐷𝑒𝑟𝑟 plots and histograms. Unlike
previous methods, our logarithmic blending solutions (b)(c) minimize the area distortion, in addition to the conformal distortion which all methods minimize.

We present an interpolation method for planar shapes using logarithmic

metric blending. Our approach generalizes prior work on pullback metrics to

a framework, allowing us to employ different techniques, such as logarithmic

blending of symmetric positive definite matrices, to have precise control

over both conformal and area distortions. Key contributions include general-

izing the continuous blending scheme and its adaptation to discrete mesh

interpolation through different conformal and isometric parameterizations.

Experimental results demonstrate that our method outperforms existing

techniques in achieving bounded distortions, making it a compelling choice

for applications in animation and morphing.
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1 Introduction
Shape interpolation plays a key role in many areas of graphics and

geometry processing. For example, blending two poses of the same

shape is essential for creating smooth transitions in animations,

while merging multiple shapes in a process called morphing, is

helpful for designing and exploring new forms. Since different ap-

plications have unique requirements for shape interpolation, there

is no single method that works perfectly in all cases. However, an
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important goal is to retain as much of the original geometric de-

tails of the input shapes as possible. Given that the shapes that are

blended often differ, some level of distortion is inevitable.

We generalize the recent work on blending the pullback met-

ric [Chen et al. 2013], which encodes local map distortion, into a

broader framework of two components. The blending component
interpolates the metric, ensuring smooth shape transitions while

managing conformal and area distortions. The realization compo-
nent reconstructs intermediate shapes from the blended metric,

embedding them into a geometric domain that meets the desired

interpolation properties. This enables us to provide a novel interpo-

lation solution which is pointwise bounded in both conformal and

area distortions, by modifying the blending method of the pullback

metric from linear to logarithmic.
Moreover, using our framework, we show that previously pro-

posed linear blending of the Jacobians [Alexa et al. 2000] is related

to linearly blending the root of the pullback metric, allowing us to

prove that by selecting a different realization method, this common

blending machinery is sufficient to bound conformal distortion. We

demonstrate our results on a variety of deformations: conformal,

low-distortion and high-distortion, showing that our solution pro-

duces less area distortion, while also minimizing angle distortion.

1.1 Related Work
Among the diverse techniques developed for generating smooth

transitions between 2D geometric models, intrinsic methods, and

As-Rigid-As-Possible (ARAP) methods, which focus on maintaining

the geometry structure and creating realistic deformations during

these transitions, have emerged as pivotal. While other approaches

exist, we focus on intrinsic and ARAP based solutions for their better

preservation of shapes. For an extensive review of the subject, we

refer to the work of Zhang et al. [2015].

Our findings also relate to works on interpolation of symmetric

positive definite matrices, primarily in Diffusion-Tensor Imaging.

Intrinsic Methods. Intrinsic methods use geometric properties

which are independent of the coordinate embedding, such as edge
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lengths, angles, and curvature, to guide shape interpolation. The

2D polygon interpolation method by Sederberg et al. [1993] was

the first to linearly interpolate edge lengths and angles. This edge

interpolation approach was adopted by later works to 3Dmesh inter-

polation [Winkler et al. 2010]. Chen et al. [2013] introduced bounded-

distortion techniques based on the surface metric, enabling smooth

transitions with minimal conformal distortion. Later, Vaxman et al.

[2015] introduced Möbius transformations for shape interpolation,

developing a framework for interpolating conformally meshes that

are conformal-equivalent [Springborn et al. 2008], in both planar

and 3D settings. Chien et al. [2016a] proposed blending harmonic

mappings in closed form, resulting in injective, distortion-bounded

interpolations that are computationally efficient. Their approach

produced𝐶∞
mappings with guaranteed bounds on both conformal

and area distortions, albeit limited to a subclass of deformations.

Aharon et al. [2019] extended metric interpolation to 3D interpola-

tion by building on Chien et al. [2016b]’s convex parametrization

framework in the discrete metric space, enabling volumetric map-

pings with bounded Jacobian singular values.

Unlike previous methods, our approach ensures both bounded

conformal and area distortions for conformal deformations, and in

practice bounds both distortions for general planar deformations.

As-Rigid-As-Possible (ARAP) Methods. ARAP methods focus on

keeping parts of the shape as rigid as possible during transitions.

This approach was introduced by Alexa et al. [2000], who showed

how to realize a linearly blended Jacobian, minimizing deviation

from the desired Jacobians. Xu et al. [2006] and Baxter et al. [2008]

explored area-weighted realization and rotational consistency.

In ourwork, we propose a different approach for ARAP realization

based on Local/Global approach [Liu et al. 2008], minimizing the

deviation on the Jacobian singular values, which we find to be more

suitable for metric blending then previous approaches.

Blending Symmetric Positive Definite Matrices. Logarithmic blend-

ing of two symmetric positive definite (SPD) matrices 𝑀1, 𝑀2, de-

fined as 𝑀 (𝑡) = 𝑒𝑥𝑝 ((1 − 𝑡) · 𝑙𝑜𝑔(𝑀1) + 𝑡 · 𝑙𝑜𝑔(𝑀2)) (often called

geometric, log-euclidean or exponential blending), has the unique

property of interpolating the determinants of the inputs geomet-

rically [Jung et al. 2015]. While commonly used in the field of

Diffusion-Tensor Imaging to minimize scale changes and rotations

during interpolation, it is less common in computer graphics. The

most significant use of logarithmic matrix blending in the field is

by Alexa [2002], highlighting its benefits for 3D transformations.

To our knowledge, logarithmic SPD blending has not been applied

to metric blending or shape interpolation.

1.2 Contributions
Our main contributions are:

• We provide formal proofs establishing the benefits of contin-

uous logarithmic metric blending in ensuring bounded area

and conformal distortions, and its ability to flatly interpolate

the metric for conformal deformations.

