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Abstract 
Symmetry is one of the most important properties of a shape, unifying form and function. It encodes semantic infor-
mation on one hand, and affects the shape’s aesthetic value on the other. Symmetry comes in many flavors, amongst 
the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape. 
Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as 
tangent vector fields on the surface – known as Killing Vector Fields. As exact symmetries are quite rare, especially 
when considering noisy sampled surfaces, we propose a method for relaxing the exact symmetry constraint to allow 
for approximate symmetries and approximate Killing Vector Fields, and show how to discretize these concepts for 
generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector 
Fields, and propose an application to utilize them for texture and geometry synthesis. 
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1.   Introduction 
Symmetries and symmetric patterns have always fascinated 
artists and researchers alike, intrigued by the effect they 
have on our perception of beauty and by the beauty of the 
underlying mathematical concepts. As the virtual worlds we 
create mimic our own, the need arises for simple methods 
for generating symmetric models decorated by symmetric 
patterns and for automatic methods for extracting such fea-
tures from existing shapes.  

Symmetry can be defined as a structure-preserving trans-
formation from a shape to itself, and we will focus only 
distance-preserving symmetries. For example, a cylinder 
has rotational symmetry, since it does not change when 
rotating around its axis. This is an example of an extrinsic 
symmetry, inherited from the embedding space, as the 
transformation we applied to the cylinder was defined 
in 3 . In addition, it is a continuous symmetry, as we can 

rotate the cylinder by any angle. If we endow our shape 
with more structure, some symmetry is lost. For example, 
by coloring the cylinder, as in Fig 1(a), the possible trans-
formations which will result in the same shape are only 
rotations by multiples of π/4, generating a discrete symme-
try. A composition of two symmetric transformations is 
again a symmetric transformation, thus symmetries form a 
group under composition known as the symmetry group. 
Extrinsic symmetries are well-understood, and many algo-
rithms exist for finding such symmetries in images (see a 
recent review in [PLC*08]) and some in 3D shapes 
[PMW*08, BBW*09]. More challenging are intrinsic 
symmetries. Consider for example the shape in Fig 1(b). It 
is intuitively clear to the human observer that this shape is 
not substantially different from the colored cylinder, and 
that there should be a similar notion of symmetric “trans-
formations”. However, in this case the symmetry is intrinsic 
to the shape, and not inherited from the embedding space, 
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hence there is no global rigid transformation which can 
represent the symmetries of this object. As a result, extrin-
sic methods for detecting patterns in 3D shapes, such as 
[PMW*08], are not suitable for this case.  

 
  (a)                                 (b) 

Figure 1: Examples of extrinsic (a) and intrinsic (b) dis-
crete symmetries. 

An alternative way of representing a continuous trans-
formation of a surface is using a tangent vector field: at 
each point on the surface we are given a velocity vector, 
and the point moves an infinitesimal amount in the given 
direction with the given speed. If the geodesic distances 
between all pairs of points are preserved under the trans-
formation, then the vector field generating this transforma-
tion is called a Killing vector field (KVF). Fig 2 shows two 
examples of such vector fields. We show one vector per 
face, represented using a small arrow whose length is pro-
portional to the norm of the vector. Such vector fields are 
intrinsic, hence the shapes in Fig 1(a) and in Fig 1(b) have 
the same set of KVFs. Note how the norm of the vector 
field is larger towards the center of the shape in Fig 2(b), 
implying points will have to move at a greater speed there 
as compared to points at the extremities, in order to pre-
serve the geodesic distance between them.  

 
       (a)                              (b) 

Figure 2: Examples of Killing Vector Fields on simple sur-
faces. The norm of the vector is important, as it indicates 
the speed of the movement. 

As KVFs generate intrinsic infinitesimal isometries, they 
potentially can be used as the underlying mathematical 
machinery for studying symmetries and symmetric patterns 
on surfaces. However, exactly symmetric surfaces are quite 
rare, even more so in the context of noisy 3D models. In 
fact, it has been known since the 1930's [Mye36] that the 
only orientable two-manifolds possessing global continuous 
symmetries are homeomorphic to the sphere, the  projective 
plane, the ordinary plane, the cylinder (and thus also the 
cone), and the torus. This shows that the existence of a 
global continuous symmetry is indeed something rather 
special, if one considers the space of all two-manifolds. On 
the other hand, in terms of the actual objects that occur in 
our 3-D world, both natural and man-made, it is almost 
universal that they possess pieces that are near isometric 
deformations of planes, spheres, cylinders, cones, tori, etc. 
Thus, if we can relax the notion of intrinsic symmetries, to 
allow for approximate symmetries, we could potentially 

detect approximate symmetries in many (parts of) common 
3-D models. We show how to relax the symmetry require-
ment, by reformulating the definition of KVFs as a varia-
tional problem, thus allowing for approximate Killing vec-
tor fields when no exact KVFs exists. Moreover, we show 
how to define and find discrete approximate Killing vector 
fields on triangular meshes, using a simple operator defined 
in terms of Discrete Exterior Calculus. Finally, we demon-
strate how discrete approximate KVFs can be used to easily 
generate patterns on simple surfaces. 

1.1. Previous work and overview 
Symmetry detection and symmetric pattern generation are 
well researched subjects, and a thorough review of these 
topics is beyond the scope of this paper. We will thus con-
centrate on work most relevant to our approach – in the area 
of Killing vector fields, and symmetries and patterns on 
surfaces. 

Killing vector fields appear scarcely in the geometry 
processing literature. As KVFs are tightly connected to 
isometric deformations, they were first discussed in a mod-
eling paper [KMP07], where they were used for motivating 
an isometry-preserving deformation method. The paper, 
however, did not describe how to explicitly find KVFs giv-
en a triangular mesh, nor did it consider approximate KVFs. 
In a completely different context, KVFs were used in 
[GMDW09] to simplify visualization of concepts from 
general relativity. They also do not consider approximate 
KVFs. 

In the area of general relativity, KVFs are commonly 
used as a means for finding symmetries of space-time, as 
such symmetries can aid in finding exact solutions of Eins-
tein’s field equations [Hal04]. Furthermore, approximate 
symmetries and approximate KVFs are also of interest in 
that field, see [Zal99] for a review on different definitions 
of approximate symmetries. The approach closest to ours is 
the one first suggested by [Mat68] and later re-introduced 
by [Bee08]. In these papers the authors suggest to find ap-
proximate KVFs as solutions of an eigenvalue problem, 
similarly to the method we propose. The context however is 
again very different, and the paper did not provide compu-
tational results. 

