

A Multi-Resolution Approach to Heat Kernels on Discrete Surfaces

Amir Vaxman Mirela Ben-Chen Craig Gotsman
 Technion Stanford University Technion

Abstract

Studying the behavior of the heat diffusion process on a manifold
is emerging as an important tool for analyzing the geometry of the
manifold. Unfortunately, the high complexity of the computation
of the heat kernel – the key to the diffusion process - limits this
type of analysis to 3D models of modest resolution. We show how
to use the unique properties of the heat kernel of a discrete two
dimensional manifold to overcome these limitations. Combining a
multi-resolution approach with a novel approximation method for
the heat kernel at short times results in an efficient and robust
algorithm for computing the heat kernels of detailed models. We
show experimentally that our method can achieve good approxi-
mations in a fraction of the time required by traditional algo-
rithms. Finally, we demonstrate how these heat kernels can be
used to improve a diffusion-based feature extraction algorithm.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling

Keywords: heat diffusion, heat kernel, multi-resolution, matrix exponen-
tial

1 Introduction

Shape analysis and understanding is an important prerequisite to
many shape manipulation algorithms. Whether it is shape defor-
mation, repair, or compression, the better we understand the es-
sence of the shape, the better the algorithm will perform. Many
attempts have been made to extract salient shape information from
the discrete representation of a surface, and here we focus on a
recent approach – heat diffusion - which has great potential due to
its multi-scale character. The heat diffusion process describes the
evolution of a function on the surface over time. It is governed by
a quantity called the heat kernel (HK): kt(x,y), which is uniquely
defined for any two points x, y on the surface, and a time parame-
ter t. The heat kernel has a geometric interpretation as an explora-
tion process: starting at the point x, and exploring the surface by
unit steps in random tangent directions, the probability that y has
been reached at the time t is exactly kt(x,y). Since it aggregates
information about all the possible ways to walk between two
points on the surface, the heat kernel captures much of the struc-
ture of the surface.

In the context of shape analysis, the heat kernel of a surface has
some remarkable properties, explored by Sun et al. [2009]. First,
in a sense, the heat kernel uniquely defines a shape, as two shapes
will have the same heat kernel if and only if they are isometric.
Second, all the information in the heat kernel is encoded in its
diagonal kt(x,x) - the probability of returning to x at the time t. The
rest of the heat kernel is redundant in the sense that two heat ker-
nels are identical if and only if their diagonals coincide. For this
reason, Sun et al. [2009] call the diagonal the heat kernel signa-
ture (HKS). Finally, the heat kernel is multi-scale in the time pa-
rameter t, with larger times aggregating information about larger
neighborhoods of the point x. These properties make the heat
kernel (or its diagonal) a very effective tool in comparing differ-
ent shapes at different scales, and in identifying prominent fea-
tures of a shape.

A different way to express the information encoded in the heat
kernel is through diffusion distances [Lafon 2004]. The diffusion
distance between x and y contains information about all possible
ways to walk from x to y and back, within the time t. As such,
these distances are robust to small topological changes and have
been recently applied to create an isometric-invariant hierarchical
segmentation of a shape [deGoes et al. 2008].

Unfortunately, there is no free lunch, and such high quality and
detailed information about a shape comes with a hefty computa-
tional price tag. On a surface M, the heat kernel kt may be ex-
pressed in terms of the eigenfunctions of the Laplace-Beltrami
operator of M. On a discrete surface, this operator is the n×n Lap-
lacian matrix L, where n is the number of vertices of the mesh.
Thus the most straightforward way to compute the heat kernel kt -
also a n×n matrix for any t - is by a spectral decomposition of L.
For large t, a small number of eigenvectors having the smallest
eigenvalues are sufficient for a good approximation of kt, as the
influence of an eigenvector ϕ with eigenvalue λ on kt decreases
exponentially like exp(-λt) . However, as t becomes smaller, pro-
hibitively many eigenvectors are required to compute kt, and this
method is no longer practical. This limitation imposes constraints
on applications based on the heat kernel; for example, the size of
the features that can be extracted using the heat kernel signature
depends on the minimal t for which kt can be computed.

The heat kernel can also be expressed as the exponential of the
Laplacian operator: kt = exp(-tL), and computed accordingly using
the power series of the exponential. However, such a computation
is numerically error-prone, as the stability of existing methods for
computing the matrix exponential strongly depend on the norm of
the matrix, hence can only be applied if t is very small. Thus we
conclude that existing methods can compute the heat kernel of a
large mesh only for either very large or very small values of t.

As mentioned previously, one of the more useful properties of the
heat kernel is its multi-scale nature. At each time scale it aggre-
gates information from a local environment of a point whose di-
ameter is proportional to the time scale. As the information is
aggregated, it is smoothed out, so the detailed geometry of the
surface plays a role only at small time scales. In fact, as observed

by Mémoli [2009], as t increases, the heat kernel provides a
coarser view of the geometry of the surface. Hence, the heat ker-
nel at large time t can be approximated well by a sparse matrix
related to a lower resolution version of the original surface. Fig. 1
demonstrates this, by showing the heat kernel of a vertex of the
gargoyle model, at three time scales at three different resolutions.
Note that on the “diagonal” of the figure, where the time scale t
matches the resolution of the mesh, it is indeed sparse. In addi-
tion, there is almost no noticeable difference between the heat
kernel at the same time scales on the different resolutions, as long
as the resolution is detailed enough for the given time scale (i.e. it
is “above the diagonal” of the figure).

Figure 1: (left) The heat kernel of a single vertex at three time
scales and three resolutions. On the “diagonal” the heat kernel is
sparse. (right) The relevant region of the gargoyle.

From a linear algebraic point of view, the multi-scale property
means that the numerical rank of kt for large t is much smaller
than n. This observation was also exploited by Coifman and Mag-
gioni [2006] for generating a multi-scale basis based on diffusion
maps, called diffusion wavelets.

1.1 Contribution

We describe an algorithm, taking advantage of the multi-scale
property, to efficiently compute kt for any t. We compute the low-
rank operator on a down-sampled version of the surface, whose
resolution is compatible with the time t. With this approach, the
computation is efficient, in the sense that it uses only the bare
minimum of information needed, by restricting it to the correct
resolution level. As an added benefit, the locality of the heat ker-
nel causes the operator to be sparse at the lower resolution, further
contributing to the efficiency of the method. To efficiently com-
pute the heat kernel on each resolution level, we describe a novel
approximation to the matrix exponential, specifically tailored to
our scenario – a sparse operator at a small time t << 1 - which
converges faster and is more stable than existing approaches.

Although we do not provide a formal proof, we demonstrate em-
pirically how our method allows computing the heat kernel of
very detailed models, for all scales, ranging from the mesh edge-
length to its full diameter.