• We propose conformal and isometric realizations based on

a novel use of the cotan-weights Laplace-Beltrami operator

induced by corners, for realizing a blended discrete metric.

• We demonstrate our interpolation solution on different de-

formations types, showcasing its superiority compared to

previous approaches.

2 The Interpolation Problem
The goal of interpolating between a source and target shape is to

produce intermediate shapes with desired properties. These are

governed by two principles: First, the transition should be smooth.

Second, the intermediate shapes’ deformations, relative to the source

and target, should maintain "simplicity."

From the first principle, several fundamental properties emerge:

(1) Lagrange Property: The intermediate shapes must repro-

duce the source and target shapes at their respective frames.

(2) Smoothness Property:The transitions between frames should

occur smoothly over time.

(3) Symmetry Property: The interpolation should be invariant

to swapping the source and target shapes.

The second principle is more open to interpretation. A "simple"

interpolation implies that if the transformation between the source

and target shapes is inherently "simple" (e.g., affine, conformal, or

area-preserving), the intermediate shapes should reflect this simplic-

ity. Thus, for example, if the conformal distortion or area distortion

induced by the mapping from the source to the target is bounded,

the intermediate shapes should also have a bounded distortion. Note

that we focus exclusively on the planar case, where both the source

and target shapes lie in a plane, and the intermediate shapes are

constrained to remain planar as well.

We first propose an interpolation framework in the continuous

setting, understanding how each blending method behaves. With

this theory in mind, we design corresponding discrete blending

schemes, with the goal of obtaining similar properties.

3 The Continuous Setting
Consider two domains 𝑆0, 𝑆1 ⊂ R2 and a mapping 𝜙 : 𝑆0 → 𝑆1.

The changes in lengths and angles induced by 𝜙 at any point is

characterized by a bilinear form R2 × R2 → R, called the pullback
metric, denoted as 𝑔𝜙 . Since both domains are flat, it is established

that 𝑔𝜙 = 𝐽𝜙
⊤ 𝐽𝜙 , where 𝐽𝜙 is the Jacobian of the mapping 𝜙 , and

𝐽𝜙
⊤
represents its transpose. By definition, 𝑔𝜙 is symmetric positive

definite. For a trivial mapping of a shape to itself, {𝑓 (𝑥) = 𝑥 | 𝑥 ∈ 𝑆},
the metric reduces to the identity matrix 𝐼 .

The conformal distortion 𝐾 (𝑝) and area distortion 𝐷 (𝑝) of a
mapping at a point 𝑝 ∈𝑆0 are derived from the eigenvalues 𝜆1, 𝜆2 of

the metric 𝑔𝜙 , where 𝜆1 and 𝜆2 represent the maximal and minimal

eigenvalues. These distortions are commonly defined as:

𝐾 (𝑝) =
√︁
𝜆1/𝜆2, 𝐷 (𝑝) =

√︁
𝜆1 · 𝜆2 (1)

3.1 Metric Interpolation
We introduce the following interpolation scheme, referred to as the

"Metric Interpolation Scheme", which consists of three key stages:

(1) Metric Blending: Compute interpolated metrics 𝑔𝑡 , 0≤ 𝑡 ≤ 1.

(2) Metric Flattening: Flatten the intermediate metrics, as they

are not necessarily flat.
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(3) Metric Realization: Realize the flat metric using Poisson’s

equation., i.e. find an embedding that corresponds to the metric.

This scheme was first described by Chen et al. [2013], where the

pullback metric 𝑔𝜙 was linearly blended as:

𝑔𝑡 = (1 − 𝑡) · 𝐼 + 𝑡 · 𝑔𝜙 . (2)

We propose instead a logarithmic blending of the metric:

𝑔𝑡 = 𝐼
1−𝑡 · 𝑔𝜙𝑡 = 𝑔𝜙𝑡 . (3)

To demonstrate the full scope of our "Metric Interpolation Scheme",

and show the advantages of logarithmic blending over previous

works, we also propose the square-root blending variant:

𝑔𝑡 =
(
(1 − 𝑡) · 𝐼0.5 + 𝑡 · 𝑔0.5

𝜙

)
2

(4)

Square-root blending enables a novel analysis of As-Rigid-As-Possible

Interpolation [Alexa et al. 2000].

3.2 Lagrange, Smoothness and Symmetry Properties
The straightforward derivation of the Lagrange, smoothness, and

symmetry properties is provided in Supplemental Sec. 3.

3.3 Bounded Distortion Properties
A desired property for interpolation is simplicity. In this context,

simplicity is achieved when the distortions induced by the interme-

diate deformations are bounded between the distortions of the target

deformation and the identity deformation. We define the distortion

error as the log distance from the allowed distortion range.

𝐾𝑒𝑟𝑟 = Dist

(
ln(𝐾𝑡 ), [0, ln(𝐾𝜙 )]

)
(5)

𝐷𝑒𝑟𝑟 = Dist

(
ln(𝐷𝑡 ), [0, ln(𝐷𝜙 )]

)
(6)

Dist(𝑥, [𝑎, 𝑏]) =


0, if𝑚𝑖𝑛(𝑎, 𝑏) ≤ 𝑥 ≤ 𝑚𝑎𝑥 (𝑎, 𝑏),
𝑥 −𝑚𝑖𝑛(𝑎, 𝑏), if 𝑥 < 𝑚𝑖𝑛(𝑎, 𝑏),
𝑥 −𝑚𝑎𝑥 (𝑎, 𝑏) if 𝑥 > 𝑚𝑎𝑥 (𝑎, 𝑏).

This distortion error measures deviation from the allowable dis-

tortion range, as is implied by the source and target shapes. It is

expressed logarithmically to make the error symmetric for expan-

sion and contraction. This ensures that the error remains consistent

if the source and target are swapped.