In the realm of geometry processing, symmetry is mostly 
discussed in relation to symmetry extraction and pattern 
generation. Many solutions have been proposed for extract-
ing patterns and symmetries from three dimensional mod-
els. In general, such methods can be divided into extrinsic 
and intrinsic. Extrinsic methods, such as [MGP06, 
PMW*08, BBW*09], utilize the symmetries of the ambient 
Euclidean space for finding patterns in 3D models. Such 
methods, while robust, are somewhat restricted, as they 
cannot recover symmetries and patterns which are not inhe-
rited from the embedding space, such as the symmetries of 
the shape in Fig 1(b). Intrinsic methods, on the other hand, 
are able to find intrinsic symmetries [OSG08, LTSW09, 
XZT*09, RBBK10]; however previous methods have fo-
cused on discrete symmetries, whereas we consider conti-
nuous symmetries. In addition, in the special case that the 
surface is indeed symmetric, our formulation can be used 
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for defining an intrinsic symmetry group without using the 
permutation group as in [RBBK10]. 

Pattern generation is relatively less researched than 
symmetry extraction. One approach for generating patterns 
on general surfaces, proposed by [Kap09], is based on tiling 
a simple domain to which the surface is conformally 
mapped. Other approaches use texture synthesis techniques 
for generating semi-regular patterns [ZHW*06, ACXG09]. 
Finally, [LFZ*10] use a guiding vector field and a grammar 
for pattern generation. We show in the applications section 
how one can benefit from using our discrete KVFs to drive 
a vector-based geometry synthesis method, such as 
[LFZ*10].  

Before diving into the details, we will give a brief over-
view of our approach. Our main goal is to generate a family 
of special vector fields given a triangular mesh. These vec-
tor fields are the generators of a family of continuous de-
formations, which are close to intrinsic isometries. First we 
will repeat some known definitions and theorems to intro-
duce Killing vector fields on smooth surfaces. Then we 
depart from classic results and extend the definition to al-
low for approximate KVFs (which we will henceforth refer 
to as AKVFs), by solving an eigenvalue problem. We pro-
ceed by showing how using a simple manipulation AKVFs 
can be represented as the eigenvectors of an Exterior Calcu-
lus operator, which can then be discretized using the exist-
ing machinery of Discrete Exterior Calculus. We conclude 
by showing a possible application for these vector fields. 

2. Killing Vector Fields 
Killing vector fields and infinitesimal deformations are well 
known in differential geometry and are widely used in gen-
eral relativity. For completeness, we will present an intui-
tive introduction to these concepts, and refer the interested 
reader to [Pet97, Wal84] for a more detailed treatment. 

2.1  Infinitesimal Deformations 
A shape is symmetric if it is invariant under a distance-
preserving self-mapping. Hence, classifying symmetries is 
closely related to the parameterization of all possible self-
mappings of a shape. When dealing with symmetries of 
Euclidean space, these mappings are easily defined through 
global linear transformations. For example, as discussed 
previously, the cylinder in Fig 1(a) is invariant under rota-
tions around its axis. However, such an approach is not 
appropriate for intrinsic symmetries, as there might not 
exist a global linear transformation mapping the surface to 
itself. Thus, we need an alternative for specifying intrinsic 
self-mappings of a surface. We will first show how to de-
fine the space of continuous self-mappings, and then restrict 
them to distance preserving ones. 

We propose to use infinitesimal deformations to represent 
continuous self-mappings. Intuitively, at each point p on the 
surface, we prescribe a tangent vector U(p), and treat it as a 
velocity vector. To find where a point p is mapped, we fol-
low the flow line of the velocity field U, starting at the point 
p. The amount of “time” t we follow the flow line yields a 
family of self-mappings tφ  (see Fig. 3). This leads to the 
following definition. 

 

Figure 3: The mapping of a point p under the deformations 
φ t1 and φ t2, both belonging to the family of deformations  
φ t generated by the tangent vector field U. The curve 
shown is a part of the integral curve of U starting at p. 

Definition 1: 
Given a two-manifold M, a smooth tangent vector field U, 
and ( , )t ε ε∈ −  for some ε > 0, the deformation generated 
by U is denoted :t M Mφ → and is defined as: 

,( ) ( )      t
p Up t p Mφ γ= ∈  

where , ( )p U tγ is the solution of the initial value problem: 

(1)         ( ), ,(0) ,    ( ) ( )p U p Up t U tγ γ γ= =  

and ( )tγ is the tangent vector of the curve γ at ( )tγ . 

It is well known from the theory of ordinary differential 
equations, that given continuity conditions on U, the solu-
tion of (1) exists and is unique. The curves γ  are called the 
integral curves, or the flow lines, of the vector field U. 

As is the case with Euclidean linear transformations, in-
finitesimal deformations form a group, with composition as 
the group action. Specifically, it is easy to show [Boo02, 
Chapter 4] that: 

( )( ) ( ) 0  and   ( ) .t s s tp p p pφ φ φ φ+= =  

As a simple example of a vector field that generates a 
family of mappings, consider the vector 
field: ( , , ) (0,0,1)U p x y z= = projected onto the unit sphere. 
This vector field represents the 
mappings tφ which map the 
curves z = c to the curves z = c + 
f(t) for some function f (see the 
inset figure). Note that this is not 
a distance preserving mapping, 
as all points get closer to the 
north pole of the sphere after the 
mapping.  

2.2  Killing Vector Fields 
Now that we have a definition for the mappings, we would 
like to characterize the distance-preserving ones. As these 
mappings are given in terms of tangent vectors fields, we 
can express our problem as follows: which are the vector 
fields U such that the infinitesimal deformations generated 
by U are distance-preserving. These vector fields are called 
Killing Vector Fields [Pet97, Chapter 7]. 

U(p)

φ t1(p) 

p

φ t2(p) 
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To explain the properties of KVFs, we will need a few 
concepts from Riemannian geometry. As these definitions 
are somewhat lengthy, we will only give intuition on their 
geometric meaning; see [doC92] for a full exposition.  

