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Deblurring and Denoising of Maps between Shapes
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Figure 1: Transporting texture between non-isometric shapes using a deblurred functional map. (left) texture on the target shape, (center)
texture pulled back to source using our deblurring method, and (right) using the deblurring from [OBCS∗12].

Abstract
Shape correspondence is an important and challenging problem in geometry processing. Generalized map representations,
such as functional maps, have been recently suggested as an approach for handling difficult mapping problems, such as partial
matching and matching shapes with high genus, within a generic framework. While this idea was shown to be useful in various
scenarios, such maps only provide low frequency information on the correspondence. In many applications, such as texture
transfer and shape interpolation, a high quality pointwise map that can transport high frequency data between the shapes is
required. We name this problem map deblurring and propose a robust method, based on a smoothness assumption, for its solu-
tion. Our approach is suitable for non-isometric shapes, is robust to mesh tessellation and accurately recovers vertex-to-point,
or precise, maps. Using the same framework we can also handle map denoising, namely improvement of given pointwise maps
from various sources. We demonstrate that our approach outperforms the state-of-the-art for both deblurring and denoising of
maps on benchmarks of non-isometric shapes, and show an application to high quality intrinsic symmetry computation.

1. Introduction

Shape matching is a fundamental task in geometry processing with
a variety of applications, such as deformation transfer [SP04],
texture and tessellation transfer [PLPZ12] and shape interpola-
tion [VTSSH15,HRWW12], to name a few. In many cases comput-
ing a high-quality map between two general surfaces is challenging,
and recent approaches suggest to relax the concept of a pointwise
map and use generalized map representations. Such approaches put
in correspondence, for example, functions [OBCS∗12] or probabil-
ity distributions [SPKS16] instead of points.

While such generalized maps can successfully tackle challeng-
ing scenarios, e.g. matching between surfaces with different topolo-
gies [SPKS16] and partial matching [RCB∗16], some applications
do require a high quality pointwise map for transferring informa-
tion between the shapes. This issue is exacerbated when the data

to be transfered changes rapidly on the surface, and thus has high
frequencies, such as in texture transfer or map-aware quadran-
gulation [PLPZ12]. Unfortunately, generalized maps often hold
information only about the correspondence of smooth, low fre-
quency functions, due to the use of the truncated eigenfunctions
of the Laplace-Beltrami operator as a basis for representing the
map [OBCS∗12], or due to the entropy incorporated in the map to
improve efficiency [SPKS16]. Hence, successful map deblurring,
namely extracting a high-quality pointwise map from a semantic
low frequency map, is paramount to the usability of generalized
maps in applications.

A good map deblurring technique should fulfill a few required
properties. First, it should be applicable in a general setting, with-
out requiring the input shapes to be close to isometric, or the output
map to be bijective. Otherwise, we may lose in this step the benefits
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we have gained by using generalized map representations. Second,
the deblurred map should have a low conformal distortion, to avoid
distorting textures during transfer. This requirement implies that
the map should be a vertex-to-point map, also denoted as a precise
map, where each vertex on the source shape is mapped to a point
anywhere on the target surface and not necessarily to a vertex. Fi-
nally, the deblurred map should be as robust to the triangulation
of the target surface as the generalized map. While map deblurring
techniques exist, none fulfill all the required properties.

We propose a new method for map deblurring, by introducing
a smoothness prior on the reconstructed map. Surprisingly, this
straightforward approach results in better maps than using existing
approaches, especially when the shapes are not isometric. While
we do not have a theoretical guarantee on the distortion bounds im-
plied by our prior, our method generates in practice precise maps
with lower conformal distortion than existing methods for deblur-
ring and denoising. In addition, our technique can be easily in-
corporated into existing map computation pipelines, significantly
improving the results. Furthermore, using the same framework we
can perform map denoising, by projecting a given noisy map to a
blurred map and reconstructing. Finally, we show that our approach
outperforms the state of the art for a benchmark of non-isometric
shapes, as well as show applications to map extraction from com-
puted functional maps, and high quality intrinsic symmetry com-
putation for challenging surfaces.

2. Related Work

Shape correspondence is a huge field, and a thorough overview
of all existing methods is beyond our scope. We provide instead
a brief sampling of recent techniques for computing dense corre-
spondences, highlighting the different approaches to the problem,
and focus our review on map deblurring and denoising.

2.1. Shape Correspondence

Parameterization-based. Numerous correspondence techniques
are based on a parametrization, where the two shapes are mapped
to a common domain, and the composition of these maps yields
a map between the surfaces. For example, Kim et al. [KLF11]
used a weighted combination of conformal maps to generate candi-
date maps between two genus-0 non-isometric shapes, and used
the most isometric map among them. This is a fully automatic
method that generates highly accurate results for isometric shapes,
but is less successful when the input shapes are less isometric. A
few semi-automatic methods that use a parameterization were sug-
gested [APL14, APL15, AL15, AL16]. These generate a high qual-
ity output even for non-isometric shapes, yet require a sparse set
of corresponding landmarks as input and can only be applied to
shapes with the same topology.

Generalized maps. Ovsjanikov et al. [OBCS∗12] introduced the
idea of functional maps, where maps are formulated as linear
operators between the functional spaces of two shapes. Func-
tional maps were initially used to compute nearly isometric maps.
While later approaches extended the use of functional maps to
non-isometric maps (e.g. [KBBV15, PBB∗13, RRBW∗14, SK14,

KBB∗13,ERGB16]) and new consistent descriptors have been sug-
gested [COC14,GSTOG16], these methods did not adjust the point-
wise recovery method. Recently, this framework was extended to
computing partial correspondence [RCB∗16, LRB∗16, LRBB17],
and to computing correspondences in shape collections [SBC14,
HWG14, KGB16]. In addition, functional maps have been used
for analysis and visualization of maps [OBCCG13, ROA∗13], and
image segmentation [WHG13]. See the recent survey [OCB∗16]
for a thorough overview of the functional map framework and
its applications. Solomon et al. suggested to use fuzzy or a soft
map [SNB∗12], that can be interpreted as a probability distribu-
tion over pairs of points, where the probability of a pair of points
determines the likelihood that these points are in correspondence.
Kim et al. [KLM∗12] used fuzzy maps for exploring shape collec-
tions, and Solomon et al. [SPKS16] used the Gromov-Wasserstein
objective to compute fuzzy maps between general domains, such
as triangle meshes, point clouds or graphs.