3.3.1 Logarithmic Blending.

Proposition 3.1. Given𝑔𝑡 = 𝑔𝜙𝑡 , the eigenvalues of the intermedi-
ate metric are geometric interpolations of the target metric eigenvalues:

𝜆𝑡,𝑖 = 𝜆
𝑡
𝜙,𝑖

(7)

Proof. By definition of SPD matrix exponentiation. □

Corollary 3.2. Given 𝑔𝑡 = 𝑔𝜙
𝑡 , the conformal and area distor-

tions induced by 𝑔𝑡 are geometric interpolations of the corresponding
distortions induced by 𝑔𝜙 . Consequently, both distortions are bounded.

Proof.

𝐾𝑡 (𝑝) =

√︄
𝜆𝑡,1

𝜆𝑡,2
=

√√
𝜆𝜙,1

𝑡

𝜆𝜙,2
𝑡
=

(√︄
𝜆𝜙,1

𝜆𝜙,2

)𝑡
= 𝐾𝜙 (𝑝)𝑡

𝐷𝑡 (𝑝) =
√︁
𝜆𝑡,1 · 𝜆𝑡,2 =

√︃
𝜆𝜙,1

𝑡 · 𝜆𝜙,2𝑡 = (
√︃
𝜆𝜙,1 · 𝜆𝜙,2)

𝑡

= 𝐷𝜙 (𝑝)𝑡

Source

Target

2

0.5

0.5

2Area=1 Area=1 Area=2.125 Area=1.5625

log(t=0.5)
linear(t=0.5) square-root(t=0.5)

Area
  =1

Fig. 2. Interpolation of a simple equi-areal deformation. The source has unit
area, and is stretched in one axis and squeezed in the second by a factor of
4. The resulting target also has unit area. Different interpolation schemes
lead to different intermediate area values, with only logarithmic blending
preserving the area.

Since both distortions are exponential functions and monotonic,

they are bounded by the distortion from the source to the target. □

3.3.2 Linear Blending.

Chen et al. [2013] proved bounds on conformal distortion for the

continuous setting using the properties of linearly blended SPD ma-

trices. However, they did not derive explicit interpolation formulas

for eigenvalues and distortions. For linear blending, the eigenvalues

and distortions are:

𝜆𝑡,𝑖 = 1 + 𝑡 (𝜆𝜙,𝑖 − 1), 𝐾𝑡 (𝑝) =

√︄
1 + 𝑡 (𝜆𝜙,1 − 1)
1 + 𝑡 (𝜆𝜙,2 − 1) (8)

𝐷𝑡 (𝑝) =
√︃(

1 + 𝑡 (𝜆𝜙,1 − 1)
) (
1 + 𝑡 (𝜆𝜙,2 − 1)

)
3.3.3 Square-Root Blending.
For square-root blending, the interpolation formulas are:

𝜆𝑡,𝑖 =
(
1 + 𝑡 (

√︃
𝜆𝜙,𝑖 − 1)

)
2

, 𝐾𝑡 (𝑝) =
1 + 𝑡 (

√︃
𝜆𝜙,1 − 1)

1 + 𝑡 (
√︃
𝜆𝜙,2 − 1)

(9)

𝐷𝑡 (𝑝) =
(
1 + 𝑡 (

√︃
𝜆𝜙,1 − 1)

) (
1 + 𝑡 (

√︃
𝜆𝜙,2 − 1)

)
Both blending proofs are derived by diagonalizing 𝑔𝜙 (see Supple-

mental Sections 1 and 2).

As with linear blending, the conformal distortion is monotonic

and bounded for 0 ≤ 𝑡 ≤ 1, due to the convexity of linear-fractional

functions when the denominator is positive [Boyd and Vanden-

berghe 2004, example (3.32)]. The area function is a quadratic func-

tion, hence the monotonicity depends on 𝜆𝜙,1 and 𝜆𝜙,2.

In Fig. 2, we show how only logarithmic blending maintains the

area of a rectangle interpolating a simple equiareal deformation.

3.4 Flat Interpolation Property
A significant challenge of the interpolation scheme is that the inter-

mediate metrics are not necessarily flat. A well-known trade-off of

flattening curved surfaces is that flattening the metric may induce

either angle distortion or area distortion, or both, depending on the

chosen approach. For a general deformation and blending method,

the intermediate metric will accumulate curvature. Uniquely, we
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Table 1. Properties of continuous blending methods. *conformal only.

Property Root Linear Logarithmic

Lagrange/Smooth/Symmetry • • •
Pre-Realization Bounded Angle-Dist • • •
Pre-Realization Bounded Area-Dist ◦ ◦ •
Flat Interpolation ◦ ◦ Conformal*

show that when the deformation is conformal and the blending

method is logarithmic, the intermediate metric is flat.
Conformally Equivalent Domains: Two domains 𝑆0, 𝑆1 are

conformally equivalent if there exists a smooth function 𝑢 : 𝑆0 →
R, called the conformal scaling factor, such that 𝑔1 = 𝑒2𝑢𝑔0. The

conformal scaling factor satisfies Δ𝑢 = 𝑒2𝑢𝐾1 − 𝐾0, known as the

Yamabe equation. For flat input domains, this simplifies to Δ𝑢 = 0.

Proposition 3.3. Given two flat domains 𝑆0, 𝑆1 ⊂ R2 and a con-
formal mapping 𝜙 : 𝑆0 → 𝑆1, the logarithmic blending of metrics
𝑔𝑡 = 𝑔0

1−𝑡𝑔1𝑡 produces intermediate pullback metrics 𝑔𝑡 that are
conformal and flat, with a linearly blended conformal factor 𝑢𝑡 = 𝑢𝑡 .