1.2 Previous Work

Multi-resolution
The multi-resolution approach has emerged as a robust way of
coping with the ever-growing size of digital datasets. The main
idea is to process a low resolution version of the data set (which
will probably consume much less computing resources than
processing the original dataset), and then refine the result to fit a

higher resolution version, assuming that the difference due to the
additional detail can be computed relatively easily. This can be
applied repeatedly over multiple resolution levels, using each
level as a good starting point for the next level. A simple uni-
directional sweep from lowest resolution to highest resolution is
sometimes enough, but in some cases sweeps in both directions
are required. This is the principle behind the modern multi-grid
approach [Wesseling 2004]. When the data has a regular structure
(i.e. a regular square grid), the structural relationship between
levels is quite straightforward and is the basis for the standard
multi-grid approach. For unstructured datasets (such as triangle
meshes), algebraic multi-grid was developed. In many geometry
processing algorithms, a uni-directional sweep is sufficient, some-
times called a hierarchical method. One of the first multi-
resolution schemes for unstructured meshes, applied to surface
modeling, was presented by Kobbelt et al. [1998], based on a
progressive mesh structure [Hoppe 1996]. More recent work
adapts algebraic multigrid approaches to surface meshes [Aksoylu
et al. 2005], for parameterization [Sheffer et al. 2005], and de-
formation [Shi et al. 2006].

A completely different approach to multi-resolution in the context
of heat diffusion is taken by the concept of Diffusion Wavelets
[Coifman and Maggioni 2006]. There, the diffusion operator is
simply assumed to have lower rank for lower resolution levels,
and as such its rank is reduced in a brute-force manner, using a
Gram-Schmidt procedure. As we will see, our method, in con-
strast, directly generates the “low rank” operator by defining it on
a coarser mesh, avoiding expensive orthogonalization.

Matrix Exponential Approximations
As mentioned above, the HK is related to the matrix exponential
of the Laplacian, thus efficient computation of exp(-tL) may be
useful in approximating kt. The problem of computing the expo-
nential of a matrix is ubiquitous in scientific computing, thus a
large body of research exists on this topic. We discuss only the
most relevant approaches here, and refer the reader to Moler and
Van Loan [2003] for a thorough survey of existing algorithms.

The matrix exponential is defined as the power series:

(1)
0

1exp() ()
!

T k

k
X S X X

k

∞

=
∑

A naïve approach to compute an approximation to exp(X) is to
truncate the series (1) after the first M terms. This is known to be
one of the worst methods for computing the exponential [Moler
and Van Loan 2003], as it involves computations using very large
numbers, hence is unstable and numerically error-prone.

A better approximation method is to use eigen-decomposition of
X: If XU=UD, then
(2) 1exp() exp()X U D U −=
Since D is diagonal, (exp(D))ij is simply exp(Dij). However, since
this method involves eigen-decomposition of X, it is not practical
for large matrices.

The power series ST is just the standard Taylor expansion of a
function f as a polynomial. Alternatively, one can approximate f
using a rational function, such as the Pade approximation:

0 0

()
N M

k k
k k

k k

f x a x b x
= =

≈ ∑ ∑

The coefficients are computed by requiring that this approxima-
tion agrees with the Taylor expansion, up to the highest coeffi-

t = 4 t = 8 t = 16

|V| = 60K

|V| = 30K

|V| = 15K

cient. It is well known [Arioli et al. 1996] that for the same num-
ber of coefficients, the Pade approximation is always superior to
the Taylor approximation. However, it may still suffer from large
round-off errors, especially if the norm of X is large. A standard
method to overcome this is the “scaling and squaring” method,
which is based on the following property of matrix exponentials:

()exp() exp(/) mX X m=
Rescaling X by dividing it by a constant reduces its norm, stabiliz-
ing the computation of the rational expansion. If m is a power of
2, the final result can be obtained by repeatedly squaring
exp(X/m). This algorithm – combining scaling and squaring with
the Pade approximation (for exp(X/m)) - is one of the best availa-
ble, and is implemented in MATLAB’s expm function [Moler and
Van Loan 2003]. However, it is still not suitable for computing
the exponential of the Laplacian matrix of a large mesh, as the
Pade approximation requires the inversion of a very large matrix.
Our algorithm also uses the scaling and squaring approach. How-
ever, thanks to the multi-resolution component, the resulting heat
kernel is sparse, thus the squaring is very efficient. In addition we
avoid the expensive and potentially unstable matrix inverse opera-
tion, by using a polynomial instead of a rational expansion.

For some applications, such as solving partial differential equa-
tions, the full matrix exponential is not required, rather just the
product of the matrix exponential with a vector:

() exp() (0)t tXψ ψ= −
This would, in fact, be the case if we would like to compute the
heat kernel of just a single point x with respect to all other points
(a single column of the heat kernel matrix). For such problems,
specialized methods exist [Hochbruck and Lubich 1997] exploit-
ing the fact that X is sparse, and do not compute the full exponen-
tial. These methods, however, will not be able to efficiently com-
pute the diagonal of exp(-tX), as this will boil down to computing
the entire matrix.

1.3 Algorithm Overview
Before diving into the details, we give a brief overview of our
algorithm for computing the heat kernel. Given a triangle mesh M
with n vertices, and a positive number t, we wish to compute se-
lect entries of the n×n heat kernel matrix Kt – these can be entries
on the diagonal, a few columns, or any other small set of entries.

First, we generate a set of m meshes Mi, with M1 = M such that
ni = |Mi|, ni+1 = ni/2, and define a multi-resolution structure, which
allows us to map any point x∈Mi to the original mesh M. Now,
given t, we find the coarsest resolution i, such that the rank of the
heat kernel kt is smaller than the size of mesh Mi. Then we com-
pute the heat kernel of the mesh Mi, using the matrix exponential
of the Laplacian operator Li, at the same time scale t. The compu-
tation is done using “scaling and squaring” combined with a new
power sum series for the matrix exponential, which is tailored for
fast convergence at t << 1. As the heat kernel is local at this reso-
lution level, the resulting matrix exp(-tLi) will be sparse. Finally,
using the multi-resolution structure, we map back to the highest
resolution level only the required entries of the heat kernel.

2 Multi-Resolution Heat Kernels

Let M=(V,F) be a discrete surface given as a triangle mesh, where
V are its vertices and F its faces, and let L be its Laplacian matrix.
There are many definitions for L, and any of them can be used, as
long as L has a full set of (linearly independent) eigenvectors with

real eigenvalues. Let {λi} be the set of eigenvalues of L, and {ϕi}
their corresponding eigenvectors. Then the heat kernel of M at
time t > 0, is defined as the matrix:

(3)
1

(,) exp() () ()
n

M
t i i i

i
K u v t u vλ ϕ ϕ

=

= −∑

where n = |V| and u,v∈V. If, in addition, L is symmetric, then the
eigenvectors are orthogonal, implying Kt

M=exp(-tL).