Given a two dimensional manifold M, a metric provides a 
way of measuring angles and lengths on M as follows. Giv-
en a point p ∈ M, the tangent plane to M at p is denoted by 
TpM. The metric g takes two vectors X,Y ∈ TpM , and re-
turns a real number gp(X,Y). Lengths of curves on the sur-
face are defined using the metric. Given a curve 

:I R Mγ ⊂ → , its length is ( )( )( ) ( ), ( )tI
L g t t dtγγ γ γ=∫ . 

The geodesic distance between two points on the surface is 
the length of the shortest curve between them. Hence, to 
find a distance-preserving mapping, we need to find defor-
mations which preserve the metric.  

The metric g is defined by its action on vectors in the 
tangent plane, so first we must explain how the deformation 
φ affects tangent vectors. Given a point p ∈ M and a tangent 
vector X ∈ TpM, there is a unique curve c(t), such that c(0) 
= p, and (0)c X= . The deformation φ maps the curve c to 
a new curve γ via ( ) ( ( ))t c t=γ φ , and thus maps X to (0)γ , 
the tangent vector of γ at φ(p). Hence, for any smooth map 

: M Mφ → , we can define the differential of φ at a point p 
∈ M as the mapping ( ):p p pd T M T Mφφ → which performs this 
action. The differential is the linear map which prescribes 
the way tangent vectors change. The application of dφ to a 
vector X is also called the pushforward of X by φ. See Fig 4 
for the notations. 

 

Figure 4: The differential of φ at p maps vectors in the tan-
gent plane of p to vectors in the tangent plane of φ(p). 
dφp(X) is called the pushforward of X. 
Equipped with these definitions, we can finally state the 
condition that a vector field U is a Killing vector field.  

Definition 2: 
Given a two-manifold M, a smooth tangent vector field U, 
and ( , )t ε ε∈ − for some ε > 0 then U is a Killing vector 
field if and only if for any p ∈ M and X,Y ∈ TpM we have: 

( )( , ) ( ( ), ( ))p p p pg X Y g d X d Yφ φ φ= , 
where φ = φ t is the deformation generated by U. 

Since this is true for any t, we can take the limit and get 
an equivalent definition. Thus, U is a KVF if and only if: 

(2)        
( )( )

0

( ), ( ) ( , )
lim 0

t
t t
p p pp

tU

g d X d Y g X Y
g

t
φ

φ φ
→

−
≡ =L . 

This expression is known as the Lie derivative of g with 
respect to U, and denoted U gL . The Lie derivative is a ge-
neralization to curved surfaces of the planar directional 
derivative – it provides the rate of change of quantities on 
the surface when following the flow of a given vector field. 
Since KVFs are vector fields whose flows preserve the 
metric, it is very natural to define KVFs using the Lie de-
rivative. However, to specify in more concise terms the 
conditions for a vector field to be a KVF (and eventually to 
define the discretization of these conditions on a triangular 
mesh), we need an additional type of generalized derivative 
– the covariant derivative. 

Before introducing the definition of the covariant deriva-
tive, we would like to motivate the discussion using an 
example from the 2D plane. In 2D, rotations are distance-
preserving deformations. For example, for a given point  
p = (x0, y0) consider the curve φ t: 

( ) 0
0 0

0

cos( ) sin( )( , ) ( ), ( ) sin( ) cos( )
t xt tx y u t v t t t yφ

⎛ ⎞⎛ ⎞− ⎟⎟⎜⎜= = ⎟⎟⎜⎜ ⎟⎟⎜ ⎜⎝ ⎠⎝ ⎠
. 

Computing the tangent vector to the curve we get: 

( ) ( )0

0

sin( ) cos( )'( ), '( ) ( ), ( )cos( ) sin( )
xt tu t v t v t u tt t y

⎛ ⎞⎛ ⎞− − ⎟⎟⎜⎜= = −⎟⎟⎜⎜ ⎟⎟⎜ ⎜−⎝ ⎠⎝ ⎠
. 

Therefore, the deformation φ t is generated by the vector 
field U = (-y, x), which is thus a KVF. We are interested in 
the differential properties of U, which we will later mimic 
on a surface. We can consider the directional derivative of 
U in the direction of an arbitrary vector V. This is given by 
J(U)V, where J(U) is the Jacobian matrix of U. We have: 

( ) 900 1( ) 1 0
x

y x
y

v
J U V v v R Vv

⎛ ⎞⎛ ⎞− ⎟⎜⎟⎜= = − =⎟⎟⎜⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠⎝ ⎠
. 

Thus, the Jacobian of U rotates V counter clockwise by π/2, 
and we get that for any vector V we have: 

(3)     ( ) , 0J U V V = . 

It is easy to check that (3) also holds trivially for transla-
tions, where φ 

t (p) = p + (t,0) and U = (1,0), and therefore J 
is 0. Note that equation (3) implies that J should be an anti-
symmetric matrix. This condition induces an over-
determined system of three differential equations (ux = 0,  
vy = 0, uy = -vx) in two variables (u and v). Thus, trying to 
solve this system directly will usually lead to no solution, 
which is the mathematical reason for the rareness of KVFs 
on general surfaces. The variational approach we propose 
later can also be seen as the best solution, in the least 
squares sense, to the system of equations induced by the 
anti-symmetry condition. 

Equation (3) is usually viewed as the defining equation 
for Killing Vector Fields on curved surfaces, where J(U)V 
is replaced by the appropriate directional derivative of U in 
the direction of V on the surface.  

A vector field on the surface is given in terms of its com-
ponents in some local coordinates, which can change from 
point to point. Thus, it does not make sense to compute the 
derivative of a vector simply by taking the derivative of its 
components, since this does not take into account how the 

c(t) 

φ (c(t)) 
X(p) 

φ (p) 

p 

dφp (X) 
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local coordinates change. To be able to take derivatives, we 
need to prescribe a way to transport a vector from a point to 
a nearby point, and then compare the two vectors in the 
tangent plane of the second point. The Lie derivative trans-
ports vectors using the flow of another vector field, and thus 
requires some additional information. The covariant deriva-
tive, on the other hand, transports vectors using parallel 
transport. Intuitively, a vector is parallel transported along 
a curve if it is dragged along the curve without rotating or 
stretching. Specifically, if we parallel transport a vector U 
along a geodesic curve, the length of U and the angle be-
tween U and the tangent to the curve is preserved. The co-
variant derivative is defined as follows. 