A good deblurring algorithm can help bridge the gap between
the maps generated by parameterization based methods, which are
high quality, precise and conformal but are constrained to “clean”
surface representations, and generalized maps which are applicable
to more general shapes but are harder to use in end applications due
to the limitations of existing deblurring approaches.

2.2. Deblurring and denoising

A simple and efficient deblurring method has been proposed
in [OBCS∗12], and has been used in many subsequent papers
(e.g. [MDK∗16, SK14]). This approach is based on the assump-
tion that indicator functions projected onto the reduced basis should
correspond under a rotation in the spectral domain. However, while
this assumption is suitable for isometric matching, in general cases
it no longer holds, leading to inaccurate deblurring results. We
show that our approach yields considerably better deblurred maps,
even when applied to highly non-isometric shapes.

Rodolà et al. [RMC15] have suggested a deblurring approach
that is suitable for non-isometric maps, by matching projected in-
dicator functions using a non-rigid deformation, yet their approach
is only applicable to shapes with the same number of vertices. Fur-
thermore, our approach is complementary, as it changes the dis-
tance measured in the spectral domain to be applicable to non-
isometric shapes. Similar to our denoising approach, namely start-
ing from an input pointwise map, Shtern et al. [SK14] use func-
tional maps to refine the input map iteratively, by aligning the
spectral kernels of the shapes. While their approach improves the
ground truth error, it introduces significant conformal distortion in
the map. Combining our methods leads to considerably better de-
noising results.

Vestner et al [VLB∗16, VLR∗17] recover a bijective vertex-to-
vertex map by solving a linear assignment problem. While vertex-
to-vertex bijections are beneficial for shapes with a similar triangu-
lation, they highly depend on the tessellation of the input shapes.
Furthermore, while remeshing the shapes to have the same number
of vertices is possible, the sampled vertices are not likely to match
bijectively, especially if the shapes are not isometric.

Finally, Corman et al. [COC15] as well as Azencot et
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Figure 2: Our notation, see the text for details.

al. [AVBC16] suggested a recovery method which reformulates the
problem in terms of an unknown vector field. The output map is
guaranteed to be continuous, as it is computed as the optimal flow
which transports an arbitrary continuous initial map to the given
functional map. Their setup, however, is somewhat different than
ours, as they require as input a smooth pointwise map in addition
to the input functional map.

3. Method

Notation. We represent a triangle mesh M by its vertex set and face
set (V,F), where we denote n = |V|,m = |F|, and its embedding
by X ∈Rn×3.H(M) denotes the space of continuous piecewise lin-
ear functions on M, and S(M) denotes a space of functions given
in a reduced basis of size k. The basis transformation between S
andH is given by a matrix Φ ∈Rn×k, whose columns are the basis
elements. The projection from the full space to the reduced space
is given by the pseudo-inverse of the basis matrix, Φ

†. We denote
scalar functions f : M→R by their vector of coefficients in a basis,
with either f ∈ Rn or f ∈ Rk, for the full and reduced basis, re-
spectively. The squared norm of a function on the surface is given
by ‖ f‖2

M = f T GV f , where GV ∈ Rn×n is the diagonal (lumped)
mass matrix of the vertices. Similarly, for matrices we use the ma-
trix trace: ‖F‖2

M = Tr(FT GVF). We denote the i-th row and j-th
column of a matrix F by Fi∗ and F∗ j, correspondingly.

When two meshes are involved we use a subscript, for exam-
ple Hi = H(Mi) is the space of piecewise linear functions on
Mi. A pointwise map between two triangle meshes is denoted by
T12 : V1→M2, and it can be applied to any vertex v on M1 to give
any point p ∈ R3 on M2 (not restricted to the vertices). The matrix
T12(V1) ∈Rn1×3 thus represents the 3D coordinates of the mapped
vertices of M1. Maps between the functional spaces are denoted by
C12 : S2 → S1 and P12 :H2 →H1, and are represented by matri-
ces C12 ∈Rk1×k2 and P12 ∈Rn1×n2 , respectively. These spaces and
transformations are visualized in Figure 2.

Background. The term functional map [OBCS∗12], denotes a
map between scalar functions on the two shapes. Given a point-
wise map T12 : V1 → M2, its functional representation in the hat
basis P12 :H2→H1 fulfills [OBCS∗12]

(P12 f )(v) = f (T12(v)), ∀v ∈ V1, f ∈H2.

The embedding of M2 plays a special role in the relation between
the functional and pointwise maps, as by definition we have:

T12(V1) = P12X2.

We define the feasible set P12 such that P12 ∈ P12 if and only if
there exists a map T12 such that P12 = P(T12), where P is the oper-
ator that converts a vertex-to-point map to a matrix, which we will
describe later.

To represent the functional map in a reduced basis C12 :S2→S1,
we apply the basis transformations on both sides and get:

C12 = Φ
†
1P12Φ2.

A common choice for the basis functions Φ is the first k eigen-
functions of the Laplace-Beltrami (LB) operator, such that smooth
functions can be well approximated using a small number of co-
efficients. We use the standard area weighted cotangent LB opera-
tor [BKP∗10], thus we have Φ

T GVΦ = Id and Φ
† = Φ

T GV .

3.1. Map Deblurring

Given a map in a reduced basis, C12, our goal is to find the “best”
corresponding pointwise map T12. We formalize this using the fol-
lowing optimization problem:

minimize
P12

R(P12)+‖C12−Φ
†
1P12Φ2‖2

F

subject to P12 ∈ P12

, (1)

where R is some regularizer that favors “good” maps. Given P12 we
extract the map T12(V1) = P12X2.