We now proceed to define our multi-resolution structure. We later
use it to perform a coarse solve on a low resolution version of the
mesh, followed by a projection to the higher resolution version.

Definition 1:
Given a mesh M, and constants d, C ∈ Z, a multi-resolution struc-
ture MRd,C(Μ), is a set of meshes {M1, M2, … , Mm}, and a set of
mappings{ f2, f3, … , fm} such that Mi = (Vi, Fi), |Vi|=ni, satisfying:

1. M1 = M
2. ni+1 = ni/d
3. ()1 arg min ,i H i

N
M d N M+ = , where N is a 2-manifold triangle

 mesh with ni/d vertices, and dH is the Hausdorff distance.
4. nm < C
5. fi: Vi → Mi+1 maps each vertex of Vi to the point closest to it
 (not necessarily a vertex) on Mi+1.

Thus, we can define a group of meshes, and mappings between
them, such that each resolution level has a fraction of the vertices
of the finer level. The constant C is determined by the available
resources, in the sense that C is the maximal number of vertices,
for which it is feasible to compute the full spectral decomposition
of the Laplacian operator using dense matrices. The number of
meshes in the structure, m, is determined by C and d. Note that
when computing (3) we use an approximation, as computing the
true minimum is a difficult problem.

Using our multi-resolution structure, we can infer functions on the
vertices of a fine level from the functions defined on the vertices
of a coarser level, as follows. Let 1+ig be a function on the vertic-
es, at the resolution level i+1, gi+1: Vi+1→R. The prolongation of
gi+1 to the level i is:

(4)
3

1 1 2 3

1

() (,) () , () (, ,)+

=

= = ∈ =∑i l i l
l i p

l

g v w p u g u p f v u u u t

where wl are the barycentric coordinates of p in tp with respect to
ul. We can write (4) in matrix notation, using a prolongation ma-
trix 1

i
iP+ :

(5) 1
1g g +
+=i i i

iP
By recursively applying (5), we can infer the values at the vertices
of the finest level from the values on the vertices on any resolu-
tion level h:

1 1 2 1 1
2 3 ...g g g g−= = =M h h h

h hP P P P

Define 1
1()i i T

i iP P+
+= . Then, similarly, given a matrix of values

Ai+1 representing a bivariate function Ai+1: Vi+1 × Vi+1 → R, we can
prolong it to the i-th level using:
(6) 1 1

1
i i i i

i iA P A P+ +
+=

which is the natural extension of (4) to functions of two vertices.
Note that if Ai+1 was symmetric, then Ai will be symmetric as well.

Finally, we define the multi-resolution (MR) heat kernel on M:

Definition 2:
Given t > 0 and ε > 0, let rε(t) be the numerical rank of Kt

M, i.e.
the number of eigenvalues λi of the Laplacian matrix, such that
exp(-tλi) > ε. In addition, let h be the coarsest resolution level,
such that cnh > rε(t), for some constant 0 < c ≤ 1. Then the multi-
resolution heat kernel on M is:
(7) 1

1
ˆ M h h

t h tK P K P=

In the special case that h=1, we obtain ˆ M h
t tK K= .

Intuitively, given a time t, we compute the multi-resolution heat
kernel by finding the coarsest resolution level in which the frac-
tion of active eigenvectors – those for which exp(-tλi) > ε – is
smaller than the constant c. Then we prolong its values through
the multi-resolution levels, until we reach the finest level. This
idea is based on the relationship between the first eigenva-
lues/eigenvectors of LM and the first eigenvalues/prolonged eigen-
vectors of Lh, respectively.

To make this more precise, consider the case c = 1. Given that the
numerical rank of Kt

M is rε(t) = r, we may approximate (3) by:

(8)
1

(,) exp() () ()
r

M
t i i i

i

K u v t u vλ ϕ ϕ
=

≈ −∑

Now we look for a low-resolution mesh, Mh, upon which we can
approximate the first r eigenvectors and eigenvalues of M. Ob-
viously, if nh < r, we would not have enough eigenvectors to use.
Hence, we choose the coarsest resolution level h, such that nh > r.
LetU be the matrix whose columns are the first r eigenvectors of
L, and D a diagonal matrix of the first r eigenvalues, and similar
for Lh. Re-writing (8) in matrix notation, we get:

exp()M T
tK U tD U≈ −

Using the same formulation for Kt
h, we have:

1 1
1 1

ˆ exp()M h h h T h
t h t h hK P K P P U tD U P= ≈ −

If the exponential of the eigenvalues on the coarse and fine mesh-
es were the same, and similarly for the eigenvectors and their
prolonged version, then ˆ M M

t tK K≈ . Unfortunately, this is not the
case, as the eigenvectors are unique only up to sign. Furthermore,
if two eigenvalues are close, their matching eigenvectors might
switch. However, Sun et al [2009] showed that, in the continuous
case at least, the heat kernel is resilient to these changes. This
leads us to the conjecture that even though the eigenvectors and
their prolonged versions may not be exactly the same, this effect
is cancelled out in the heat kernel, and the multi-resolution heat
kernel is a good approximation of the true heat kernel.

Although we do not provide a formal proof, we show empirically
that the MR heat kernel at time t provides a good approximation
of the true heat kernel on the finest level, provided that it is com-
puted on a resolution level compatible with t.

Given a mesh M, its multi-resolution structure can be generated
by repeatedly simplifying it using any reasonable mesh simplifi-
cation method, with varying target number of vertices, as required
by Property 2 of Definition 1. We used the “quadric edge col-
lapse” method [Garland and Heckbert 1997] as implemented in
MeshLab [Cignoni et al. 2008]. Although we cannot reach the
theoretical minimum as defined in Property 3 of Definition 1, this
mesh simplification software does a good job at generating mesh-
es which are very close to the input mesh.

To test our conjecture about the behavior of the spectral decom-
position of the simplified mesh, with respect to the spectral de-
composition of the original mesh, we simplified the gargoyle
mesh, from an initial 60K vertices, to three resolution levels, hav-
ing 30K, 15K and 7.5K vertices respectively. We then computed
the full spectral decomposition of all four meshes, using the Gra-
phite software [Graphite 2009], which is based on the algorithm
of Vallet and Lévy [2008].

Figure 2: (left) The spectrum of different resolutions levels of the
gargoyle model, and (right) exponential for different values of t.

Fig. 2 shows λi

h
 and exp(-tλi

h) as a function of i/n1, for the four
resolutions of the gargoyle mesh at a few values of t. It is evident
from the figure that the exponentials of the spectrums are very
similar, for the appropriate values of t.