Definition 3: 
Given a two-manifold M, a smooth tangent vector field U, a 
point p ∈ M, and a vector V (p) ∈ TpM, the covariant deriv-
ative of U w.r.t V at p is: 

( )( )
( ) ( ) (0)

0

, ,0
lim c t c

V t

c t U U
U p

t→

Γ −
∇ =  

where c(t) is a curve starting at p with (0)c V= and 
( , , )c a b UΓ is the parallel transport of the vector U along c 

from c(a) to c(b) (See Fig. 5). The result does not depend 
on the choice of the curve c. Note that the covariant deriva-
tive of a scalar function :f M R→  is defined similarly: 

( )( )
( )( ) ( )( )

0

0
limV t

f c t f c
f p

t→

−
∇ = . 

But for a scalar function there is no need to use parallel 
transport, as we can directly compare the values of the func-
tion at two points on the surface. 

 
Figure 5: Notations for the covariant derivative of the vec-
tor field U in the direction of the vector V at p. 
 
Finally, we can formulate a condition guaranteeing that a 
vector field is a KVF. 

Lemma 1: 
Given a two-manifold M, a smooth tangent vector field U is 
a Killing vector field if and only if, for any point p ∈ M and 
any vector V ∈ TpM we have: 

(4)      , 0V p
U V∇ =  

where <,>p is given by the metric g at p. 
The proof is based on (2), the definition of the Lie deriva-

tive of the metric, and the connection between the Lie and 
the covariant derivatives. The proof is provided in the sup-

plemental material for completeness, although this is a 
known result.  

Fig. 6 shows a few examples of Killing vector fields on 
some intrinsically symmetric surfaces. These were com-
puted using the methods discussed in the next section. In 
addition, the figure shows a pattern generated using such a 
KVF by applying the methods discussed in Section 4. 

Killing vector fields provide a way of describing all poss-
ible continuous intrinsic symmetries on a surface. KVFs 
form a linear subspace of the space of tangent vector fields, 
as any linear combination of KVFs is also a KVF. This 
follows directly from (4) and the linearity of the inner prod-
uct and the covariant derivative. A surface can have at most 
3 linearly independent KVFs, and this occurs only on the 
sphere [Mye36]. Other surfaces have different number of 
KVFs, depending on the intrinsic symmetries they support. 
For example, the cylinder has 2, and a “generic” surface of 
revolution has one.   

 
      (a)                              (b)                    (c) 

Figure 6: KVFs on special surfaces which support them – 
(a) sphere, (b) cone with non-circular cross section. (c) a 
pattern generated using the KVF as explained in Section 4. 

2.3  Approximate Killing Vector Fields 
Most surfaces are not exactly symmetric, even more so 
when dealing with noisy sampled surfaces. However, many 
surfaces do exhibit some kind of approximate symmetry 
which a human observer will easily notice. We would like 
to relax condition (4) to allow Approximate Killing Vector 
Fields (AKVF) such that surfaces which are “almost” 
symmetric will have AKVFs. 

To do that, we first rewrite (4) using local coordinates, 
which are easier to manipulate. Given two vectors E1(p), 
E2(p) which span the tangent plane at the point p ∈ M, the 
metric g is given by a 2x2 matrix whose entries are 
 gij = <Ei, Ej>, where <,> is the dot product in R3. Using the 
same coordinates, U and V can be written as  
U = u1E1 + u2E2 and V = v1E1 + v2E2 while VU∇ becomes 
simple matrix multiplication  

(5)  ( )
1
2V

vU U v
⎛ ⎞⎟⎜∇ = ∇ ⎟⎜ ⎟⎝ ⎠

 

where U∇ is a matrix whose components are 
( )

i

j j
E iij

U u u∇ =∇ ≡∇ . These can be computed from the 

partial derivatives of ui and the derivatives of the metric g. 
Plugging (5) into (4), we get that a vector field U is a 

KVF if and only if for any vector V we have: 

U(c(t)) 

ΓU(c(t)) 

U(c(0)) c(t) 

p = c(0) 
V(p) 

p 
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( )
1

1 2
2, 0V p

vU V v v g U v
⎛ ⎞⎟⎜∇ = ⋅∇ =⎟⎜ ⎟⎝ ⎠

 

Since this should be true for any vector V = (v1, v2), we get 
that the matrix J g U≡ ⋅∇  is anti-symmetric. Note the 
similarity to the case of planar rotation, where we found 
that the Jacobian matrix of U is anti-symmetric. Although 
we defined J using local coordinates, the anti-symmetry 
property does not depend on the chosen coordinates – if J is 
anti-symmetric in one coordinate system, it will be anti-
symmetric in any coordinate system. This leads us to the 
following definition. 

Definition 4: 
Given a two-manifold M with metric g, and a smooth tan-
gent vector field U, the Killing operator is the linear diffe-
rential operator K taking vectors to symmetric tensors, giv-
en by : TKU J J= + where J g U= ⋅∇ . 

As we have seen, for a Killing vector field U, we have  
(KU)(p) = 0 for all points p ∈ M. To measure how close a 
vector field is to being a KVF we introduce the Killing 
energy functional which integrates the square norm of KU 
(also a coordinate-independent quantity) over the entire 
surface.  

Definition 5: 
Given a two-manifold M and a smooth tangent vector field 
U, the Killing energy is: 

2( )K
M

E U KU dv= ∫ . 

KU is a tensor, and its norm is given with respect to the 
metric g. Since EK is positive definite, we have that  
EK(U) = 0 if and only if U is a KVF. Thus for a surface 
which has Killing vector fields, they are the minimizers of 
the Killing energy. More interesting is the situation on non-
symmetric surfaces. 

Definition 6: 
Given a two-manifold M, and a smooth tangent vector field 
U, then U is an approximate Killing vector field of M if it is 
the solution to the following optimization problem: 

(6)        2min ( )     . .    1KU
M

E U s t U dv =∫ . 

 
Figure 7: The mesh of an ellipsoid is perturbed by adding 
Gaussian noise with standard deviation σ times the average 
edge length in the normal direction. We show the flow lines 
of the AKVF for a fixed elapsed time from a few selected 
vertices, in addition to σ and the resulting Killing energy. 