Proof. Since 𝜙 is conformal, there exists a conformal factor 𝑢

such that 𝑔1 = 𝑒
2𝑢𝑔0. Substituting into the log blending formula:

𝑔𝑡 = 𝑔0
1−𝑡𝑔1𝑡 = 𝑔01−𝑡 (𝑒2𝑢𝑔0)

𝑡
= (𝑒2𝑢 )𝑡𝑔01−𝑡𝑔0𝑡

Simplifying, we obtain linearly interpolated conformal factors:

𝑔𝑡 = 𝑒
2𝑢𝑡𝑔0, 𝑢𝑡 = 𝑢𝑡 (10)

Since 𝑢𝑡 is a scalar multiple of 𝑢 by 𝑡 , and Δ𝑢 = 0 since 𝑆0 and 𝑆1
are flat, the curvature induced by 𝑢𝑡 is also zero. Thus, 𝑔𝑡 is flat:

Δ𝑢𝑡 = Δ(𝑢𝑡) = 𝑡Δ𝑢 = 0. □

This property is unique to logarithmic blending, making it partic-

ularly advantageous for interpolating flat conformal deformations.

3.5 Continuous Setting Summary
We summarize the blending methods and properties (Table 1).

Pre-flattening, both linear and square-root blendings result in

bounded conformal distortions, while logarithmic blending uniquely

ensures both bounded area and conformal distortions. Realizing both

bounds simultaneously, is impossible for non developable surfaces

as flattening the metric inherently invalidates one of them.

Logarithmic blending stands out when interpolating planar con-
formal domains. In addition to preserving both conformal and area

distortion bounds pre-realization, it also yields a flat metric, thus

preserving these properties post-realization. This makes it superior

to linear or square-root blending for such cases.

Lemma 3.4. For conformal deformations, logarithmic metric blend-
ing achieves post-flattening deformations that bound conformal and
area distortion.

Proof. Immediate from Corollary 3.2 and Proposition 3.3 □

4 The Discrete Setting
Consider two planar triangular meshes, 𝑆 = (𝑉 , 𝐸, 𝐹 ) and 𝑆 =

(�̃� , 𝐸, 𝐹 ), where 𝑉 , �̃� ∈ R2, and both meshes share the same con-

nectivity and face orientation. We abuse the usual notation slightly,

and denote by 𝑉 both the vertex set and its embedding in R2.
The deformation function 𝜙 is defined on the vertices as 𝜙 :𝑉→

R2, such that �̃� =𝜙 (𝑉 ). We extend the mapping linearly to the faces

using barycentric coordinates. This extends 𝜙 to a piecewise linear

function 𝜙 :𝑆→𝑆 , defined throughout the mesh domain.

Using this piecewise linear extension, the discrete metric is de-

fined as 𝑔𝑓 = 𝐽𝑓
⊤ 𝐽𝑓 , where 𝐽𝑓 is the piecewise constant Jacobian of

the mapping on face 𝑓 . The conformal and area distortions are then

computed per face using the eigenvalues of the piecewise metric:

𝐾𝑓 =

√︃
𝜆𝑓 ,1/𝜆𝑓 ,2, 𝐷 𝑓 =

√︃
𝜆𝑓 ,1 · 𝜆𝑓 ,2, (11)

where 𝜆𝑓 ,1, 𝜆𝑓 ,2 are the maximal and minimal eigenvalues of 𝑔𝑓 .

Given a scalar 0 ≤ 𝑡 ≤ 1, our objective is to generate an interme-

diate mesh 𝑆𝑡 = (𝑉𝑡 , 𝐸, 𝐹 ) such that the properties established in the

continuous setting are preserved in the discrete setting.

5 Blending
Our discrete solution is divided into two components, the blend-

ing component, and the realization component. For the blending

component, we propose two approaches: a discrete metric blending

approach, and an edge length blending approach.

The realization component depends on the blending approach

chosen. For the discrete metric blending, we propose novel con-

formal, equiareal and isometric realizations. The edge blending

approach is more limited, allowing only conformal realization using

the scheme proposed by Chen et al. [2013]. We explore the edge

length approach to show that our logarithmic blending is superior

independently of the realization component, as we simply swap the

blending formula in an existing solution.

5.1 Discrete Metric Blending
A straightforward way to discretize the continuous metric blending

is to blend the discrete piecewise metric, according to Eq. (7), (8) and

(9). We use the spectral decomposition 𝑔𝑓 = 𝑉𝑓 Λ𝑓𝑉
⊤
𝑓
, to compute

the matrix exponentiation and addition operators (see Alg. 1).

Alternatively, it is possible to blend the Jacobians directly (see

Alg. 2). We define the Jacobian interpolation that corresponds to

the respective metric interpolations using the Singular Value De-

composition (SVD) 𝐽𝑓 = 𝑈𝑓 Σ𝑓𝑉
⊤
𝑓
, where Λ = Σ2. We prefer this

over the polar decomposition, commonly used in animation [Alexa

et al. 2000], for simplicity: the relation between the 𝑔𝑓 formulas and

the 𝐽𝑓 formulas is clearer with SVD, as these are related through

𝑔(𝑡) = 𝐽 (𝑡)⊤ 𝐽 (𝑡). Thus, for blending Jacobians we have:

Logarithmic: 𝐽 (𝑡) = 𝑈 Σ𝑡𝑉⊤
(12)

Linear: 𝐽 (𝑡) = 𝑈
(
(1 − 𝑡) · 𝐼2 + 𝑡 · Σ2

)
0.5
𝑉⊤

(13)

Square-Root: 𝐽 (𝑡) = 𝑈 ((1 − 𝑡) · 𝐼 + 𝑡 · Σ)𝑉⊤
(14)

We note that Eq. (14) is the common linear blending of Jacobians,

used in ARAP interpolation [Alexa et al. 2000] (albeit in the polar

decomposition form), and other previous work.
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Algorithm 1: Discrete Metric Blending

Input: Target face metric 𝑔𝑓 , timestep 𝑡

Output: Intermediate metric 𝑔𝑓 (𝑡 )
1 [Λ𝑓 ,𝑉𝑓 ] = Spectral(𝑔𝑓 ) ;
2 switch blending mode do
3 Logarithmic: 𝑔𝑓 (𝑡 ) = 𝑉𝑓 Λ𝑓