Figure 3: (left) Diffusion map on the fine mesh vs. its prolonged
version. Different colors represent diffusion maps of different
vertices. (right) Eigenvectors on the fine mesh vs. their prolonged
versions. Different colors represent different eigenvectors.

As was mentioned before, the eigenvectors and their prolonged
versions will not be the same, in general. However, significant
discrepancies are visible only in higher eigenvectors. To see that,
consider the expression exp(0.5)M

tR U tD= − - the first r axes of
the diffusion map [Lafon 2004] of M, and respective-
ly exp(0.5)h

t h hR U tD= − . Rt is the square root of the heat kernel
matrix: Kt = RtRt

T. Fig. 3(b) shows the effect of t on our approxi-
mation. For visualization purposes, we plotted U vs. 1 h

hP U ,

and M
tR vs. 1 h

h tP R , where a good match will be indicated by a
straight line, and errors in the prolongation will be “fat” areas off
the line. As is evident from the figure, some of the eigenvectors
are very different from their prolonged version, however the
exp(-t) expression attenuates that, and makes M

tR very similar to
1 h

h tP R , up to a sign per column. This shows, as expected, that for
large values of t the heat kernel can be prolonged from a coarser
level, whereas this cannot be done accurately for too small values
of t. Fig. 4 shows this phenomenon, by comparing the true (exact)
and prolonged heat kernel signatures (the diagonal of the heat
kernel), for small and large t.

One issue remains: since we do not actually know the full spec-
trum of M, how, given t, can we know what the appropriate reso-
lution level is? To solve this, we use a simple technique of extra-
polating the beginning of the spectrum linearly, given just the first

1 h
hP U

UM
tR

1 h
h tP R

50 eigenvectors corresponding to the finest resolution. As can be
seen in Fig. 5, this is a reasonable approximation.

Figure 4: The HKS and its prolonged version, for t=8, 64. Note
how noisy the prolonged version is at t=8.

Thus, given a range of timescales [tmin, tmax] for which we would
like to compute the heat kernel, we can partition it into segments:
{[tmin=t1, t2), [t2,t3),…,[tk,tk+1 = tmax]}, such that the heat kernel of
M for the i-th time segment [ti,ti+1) can be approximated by com-
puting the heat kernel of Mi at times [ti,ti+1), and prolonging it to
the finest level. As the heat kernel on Mi at times [ti,ti+1) describes
details of Mi which do not exist at the next coarser level, it is also
local on Mi and thus sparse. This phenomenon is shown in Fig. 1.
On the coarsest level, we can compute the full heat kernel matrix,
since by the construction of the multi-resolution structure, it is so
small that sparsity is no longer a concern.

Figure 5: An approximation of the spectrum of a few meshes,
using a linear extrapolation of the first 50 eigenvalues

Note that the heat kernel on the finest resolution level is still a
large dense matrix, so we will usually not compute all of it, rather
just a few of its columns, or its diagonal. This can be easily done,
since both the prolongation matrix Ph

1 and the heat kernel on the
lower resolution are sparse matrices. Furthermore, it is worth
mentioning that other algorithms that compute the action of the
heat kernel on a vector v [Hochbruck and Lubich 1997] cannot
efficiently compute the diagonal of the heat kernel – the HKS,
without resorting to the computation of the entire matrix, whereas
in our case computing the HKS is a simple matter, using:

() M h T
t tii

HKS K= i ip p

where pi is the i-th row of the prolongation matrix Ph
1.

To summarize, we have shown how the problem of computing
select elements from the heat kernel matrix of M can be reduced
to computing sparse heat kernels on low-resolution versions of M
at small times t. In the next section, we confront the complemen-
tary problem: how to compute these sparse heat kernels accurately
and efficiently.

3 Sparse Heat Kernels

Given a mesh M, whose Laplacian matrix is L, and a small time
 t > 0, our goal is to compute the heat kernel matrix Kt

M. Applying
the standard computation of the heat kernel in terms of eigenvec-
tors of L, obviously the smaller t is, the larger the computational

effort, as more eigenvectors are required for an accurate result.
This “top-down” approach is somewhat counter-intuitive, since
the smaller t is, the more “local” kt is, in the sense that the region
of the mesh where kt(v,⋅) is non-negligible, is limited to small
regions around v. If we are only interested in values of the heat
kernel which exceed some threshold ε, then we would expect it to
be easier to compute kt for smaller t, rather than harder.

Thus, we depart from the definition of the heat kernel through the
Laplacian eigenvalues, and adopt the alternative definition using
the matrix exponential. From now on, we will limit our discussion
to Laplacians of the type: L = A-1W, where A is a positive diagonal
matrix, and W is a symmetric matrix having the structure of the
mesh adjacency matrix. Many of the existing Laplacian discretiza-
tions fall in this category [Pinkall and Polthier 1993; Meyer et al.
2002; Reuter et al. 2006; Belkin et al. 2008; Xu 2004], and it
guarantees that the Laplacian has a full set of eigenvectors with
real eigenvalues. Given these definitions, the heat kernel matrix of
M at time t is given by Sun et. al [2009]:

1exp()M
tK tL A−= −

Note, that if L is symmetric, then A is the identity matrix, and the
heat kernel is identical to the usual exponential of the Laplacian.

It would appear at first glance that any of the (many) existing
algorithms for computing the exponential of a matrix can be used
in our case. However, as was explained in previous sections, this
is not the case, as we are dealing with large sparse matrices, for
which it is infeasible to compute the full heat kernel without addi-
tional assumptions. In the sequel, we adapt an existing algorithm
to our specialized scenario of small t, where we know that many
of the entries of Kt

M are close to 0.

3.1 Sparse Scale and Square
The fact that computing the heat kernel for small t should be easi-
er than for large t, leads us to the following “bottom-up” ap-
proach. First, assume that t is small, and define the sparse HK:

Definition 3:
Let Kt

M be the heat kernel matrix of mesh M at time t. The ε-
sparsified heat kernel matrix of M is:

() () ()
,

0

M M
t tM ij ij

t ij

K K
SK

otherwise
ε

ε⎧ >⎪= ⎨
⎪⎩

Now, assume we can efficiently compute Kt
M for a very small

t=t0. Then we can compute the heat kernel matrix for t=2t0, using:

()2 1
2 ,
M M
t tK SK A Aε

−= . Note that although, in general, sparse matrix

multiplication might result in many non-zero entries, the number
of significant entries in K2t

M is determined by the influence re-
gions at times 2t, and thus for a small enough t, the number of
non-zeros will remain small. This leads to Algorithm 1 for com-
puting the sparse heat kernel of M at time 2st0, given the heat ker-
nel at time t0 << 1.

