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1. Architecture and Hyper-Parameters

1.1. DiffuionNet - Details

This subsection extends the Background subsection 2.1, providing
a more detailed review of the practical implementation details in-
volved in the DiffusionNet pipeline.

The DiffusionNet architecture [SACO22] comprises of succes-
sive identical DiffusionNet blocks. Each block consists of three
main stages: propagating information across the domain via a
learned diffusion time, evaluating local spatial gradient features to
model directional filters and not only radially symmetric filters, and
applying multi-layer perceptrons (MLPs) at each point to model
pointwise scalar functions of the feature channels.

The diffusion process is described by the heat operator Ht , which
acts on an initial distribution u0 defined on the surface to produce
the diffused distribution ut . This action is expressed as Ht(u0) =
exp(−t∆)u0, where exp represents the operator exponential, and ∆

is the Laplace-Beltrami operator. To discretize the diffusion oper-
ator ∆, it is replaced by the Laplace matrix L ∈ Rn×n and mass
matrix M ∈ Rn×n, where n is the number of vertices or points. For
triangle meshes, the authors employ the cotan-Laplace operator for
L and define M as the diagonal matrix of areas associated with each
vertex.

Given the feature channel u ∈ Rn, the authors outline two ap-
proaches to evaluate the diffusion layer ht(u). The implicit method:

ht(u) := (M+ tL)−1Mu (1)

and the spectral method:

ht(u) := Φ


e−λ1t

e−λ2t

...

⊙ (ΦT Mu) (2)

where ⊙ denotes the Hadamard (elementwise) product. The ma-
trices Φ ∈ Rn×k, Λ ∈ Rk×k are the matrices of first k eigenvectors
and eigenvalues of the generalized eigenvalue problem LΦ = ΛMΦ

where Λ is the diagonal matrix with diagonal elements [λ1, . . . ,λk].
In our work we only use the spectral method.

After diffusion, given a collection of D scalar feature channels,

the spatial gradient features are obtained by first computing per-
vertex gradients zu =Gu∈Cn for each channel u, where G∈Cn×n

is the sparse gradient operator matrix, see [SACO22] for the exact
definition. Next, the local gradients of all channels are stacked to
form wv ∈ CD for each vertex v, and inner products are computed
as:

gv = tanh(Re(wv ⊙Awv)) (3)

where A ∈CD×D is a complex learned matrix enabling a rich space
of direction-dependent filters, and · denotes the complex conju-
gate. These diffusion and gradient features are then passed through
a point-wise MLP layer to complete one DiffusionNet block. See
more details in [SACO22].

1.2. Model Hyperparameters in the Code

The hyper-parameters in our architecture are detailed below.

• k_eig: Total number of Laplacian eigenpairs used for diffusion,
corresponds to keig in the paper’s notation.

• n_block: Number of DiffusionNet blocks in each DiffusionNet
component.

• diffusion_hidden: Dimension of the linear layer in the MLPs of
DiffusionNet components.

• diffusion_out: Output dimension of DiffusionNet components,
denoted by F in the paper.

• base_diffusion: Initialization value for diffusion times in the
first-level DiffusionNet component, denoted as tbase in the pa-
per.

• exp_diffusion: Exponential factor for initializing diffusion
times, denoted as texp in the paper.

Fourier Feature Mapping:

• base_sigma: Base value for initializing standard deviation for
Fourier mapping at the first resolution level, denoted as σbase in
the paper.

• exp_sigma: Exponential factor for initializing the standard devi-
ation of Fourier mappings, denoted as σexp in the paper.

Sine-Activated MLP:

• n_layer_net: Number of resolution levels plus one, equal to N+
1 in the paper’s notations.
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• hidden_net: Dimension of linear layers, denoted as m in the pa-
per.

• siren_w0: Frequency parameter of sine layers, denoted as αi in
the paper. Although it could vary across the different linear lay-
ers, in our experiments, we use the same value across all layers.

ReLU-activated MLP:

• n_layer_back: Number of linear layers.
• hidden_back: Dimension of linear layers.
• backbone_activation: Activation function, default is ReLU.