𝑡𝑉⊤
𝑓
;

4 Linear: 𝑔𝑓 (𝑡 ) = 𝑉𝑓

(
(1 − 𝑡 ) · 𝐼 + 𝑡 · Λ𝑓

)
𝑉⊤
𝑓
;

5 Square-Root: 𝑔𝑓 (𝑡 ) = 𝑉𝑓

(
(1 − 𝑡 ) · 𝐼 0.5 + 𝑡 · Λ0.5

𝑓

)
2

𝑉⊤
𝑓
;

Algorithm 2: Discrete Jacobian Blending

Input: Target face jacobian 𝐽𝑓 , interpolation timestep 𝑡

Output: Intermediate jacobian 𝐽𝑓 (𝑡 )
1 [𝑈𝑓 , Σ𝑓 ,𝑉𝑓

⊤ ] = SVD( 𝐽𝑓 ) ;
2 switch blending mode do
3 Logarithmic: 𝐽𝑓 (𝑡 ) = 𝑈𝑓 Σ𝑓

𝑡𝑉𝑓
⊤
;

4 Linear: 𝐽𝑓 (𝑡 ) = 𝑈𝑓

(
(1 − 𝑡 ) · 𝐼 2 + 𝑡 · Σ2

𝑓

)
0.5
𝑉𝑓

⊤
;

5 Square-Root: 𝐽𝑓 (𝑡 ) = 𝑈𝑓

(
(1 − 𝑡 ) · 𝐼 + 𝑡 · Σ𝑓

)
𝑉𝑓

⊤
;

Validity. Chen et al. [2013] shows that it is enough for our new

metrics to be SPD, which they are, to produce positive edge lengths√︃
𝑒⊤
𝑖 𝑗
· 𝑔(𝑡) · 𝑒𝑖 𝑗 that fulfill the triangle inequality.

It is important to note that intermediate metrics/Jacobians that

belong to adjacent faces do not necessarily agree on the change

imposed on the shared edge. Namely 𝐽𝑓1 (𝑡) · 𝑒𝑖 𝑗 ≠ 𝐽𝑓2 (𝑡) · 𝑒𝑖 𝑗 , where
𝑓1, 𝑓2 share the edge 𝑒𝑖 𝑗 . Thus, we also discuss edge length blending,
that does not suffer from this limitation.

5.2 Edge Length-Squared Blending
Compatible edge lengths might be desirable as it adds geometrical

meaning to the intermediate mesh such as curvature, and increases

the number of geometrical processing tools available.

Chen et al. [2013] demonstrated that their linear metric blending

produces compatible edge lengths between neighboring faces, as

the interpolated edge lengths are independent of face selection:

∥𝑒𝑖 𝑗 (𝑡)∥2 = (1 − 𝑡)∥𝑒𝑖 𝑗 ∥2 + 𝑡 ∥𝑒𝑖 𝑗 ∥2 . (15)

In addition to being exactly equivalent, it also has the same struc-

ture as Eq. (2). Inspired by this, we propose to use the structures of

Eq. (3), (4) to formulate a blending scheme using the edge length-

squared. Thus, we define logarithmic edge length interpolation:

∥𝑒𝑖 𝑗 (𝑡)∥2 = (∥𝑒𝑖 𝑗 ∥2)1−𝑡 (∥𝑒𝑖 𝑗 ∥2)𝑡 ⇒ ∥𝑒𝑖 𝑗 (𝑡)∥ = ∥𝑒𝑖 𝑗 ∥1−𝑡 ∥𝑒𝑖 𝑗 ∥𝑡 .
(16)

Similarly, we define the square-root edge length interpolation:

∥𝑒𝑖 𝑗 (𝑡)∥2 =
(
(1 − 𝑡)

√︃
∥𝑒𝑖 𝑗 ∥2 + 𝑡

√︃
∥𝑒𝑖 𝑗 ∥2

)
2

∥𝑒𝑖 𝑗 (𝑡)∥ = (1 − 𝑡)∥𝑒𝑖 𝑗 ∥ + 𝑡 ∥𝑒𝑖 𝑗 ∥.
(17)

Additionally, logarithmic edge length interpolation can be derived

directly using the concept of "Discrete Conformal Factors" and the

linear conformal factor equation (10). See Supplemental Section 4.

Limitations of Log Edge Length Interpolation. Unlike linear and
square-root blending of edge lengths, logarithmic blending can

(c) Logarithmic
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Fig. 3. Average discrete Gaussian curvature of the interpolated mesh, for
different input deformations and edge blending schemes. The discrete cur-
vature of a vertex 𝑣 is 360𝑜 −∑

𝛼 ∈angles(𝑣) 𝛼 . For each deformation we show
the average curvature at time 𝑡 as a separate plot. For the high-distortion
Tutte deformation, logarithmic edge blending violates triangle inequality.

violate triangle inequality. This is a known pitfall when working

with discrete conformal factors [Springborn et al. 2008]. In practice,

this typically ariseswhen the input deformation has significant angle

distortion, hence logarithmic edge blending with CETM realization

is less viable for high-distortion applications (see Fig. 3).

Length Cross-Ratio Interpolation. Vaxman et al. [2015] proposed

interpolating edge length cross-ratios, followed by realizing the

intermediate cross-ratios with As-Möbius-As-possible nonlinear op-

timization method. In 2D, their blending is equivalent to logarithmic

edge length blending, as they mention. The main difference of their

approach from the direct edge length approach is that edge blending

allows the use of standard realization methods such as CETM/BFF,

as Chen et al. [2013] did, which offer computational advantages.

6 Realization
The realization of a mesh given the blended metrics or edge lengths

can be done using existing intrinsic parameterizations techniques,

which find the best fitting planar positions for the vertices, flattening

and stitching the faces simultaneously.