Fig 7 shows the approximate KVF of a perfect rotational-
ly symmetric ellipsoid, as it gets progressively deformed by 
noise, and its matching Killing energy. This ellipsoid has 
one exact KVF, whose EK is 0. As noise is added by per-
turbing the surface with Gaussian noise in the normal direc-
tion, the surface ceases to be symmetric, and there is no U 
such that EK(U) = 0 anymore. However, for a small amount 
of noise, we can still see an approximate symmetry, gener-
ated by the approximate KVF. In our case, since we are 
working with discrete surfaces, even the “exact” ellipsoid 
has a non-zero (albeit small) Killing energy. 

Noise, however, is not the main cause of symmetry loss, 
as there are many smooth surfaces which are only “close” 
to being symmetric and not exactly symmetric. Fig. 8 
shows a series of deformations of a closed cone (i.e. a cone 
whose open end has been capped off). The perfect closed 
cone is a surface of revolution, and thus has one exact KVF. 
When squashing it, the bottom of the cone deforms in a 
non-isometric way and the cone is no longer perfectly 
symmetric. Nevertheless, the approximate KVF still exists 
and gives rise to the type of symmetry we would expect 
from such a shape. The AKVFs for both figures were com-
puted using the method described in the next section, and 
the Killing energy is the minimal eigenvalue of (11). 

 
Figure 8: A closed cone given by ( )cos( ), , sin( )a h h hθ θ⋅ ⋅ ⋅  
with the respective Killing energy, and the flow lines of the 
AKVF for a fixed elapsed time from a few selected vertices.   

To solve the optimization problem, we will assume for 
simplicity that the surface does not have boundary, and 
discuss the boundary case later on. In this case, using stan-
dard calculus of variations, (6) can be formulated as an 
eigenvalue problem.  

Lemma 2: 
Given a two-manifold M, and a smooth tangent vector field 
U, then U is an approximate KVF of M if and only if: 

(7)          *K KU Uλ= , 

where K* is the formal adjoint operator of K, and λ is the 
minimal such value.  

The operator K*K is semi-positive definite and thus  
λ ≥ 0. When λ = 0 then U is an exact KVF and lies in the 
kernel of K*K. As we have formulated this as an eigenvalue 
problem, we can consider not only the vector field minimiz-
ing EK, but also “second best” vector fields. 
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Definition 7: 
Given a two-manifold M and a smooth tangent vector field 
U, then U is a λ-approximate Killing vector field of M if it 
is an eigenvector of K*K with eigenvalue λ. 

The benefit of considering not only the “best” AKVF can 
be seen when analyzing the deformation of a sphere to an 
ellipsoid. A sphere has 3 exact KVFs, and when smoothly 
stretched into a rotationally symmetric ellipsoid, only 1 
exact KVF remains and a gap is generated between λ0 = 0 
and λ1 = λ2. The more the sphere is stretched, the larger the 
gap. The deformation from a sphere to an ellipsoid is shown 
in Fig. 9, together with the three smallest eigenvalues of 
K*K.  

 

Figure 9: A sphere deformed into an ellipsoid with radius 
a. The first 3 eigenvalues of the Killing operator split, gene-
rating a gap between λ0 = 0 and λ1 = λ2. 

3. Discrete Killing Vector Fields 

3.1 The Exterior Calculus Approach 
Exact and approximate KVFs would not be of much use if 
there were no concrete way of computing them. An obvious 
approach would be to discretize equation (6) by discretizing 
the covariant derivative. Unfortunately, this is not trivial to 
do on a triangulated mesh because the covariant derivative 
involves the derivative of the metric, which on a piecewise 
flat mesh is zero. Of course, as is done for the computation 
of other higher-order properties, one could approximate the 
underlying surface using a quadratic fit, and calculate the 
covariant derivative on the fitted surface. This method is, 
however, somewhat cumbersome and potentially computa-
tionally heavy. 

We opt instead for a simpler approach based on Discrete 
Exterior Calculus. In this setting, we can avoid defining the 
covariant derivative altogether and instead reformulate the 
problem in terms of the well known Hodge Laplacian for 
one-forms [FSDH07]. This yields an extremely simple im-
plementation for the K*K operator.  

First, we reformulate (7) on a smooth manifold, in terms 
of one-forms and exterior calculus. Then, we can use exist-
ing definitions of the discrete variants involved, such as the 
divergence and the curl of a one-form on a mesh [Hir03], to 
get the discrete analog of (7). Again, we will assume for 
now the surface does not have boundary, and discuss the 
boundary case later on.  

The connection between the Killing energy and the 
Hodge Laplacian for one-forms is given by the following 
Theorem. This connection is well known, and is an example 

of the so-called “Bochner Technique” [Pet97, Chapter 7] in 
differential geometry. We repeat the derivation here to pro-
vide some insight into the geometry behind the formula. 

Theorem 1: 
Given a two-manifold M without boundary and a vector 
field U, the following holds:  

(8) 
( )( )22 2 2( ) 2 2 2

                                  2 2 ,

K
M M

M

E U KU dv d k dv

d k dv

ω δω ω

ω δω ω ω

= = + −

= Δ + −

∫ ∫

∫
 

where ω is the one-form corresponding to U, and d and δ 
are the exterior derivative and co-differential operator re-
spectively. For a one-form, δ is the divergence operator, 
taking a one-form and returning a scalar, whereas d is the 
curl operator, taking a one-form and returning a two-form. 
The lengths and inner products are measured with respect to 
the metric g, k is the Gaussian curvature, and Δ is the 
Hodge Laplacian for one-forms.  

To see why the theorem is true, consider a vector field on 
a planar domain. In this case J is just the Jacobian matrix of 
U, and simple algebra shows that: 

(9)       ( ) ( )
2 221 2 4det

2
T

F
J J U U J+ = ∇× + ∇⋅ − , 

where ∇× and ∇⋅ are the curl and divergence operators, 
respectively, and the last factor is the determinant of J. A 
closer look shows that 
(10)         det( )J F=∇⋅   

for some vector field F, and thus the integral of (10) over 
the whole domain is equal to the flux of F through the 
boundary of the domain. If this flux is 0, (for example if F 
is tangential to the boundary, or if the domain is a closed 
surface), we get that ∫det(J)dv vanishes, and we are left with 
the curl and divergence terms only. 