We suggest to incorporate a smoothness assumption, namely:

P12Φ2 ∈ span(Φ1). (2)

Intuitively, out assumption implies that functions on M2 that are
well represented with Φ2 will be well represented with Φ1 after ap-
plying the map. When Φi are the eigenfunctions of the LB operator
this assumption implies that the map P12 does not introduce spuri-
ous high frequencies. To incorporate the smoothness prior into the
optimization problem, we use the regularizer

R(P12) = ‖(Id−Φ1Φ
†
1)P12Φ2‖2

M1 , (3)

which penalizes the component of P12Φ2 that is orthogonal to Φ1.

k1
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R
(P

)
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Non-isometric pair

Figure 3: The value of the regularizer R(P) for a pair of
isometric (MI

1,M2) and non-isometric (MNI
1 ,M2) shapes from

FAUST [BRLB14]. See the text for details.
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Figure 4: Deblurring with a varying number of basis functions k1
for an isometric (left) and non-isometric (right) pair. A larger k1 is
required to achieve the same error for a non-isometric pair.

Figure 3 illustrates that indeed, in practice, for large enough
values of k1 our assumption 2 holds. We show the value of the
regularizer R(P12), where P12 is the ground truth map, as a func-
tion of k1 for a fixed k2 = 50. We use two pairs of shapes from
FAUST [BRLB14]: the same target M2, and two source shapes
MI

1,M
NI
1 , representing shapes isometric and non-isometric to M2

respectively: MI
1 is the same person in a different pose, and MNI

1
is a different person in the same pose. Note that while for MI

1 the
error reduces greatly when k1 reaches 50, for MNI

1 we need a larger
k1, but after it is reached, the error drops.

Incorporating the regularizer (3) into the optimization prob-
lem (1) leads to the optimization problem:

minimize
P12

‖Φ1C12−P12Φ2‖2
M1

subject to P12 ∈ P12

. (4)

We formally prove the equivalence between these optimization
problems in Appendix A. Intuitively, P12Φ2 are functions in H1,
which can be represented using their projection on the basis Φ1
and the projection on its orthogonal complement Φ

⊥
1 . The term

‖C12−Φ
†
1P12Φ2‖2

F only constrains the projection of P12Φ2 on Φ1
to be close to the data C12, and says nothing about the projection
on the orthogonal complement. We add as a regularizer the require-
ment that the projection on the orthogonal complement is as small
as possible, thus fully specifying constraints on P12Φ2, leading to
the second optimization problem.

An important advantage of our formulation is that the objective
and the constraint are row separable in P12. Therefore, to fulfill
the difficult constraint that P12 is in the feasible set P12, we can
solve separately for each row of P12, finding a global minimizer of
the optimization problem. We elaborate on the numerical approach
for solving the optimization problem in the next Section, and first
demonstrate some illustrative results.

We explore the parameter choice for our deblurring method us-
ing the same two pairs from Figure 3. We keep k2 = 50 fixed, and
vary k1 ∈ [50,55,60]. We compute the blurred map from the ground
truth map as C12 = Φ

†
1P12Φ2, deblur it by solving the optimization

problem (4), and measure the error with respect to the ground truth.
To avoid bias in the results by using the same triangulation for both
meshes, we have remeshed the FAUST dataset, and propagated the
ground truth map to the new meshes. Figure 4 shows the resulting

Figure 5: r-ring noise and low pass effect on P12Φ2. From left to
right: eigenfunction on the target f , f pulled back to the source
using the ground truth map, the noisy map, and the smoothed noisy
map. The last image on the right is f pulled back to the source
using our denoised map. See the text for details.

error graphs, where we use the same protocol as in [KLF11]. As
expected, taking larger values for k1 leads to a smaller error, where
in general to achieve the same error, larger values are required for
non-isometries than for isometries. Note that, in contrast to original
deblurring approach [OBCS∗12], increasing k1 does not affect the
complexity of our approach, as we measure distances in Rk2 .

3.2. Map Denoising

Given a noisy pointwise map P̃12 we would like to improve it. Us-
ing our smoothness prior, we optimize for a map such that the pro-
jection of P12Φ2 on Φ1 is close to the input map’s projection, and
the projection on Φ

⊥
1 is minimal. This leads to:

minimize
P12

R(P12)+‖Φ†1P̃12Φ2 −Φ
†
1P12Φ2‖2

M1

subject to P12 ∈ P12

, (5)

which is equivalent to the optimization problem from Equation (4),
when taking C12 = Φ

†
1P̃12Φ2. Intuitively, we are removing the high

frequencies in P̃12 by blurring it, and then reconstructing the best
pointwise approximation using our deblurring approach.

Figure 5 demonstrates the effect of projecting P12Φ2 to the span
of Φ1. Starting from a ground truth map P̂12 between the non-
isometric pair from the previous experiment, we introduce noise by
randomly mapping each vertex to one of its r-ring neighborhood,
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Figure 6: Map denoising of r-ring noise, varying parameters. (left)
varying k1, total average error, (right) error graph for fixed k1 =
130 for different r. See the text for details.
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with r ∈ [3,4,5], yielding the noisy maps P̃r
12. The figure shows the

10-th eigenfunction of M2, which we denote by f , on the target
shape (left), the same function mapped to MNI

1 using the ground
truth map P̂12 f , using the 3-ring noisy map P̃3

12 f and using the
noisy map and projected to the span of Φ1 (center). The solution
to the optimization problem (5) P∗12 has a smoothing effect on the
input. See the resulting reconstructed function P∗12 f on the right.

Figure 6 illustrates the result of denoising these maps, by show-
ing the total average error as a function of k1 (left), and the error
graph as a function of the noise r (right). Note that the error de-
creases as k1 is increased, until a minimum is reached and then
the error increases back, since for larger k1 values we have enough
eigenfunctions to reconstruct the noisy input. Furthermore, the op-
timal k1 depends on the amount of noise: higher noise requires a
smaller k1 to increase the smoothing effect.

3.3. Relation to FMaps 2012

Ovsjanikov et al. [OBCS∗12] suggested the following objective for
map deblurring:

minimize
P12

‖(Φ†1)
T −P12(C12Φ

†
2)

T ‖2
F , (6)

subject to the constraint that P12 is binary row stochastic. The ra-
tionale was that the columns of Φ

†
i represent the coefficients of

delta functions on Mi in the reduced basis, and the optimal vertex-
to-vertex map should put them in correspondence. However, the
original approach was geared towards volume preserving maps, in
which case C12 is a rotation matrix, namely CT

12C12 = Id. Indeed,
in this case, when taking orthogonal bases, equations (6) and (4)
are equivalent (to see that, take Φ

†
i = Φ

T
i in (6), and then multiply

by C12 from the right).