6.1 Realization of the Interpolated Metric/Jacobians
We propose conformally realizing the discrete piecewise metric

with LSCM parameterization [Desbrun et al. 2002; Lévy et al. 2002],

for which we define a corner Laplace-Beltrami. For an equiareal or

Algorithm 3: Discrete Edge Length Blending

Input: Source and target edge lengths ∥𝑒𝑖 𝑗 ∥, ∥𝑒𝑖 𝑗 ∥ , timestep 𝑡

Output: Intermediate edge length ∥𝑒𝑖 𝑗 (𝑡 ) ∥
1 switch blending mode do
2 Logarithmic: ∥𝑒𝑖 𝑗 (𝑡 ) ∥ = ∥𝑒𝑖 𝑗 ∥1−𝑡 ∥𝑒𝑖 𝑗 ∥𝑡 ;
3 Linear:: ∥𝑒𝑖 𝑗 (𝑡 ) ∥ =

√︁
(1 − 𝑡 ) ∥𝑒𝑖 𝑗 ∥2 + 𝑡 ∥𝑒𝑖 𝑗 ∥2;

4 Square-Root:: ∥𝑒𝑖 𝑗 (𝑡 ) ∥ = (1 − 𝑡 ) ∥𝑒𝑖 𝑗 ∥ + 𝑡 ∥𝑒𝑖 𝑗 ∥ ;
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Integration

Fig. 4. Integration of a triangle soup is done using the corner Laplace-
Beltrami Δ𝑐𝑜𝑟 induced by the "broken" triangles.

isometric realization we propose an adaptation of the Local/Global

algorithm [Liu et al. 2008] (see Alg. 4).

6.1.1 Corner Laplace-Beltrami Operator. The intermediate metric

and Jacobians are piecewise constant, and thus there doesn’t nec-

essarily exist an embedding that realizes the metric with the con-

nectivity of the input mesh. However, if we consider each triangle

separately, such an embedding does exist, and is easy to realize

triangle-wise as a "triangle soup", see Fig. 4. The term "triangle

soup" usually relates to the case where the connectivity of the mesh

is broken, whereas in our case the embedding is broken: the coordi-

nate functions are discontinuous, and multi-valued at the vertices,

i.e., are corner functions (a function of the vertex and the face).

Given the interpolated Jacobians, we reconstruct the deformed

edges (up to global translation) using 𝑒𝑖 𝑗,𝑓 (𝑡) = 𝐽𝑓 (𝑡) · 𝑒𝑖 𝑗 , where
𝑒𝑖 𝑗,𝑓 (𝑡) is the half edge 𝑒𝑖 𝑗 that belongs to the triangle 𝑓 at time 𝑡 . If

only the interpolated metric is given, we reconstruct a triangle up to

global rotation and translation using the new edge lengths. In both

cases, the information we have about the interpolated triangles is

enough to construct a Corner Laplace-Beltrami Operator.
This operator is built, as is standard, by summing per triangle

contributions. Namely, given two faces 𝑓1, 𝑓2 which share an edge

𝑒𝑖 𝑗 the entry Δ𝑖 𝑗 (𝑡) is computed by summing the per triangle con-

tribution of 𝑒𝑖 𝑗,𝑓1 , 𝑒𝑖 𝑗,𝑓2 . Unlike the case of a standard mesh, the

edge lengths of two half edges belonging to the same edge may

be different, but this does not affect the computation. We denote

this operator by Δ𝑐𝑜𝑟 . Interestingly, this operator is symmetric and

local, similarly to the standard cotan LB operator. Further, the usual

decomposition of the cotan LB operator as Δ = 1

4
𝐸𝑇𝐴−1

𝐹
𝐸, where

𝐸 ∈ R3 |𝐹 |× |𝑉 |
is a sparse matrix encoding the rotated half edges,

and 𝐴𝐹 ∈ R3 |𝐹 |×3 |𝐹 | is a diagonal matrix of face areas, still holds.

This is true because each half edge has a separate row in 𝐸. Hence,

𝑥𝑇Δ𝑥 = ∥𝐴− 1

2

𝐹
𝐸𝑥 ∥2 ≥ 0, and thus the corner Laplacian is also PSD.

6.1.2 Conformal Realization. LSCM is an intrinsic parameteriza-

tion method, which requires only a Laplace-Beltrami operator. We

therefore use our Δ𝑐𝑜𝑟 operator with LSCM to generate a conformal

embedding of the interpolated Jacobians or metric. As LSCM has a

free parameter of global scaling, we add a global area normalization

to the interpolated mesh, by scaling it to have the same total area

as the triangle soup. This operation does not affect the conformal

distortion, as it is not affected by global scaling.

6.1.3 Isometric realization. To trade off the conformal distortion for

area distortion when realizing the interpolated mesh, we propose a

variant of the Local/Global parameterization by Liu et al. [2008]. In

brief, the steps of Local/Global parameterization are:

(1) Given a 3D mesh𝑀3𝐷 , flatten the faces to a triangle soup𝑀𝑠𝑜𝑢𝑝 .

(2) Compute an initial parameterization of𝑀3𝐷 , denoted𝑀2𝐷 , us-

ing other techniques, e.g., LSCM.

(3) Compute Jacobians of the𝑀𝑠𝑜𝑢𝑝 → 𝑀2𝐷 transformation.

(4) Local Step: Modify the singular values of the Jacobians such that

the Jacobians will be more rigid or conformal.

(5) Global Step: Integrate the Jacobians using the Laplace-Beltrami

and angles of𝑀3𝐷 to achieve a new parameterization𝑀2𝐷 .

(6) Compute the energy 𝐸, if not converged, repeat steps (3) to (6).