On a curved surface we get an extra term when compu-
ting the norm of TJ J+ . This happens because to derive 
(10) one needs to assume that covariant derivatives com-
mute, which is true in the plane (where covariant deriva-
tives are the usual partial derivatives) but fails on a curved 
surface. In fact, curvature is the reason that covariant deriv-
atives do not commute, and we 
have 1 2 2 1 kω ω ω⊥∇ ∇ −∇ ∇ = , whereω⊥ is the counter 
clockwise rotation of ω by 90 degrees [doC92]. Incorporat-
ing this fact into our derivation yields the last term in (8). 
Using the fact that d and δ are formal adjoints, we get: 

, , , , ,d d d dω ω δω δω δ ω ω δω ω ω ω+ = + = Δ∫ ∫ ∫  

and the second part of (8) follows. The full proof of Theo-
rem 1 is given in Appendix A. 

3.2 Discrete Approximate KVFs 
Given a triangulated mesh M = (V,F,E), we would like to 
find a discrete version of equation (8). The quantities in Eq. 
(8) have discrete analogues, given by Discrete Exterior 
Calculus [Hir03]. We choose the same formulation as in 
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[FSDH07] for the definition of one-forms, the operators δ, 
d, and the Hodge Laplacian of one-forms. In this setup, a 
one-form is given by a scalar on each edge, and there is a 
correspondence mapping tangent vector fields on the sur-
face to one-forms and vice versa. The exterior calculus 
operators are simply matrices. The exterior calculus boun-
dary operator is a matrix which maps each element to its 
boundary (e.g., maps an edge to its endpoints, and so on). 
The operator d is the transpose of the boundary operator, 
and δ = -1d , where  is the Hodge operator given as a 
diagonal matrix. See the supplemental material for the ex-
plicit expressions for these operators, and the mapping be-
tween one-forms and vector fields. Combining these ma-
trices, we get d dδ δΔ= +  simply by matrix multiplica-
tion. The size of the matrix Δ is ne × ne, where ne = |E|. 

The only missing quantity is the Gaussian curvature on 
the edge. In the usual setting, when solving for scalar func-
tions defined on the vertices, the Gaussian curvature is 0 
everywhere except at the vertices, where it is defined to be 
the integral of the curvature over the vertex’ Voronoi re-
gion. Since we are interested in one-forms which live on the 
edges, we redistribute the curvature to the edges using:  

  ( )
2

* *

1  with A cot cot
2 4

ijji
ij ij ij

i j

ekkk A
v v

⎛ ⎞⎟⎜ ⎟⎜ ⎟= + = +⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
α β , 

where eij is the edge (vi, vj) with length |eij|, and α and β are 
the angles opposite to eij. In addition, ki and kj are the dis-
crete Gaussian curvatures at vi and vj respectively (defined 
as 2π minus the sum of 
angles around the vertex), 
and |vi

*| is the Voronoi area 
of vi. See the inset figure 
for the notations. We can 
interpret this as “splitting” 
each vertex into a few ver-
tices (depending on the 
vertex’ degree), and then 
taking the curvature on the 
edge to be the sum of curvatures at its “split” endpoints. 
Since we did not add or remove curvature, the sum of the 
curvature over the whole surface is preserved, and we still 
have:

( ),
2ij ii j E i

k k πχ
∈

= =∑ ∑ . 

Finally, we can define the discrete analog of approximate 
KVFs by plugging in the discrete analogues in eq. (8). 

Definition 8: 
Given a triangulated mesh M = (V,F,E), let R be the matrix 
given by 2R d BG=Δ+ −δ , where G is the diagonal ma-
trix whose entries are kij / Aij for every edge eij (we need 
point-wise curvature, as opposed to the integrated quantity), 
and B is the diagonal Hodge operator for one-forms. A tan-
gent vector field U is a discrete λ-approximate KVF if it is 
the vector field corresponding to a one-form ω, and: 
(11)            R Bω λ ω= . 
Note that the definition of the discrete AKVF is intrinsic, as 
we only use the edge lengths, and not the actual embedding.  

Figures 6-8 show examples of discrete approximate 
KVFs computed this way, and Fig. 10 shows the “best” 
AKVF for different surfaces.  

 

Figure 10: The figure shows the flow lines of the discrete 
AKVF from a few selected vertices for a fixed elapsed time. 

Even when the surface does not possess an obvious glob-
al intrinsic symmetry, the eigenvectors of R are still of in-
terest. The general behavior appears to be that some of the 
possible local symmetries are captured by different eigen-
vectors. For example, in Figure 11, the shape has a few 
possible local intrinsic symmetries, for each of the extru-
sions. In this case, the first eigenvector is localized around 
the right limb, and its norm is close to zero on the rest of 
the surface. The second eigenvector is localized on the left 
limb, and so on. Figure 11 shows the color coding of the 
norm of the vector fields which match the first four eigen-
vectors and some flow lines. Note, though, that as the ei-
genvector computation is global, most likely not all possi-
ble local symmetries are captured this way. 

 
Figure 11: From left to right, the first to fourth eigenvector 
of R. The figure shows the color coding of the norm of the 
vector field, and a few flow lines. 

3.3 Experimental Validation 
We would like to check empirically that the vector fields 
computed using (11) are in fact approximate Killing vector 
fields, as given by the continuous definition (8). 

Approximate KVFs on The Sphere 
In general, it is hard to solve (8) analytically as it boils 
down to a system of coupled differential equations. Howev-
er, in the case of the sphere, by applying the Hodge decom-
position we can show that: { }2 4 ,4 4s sk kλ λ λ∈ − − , where 
λs are the non-zero eigenvalues of the Laplace-Beltrami 
operator (of scalar functions) on the sphere, and k is the 
constant Gaussian curvature (see Appendix B for the proof). 
Since the non-zero values of λs are known to be m(m + 1)k 
for positive integers m > 0, we can check the eigenvalues of 
R to see if they achieve their expected values. Indeed, when 

eij 
vi 

vj 

α

β
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computing the eigenvalues of R on a mesh of the unit 
sphere with 20,000 vertices, we get: 

( )2 2 0.0016computed
i i ii i

λ λ λ− ≈∑ ∑ , 

for the first 180 eigenvalues of R. In general, the multiplici-
ty of the eigenvalues is the same as the multiplicity of the 
eigenvalues of the spherical Laplace-Beltrami operator, 
with the special case of λi = 20k (see Appendix B). 