Algorithm 1

t = 64
t = 8

Prolonged Prolonged

Exact
Exact

Input:
0

M
tK , ε , s

Output: , 0 , 2M s
tSK t tε =

Kt
M =

0

M
tK ; t = t0

For i = 1 to s do:
 2 1

2 ,()M M
t tK SK A Aε

−=
 t = 2t
end

From a geometric point of view, clumping heat kernel values
together also makes sense. Consider, for example, the sum of the
heat kernels of two vertices u and v, which are far from each other
with respect to the time t. See Fig. 6 for an example. If some third
vertex w satisfies kt(u,w) + kt(v,w) < ε, then w is too far away from
both v and u to influence the computation of k2t(u,v), and the spar-
sification will introduce only negligible errors. In fact, the clump-
ing strategy is consistent with the locality property of the HK. In a
sense, clumping achieves the same “localization” effect, without
the need to actually re-compute the heat kernel for each vertex
separately, on a different sub-mesh. Of course, from a purely al-
gebraic point of view, our method is very similar to the classic
“scale and square” approach, with the added sparsification twist.

Figure 6: The geometric interpretation of sparse scale and
square. The sum of kt(u,.) and kt(v,.) for times t=64, 128 and 512.
Vertices whose sum is < ε at time t do not influence the computa-
tion of k2t(u,v).

Fig. 7 shows empirical evidence of the accuracy of our sparse
“scale and square” approach. We computed exp(-tL) for t=4, once
exactly, and once by our sparse scale and square approach, with
t0=0.25, and ε=10-7. The figure shows the color coding of the
diagonal of the exponential matrix, using the exact solution, com-
puted using the full eigen-decomposition, vs. the sparse scale and
square solution. We also show the color coding of the RMSE per
row on a logarithmic scale. For all rows, the error was the order of
10-9. It seems that error is slightly larger in concave regions,
which is reasonable since their heat kernels tend to spread out
further than in convex regions.

Figure 7: Comparison of the diagonal of exp(-tL), computed us-
ing the scale and square approach (left), with the exact result
(middle). Log10 of the error per row (right).

To complete our solution, we proceed by describing a method for
computing the heat kernel matrix for t0 << 1.

3.2 Binomial Approximation
The most basic building block of our algorithm is the computation
of Kt for t << 1, by computing exp(-tL). As discussed previously,
using an approximation by a rational function is problematic, as it
will require inverting a very large matrix. Hence, we opt for a
polynomial approximation instead.

An obvious solution would be to use the power series of the ma-
trix exponential, given by ST. However, taking advantage of the
assumption that t is small, we can generate an approximation
which converges much faster than ST, and is more stable.

Definition 4:
Let L = A-1W be the Laplacian matrix of the mesh M, with A posi-
tive diagonal and W symmetric, and t > 0. The binomial represen-
tation of the matrix exponential is the series:

(11) () ()
1

0 0

1(,) () exp() 1 , ()
!

N m
mB

N m m
m k

L
S t L Q L t Q L L kI

m m

−

= =

⎛ ⎞
= − − = = −⎜ ⎟

⎝ ⎠
∑ ∏

Proposition 1:
Let B

NS be defined as in (11), and t > 0. Then:

(,) lim (,) exp()B B
N

N
S t L S t L tL

→∞
= −

To see why this is correct, consider a new variable s=e-t, and the
function f(s) = sx= e-tx. The Taylor expansion of f around s = 1 is
given by:

() () ()

1 2 2

0

11 1 (1) (1)1 (1) ...
2!

1 ... (1)
1 ,

!

x x x x

m

m

s x s x x s

x x x x x m
s

m m m

− −

∞

=

= + − + − − +

− − −⎛ ⎞ ⎛ ⎞
= − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑

which is just the binomial series (1+y)x for y = s – 1. This series is
well-defined for any complex x, and is guaranteed to converge if
|s-1| < 1. In our case, since t > 0, this implies 0 < s < 1, and con-
vergence results.

This series can be easily extended to a diagonal matrix, by apply-
ing it independently to each element in the diagonal. Finally, it
remains valid for any matrix of the type L = A-1W, via the eigen-
decomposition of L. The full derivation is given in Appendix A.

Figure 8: Log of the norm of the residual RN(t,L) = exp(-tL)-
SN(t,L) of the approximation of exp(-tL) with N elements, using the
Binomial series SB and the Taylor series ST. t∈{0.25 (blue), 1
(red), 4 (green)}. ||L||2= 30.5.

To see the advantage of using the binomial series SB instead of the
standard one given by ST, consider the following. In the scalar
case, ST is the Taylor expansion of exp(-tx) around tx = 0, and as
such converges slowly as tx is farther from 0. Instead, we define a
new variable s = exp(-t), and use the Taylor expansion of sx
around s = 1. Since t is close to 0, s is very close to 1, thus SB
converges faster than ST. This is evident in Fig. 8, which shows
the residual vs. the number of terms in the series SB, and the stan-
dard Taylor approximation ST, for various t, for the approximation
of exp(-tL) on the horse mesh. Since the mesh is small, it was
possible to compute the “ground truth” needed for computing the
residual using Matlab’s expm function.

Scale & square Exact Log10 of HK error

As with any other matrix power sum, our method also faces nu-
merical problems when α = ||tL||2 is large, albeit is less sensitive
than the regular Taylor sum, due to the fast decay of s = exp(-t).
For large α, the m-th element in the series, Bm, will be so large that
round-off errors are the same magnitude as the final result, render-
ing it unusable. To avoid this, and to limit the highest power of
the Laplacian which needs to be computed, we fix the number of
iterations to N, and choose t1 such that ||BN||2 ≤ ε, using the follow-
ing bound:

Proposition 2:
Let Bm(t,L) be the m-th element of the binomial series SB. Then:

()max
2

max()(,) 1
min()

mt i
m

i

aB t L e
m a
λ −⎛ ⎞

≤ −⎜ ⎟
⎝ ⎠

where λmax is the maximal eigenvalue of L, and ai = Aii. The proof
is given in Appendix B.

As the actual t we wish to compute Kt

M
 for is larger than t1, we

apply our sparse scale and square approach on top of the series
expansion, as follows. Given t for which we want to compute Kt,
we find an integer s such that t/2s = t0 < t1, compute

0t
KS using SB,

and scale back the result using Algorithm 1. This procedure is
summarized in Algorithm 2.

Algorithm 2

Figure 9: Comparison of FastHKS and EigHKS for the Gargoyle
and Armadillo, for t=6, using a single resolution level.