The algorithm setting for steps (4) and (6) for As-Rigid-As-Possible

(ARAP) parameterization is given by [Liu et al. 2008]:

𝜎
1,𝑓 (𝑖 + 1) = 𝜎

2,𝑓 (𝑖 + 1) = 1, (18)

𝐸 (𝑖) =
|𝐹 |∑︁
𝑓 =1

𝐴𝑓

[(
𝜎
1,𝑓 (𝑖) − 1

)
2

+
(
𝜎
2,𝑓 (𝑖) − 1

)
2

]
, (19)

where 𝑖 is the optimization iteration, |𝐹 | is the number of faces of

𝑀 , 𝐴𝑓 is the area of the face 𝑓 in the triangle soup, and 𝜎
1,𝑓 , 𝜎2,𝑓

are the singular values of the Jacobian of 𝑓 .

We suggest a variant of steps (4) and (6) for equiareal parameteri-

zation, termed "Local/Global As-Equiareal-As-Possible" (AEAP) to

show the possible area-bounding benefits of logarithmic blending:

𝜎
1,𝑓 (𝑖+1) =

𝜎
1,𝑓 (𝑖)√︃

𝜎
1,𝑓 (𝑖)𝜎2,𝑓 (𝑖)

, 𝜎
2,𝑓 (𝑖+1) =

𝜎
2,𝑓 (𝑖)√︃

𝜎
1,𝑓 (𝑖)𝜎2,𝑓 (𝑖)

(20)

𝐸 (𝑖) =
|𝐹 |∑︁
𝑓 =1

𝐴𝑓

(
𝜎
1,𝑓 (𝑖)
𝜎
2,𝑓 (𝑖)

+
𝜎
2,𝑓 (𝑖)
𝜎
1,𝑓 (𝑖)

)
(
√︃
𝜎
1,𝑓 (𝑖)𝜎2,𝑓 (𝑖) − 1)2 (21)

Our selected AEAP singular values are area-preserving 𝜎
1,𝑓 (𝑖 + 1) ·

𝜎
2,𝑓 (𝑖 + 1) = 1, while minimizing error in Log-Euclidean metric.(
ln(𝜎

1,𝑓 (𝑖)) − ln(𝜎
1,𝑓 (𝑖 + 1))

)
2

+
(
ln(𝜎

2,𝑓 (𝑖)) − ln(𝜎
2,𝑓 (𝑖 + 1))

)
2

Additionally, they preserve the aspect ratio which avoids unneces-

sary angle distortion. For derivation see Supplemental Sec. 5.

To apply the Local/Global realization to the piecewise discrete

metric, we require three minor, but key, modifications:

• Use𝑀𝑠𝑜𝑢𝑝 instead of the input 3D mesh, skipping (1).

• Use Δ𝑐𝑜𝑟 with LSCM to compute the initial𝑀2𝐷 , skipping (2).

• Use Δ𝑐𝑜𝑟 and the angles of𝑀𝑠𝑜𝑢𝑝 for the integration process.

6.2 Realization of the Interpolated Edge Lengths
We realize the interpolated edge lengths using CETM [Springborn

et al. 2008] as proposed by Chen et al. [2013], or the newer linear

BFF [Sawhney and Crane 2017] (Alg. 5). Both lead to a conformal

realization.

7 Results
We implemented our algorithm in MATLAB. For mesh visualization

and texture patching, we used the tool provided by Kroon [2024].

We re-implemented ARAP interpolation [Baxter et al. 2008], Lo-

cal/Global [Liu et al. 2008] and BFF [Sawhney and Crane 2017].
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Algorithm 4: Discrete Metric Interpolation Scheme

Input: Triangle meshes 𝑆 = (𝑉 , 𝐸, 𝐹 ) , 𝑆 = (�̃� , 𝐸, 𝐹 ) , timestep 𝑡

Output: Intermediate mesh 𝑆𝑡 = (𝑉𝑡 , 𝐸, 𝐹 )
1 for 𝑓 ∈ 𝐹 do
2 𝐽𝑓 = Jacobian of transformation from𝑉 (𝑓 ) to �̃� (𝑓 ) ;
3 𝐽𝑓 (𝑡 ) = JacobianBlending( 𝐽𝑓 , 𝑡 ) ;
4 for 𝑖 ∈ {0, 1, 2} do
5 𝑒𝑖 = 𝑉 (𝑓 (𝑖 + 2) ) − 𝑉 (𝑓 (𝑖 + 1) ) ; // 𝑖 mod 3

6 𝐸𝑡 (𝑓 , 𝑖 ) = 𝐽𝑓 (𝑡 ) · 𝑒𝑖 ; // Compute new edge

7 𝐿 (𝑓 , 𝑖 ) = ∥𝐸𝑡 (𝑓 , 𝑖 ) ∥ ; // Compute length

8 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑆𝑜𝑢𝑝 (𝑓 ) = [ [0, 0], 𝐸𝑡 (𝑓 , 2), −𝐸𝑡 (𝑓 , 1) ];
9 Δ𝑡 = LaplaceBeltrami(𝐿) ;𝑉𝑡 = LSCM(Δ𝑡 ) ;

10 if mode is ARAP or AEAP then
11 𝑉𝑡 = LocalGlobal(Δ𝑡 ,𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑆𝑜𝑢𝑝, 𝑖𝑛𝑖𝑡 = 𝑉𝑡 ,𝑚𝑜𝑑𝑒 ) ;
12 Apply global rigid transformation on𝑉𝑡 using external constraints;

LSCM [Lévy et al. 2002] and CETM [Springborn et al. 2008] were

obtained from the software provided by Chen et al. [2013].

We tested different combinations of blending and realization,

on deformations of various types. We generated conformal defor-

mations using Cauchy Coordinates [Weber et al. 2009], and low-

distortion deformations using As-Killing-As-Possible vector fields

[Solomon et al. 2011]. Finally, we used a Tutte embedding [Tutte

1963] to the unit circle, to generate high-distortion deformations.