We note that before inputting the mesh into the network, its vertices
are normalized and centered.

An important note is that we carefully tune parameters to op-
timize the results for each experiment and each model. This
ensures a fair comparison and highlights the maximal repre-
sentational potential of each method, even when the improve-
ment is marginal (e.g., reducing the error from approximately
10−7 to 10−13). In general, the main parameters we tune
per experiment are: base_diffusion, exp_diffusion, base_sigma,
exp_sigma, n_layer_net, and siren_w0. Below, we provide some
guidelines for setting these parameters:

• t_base: As noted in the paper, we typically set this to the squared
mean edge length of the mesh, usually in the range of 10−4 to
10−3.

• t_exp: Depends on the number of resolution levels and generally
falls within the range of [0.5, 0.9].

• sigma_base: Typically within the range of [1, 10].
• sigma_exp: Generally in the range of [1.2, 2].
• N: The number of layers depends on the complexity of the

learned signal. We commonly start with N = 2 or N = 3 and
increase it if needed.

• siren_w0: The choice of this parameter depends on the com-
plexity of the learned signal. The model is relatively robust to
small variations in siren_w0, with significant changes observed
only for large differences (e.g., between 10 and 100). The typical
range is [10, 200]. In our experiments, we use the same α for all
levels.

Based on our experience, the training process exhibits robustness
to moderate changes in most of these parameters.

1.3. Model Complexity

The number of parameters across the compared models is generally
of the same order of magnitude, ensuring a fair basis for compar-
ison. While model complexity can influence performance, our pri-
mary focus is on evaluating the potential of different architectural
designs rather than the impact of model size.

In certain cases, we increased the number of parameters to en-
able fair comparisons, ensuring that performance differences are
attributed to architectural improvements rather than variations in
model capacity. For example, in the case of the Lion model used in
the UV learning experiment (Section 4.2.2 in the paper), the num-
ber of parameters used for the diffusion-net baseline is much higher
than in our models.

The computational efficiency of our models remains practical:

inference time is less than one second, while training time ranges
from 10 minutes to several hours, depending on the mesh size and
experimental setup.

Tables 1, 2, 3, and 4 provide details regarding the number of
parameters and runtime performance for all models employed in
our Experimental Results section, corresponding to Sections 4.1,
4.2.1, 4.2.2, and 4.3, respectively.

Model # Parameters Training Time Inference Time
DiffusionNet 4,599,555 2h 13m 12s 1.05s
One-Level 1,928,773 1h 21m 57s 0.71s
N-Level 5,024,333 2h 35m 6s 0.92s

Table 1: Performance and model complexity comparison of models
corresponding to the Synthetic Example experiment (Section 4.1)
on a Chinese lion mesh with 50K vertices.

Model # Parameters Training Time Inference Time
DiffusionNet 3,679,746 22m 24s 0.56s
One-Level 5,147,140 24m 45s 0.73s
N-Level 5,024,268 30m 40s 0.60s

Table 2: Performance and model complexity comparison of models
corresponding to the Discontinuity of Mesh and UV Coordinates
experiment (Section 4.2.1) on a kangaroo mesh with 10K vertices.

Model # Parameters Training Time Inference Time
DiffusionNet 11,495,938 16m 27s 0.66s
One-Level 3,796,740 8m 37s 0.58s
N-Level 4,020,490 9m 43s 0.58s

Table 3: Performance and model complexity comparison of mod-
els corresponding to the Exponential Scale Variations experiment
(Section 4.2.2) on a lion mesh with 8K vertices.

2. Measuring Function Smoothness (Section 3)

Let L ∈ Rn×n be the cotan-Laplace operator and M ∈ Rn×n be the
mass matrix, where n denotes the number of mesh vertices. Inspired
by the strong association and extensive use of the mesh Laplacian
for smoothing operations [NISA06], we define the following nor-
malized smoothness measure for a function x ∈ Rn defined on the
mesh vertices:

⟨Lx,Lx⟩M

⟨x,x⟩M
(4)

where ⟨·, ·⟩M denotes the inner product with respect to M. The nor-
malization ensures a scale-invariant measure for the function x.