Harmonic vs. Killing Vector Fields 
There exists an interesting relationship between harmonic 
and Killing vector fields. If a surface has both a harmonic 
vector field and a KVF, then their inner product is constant 
[Yan52]. Since discrete harmonic vector fields are easy to 
compute as the kernel of the Hodge Laplacian, we can 
check that this property holds, and thus check that our KVF 
is compatible with other entities on the surface. Figure 12 
shows one pair of harmonic and Killing vector fields. In 
this case, the vector fields are parallel, but their norm is 
different, so that one is shorter when the other is longer, the 
total effect yielding a close to constant inner product.  

 

Figure 12: A Killing vs. a harmonic vector field (HVF). The 
figure shows the flow lines from a few selected vertices for 
a fixed elapsed time. The KVF and HVF are parallel, yet 
with different norms, one speeding up when the other slows 
down, yielding an almost constant dot product. 

An Isometric Deformation 
An important test that a vector field is indeed an exact KVF 
is that its flow generates an isometric deformation. To 
check that, we generated a sequence of meshes, whose em-
beddings are ( ){ }0 | ,t

tX X t m mφ ε= = ∈ , where φ is the 

flow of U and X0 is the embedding of the original mesh. 

 

Figure 13: The sequence of meshes generated by following 
the flow lines of the KVF from all the vertices, for the speci-
fied elapsed times. The color coding for all the vertices is 
the same as in the original model (t = 0). 

Figure 13 shows this sequence of meshes for a symmetric 
model. To visualize the change between the models, we 
choose a color coding for the original model, and reuse the 
same colors for all the meshes in the sequence. As is evi-
dent from the figure, the deformations are indeed close to 

isometric. For a more qualitative test, we compute the rela-
tive mean squared error of the edge lengths:  

( ) ( )2 20 0
( , ) ( , )

1 /i
i ij ij iji j E i j E

e
Err l l ln ∈ ∈

= −∑ ∑ , 

where lij
k is the length of the edge (i,j) in the k-th mesh. The 

resulting errors are quite small, of the order of 10-6.  

3.4 Surfaces with Boundary 
On a surface with boundary, eq. (8) is not correct anymore 
since the integral of the determinant of the covariant deriva-
tive does not vanish and thus the eigenvectors we find using 
(11) are not the minimizers of (8). The correct expression 
(see Appendix A) is: 

2 2 2 , 4 ,T
M M M

KU dv d k dv dsω δω ω ω ω ω⊥

∂

= Δ + − + ∇∫ ∫ ∫
where T is the tangent vector to the boundary. By taking 

a dt b dnω = ⋅ + ⋅ , where dt is the unit tangent vector, and dn 
is the normal vector at the boundary, we get: 

(12)           2,T g
a bb a k
t t

ω ω ω⊥ ∂ ∂∇ = − −
∂ ∂

, 

where t∂ ∂ is the derivative in the tangent direction, and kg 
is the geodesic curvature of the boundary. In the special 
case that the boundary is a geodesic (i.e. kg = 0), and ω is 
either tangential (b = 0) or normal (a = 0) to the boundary, 
(12) vanishes (as is the case for the models in Figures 1, 2 
and 7), and we get the same expression as in the boundary-
less case. We do not currently handle the general case; 
however as a discrete counterpart for all the quantities ex-
ists, the extension to this case is quite straightforward. 

4. Application – Intrinsic Pattern Generation 
To demonstrate possible uses of Killing vector fields, we 
decorate almost symmetric surfaces by restricting the conti-
nuous symmetry defined by the AKVF to a discrete one. 

Given a surface which has continuous intrinsic symme-
tries, we can define discrete Intrinsic Symmetry Groups, 
and use them to generate patterns. If we are given a conti-
nuous symmetric surface, after we endow it with a pattern, 
it will be discretely symmetric. We will concentrate only on 
1-parameter group of intrinsic symmetries, appearing in 
isometric deformations of surfaces of revolution. Note that 
unlike other pattern generation methods, due to the special 
nature of our vector fields, the patterned surface will be “as 
symmetrical as possible”. 

Let M be (an isometric deformation of) a surface of revo-
lution. In this case, M has exactly one KVF U, with φt as its 
induced deformation. It is easy to check that the flow of U 
on M generates closed curves. Furthermore, given a point p 
∈ Μ and γ the integral curve starting from p, we have that 

( )( )U tγ does not depend on t, and is proportional to the 
length of γ. This means that for two points p1, p2 ∈ M, with 
integral curves γ1 and γ2 respectively, such that γ1 ≠ γ2, we 
have that: ( ) ( ) ( ) ( )2 2 1 1L U L U Tγ γ γ γ= = where L(γ) is the 

length of the curve γ. Hence, we have that φT(p) = p for any 
point p ∈ M. Now, we can choose a number q ∈ R, such 

t = 0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5

Killing  Harmonic
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that T/q = m is an integer, and get the discrete symmetry 
group: { }2 ( 1), ,..., ,q q m q mq T idφ φ φ φ φ− = = . 

To generate a pattern we choose a point p, find its images 
under the discrete symmetry group p1, p2, … , pm-1, and map 
a small environment of these points to a common domain, 
e.g. the unit disk. Now any pattern applied to this common 
domain – such as a texture, or a height function – would be 
reflected in each of the points pi. In addition, as is shown in 
Figure 14 (d), we can also use our vector fields to drive the 
pattern generation from [LFZ*10].  

Figure 14 shows a few patterns generated this way on 
surfaces which are either surfaces of revolution, or almost 
isometric deformations of such. To generate the texture 
coordinates we choose vertices vi and a radius r, and find 
the vertex sets { | ( , ) ( ) }i i iV v d v v r U p= < . Then we map 
each set Vi to the unit disk, and define the texture coordi-
nates of the rest of the vertices in the mesh, as the (interpo-
lated) texture coordinates of their pre-image under the flow 
of the vector field. Since the size of the mapped area is 
proportional to the norm of the AKVF, we get a nice scal-
ing effect of the texture. Note that this is considerably less 
complicated than mapping the whole surface to the plane. 