However, when the shapes are considerably different, the pro-
jections of delta functions of corresponding vertices on Φi are
no longer expected to correspond. Figure 7 demonstrates that: we
take two highly non-isometric shapes, pick a vertex v1 ∈ V1 (left)
and measure for all vertices v2 ∈ V2 the distance ‖(Φ1)v1∗C12−
(Φ2)v2∗‖2 where C12 is a given ground-truth map. This distance is
then shown as a function on M2 (center). This is the distance that
our approach, Equation (4), aims to minimize. Note that small val-
ues are achieved in a correct zone of the mesh, and the point with
the minimal distance is a correct match to v1. We additionally show

Figure 7: Delta functions represented in a reduced basis do not
necessarily correspond under the ground truth map if the shapes
are considerably different. (left) A vertex v1 on M1. (center) the
distance in Rk2 that our formulation minimizes. (right) the distance
between mapped delta functions and the delta function of v1. Note
that only our distance yields the correct match to v1 on M2.

the distance ‖C12(Φ
†
2)∗v2−(Φ†1)∗v1‖2 (right), which represents the

distance in Rk1 that Equation (6) aims to minimize. Note that now
many regions are close to v1 and the point with the minimal dis-
tance is now an incorrect match to v1. See in addition Figure 9
which shows reconstruction from a computed functional map us-
ing [OBCS∗12] and using our approach.

4. Optimization

4.1. Feasible set

The main challenge in solving the optimization problem (4) is ful-
filling the constraint that P12 is in the feasible set P12. We use the
following definitions:

Definition. Given M1,M2, the set F2 of valid rows of P12 is defined
as follows: w ∈ F2 if and only if w ∈ R1×n2 has at most three non-
zero entries (ω1,ω2,ω3) at columns (c1,c2,c3), respectively, the
vertices ci form a face f ∈ F2, ωi ≥ 0 and ∑i ωi = 1. The set P12
of valid matrices is defined as follows: P ∈ P12 if and only if P ∈
Rn1×n2 and every row of P is in F2. The operator P(T12) constructs
a matrix from a map as follows: let T12(vi) = p ∈M2, which lies in
the face f with barycentric coordinates ω. Set the i-th row of P12 to
all zeros except at the vertices of f , and there use the values ω. It
is straightforward to show that P12 ∈ P12 if and only if there exists
T12 such that P12 = P(T12).

4.2. Row separability

The computational advantage of the optimization problem (4) is
that it is separable in the rows of P12. To see that, note that the
objective is of the form ‖A‖2

M = ‖
√

GVA‖2
F = ∑

n
i=1(GV )ii‖Ai∗‖2

2.
Furthermore, the constraint on P12 is also row separable, as a matrix
is in the valid set P12 if and only if all its rows are in the valid rows
set F2. Hence, we solve n1 small optimization problems, for the
rows of P12, of the form:

minimize
wi∈F2

‖(Φ1)i∗C12−wiΦ2‖2
2 , (7)

for i ∈ [1,n1], and then set the i-th row of P12 to the value of the
minimizer.

4.3. Implementation

Vertex to vertex maps. In [OBCS∗12] it was noted that map de-
blurring can be considered as a point-correspondence problem in
Rk. Our formulation has the same structure, and if we only need
a vertex-to-vertex map, we can use the same nearest neighbor ap-
proach to solve (4). Note that in this case we are reducing the fea-
sible set to binary row stochastic matrices, which are a strict subset
of P12. Hence, while this approach is more efficient than extracting
precise maps, it yields maps with a higher conformal distortion that
are more sensitive to the triangulation (see Figure 13).

Precise Maps. When working with the full feasible set of precise
maps P12, nearest neighbor search is not enough. In fact, we are
effectively considering an embedding of the triangle mesh M2 in
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Rk2 given by Φ2, and we need to project on it the n1 points Φ1C12.
To solve (7) for a vertex vi ∈ V1, we need:

minimize
f∈F2

minimize
ω∈R1×3

+ ,∑ ω=1
‖(Φ1)i∗C12−ω (Φ2) f∗‖2

2 , (8)

where (Φ2) f∗ ∈ R3×k2 are the rows of Φ2 corresponding to the
vertices of the face f . From the minimizer we generate wi, the so-
lution to (7), by setting wi at the locations given by the vertices of
f to the values in ω, which leads to a feasible solution wi ∈ F2.

Thus, for each vertex of M1, we iterate over the faces of M2,
solve for each face a linear least squares problem with linear con-
straints for ω, and pick the face and the corresponding ω which
minimize the error. The least squares problem is solved using a
straightforward generalization to Rk of the algorithm that projects
a point to a triangle, see e.g. [Ebe99].

We therefore need to solve m2 constrained optimization prob-
lems for each vertex of V1 which is prohibitive for large meshes.
We can gain a considerable speedup by using nearest neighbors
queries to identify faces which cannot be minimizers without ex-
plicitly solving the optimization problem. For example, for FAUST
meshes this procedure allowed us to solve the optimization prob-
lem only on 0.5 percent of the faces. The details of the algorithm
are provided in Appendix B.

Limitations While we have demonstrated the relation between k1
and the noise ratio, in practice the choice of best k1,k2 values is
highly dependent on the two shapes and the application. It is an
interesting direction for future work to try to estimate k1 from the
noise level for different datasets and mapping methods.

Even with the reduction in the number of candidate faces, the
time required for computing a precise map is still considerably
higher than using k-nearest neighbors. For example, our naive Mat-
lab implementation on the CPU takes 55s for a mesh with 10k faces
on a standard laptop. Note, though, that the problem is highly paral-
lelizable as we solve for each row of P12 independently. A parallel
implementation could therefore potentially be used to increase the
performance.