3. RGB Neural Field (Sections 3 and 4.1)

To constrain the output neural field to valid RGB values, we add
either a clamp layer or a sigmoid activation at the end of the ReLU-
activated MLP. For the illustrative example (Section 3), we em-
ployed a standard clamp layer to restrict the values between [0,
1], simplifying the architecture for explanation purposes. Since the
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Model # Parameters Training Time Inference Time
DiffusionNet 2,760,451 3h 9m 52s 0.68s
One-Level 1,471,301 3h 42m 9s 0.63s
N-Level 2,830,165 5h 44m 6s 0.94s

Table 4: Performance and model complexity comparison of models
corresponding to the Mesh Generalization experiment (Section 4.3)
on ogre meshes with 20K-33K vertices.

DiffusionNet with a clamp layer resulted in poor performance, and
switching to sigmoid activation resolved this issue, in the first ex-
periment (Section 4.1), we adopted sigmoid activation for all mod-
els to ensure a fair comparison.

3.1. Chinese Dragon (Section 3)

In this example, we configure a network with three resolution levels
(N = 3), each featuring a DiffusionNet component with two Diffu-
sionNet blocks of width 128. We set tbase to 0.00025, texp to 0.5,
σbase to 5, σexp to 1.3, and αi to 105 for all resolution levels. The
sine-activated MLP has a width of 128, while the ReLU-activated
MLP features a width of 64 and a depth of 2. The network is trained
over 10K epochs.

3.2. Chinese Lion (Section 4.1)

To generate the highest frequency function (corresponding to the
Blue vertices group) in this example, we produce Perlin noise with
the shape parameter set to

int(2/mean_edge_length)×3

and the res parameter set to

int(int(2/mean_edge_length)/6)×3

where × denotes concatenation, mean_edge_length represents the
mean edge length in the mesh, and int(·) denotes conversion to an
integer. In the following, we detail the configuration settings for
each result presented in Section 4.1. All models are trained for 10K
epochs.

DiffusionNet Model We define a DiffusionNet network consisting
of 10 DiffusionNet blocks, each featuring linear layers with a width
of 256.

One-Level We define a network with a single resolution level,
featuring a DiffusionNet component that includes 4 Diffusion-
Net blocks, each with linear layers of width 256. We set tbase to
0.00016, σbase to 5, and α1 to 185. The sine-activated MLP has a
width of 256, while the ReLU-activated MLP has a width of 64 and
a depth of 2.

N-Level We define a network with 5 resolution levels, each featur-
ing a DiffusionNet component with 2 DiffusionNet blocks of width
256. We set tbase to 0.00016 and texp to 0.7, σbase to 5, σexp to 1.5,
and αi to 165 for all resolution levels. The sine-activated MLP has
a width of 256, while the ReLU-activated MLP has a width of 64
and a depth of 2.

4. UV Neural Field (Section 4.2)

4.1. Kangaroo (Section 4.2.1)

We train all models for 5K epochs.

DiffusionNet Model We define a DiffusionNet network consisting
of 8 DiffusionNet blocks, each featuring linear layers with a width
of 256.

One-Leve Model We define a network with a single resolution
level, featuring a DiffusionNet component that includes 11 Diffu-
sionNet blocks, each with linear layers of width 256. We set tbase
to 0.002, σbase to 10, and α1 to 105. The sine-activated MLP has
a width of 256, while the ReLU-activated MLP has a width of 64
and a depth of 2.

N-Level Model We define a network with 5 resolution levels, each
including a DiffusionNet component with 2 DiffusionNet blocks of
width 256. We set tbase to 0.002 and texp to 0.8, σbase to 10, σexp to
1.2, and αi to 220 for all resolution levels. The sine-activated MLP
has a width of 256, while the ReLU-activated MLP has a width of
64 and a depth of 2.