Fig. 9 shows an example of the result of our computation of the
HKS at small times. To make the times meaningful, we have
scaled the mesh such that the total area is equal to the number of
vertices, thus t=1 results in an average influence region of about
one 1-ring. We used ε = 10-6, and 15 iterations for the series ap-
proximation. The figure shows our HKS – denoted FastHKS -
compared to the true HKS, computed from the spectral decompo-
sition of the mesh, using the algorithm of Vallet and Lévy [2008]

– denoted EigHKS - on the “gargoyle” and “armadillo” meshes,
for t = 6. Both HKS are color-coded over the mesh, and it is evi-
dent that they are visually indistinguishable. Table 1 provides the
quantitative comparison for these and other meshes. Note that
about 12K eigenvectors were needed in order to compute EigHKS
for t = 6 on the gargoyle mesh, which has 122K vertices. Our
computation, on the other hand, took only a few minutes.

If the mesh was small enough, we could get away with a single
resolution level – computing for small times using the sparse heat
kernel approximation, and large times using a few eigenvectors.
However, even for medium sized meshes this approach will break
down, as “medium” times are introduced - too large to be sparse
and efficiently computed using the sparse method, yet too small
for the extraction of enough eigenvectors to be feasible. This is
where our multi-resolution approach kicks in, by allowing us to
treat medium times as if they were small and sparse. The follow-
ing section summarizes our complete algorithm, and shows some
results of our computation of select entries of the heat kernel ma-
trix of detailed models.

4 Results and Applications

First, let us explain how the full algorithm comes together, and
provide additional implementation details.

Let M=(V,F) be a mesh, and L its Laplacian matrix, such that
L=A-1W. We wish to compute select entries of Kt

M, for a given set
of timescales {ti}. The actual time scales depend on the applica-
tion in question, however, to have comparable times between
models, we normalized all models, such that their surface area
equals to their vertex count. This does not mean that the same
time t will have the same meaning for different meshes, but rather
that a time will indicate the size of the influence area to some
degree. For example, in this setup, t = 1 matches roughly the av-
erage influence area of a 1-ring.

Our algorithm may be summarized as follows:

1. Compute the multi-resolution structure MRd,C(M)
2. Choose the coarsest resolution level h, such that cnh > rε(t)
3. Compute the sparse heat kernel on the resolution level
 h using Algorithm 2.
4. Project the sparse heat kernel to the finest resolution level
 using (7).

Several clarifications are in order. First, let us examine the influ-
ence of the constants d and C on the algorithm. Together, these
parameters determine m – the number of meshes in the multi-
resolution structure. The smaller m is, the more resources we need
to allocate for computing the heat kernel, with the extreme being
m=1, in which case there is only a single mesh in the structure.
We used d=2 for all our experiments, with C varying from 6K to
20K vertices. As is seen in Table 1, larger values of C (such as
were used for the Armadillo and Gargoyle models) result in a
larger computation time for large times, as the heat kernel will not
be sparse enough on the coarsest resolution level. The actual
computation of the multi-resolution structure was done using the
MeshLab software [Cignoni et al. 2008], decimating the original
mesh using the “Quadric edge-collapse decimation” method [Gar-
land and Heckbert 1997] by prescribing the number of target ver-
tices. Next, the appropriate resolution level for a given time t was
chosen, so that cnh > rε(t), for c = 0.2. Using a larger value for c
would yield errors after the prolongation, as higher eigenvalues on
the coarse level no longer match their counterpart on the next

EigHKS FastHKS EigHKS FastHKS

FastHKS

EigHKS FastHKS EigHKS FastHKS

Input: t, ε , N

Output: ,
M
tK ε , s

Find t1 such that ||BN||2 ≤ ε
Find s such that t/2s = t0 ≤ t1
Set

0 0(,)B
t NK S t L=

Apply Algorithm 1.

resolution level. Using a smaller value for c will increase the
computational burden, as we will compute Kt

M on a level on
which it is not sparse. We have found c = 0.2 to be a good com-
promise, and used it in all our examples. For ε, we use ε = 10-4 for
the numerical rank computations, and ε = 10-6 for the sparsifica-
tion process.

Figure 10: Color coding of FastHKS on different meshes. Com-
parison with EigHKS for one mesh. The timings and errors are
given in Table 1.

Our algorithm was implemented in MATLAB, using C code for
the sparsification process. If the amount of available memory is
limited, Algorithm 1 can be performed out-of-core, such that only
part of the matrix is resident in memory. We have used this ap-
proach, and partitioned the matrix into 5×5 blocks. We compared
our results to those obtained with the EigHKS algorithm, for a
variety of meshes and time scales, summarized in Table 1, and
visualized in Fig. 10. The eigen-decomposition of EigHKS was
computed out-of-core, as the matrices involved are too large to
keep in memory. Thus, for EigHKS, we report two time mea-
surements – that of the eigen-decomposition, and that of compu-
ting the HKS given that. In addition, for each mesh and time
scale, we report how many eigenvalues are required for an “exact”
computation. This number is computed by finding the first index
i, for which exp(-tλi) < ε, where ε = 10-3. The additional computa-
tional cost of computing the first 50 eigenvalues was less than 40
seconds for all models, and constructing the multi-resolution
scheme took less than 35 seconds for all models.

In almost all cases our FastHKS is must faster than EigHKS.
However, as t grows larger the advantage over EigHKS is less
obvious, and for extremely large t (1024 for the Buddha for ex-
ample, when only about 60 eigenvectors are needed), EigHKS
would be faster. However, such a scale is very large, with the
influence regions of vertices encompassing close to half the mesh.
Model t |V|

(K)
|V|

coarse
(K)

Scale
Square
(sec)

SB

(sec)

Total
FastHKS

Time
(sec)

RMSE
(x10-6)

#eigens
required

Eigens
(sec)

HKS
given
eigens
(sec)

Total
EigHKS

Time
(sec)

Buddha 4 112 112 87 23 110 19 17,971 31,528 252 31,780
32 14.5 21 6 44 97 1,946 3,421 31 3,452
256 6.2 44 <1 91 140 242 426 6 432
512 3.5 20 1.3 72 98 109 202 3 205

1024 3.5 31 1.4 113 1000 61 95 1 96
Chinese

lion
3 153 153 205 51 256 5.7 34,477 62,486 406 62,892
16 42 92 8 120 93 5,415 10,502 78 10,580
128 10 31 5 76 98 661 1,470 10 1,480

Arma 4 112 112 95 19 114 21 17,901 32,405 287 32,692
24 30 131 19 179 61 2,593 4,986 46 5,032
200 18 204 7 576 75 314 603 7 610

Garg 3 122 122 129 32 161 11 28,144 51,172 319 51,491
45 16 36 7 72 110 1,515 2,754 29 2,783
100 16 81 7 139 71 682 1,262 15 1,277

Fish 4 100 100 85 14 110 16 16,068 29,723 235 29,958
64 5 14 <1 32 150 861 1594 13 1,607
512 5 75 <1 115 114 110 219 2 221

Horse 6 100 100 270 18 288 10 10,122 9,824 196 10,020
45 12 34 2 51 78 1,239 1,176 24 1,200
200 6 32 <1 71 75 278 286 6 292

Table 1: Comparison between FastHKS and EigHKS. Columns:
model, timescale, number of vertices (in thousands), number of
vertices in coarsest resolution, time for scale and square, time for
computing SB, total FastHKS time, RMS error from EigHKS, #
eigens required, time for extracting HKS given the out-of-core
(OOC) eigen-decomposition, time for OOC eigen-decomposition.
Experiments were performed on a Windows Server 2003 64 bit
single core machine, with 2.33GHz CPU, and 4GB memory.