 
     (a)         (b)             (c)              (d)               (e) 

Figure 14: Intrinsic patterns on almost symmetric surfaces, 
generated by following the flow lines of the AKVF from a 
few selected vertices for fixed time intervals.(a-c) generated 
using texture coordinates, and (d) using the method from 
[LFZ*10]. (e) was generated by adding the first two AKVFs 
of the shape in Fig. 11.  

The biggest limitation of our method is that it is restricted 
to continuous symmetries by the very nature of the defini-
tion of KVFs. Thus, more complex models, which do in-
fact exhibit discrete symmetries, will usually not posses 
KVFs. However, we believe the way to avoid this problem 
is by decomposing a shape into smaller pieces or by remov-
ing existing reliefs or decorations. Then, approximate con-
tinuous symmetries can be found and used for extracting the 
discrete symmetries which the original shape possessed. We 
believe this could be a fruitful avenue for further research. 

5. Discussion 
We have proposed a new method for tackling the challeng-
ing subject of continuous intrinsic symmetries of surfaces. 
We showed how to replace the rigid transformations used 
for defining extrinsic symmetries with deformations gener-
ated by Killing vector fields. Furthermore, we showed how 
to relax the restriction of exact symmetry to allow finding 
structure in almost intrinsically symmetric surfaces. Our 
formulation is quite simple, requiring only the solution of 
an eigenvalue problem defined in terms of well known Dis-
crete Exterior Calculus operators. Finally, we proposed a 

simple application for generating symmetric patterns on 
symmetric surfaces using intrinsic symmetry groups. 

In the future we wish to explore further issues relating to 
discrete KVFs. The most prominent one is how to use this 
machinery for extracting patterns from existing surfaces, as 
opposed to generating them. From a theoretical point of 
view, we would like to better understand the relationship 
between the minimal λ and the existence of an “almost” 
symmetry group. It is also possible that the spectrum of R 
would prove useful for shape classification in a similar 
manner to the Laplacian spectrum. AKVFs might also be 
relevant for deformation applications.  

To sum up, AKVFs provide a new way of investigating 
intrinsic approximate symmetries of surfaces. Moreover, it 
seems they hold important information about a shape, and 
thus can potentially become a valuable tool in additional 
geometry processing applications. 
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Appendix A:  
We first derive an identity connecting the pointwise value 
of ||KU|| to that of ||dω|| and δω, where ω is the one-form 
associated to U. Since our expressions are coordinate-
independent, we perform the calculation in geodesic normal 
coordinates, so that the metric is as simple as possible. This 
way, the components of the matrix representing g equal 

those of the Euclidean metric at an arbitrary p ∈ Μ and 
have vanishing first derivatives at p.  

Let ω have components ω1 and ω2 with respect to our 
chosen coordinates. Then dω and KU are represented by the 
matrices whose (i,j) entries are ∇jωi −∇iωj and ∇jωi+∇iωj, 
respectively, while δω = −∇1ω1 −∇2ω2. We first express 
||KU||2 in terms of ||dω||2 and (δω)2 as well as possible. 
Algebraic manipulations yield 21

2 KU =  

( ) ( ) ( )2 2 22
2 1 1 2 1 1 2 22 4 2 4Q d Qω ω ω ω ω δω∇ −∇ + ∇ +∇ − = + −  

where Q := ∇1ω1∇2ω2 − ∇1ω2∇2ω1. We now show that Q  
is the co-differential of a one-form plus a remainder term. 
To begin, note that: 2Q =  
∇1F1+∇2F2+ω1(∇2∇1ω2−∇1∇2ω2)−ω2(∇2∇1ω1−∇1∇2ω1) 
where: 

F1 = (ω1∇2ω2 − ω2∇2ω1) and F2 = (ω2∇1ω1 − ω1∇1ω2). 

We re-formulate the two terms above as the divergence of a 
one-form, by introducing the one-form F that we define in a 
coordinate-independent manner as ( ) := ( , )

Y
F Y g Uω⊥

⊥− ∇ . 
Note that the components of F in the coordinates we are 
using are exactly F1 and F2. It now follows from the 
relation between curvature and second covariant 
derivatives, namely ∇2∇1ω − ∇1∇2ω = −kω⊥, where k is the 
Gauss curvature of M, that ||KU||2 = 2(||dω||2 + 2(δω)2 – 
2k||ω|| –  2δF). By integrating both sides, the co-differential 
term vanishes by Stokes' Theorem and we obtain the 
formula claimed in Theorem 1. 

Appendix B:  
We assume ∑ is the sphere of radius r which has constant 
Gauss curvature equal to 2:k r−= . Substitute ω := dφ + *dψ, 
where φ,ψ: Σ →  are functions, into the AKVF equation.  

We get 0 = *d(2Δψ + (4k + λ)ψ) – d(4Δφ + (4k + λ)φ). 
By the orthogonality of the Hodge decomposition, the 
equation above implies 2Δψ + (4k + λ)ψ = c1 and 4Δφ + (4k 
+ λ)φ = c2 , where c1 and c2 are constants. But since we can 
add any constant to φ or ψ without changing ω, then we can 
assume that c1 = c2 = 0. Hence φ and ψ are eigenfunctions 
of the scalar Laplace-Beltrami operator on the sphere of 
radius r. These are the spherical harmonics, denoted nl

nY for 
ln = 1,…,μn := 2n+1 and n ∈ , and corresponding to the 
eigenvalue βn :=  n(n+1)k. Three cases are possible:  

,  2 / 2  , / 4 20 , , =n ml l
n m n mn m k k k Y Yλ β λ β λ ψ φ∃ + = + = ⇒ = =  

{ }2 4 | 3
  2 / 2  ,   / 4

, = 0n

n
n m l

n

k n
n k m k

Y
λ β

λ β λ β
ψ φ

∈ − ≠
∃ + = ∀ + ≠ ⇒

=
 

{ }4 4 | 2
 2 / 2  ,   / 4  

      0,     =  m

m
n m l

m

k m
n k m k

Y
λ β

λ β λ β
ψ φ

∈ − ≠
∀ + ≠ ∃ + = ⇒

=
 

Note, that the eigenvalue 4k=−λ can be discounted since it 
corresponds to the eigenfunctions const=ψ  and const=φ , 
and the AKVF corresponding to such a choice of functions 
is zero. 