4.2. Lion (Section 4.2.2)

We train all models for 2K epochs.

DiffusionNet Model We define a DiffusionNet network consisting
of 25 DiffusionNet blocks, each featuring linear layers with a width
of 256.

One-Level Model We define a network with a single resolution
level, featuring a DiffusionNet component that includes 8 Diffu-
sionNet blocks, each with linear layers of width 256. We set time
tbase to 0.002, σbase to 5, and α1 to 220. The sine-activated MLP
has a width of 256, while the ReLU-activated MLP has a width of
128 and a depth of 2.

N-Level Model We define a network with 4 resolution levels, each
including a DiffusionNet component with 2 DiffusionNet blocks of
width 256. We set tbase to 0.002, texp to 0.8, σbase to 5, σexp to 1.2,
and αi to 220 for all resolution levels. The sine-activated MLP has
a width of 256, while the ReLU-activated MLP has a width of 64
and a depth of 2.

4.3. Dennis - Additional Results

Here, we present an additional result from applying our network
to learn the UV coordinates of the Dennis mesh, which consists
of 15K vertices and 30K faces, and features discontinuous coordi-
nates. The texture image can be seen in Figure 1. As noted in the
paper, we also evaluated the NFFB model [WJY23] on this chal-
lenging example. We note that NFFB demonstrates superior per-
formance compared to methods such as InstantNGP [MESK22],
SIREN [SMB∗20], and ModSine [MGB∗21]. We adapted the
NFFB implementation with minor modifications to their 2D image
fitting experiment, enabling it to accept 3D coordinates as input
and produce 2D UV coordinates as output instead of RGB values.
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Figure 1: UV Learning - Additional Results. The texture image of
the Dennis mesh exhibits discontinuous UV coordinates, making it
a challenging test case.

The model was trained on the mesh vertices without sampling ad-
ditional points in the space.

Figure 2 compares the ground truth (GT) texture with the tex-
tures learned by our N-Level model and NFFB. In each subfigure
(a), (b), and (c), we present, from left to right: the GT texture, the re-
sult from our model, and the result from NFFB. Subfigure (a) shows
the original mesh texture, while (b) and (c) depict the mesh in two
different poses with a standard grid texture to emphasize disconti-
nuities. NFFB exhibits noticeable artifacts near UV discontinuities,
and in addition exhibits noise even in continuous regions (e.g. the
foot and the back of the head). In contrast, our model accurately
captures the corresponding neural field, achieving an exceptionally
low error of 8×10−13.

We train the model for 5K epochs. We define a network with 4
resolution levels, each including a DiffusionNet component with 2
DiffusionNet blocks of width 256. We set tbase to 0.002, texp to 0.8,
σbase to 5, σexp to 1.2, and αi to 200 for all resolution levels. The
sine-activated MLP has a width of 256, while the ReLU-activated
MLP has a width of 64 and a depth of 2.

5. Vertex Normals Neural Field (Section 4.3)

To generate the dataset for this experiment, we used the Loop sub-
division algorithm implemented by MeshLab with default parame-
ters. We train all models for 10K epochs.

DiffusionNet Model We define a DiffusionNet network consisting
of 6 DiffusionNet blocks, each featuring linear layers with a width
of 256.

One-Level Model We define a network with a single resolution
level, featuring a DiffusionNet component that includes 12 Diffu-
sionNet blocks, each with linear layers of width 128. We set tbase to
0.1, σbase to 5, and α1 to 75. The sine-activated MLP has a width of

256, while the ReLU-activated MLP has a width of 64 and a depth
of 2.

N-Level Model We define a network with 9 resolution levels, each
including a DiffusionNet component with 2 DiffusionNet blocks of
width 256. We set tbase to 0.1, texp to 0.55, σbase to 5, σexp to 1.3,
and αi to 100 for all resolution levels. The sine-activated MLP has
a width of 256, while the ReLU-activated MLP has a width of 64
and a depth of 2.