Our method has some limitations. First, we do not provide theo-
retical guarantees on the quality of our approximation, yet we
show empirically that the results are quite accurate. For example,
our algorithm is heavily based on the fact that the heat kernel can
be accurately prolonged from a coarse mesh to a higher resolution
level. However, there is no existing theoretical result bounding the
difference between the two, in terms of the meshes’ Hausdorff
distance. Although in practice the prolongation seems to work
quite well, a theoretical bound would have been very satisfying.

(a) (b)

Figure 11: Improving the meshing quality improves the conver-
gence of the Binomial series (and the Taylor series).

Furthermore, as with other Laplacian-based methods, the quality
of our result might deteriorate if the surface is very badly meshed.
For example, the bound in Proposition 2 depends on the maximal
eigenvalue of the Laplacian operator, which in turn depends on
the meshing quality. Thus, if we repeat the experiment of Fig. 8
on a badly meshed model, more iterations would be required for
convergence (although still less than required by the Taylor se-
ries). Fig. 11(a) demonstrates this on a badly meshed model,
whose Laplacian norm is ||L||2= 74.5. The number of iterations

FastHKS

t = 6

t = 10 t = 64 t = 256

t = 10
t = 32

t = 256

FastHKS
t = 6

FastHKS
t = 64

t = 10 t = 32

t = 256

t = 6 t = 10 t = 64 t = 256

 E
ig

H
KS

 Fa

st
H

K
S

until convergence (both for the Binomial series and the Taylor
series) has doubled relative to Fig. 8. However, when the mesh is
smoothed, reducing the norm to ||L||2= 35.3, the number of itera-
tions until convergence decreases, as evident in Fig. 11(b).

Figure 12: The HKS-based distance function from the marked
vertex, using different ranges of t. The other round features are
close in HKS distance to the marked vertex only when using small
enough values of t.

Figure 13: Separating features from background by clustering the
HKS with k-means

To demonstrate the benefit gained by using our methods for ap-
plications based on computing the heat kernel, we experimented
with a diffusion-based feature extraction algorithm, following Sun
et al [2009]. Let T = {t1, …, tk} be the set of interesting time
scales, and let HKST be the corresponding set of heat kernel signa-
tures. Two points u and v on the surface are considered similar if
dHKS(u,v) = ||HKST(u)-HKST(v)||2 is small. Given a point on the
gargoyle, we show the HKS distance from it to all other points, for
two sets of times T1 and T2. T1 is sampled logarithmically in the
range [100,…,256], whereas T2 also includes smaller times, and is
sampled from [6,…,256].

1TK can be computed using the eigen-

decomposition, but
2TK cannot. Fig. 12 shows the marked point,

and the HKS distance from it using T1 and T2. As evident in the

figure, the small round features which are similar to the surround-
ing region of the marked point are missed when using only large
timescales, whereas they are clearly visible as “blue” – meaning
close – points, when using the full time scale.

To further emphasize this, we used simple k-means clustering to
cluster the HKS values of the vertices, again for time scales T1 and
T2. We used k=2, as we want to classify the points as “features”
vs. “background”. Fig. 13 shows the clustering result for the Gar-
goyle, knot and fish models – blue vertices were classified as one
group, and gray vertices as another. On the Gargoyle and the fish
models, when using T2, even such a straightforward clustering
approach could detect fine features, whereas they were completely
missed using T1. The star shapes on the knot model exhibited
similar behavior.

6 Conclusions and Discussion

Diffusion maps, and specifically the heat kernel and diffusion
distances, have many applications in geometry processing, yet are
notoriously difficult to compute. We have proposed a method,
taking advantage of the multi-scale property of the heat kernel, for
its efficient computation. In addition, we showed how for very
small t, a power series based on the Binomial expansion is more
appropriate for approximating the matrix exponential than the
standard Taylor series. Combining these properties led to a fast
algorithm for computing the heat kernel of large meshes, for all
values of t.

We showed how to apply our algorithm to improve a diffusion-
based feature extraction method, but we believe its applicability
lies far beyond that. For example, diffusion distances are an im-
portant tool for the analysis of graphs (e.g. in communication and
social networks), and it is not unlikely that if a reasonable scheme
of “simplifying” a graph is used, the diffusion distances on a very
large graph could be computed in a similar multi-resolution man-
ner. Furthermore, perhaps similar ideas could be used for compu-
ting the diffusion map itself (and not only the heat kernel) in an
efficient manner.

Acknowledgments
Thanks to Irad Yavneh for helpful numerical discussions. This work
was partially supported by NSF grants 0808515 and 0914833, and by
a joint Stanford-KAUST collaborative grant.

References
AKSOYLU, B., KHODAKOVSKY, A., AND SCHRÖDER, P. 2005. Multi-

level solvers for unstructured surface meshes. SIAM Journal of
Scientific Computing 26, 4.

ARIOLI, M., CODENOTTI, B. AND FASSINO, C. 1996. The Padé me-

thod for computing the matrix exponential. Linear Algebra and
its Applications 240.

BELKIN, M., SUN, J., AND WANG, Y. 2008. Discrete Laplace opera-

tor on meshed surfaces . In Proceedings of SOCG 2008.

CIGNONI, P., CORSINI, M., AND RANZUGLIA, G. 2008. Meshlab: An

open-source 3D mesh processing system. ERCIM News 73.

COIFMAN, R. AND MAGGIONI, M. 2006. Diffusion wavelets. Ap-

plied and Computational Harmonic Analysis, 21, 1.

t∈{100,..,256} t∈{6,..,256} t∈{32,..,128}

t∈{128,..,512} t∈{10,..,512} t∈{128,..,512} t∈{10,..,512}

t∈{100,..,256}

t∈{6,..,256}

DEGOES, F., GOLDENSTEIN, S., AND VELHO, L. 2008. A hierarchic-
al segmentation of articulated bodies. Computer Graphics Fo-
rum 27, 5.

GARLAND, M. AND HECKBERT, P. S. 1997. Surface simplification
using quadric error metrics. In Proc. SIGGRAPH 1997.