Finally, we have only considered the l2 norm, and can thus han-
dle only local high frequency noise. It might be beneficial to gen-
eralize to other norms to make the method more robust to outliers,
e.g. if the map has concentrated noise in some region.

5. Extension: Consistent Maps

Objective. In some cases both functional maps are given, namely
C12 and C21, and we can incorporate this additional information to
simultaneously reconstruct both T12 and T21. Specifically, we im-
pose a consistency prior: the composition of the two maps should
be close to the identity, as suggested in e.g. [KLF11,ERGB16]. We
enforce this prior by introducing a consistency objective that penal-
izes the Euclidean distance between the original embedding X1 and
the composition T21(T12(V1)), and similarly for M2. This requires
extending the definition of T12 to be point-to-point, as opposed to
just vertex-to-point, which can be done as follows. Let p∈M1, and
define wp as wp ∈ F1,wpX1 = p, where F1 is the valid row set of

M1. Then, T12(p)≡wpP12X2. Note that T12(p) does not necessarily
lie on the surface of M2.

We therefore define the consistency and data objectives as:

Ec = ‖X1−P12P21X1‖2
M1 +‖X2−P21P12X2‖2

M2 ,

Ed = ‖Φ1C12−P12Φ2‖2
M1 +‖Φ2C21−P21Φ1‖2

M2 ,

leading to the optimization problem:

minimize
P12,P21

αEd(P12,P21)+(1−α)Ec(P12,P21)

subject to P12 ∈ P12,P21 ∈ P21

(9)

where 0≤ α≤ 1 is a parameter that controls the weight of the two
terms.

Optimization. Solving this optimization problem is more chal-
lenging than solving the problem (4) as the objective is no longer
row separable. To address this, we propose an alternating optimiza-
tion scheme. First, we introduce additional variables X12 which rep-
resent the coordinates of the mapped vertices V1 to M2. Thus, we
have X12 ∈ Rn1×3 and X12 ∈ M2. Similarly, we have the variables
X21 ∈ Rn2×3,X21 ∈ M1, which represent the mapping of the ver-
tices V2 to M1. This leads to the consistency objective:

‖X1−P12X21‖2
M1 +‖X2−P21X12‖2

M2 ,

which is again row separable in the P variables if the X variables
are kept fixed.

We also introduce new constraints P21X1 = X21,P12X2 = X12,
which we incorporate as soft constraints, together with soft con-
straints keeping the X variables on the surface using additional aux-
iliary variables X̃ . Finally we get:

minimize
P12,P21,X12,X21,X̃12,X̃21

αEd +(1−α) Êc

subject to P12 ∈ P12,P21 ∈ P21, X̃12 ∈M2, X̃21 ∈M1

where

Êc =‖X1−P12X21‖2
M1 +‖X2−P21X12‖2

M2+

+‖P12X2−X12‖2
M1 +‖P21X1−X21‖2

M2+

+‖X12− X̃12‖2
M1 +‖X21− X̃21‖2

M2 .
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Figure 8: Comparison of consistency of non-isometric maps be-
tween pairs of shapes from SHREC07 [GBP07]. We measure the
geodesic error between a point p and p mapped to the target shape
and back to measure consistency, and show the cumulative error
graph (left). We also measure conformal distortion (right).
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Figure 9: We compute functional maps using a few landmark constraints and extract a precise map to transfer texture. The figure shows the
target surface M2 (left), and the texture pulled back to the source surface M1 using the map computed with our deblurring approach (center)
and the original recovery method [OBCS∗12] (right). Note, that while for similar surface the original method performs well (e.g. the teddy
models), for surface which undergo large deformations our recovery is considerably better.

We initialize the P variables by solving using only the data term
separately as described in section 4, and then alternate between the
X ,P, X̃ variables (6 in total), at each iteration keeping two pairs
fixed and solving for the third. Solving for the P variables leads
to separable optimization problems of the same form as (4), which
we solve using the technique described before. Solving for the X
variables requires a linear least squares optimization with no con-
straints, and the X̃ variables are found by projecting the X variables
on the corresponding surface. Thus, at each iteration we are guar-
anteed to reduce the energy and improve the solution.

Figure 8 shows the result of applying our consistent denoising
scheme to a subset of pairs from the SHREC07 [GBP07] dataset.
We first obtained initial noisy maps by applying BIM [KLF11] on
all model pairs in the BIM benchmark in both directions. Since
the dataset includes symmetries, some of the resulting maps might
be inconsistent, e.g. the map M1→M2 is the left-to-left map, and
the map M2→M1 is the right-to-left map. We do not handle such
cases, since our denoising is local and is not aimed at fixing large
errors in the map. We therefore filter such pairs, and leave only
noisy maps which are close to being consistent. We then run our al-
gorithm on the resulting 25 pairs, taking k1= 200,k2 = 60,α= 0.3.
Since no dense ground truth is available for SHREC, we show the
resulting conformal distortion for the original maps, for our de-
noised maps with and without consistency, and for the original
deblurring method [OBCS∗12]. Our method with and without the
consistency energy generates maps with lower conformal distortion
than the original maps. We measure consistency of maps T12,T21
by the geodesic distance between a point p on M1 and T21 (T12 (p))

(the point p mapped to M2 and back), and similarly for points on
M2. We show the cumulative error graphs for all points on the
source and target shapes, where evidently the consistency energy
significantly improves the consistency of the input maps.

6. Applications

6.1. Map Deblurring

Recovery from computed functional maps. We compute func-
tional maps for a few shapes from SHREC07 [GBP07], using the
landmarks provided in the BIM benchmark. We used the Wave Ker-
nel Map as landmark descriptors as well as Wave Kernel Signa-
ture [ASC11], without any additional constraints. When comput-
ing a functional map from a sparse set of landmarks performing
the iterative ICP based recovery from [OBCS∗12] is essential for
getting reasonable maps. We show in Figure 9 the deblurred map
computed using our approach and the original approach, where we
incorporated our reconstruction into the ICP process. In this case,
we do not have ground truth data, but as the figure qualitatively
shows, we obtain considerably better maps using our approach.