6. Illustrative Application (Section 5)

6.1. Prompt "A 3D rendering of a ninja in unreal engine"
(Figure 13a in the paper)

In this experiment, we maintain the original parameters specified
in [MBOL∗22] while exploring various parameter configurations
for our network module. In the following, we detail the parameters
used for each "Modified Architecture" result, presented from left to
right in the paper figure 13a:

• n_block = 4, n_layer_net = 3, hidden_net = 256,
base_diffusion = 0.0001, exp_sigma = 4, siren_w0 = 30

• n_block = 2, n_layer_net = 3, hidden_net = 128,
base_diffusion = 0.0001, exp_sigma = 3, siren_w0 = 50

• n_block = 2, n_layer_net = 4, hidden_net = 128,
base_diffusion = 0.0001, exp_sigma = 10, siren_w0 = 50

• n_block = 2, n_layer_net = 3, hidden_net = 128,
base_diffusion = 0.0001, exp_sigma = 3, siren_w0 = 50

Additionally, the following parameters remain fixed across all ex-
periments: k_eig = 500, diffusion_out = 2, exp_diffusion = 0.7,
base_sigma−3.0, diffusion_hidden = 128.

6.2. Prompt "a 3D rendering of the Hulk in unreal engine"
(Figure 13b in the paper)

For this experiment we slightly modified the original architecture
setting. Inspired by the Nerf experiment in the original NFFB
paper [WJY23], instead of using the output of our MDNF net-
work directly as the input to the two other MLPs (predicting color
and displacement), we feed the MLP network predicting the dis-
placement with our MDNF output and predict both displacement
and low-dimensional features vector which is then fed as the in-
put to the MLP predicting color. We did the same for the origi-
nal [MBOL∗22] architecture to make a fair comparison. Figure 3
shows the results obtained with the original architecture with and
without this modification. The parameters for each "Modified Ar-
chitecture" results presented from left to right in the paper figure
13b:

• n_block = 3, n_layer_net = 6, hidden_net = 128,
base_diffusion = 0.001, base_sigma = 8, exp_sigma = 1.5,
siren_w0 = 15

• n_block = 3, n_layer_net = 6, hidden_net = 128,
base_diffusion = 0.001, base_sigma = 8, exp_sigma = 3,
siren_w0 = 15

• n_block = 4, n_layer_net = 3, hidden_net = 256,
base_diffusion = 0.0001, base_sigma = 3, exp_sigma = 4,
siren_w0 = 30
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(a) (b) (c)

GT NFFBMDNF (Ours)GT NFFBMDNF (Ours)GT NFFBMDNF (Ours)

Figure 2: UV Learning - Additional Results. Comparison between ground truth (GT) UV coordinates and those learned by our N-Level
model and NFFB [WJY23]. (a) Original texture mapping. (b, c) Two poses with grid texture pattern highlighting mapping discontinuities.
Each triplet shows, from left to right: GT, our N-Level model results, and NFFB results. Note that our method better preserves the mapping
accuracy across discontinuous regions.

Original Architecture Original Architecture + Low-Dim Features

Figure 3: Illustrative Application. The textured mesh generated
for the prompt "a 3D rendering of the Hulk in unreal engine" (Fig-
ure 13b in the paper) by (left) original architecture and parameters
from [MBOL∗22], (right) same architecture and parameters where
the input to the color-predicting MLP uses low-dimensional fea-
tures predicted by the displacement-predicting MLP and the color
MLP depth is increased by 1.

• n_block = 4, n_layer_net = 3, hidden_net = 256,
base_diffusion = 0.0001, base_sigma = 3, exp_sigma = 4,
siren_w0 = 50

Additionally, the following parameters remain fixed across all ex-
periments: k_eig = 500, diffusion_out = 2, exp_diffusion = 0.7,
diffusion_hidden = 128. The parameters changed between exper-
iments which belong to the original architecture are:

• width=64, normratio=0.5
• width=64, normratio=0.5
• width=256, normratio=0.1
• width=256, normratio=0.1

We note that due to the inherent stochasticity of CLIP’s archi-
tecture, the results may vary slightly when run in different environ-
ments.
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