Visualization. We demonstrate the differences between the differ-

ent blendings and realizations in two ways. First, we plot the distor-

tion errors over the interpolated mesh for a given 𝑡 , or alternatively,

present them as a histogram, providing a complete view of the dis-

tortion for all the faces. Second, we plot the distortions𝐾 (𝑡), 𝐷 (𝑡) in
log-space as a function of 𝑡 , for a subset of the triangles. The confor-

mal distortion 𝐾 (𝑡) is shown for the 25 least distorted (purple) and

25 most distorted faces (red) (50 total). The area distortion 𝐷 (𝑡) is
shown for the 25 least-distorted (green), most-scaled-down (yellow),

most-scaled-up (blue) faces (75 total). A monotonic graph indicates

bounded distortion. In addition, a linear graph indicates a "constant

speed" growth of the log distortion during the interpolation, and

thus a more natural interpolation sequence.

The full tensor of possibilities: input deformation / blending /

realization is quite large, and we show only of subset of interesting

behaviors, where swapping the blending or realization components

makes a large difference to the resulting distortions. See also Sup-

plemental Sec. 6 and the accompanying video for more examples.

7.1 Blending
Here we test the three blending schemes, where we tailor the re-

alization to the input deformation. For a conformal deformation

Algorithm 5: Edge Length Interpolation Scheme

Input: Triangle meshes 𝑆 = (𝑉 , 𝐸, 𝐹 ) , 𝑆 = (�̃� , 𝐸, 𝐹 ) , timestep 𝑡

Output: Intermediate mesh 𝑆𝑡 = (𝑉𝑡 , 𝐸, 𝐹 )
1 for 𝑒𝑖 𝑗 ∈ 𝐸 do
2 ∥𝑒𝑖 𝑗 ∥, |𝑒𝑖 𝑗 ∥ are the edge lengths of 𝑒𝑖 𝑗 in 𝑆, 𝑆 respectively;

3 𝐿 (𝑒𝑖 𝑗 ) = EdgeLengthBlending( ∥𝑒𝑖 𝑗 ∥, |𝑒𝑖 𝑗 ∥ ) ;
4 𝑉𝑡 = [CETM/BFF](𝐿,𝑈𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 0) ;
5 Apply global rigid transformation on𝑉𝑡 using external constraints;

we use CETM or LSCM, for a high-distortion deformation we use

ARAP, and for a low-distortion deformation we may use any realiza-

tion. Fig. 1 shows that for a low-distortion deformation modifying

Chen et al. [2013] (a) from linear to logarithmic blending reduces

the area distortion (b). Replacing the realization with our isometric

local/global ARAP realization (c) completely eliminates the error.

Fig. 5 shows that for a conformal deformation, LSCM consistently

produces smooth and conformally bounded results for all three

blending options (b-d), as does the previous method (a). Logarith-

mic blending, however, also eliminates the area distortion (d). In

Fig. 7, we demonstrate that when realized with conformal tech-

niques (LSCM, CETM) (first row), or isometric Local/Global-ARAP

(second and third rows), all three blendings effectively constrained

conformal distortion, regardless of deformation type. However, log-

arithmic blending with LG-ARAP (d) effectively constrained both
area and conformal distortions for the high-distortion deformations

(two bottom rows), unlike linear and square-root blending (b-c).

7.2 Realization
Here we consider the different realization approaches, while keep-

ing the blending method mostly fixed. In Figs. 9 and 7, we compare

our Local/Global realization, based on minimizing singular values

deviation, to Baxter et al. [2008]’s ARAP, which minimizes devi-

ation from target Jacobians. Our approach consistently achieves

smoother results, with lower area distortion. Fig. 6 compares our

different realizations on a low-distortion deformation, using loga-

rithmic blending. We note, as expected, that LSCM (a) minimizes the

deviation of the conformal distortion, leading to a log-linear error

graph for𝐾 (𝑡), whereas LG-AEAP (b) minimizes the deviation of the

area distortion yielding a log linear graph of𝐷 (𝑡). Finally, LG-ARAP
(c) balances both deviations. For a low-distortion deformation we

have the option of using edge-length blending with BFF realization,

which is faster than LSCM realization. Fig. 8 shows that for both the

square-root (a,b) and logarithmic blending (c,d) LSCM and BFF lead

to a similar conformal distortion, with BFF yielding a somewhat

lower area distortion than LSCM for log blending (d). In Fig. 10

we show that LG-AEAP (a-c) minimizes area deviation, yielding

cohesive area distortions at the expense of conformal deviation.

8 Discussion and Conclusion
Our novel logarithmic blending, combined with the Local/Global

ARAP approach, proved highly effective in minimizing both distor-

tions across a range of deformations. This method outperformed

linear and square-root blending in overall distortion control. For

low-distortion deformations, the simpler logarithmic edge length

blending using BFF is a faster alternative. Detailed computation

times are provided in Supplemental Sec. 6.

Our framework has several limitations. To address the curvature

of the interpolated mesh, we use parameterization methods that do

not guarantee pointwise area- or conformal-preserving embeddings.

Future work could explore alternative blending methods to identify

one capable of bounding these distortions while producing perfectly

flat deformations—or prove that such blending is inherently im-

possible. Unlike Chen et al. [2013], our continuous framework is

restricted to blending between a single source and a single target
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due to its reliance on the flexibility of the identity matrix 𝐼 as one of

the blended metrics. Consequently, it cannot be easily extended to

multi-target or pose blending. This is another area for future work.

We believe our mathematical framework, blending techniques,

and realizationmethods enhance the understanding of existing inter-

polation solutions and lay the groundwork for future advancements.
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Fig. 5. Interpolation of conformal deformation. All three LSCM blendings (b-d)
produced conformal results, while logarithmic (d) additionally eliminated area
errors, as evidenced by the histograms and color plots.
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Fig. 10. Interpolation of low-distortion deformation. We can see that realizing with LG-AEAP (a-c) minimize area distortion deviation, producing smooth and
cohesive area distortions for all three blendings, at the expense of added conformal distortion deviation.
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