We additionally perform a qualitative comparison to the recovery
methods ICSKM [SK14], and [RMC15,VLB∗16]. The shapes were
resampled to have the same number of vertices in order to accom-
modate the latter two methods. Figure 10 shows the results of the
original deblurring methods as well as combinations of [RMC15]
and ICSKM with our method by using Equation (4) during the op-
timization. Note that our method achieves the best results, see, e.g.,
the ear and the hands of the model.
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Target RMC15 RMC15 + Ours ICSKM ICSKM + Ours OursOBCS*12 VLB*16

Figure 10: Qualitative comparison with previous methods for functional map deblurring. The input functional map was computed using a
few landmarks. “+ Ours” indicates that Eq. (4) was used. Note, that our method yields the best results, see especially the ear and the hands.

Recovery from ground truth. To isolate the effect of our deblur-
ring procedure from the map computation algorithm, we check the
accuracy of our deblurring when full information is given. We use
45 non-isometric pairs of shapes from the FAUST dataset, remesh
so they do not share the same connectivity, convert their ground
truth maps to a functional map and then deblur them using our
approach and competing approaches. We compare to the original
map deblurring approach from [OBCS∗12], and to the approach
by Rodolà et al. [RMC15]. We use k2 = 30, and k1 as is shown in
Figure 11. Note that our approach outperforms both methods. It is
worth noting that the competing approaches in fact perform better
with a smaller number of eigenfunctions. In following experiments
we have used the best k1,k2 parameters for each method.

High quality intrinsic symmetries. Generalized maps are espe-
cially useful for computing maps in difficult cases where tailored
approaches are not available. For example, intrinsic symmetry can
be extracted in a variety of ways, but no method exists for generat-
ing a precise map for intrinsically symmetric high genus surfaces
which can be used in applications which require a high quality map.
We use the functional map framework, with a few user chosen
landmarks, to generate a functional symmetry map for the kitten
model. We then apply our deblurring method to compute a high
quality precise symmetry map. In Figure 12 we show the pointwise
map recovered using our approach. The figure shows the texture
pulled back through the map (left), as well as the Euclidean dis-
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Figure 11: Deblurring the FAUST dataset, starting from the ground
truth map. See the text for details.

tance between each point and its image (center), which identifies
the symmetry line. We further fed this map to the symmetric quad-
rangulation method by Panozzo et al [PLPZ12], and succeeded in
generating a high quality symmetric quad mesh (right).

Tessellation invariance. The ability to extract precise maps is es-
pecially important to avoid tessellation dependence. To demon-
strate that, we deblur the ground-truth map between a shape and its
re-tessellation. Figure 13 shows the re-tessellated surface M2 with
its texture (left), and the texture pulled back to the original surface
M1 using the deblurred precise (center) and vertex-to-vertex (right)
maps. Note the notably higher quality for the precise maps.

6.2. Map Denoising

Improving conformal distortion. The ICSKM method for map
denoising [SK14] is highly effective for improving the ground truth
error of noisy maps, yet it introduces high conformal distortion.
Since it uses the same recovery method as [OBCS∗12], we can sim-
ply replace it with our recovery method.We used BIM to generate
maps between 45 non-isometric pairs of shapes from the FAUST
dataset, and then applied different denoising approaches. As Fig-
ure 14 shows, using our approach with ICSKM yields a high quality
map, where both the ground truth error and the conformal distortion
are low. We use the definition by Hormann et al. [HG00] (equation
3 in their paper) for conformal distortion and subtract 2 so that the
minimal conformal distortion is zero.

M T(M) ||X-T(V)|| T+[PLPZ12]

Figure 12: Intrinsic symmetry on a high genus surface, deblurred
by our method from a computed functional map. (left) the pulled
back texture through the precise map. (center) the isolines of the
distance between each vertex and its image under the map, (right)
the resulting quad mesh when this map was used as input to a sym-
metric quadrangulation method [PLPZ12].
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Figure 13: Tesselation invariance of our precise maps. (left) target
model and texture, (center) pulled back texture using a precise map,
and (right) using a vertex-to-vertex map, both extracted by deblur-
ring the ground truth functional map. Note that the texture pulled
back with the precise map is indistinguishable from the original.

7. Conclusions and Future Work

We have presented a novel approach for deblurring and denoising
of generalized maps. Our approach is based on the prior that the
eigenfunctions of the LB operator on the target mesh are mapped
to functions in the span of the source eigenfunctions. This assump-
tion was made implicitly when taking the same number of eigen-
functions for isometric shapes, and we have shown that enforcing it
explicitly as a prior in the optimization problem yields an efficient
deblurring method, which is optimally solvable, out-performs the
state of the art and is robust and applicable to non-isometries. We
have further demonstrated the use of this idea for map denoising,
and used it to generate high quality symmetry maps.

Our smoothness prior leads to interesting questions which open
a wide avenue for future work. For example, it is not clear what is
the geometric interpretation of our prior, with respect to the type of
distortion which is minimized. Investigating the stability of the LB
eigenfunctions under a map, and relating it to distortion bounds on
the map, could potentially lead to other priors for map deblurring,
and to better insights for computing generalized maps.

Acknowledgements. This project has received funding from the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 714776. We thank Maks Ovsjanikov and Etienne
Corman for their help with the functional map for the Kitten.

Geodesic Error
0 0.05 0.1

%
 C

or
re

sp
on

de
nc

es

0

20

40

60

80

100

RMC15
ICSKM
ICSKM + Ours
BIM

Conformal Distortion
0 0.5 1 1.5 2

%
 F

ac
es

0

20

40

60

80

100

RMC15
ICSKM
ICSKM + Ours
BIM
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BIM. See the text for details.