GRAPHITE. 2009. In http://alice.loria.fr/software/graphite.

HOCHBRUCK, M., AND LUBICH, C. 1997. On Krylov subspace ap-

proximations to the matrix exponential operator. SIAM Journal
on Numerical Analysis, 34, 5.

HOPPE, H. 1996. Progressive meshes. In Proc. SIGGRAPH 1996.

SUN, J., OVSJANIKOV, M., AND GUIBAS, L. 2009. A concise and

provably informative multi-scale signature based on heat diffu-
sion. Computer Graphics Forum 28, 5.

KOBBELT L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-P.1998.

Interactive multi-resolution modeling on arbitrary meshes. In
Proc. SIGGRAPH 1998.

LAFON, S. 2004. Diffusion maps and geometric harmonics. PhD

Thesis, Yale University, 2004.

MÉMOLI, F. 2009. Spectral Gromov-Wasserstein distances for

shape matching. In Proc. of Workshop on Non-Rigid Shape
Analysis and Deformable Image Alignment.

MEYER, M., DESBRUN, M., SCHRÖDER, P. AND BARR, A. H. 2002.

Discrete differential geometry operators for triangulated 2-
manifolds. In Proc. VisMath’02.

MOLER, C. AND LOAN, C. V. 2003. Nineteen dubious ways to

compute the exponential of a matrix, twenty-five years later.
SIAM Review, 45, 1.

PINKALL U. AND POLTHIER K. 1993. Computing discrete minimal

surfaces and their conjugates. Experimental Mathematics 2, 1.

REUTER, M., WOLTER, F.-E., AND PEINECKE, N. 2006. Laplace-

Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Com-
puter-Aided Design 38, 4.

SHEFFER, A, LÉVY, B., MOGILNITSKY, M. AND BOGOMJAKOV, A.

2005. ABF++: fast and robust angle based flattening. ACM
Trans. Graph. 24, 2.

SHI, L., YU, Y., BELL, N., AND FENG, W.-W. 2006. A fast multigrid

algorithm for mesh deformation. In Proc. SIGGRAPH 2006.

VALLET, B. AND LÉVY, B. 2008. Spectral geometry processing

with manifold harmonics. Computer Graphics Forum 27, 2.

WESSELING P. 2004. An Introduction to Multigrid Methods. R. T.

Edwards, Inc.

XU G. 2004. Discrete Laplace-Beltrami operators and their con-

vergence. Computer-Aided Geometric Design 21, 8.

Appendix A

Proposition 1:
Let L = A-1W be the Laplacian matrix of the mesh M, with A positive di-
agonal and W symmetric, and t > 0. Define

(A1) () () ()
1

0 0

1(,) () 1 , ()
!

mN mB t
N m m

m k

LS t L Q L e Q L L kIm m

−
−

= =

− = = −∑ ∏

then:
(,) lim (,)B B tL

NN
S t L S t L e−

→∞
=

Proof:
It is well known, that if L fulfills the conditions of the proposition, then it
has a full set of eigenvectors with real eigenvalues, which are the solution
to the generalized eigenvalue problem Wv=Aλv. Let V be the matrix
whose columns are the right eigenvectors of L, and D the diagonal matrix
of eigenvalues. Then, L=VDV-1. Furthermore, it is easy to check that
L – kI = V(D – kI)V-1, hence:

(A2) () ()
1 1

1 1

0 0

1 1
! !

m m

m
k k

L kI V D kI V VE V
m m

− −
− −

= =

⎛ ⎞− = − =⎜ ⎟
⎝ ⎠

∏ ∏

where Em is a diagonal matrix. Plugging (A2) into (A1), we have:

(A3) () ()1 1 1

0 0
(,) 1 1

N Nm mB t t
N m m N

m m
S t L e VE V V e E V VF V− − − − −

= =

⎛ ⎞− = − =⎜ ⎟
⎝ ⎠

∑ ∑

where, FN is a diagonal matrix. Considering a single element in FN :

 () ()() ()()
1

0 0 0

1 1 1
!

N m Nm mt ti
N iii

m k m

F k e emm
λλ

−
− −

= = =

= − − = −∑ ∏ ∑

where λi is the i-th eigenvalue of L. The right hand expression is the par-
tial sum of the Binomial series for (1 (1)) i itte eλ λ−−+ − = which is
known to converge for any λi, when |e-t – 1| < 1. Since t > 0, we have
0 < e-t < 1, hence the convergence condition holds, and we get:

() ()()
0

lim lim 1 i

N m tti
N iiN N m

F e em
λλ −−

→∞ →∞
=

= − =∑

Hence, the entries on the diagonal of FN converge absolutely, and thus FN
itself converges: lim tD

NN
F e−

→∞
= . Plugging this into (A3), we conclude:

1 1lim (,) limB tD tL
N NN N

S t L VF V Ve V e− − − −

→∞ →∞
= = =

which proves Proposition 1.

Appendix B

Proposition 2:
Let Bm(t,L) be the m-th element of the binomial series SB. Then:

()()max
2

max()(,) 1 min()
mt i

m
i

aB t L em a
λ −≤ −

where λmax is the largest singular value of L, and ai = Aii.

Proof:
Let L1 = A1/2LA-1/2. By definition we have that:

(B1) ()()
1

0

1(,) 1
!

m mt
m

k

B t L L kI e
m

−
−

=

= − −∏

Plugging L1 into (B1) instead of L we get:

() ()() ()
1 1 1

1/2 1/2 1/2 1/2
1

0 0 0

1 1 1
! ! !

m m m

k k k

L kI A L kI A A L kI A
m m m

− − −
− −

= = =

⎛ ⎞− = − = −⎜ ⎟
⎝ ⎠

∏ ∏ ∏

Thus, we have:
(B2) 1/2 1/2

1(,) (,)m mB t L A B t L A−=
Now we proceed to bound Bm(t,L1). Since L1 is symmetric, we have:

(B3) () () () ()1 1 1
max

1 1 max2
0 0 02

1 1 1
! ! !

m m m

k k k

L kI L kI k mm m m
λλ

− − −

= = =

− ≤ − = − =∏ ∏ ∏

where λmax is the largest eigenvalue of L1 (and also of L), and we assumed
that λmax > m. Going back to Bm(t,L) using (B2):
(B4) 1/2 1/2 1/2 1/2

1 1(,) (,) (,)m m mB t L A B t L A A B t L A− −= ≤

where all the norms are L2. Finally, since A is a diagonal matrix, ||A1/2||,
and ||A-1/2|| are given in terms of the diagonal values ai of A, and combin-
ing (B3) and (B4), we finally obtain:

()()max
2

max()(,) 1 min()
mt i

m
i

aB t L em a
λ −≤ −

which proves the proposition.