References
[AL15] AIGERMAN N., LIPMAN Y.: Orbifold Tutte Embeddings. ACM

Transactions on Graphics (TOG) 34 (2015). 2

[AL16] AIGERMAN N., LIPMAN Y.: Hyperbolic Orbifold Tutte Embed-
dings. ACM Transactions on Graphics (TOG) 35 (2016). 2

[APL14] AIGERMAN N., PORANNE R., LIPMAN Y.: Lifted Bijections
for Low Distortion Surface Mappings. ACM Transactions on Graphics
(TOG) 33 (2014). 2

[APL15] AIGERMAN N., PORANNE R., LIPMAN Y.: Seamless Surface
Mappings. ACM Transactions on Graphics (TOG) (2015). 2

[ASC11] AUBRY M., SCHLICKEWEI U., CREMERS D.: The Wave Ker-
nel Signature: A Quantum Mechanical Approach to Shape Analysis. In
International Conference on Computer Vision Workshops (ICCV Work-
shops) (2011), IEEE. 7

[AVBC16] AZENCOT O., VANTZOS O., BEN-CHEN M.: Advection-
Based Function Matching on Surfaces. Computer Graphics Forum 35
(2016). 3

[BKP∗10] BOTSCH M., KOBBELT L., PAULY M., ALLIEZ P., LEVY B.:
Polygon Mesh Processing. Ak Peters Series. Taylor & Francis, 2010. 3

[BRLB14] BOGO F., ROMERO J., LOPER M., BLACK M. J.: FAUST:
Dataset and Evaluation for 3D Mesh Registration. In Proceedings Com-
puter Vision and Pattern Recognition (CVPR) (2014), IEEE. 3, 4

[COC14] CORMAN E., OVSJANIKOV M., CHAMBOLLE A.: Supervised
Descriptor Learning for Non-rigid Shape Matching. In European Con-
ference on Computer Vision (ECCV) (2014), Springer. 2

[COC15] CORMAN E., OVSJANIKOV M., CHAMBOLLE A.: Continuous
Matching Via Vector Field Flow. Computer Graphics Forum (2015). 2

[Ebe99] EBERLY D.: Distance between Point and Triangle in 3D. URL:
http://www.geometrictools.com/Documentation/
DistancePoint3Triangle3.pdf. 6

[ERGB16] EYNARD D., RODOLA E., GLASHOFF K., BRONSTEIN
M. M.: Coupled Functional Maps. In 3D Vision (3DV) (2016), IEEE. 2,
6

[GBP07] GIORGI D., BIASOTTI S., PARABOSCHI L.: Shrec:Shape Re-
trieval Contest: Watertight Models Track, 2007. 6, 7

[GSTOG16] GANAPATHI-SUBRAMANIAN V., THIBERT B., OVS-
JANIKOV M., GUIBAS L.: Stable Region Correspondences Between
Non-Isometric Shapes. Computer Graphics Forum 35 (2016). 2

[HG00] HORMANN K., GREINER G.: MIPS: An Efficient Global
Parametrization Method. Tech. rep., DTIC Document, 2000. 8

[HRWW12] HEEREN B., RUMPF M., WARDETZKY M., WIRTH B.:
Time-Discrete Geodesics in the Space of Shells. Computer Graphics
Forum 31 (2012). 1

[HWG14] HUANG Q., WANG F., GUIBAS L.: Functional Map Networks
for Analyzing and Exploring Large Shape Collections. ACM Transac-
tions on Graphics (TOG) 33 (2014). 2

[KBB∗13] KOVNATSKY A., BRONSTEIN M. M., BRONSTEIN A. M.,
GLASHOFF K., KIMMEL R.: Coupled Quasi-harmonic Bases. Computer
Graphics Forum 32 (2013). 2

[KBBV15] KOVNATSKY A., BRONSTEIN M. M., BRESSON X., VAN-
DERGHEYNST P.: Functional Correspondence by Matrix Completion. In
Proceedings Computer Vision and Pattern Recognition (CVPR) (2015).
2

[KGB16] KOVNATSKY A., GLASHOFF K., BRONSTEIN M. M.:
MADMM: a Generic Algorithm for Non-smooth Optimization on Man-
ifolds. In European Conference on Computer Vision (ECCV) (2016).
2

[KLF11] KIM V. G., LIPMAN Y., FUNKHOUSER T.: Blended Intrinsic
Maps. ACM Transactions on Graphics (TOG) 30 (2011). 2, 4, 6, 7

[KLM∗12] KIM V. G., LI W., MITRA N. J., DIVERDI S.,
FUNKHOUSER T.: Exploring Collections of 3D Models Using Fuzzy
Correspondences. ACM Transactions on Graphics (TOG) 31 (2012). 2

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf
http://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf


D. Ezuz & M. Ben-Chen / Deblurring and Denoising of Maps between Shapes

[LRB∗16] LITANY O., RODOLA E., BRONSTEIN A. M., BRONSTEIN
M. M., CREMERS D.: Non-Rigid Puzzles. Computer Graphics Forum
35 (2016). 2

[LRBB17] LITANY O., RODOLÀ E., BRONSTEIN A. M., BRONSTEIN
M. M.: Fully Spectral Partial Shape Matching. Computer Graphics
Forum 36 (2017). 2

[MDK∗16] MARON H., DYM N., KEZURER I., KOVALSKY S., LIPMAN
Y.: Point Registration Via Efficient Convex Relaxation. ACM Transac-
tions on Graphics (TOG) 35 (2016). 2

[OBCCG13] OVSJANIKOV M., BEN-CHEN M., CHAZAL F., GUIBAS
L.: Analysis and Visualization of Maps between Shapes. Computer
Graphics Forum 32 (2013). 2

[OBCS∗12] OVSJANIKOV M., BEN-CHEN M., SOLOMON J.,
BUTSCHER A., GUIBAS L.: Functional Maps: a Flexible Repre-
sentation of Maps between Shapes. ACM Transactions on Graphics
(TOG) 31 (2012). 1, 2, 3, 4, 5, 7, 8

[OCB∗16] OVSJANIKOV M., CORMAN E., BRONSTEIN M., RODOLÀ
E., BEN-CHEN M., GUIBAS L., CHAZAL F., BRONSTEIN A.: Com-
puting and Processing Correspondences with Functional Maps. In SIG-
GRAPH ASIA 2016 Courses (2016), SA ’16, ACM. 2

[PBB∗13] POKRASS J., BRONSTEIN A. M., BRONSTEIN M. M.,
SPRECHMANN P., SAPIRO G.: Sparse Modeling of Intrinsic Correspon-
dences. Computer Graphics Forum 32 (2013). 2

[PLPZ12] PANOZZO D., LIPMAN Y., PUPPO E., ZORIN D.: Fields on
Symmetric Surfaces. ACM Transactions on Graphics (TOG) 31 (2012).
1, 8

[RCB∗16] RODOLÀ E., COSMO L., BRONSTEIN M. M., TORSELLO
A., CREMERS D.: Partial Functional Correspondence. Computer
Graphics Forum (2016). 1, 2

[RMC15] RODOLA E., MOELLER M., CREMERS D.: Point-wise Map
Recovery and Refinement from Functional Correspondence. In Proceed-
ings Vision, Modeling and Visualization (VMV) (2015). 2, 7, 8

[ROA∗13] RUSTAMOV R. M., OVSJANIKOV M., AZENCOT O., BEN-
CHEN M., CHAZAL F., GUIBAS L.: Map-based Exploration of Intrin-
sic Shape Differences and Variability. ACM Transactions on Graphics
(TOG) 32 (2013). 2

[RRBW∗14] RODOLA E., ROTA BULÒ S., WINDHEUSER T., VESTNER
M., CREMERS D.: Dense Non-rigid Shape Correspondence Using Ran-
dom Forests. In Proceedings Computer Vision and Pattern Recognition
(CVPR) (2014), IEEE. 2

[SBC14] SHAPIRA N., BEN-CHEN M.: Cross-Collection Map Inference
by Intrinsic Alignment of Shape Spaces. Computer Graphics Forum 33
(2014). 2

[SK14] SHTERN A., KIMMEL R.: Iterative Closest Spectral Kernel
Maps. In 3D Vision (3DV) (2014), IEEE. 2, 7, 8, 9

[SNB∗12] SOLOMON J., NGUYEN A., BUTSCHER A., BEN-CHEN M.,
GUIBAS L.: Soft Maps between Surfaces. Computer Graphics Forum
31 (2012). 2

[SP04] SUMNER R. W., POPOVI’C J.: Deformation Transfer for Triangle
Meshes. ACM Transactions on Graphics (TOG) 23 (2004). 1

[SPKS16] SOLOMON J., PEYR’E G., KIM V. G., SRA S.: Entropic
Metric Alignment for Correspondence Problems. ACM Transactions on
Graphics (TOG) 35 (2016). 1, 2

[VLB∗16] VESTNER M., LITMAN R., BRONSTEIN A., RODOLÀ E.,
CREMERS D.: Bayesian Inference of Bijective Non-rigid Shape Cor-
respondence. arXiv preprint arXiv:1607.03425 (2016). 2, 7

[VLR∗17] VESTNER M., LITMAN R., RODOLA E., BRONSTEIN A.,
CREMERS D.: Product manifold filter: Non-rigid shape correspondence
via kernel density estimation in the product space. In Proceedings Com-
puter Vision and Pattern Recognition (CVPR) (2017). 2

[VTSSH15] VON-TYCOWICZ C., SCHULZ C., SEIDEL H.-P., HILDE-
BRANDT K.: Real-time Nonlinear Shape Interpolation. ACM Transac-
tions on Graphics (TOG) 34 (2015). 1

[WHG13] WANG F., HUANG Q., GUIBAS L. J.: Image Co-segmentation
Via Consistent Functional Maps. In International Conference on Com-
puter Vision (ICCV) (2013), IEEE. 2

Appendix A: Equivalence of optimization problems

Proposition 1
The optimization problems (1) and (4) are equivalent when using
the regularizer (3).

Proof. Since the constraints of the optimization problems are the
same, it suffices to show that the objectives are equal. Our objective
from Equation (4) has the form

‖Φ1X−Y‖2
M1 , (10)

where X =C12 and Y = P12Φ2. We will show that:

‖Φ1X−Y‖2
M1 = ‖X−Φ

†
1Y‖2

F +‖(Φ1Φ
†
1− Id)Y‖2

M1 ,

which is exactly the objective in Equation (1) when plugging in the
regularizer from Equation (3).

Adding and subtracting Φ1Φ
†
1Y from the expression inside the

norm in (10) we have:

‖Φ1X−Φ1Φ
†
1Y +Φ1Φ

†
1Y −Y‖2

M1 =

= ‖Φ1(X−Φ
†
1Y )‖2

M1 +‖(Φ1Φ
†
1− Id)Y‖2

M1

+2Tr((Φ1(X−Φ
†
1Y ))T GV (Φ1Φ

†
1− Id)Y ).

(11)

First, note that for any X ∈ Rk×l we have ‖Φ1X‖2
M1

=

Tr(XT
Φ

T
1 GVΦ1X) = Tr(XT X) = ‖X‖2

F , where we used the fact
that Φ

T
1 GVΦ1 = Id. Therefore, the first term in (11) is equal to

‖X −Φ
†
1Y‖2

F . For the third term, note that Φ
T
1 GV (Φ1Φ

†
1 − Id) =

Φ
T
1 GVΦ1Φ

†
1−Φ

T
1 GV =Φ

†
1−Φ

†
1 = 0, where we used the facts that

Φ
T
1 GVΦ1 = Id and Φ

†
1 = Φ

T
1 GV . Together, these give the result.

Appendix B: Eliminating candidate faces

Given a vertex v1 ∈ V1 and a face f ∈ F2 with vertices (c1,c2,c3),
we denote A = Φ2,b = (Φ1)v1∗C12, and:

∆min = min
v2∈V2

‖Av2∗−b‖2 ,δmin = min
i∈1...3

‖Aci∗−b‖2

lmax = max
i, j∈1...3

‖Aci∗−Ac j∗‖2 .

Assume that the minimizer lies on the face f at the point q, and take
w(q) to be its corresponding vector in the valid rows set F2. By the
triangle inequality, we have:

δmin ≤ ‖w(q)A−b‖2 +‖Aci∗−w(q)A‖2 ≤ ‖w(q)A−b‖2 + lmax,

and therefore: δmin− lmax ≤ ‖w(q)A−b‖2. Since q is a minimizer,
we have ‖w(q)A− b‖2 ≤ ∆min, hence f is a face which contains
the minimizer only if δmin− lmax ≤ ∆min.
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