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a b s t r a c t 

We propose a controllable geometric flow that decomposes the interior volume of a triangular mesh into 

a collection of encapsulating layers, which we denote by a generalized foliation . For star-like genus zero 

surfaces we show that our formulation leads to a foliation of the volume with leaves that are closed 

genus zero surfaces, where the inner most leaves are spherical. Our method is based on the three- 

dimensional Hele-Shaw free-surface injection flow, which is applied to a conformally inverted domain. 

Every time iteration of the flow leads to a new free surface, which, after inversion, forms a foliation leaf 

of the input domain. Our approach is simple to implement, and versatile, as different foliations can be 

generated by modifying the injection point of the flow. We demonstrate the applicability of our method 

on a variety of shapes, including high-genus surfaces and collections of semantically similar shapes. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In the last few decades, the field of geometric flows has seen

great progress. As a consequence, these flows have emerged as an

essential tool in diverse disciplines such as material science, geom-

etry analysis, topology, quantum field theory and the solution of

partial differential equations, among many others [1] . In this work,

we propose a geometric flow for closed surfaces, which is based

on the three-dimensional Hele-Shaw injection flow [2] . 

Our flow has three main properties: (1) If the surface remains

a single component during the flow, then it experimentally con-

verges to a sphere ; (2) The free surfaces, at each time-step of the

flow, form a collection of encapsulating layers, which yield a gen-

eralized foliation ; (3) The flow is controllable , as the center of inner-

most spherical layer can be positioned at various points interior to

the input surface. Hence, it is possible to influence the speed of

the deformation of different parts of the surface, and the progress

of the flow. In addition, our flow can handle high-genus surfaces,

by allowing the surface topology to change during the flow, thus

enabling the flow to progress beyond flow singularities. 

Even though there exist other geometric flows with similar

properties, such as: Ricci Flow [3] , Mean Curvature Flow (MCF) [4] ,

conformalized MCF [5] , Yamabe Flow [6] and many others, to the

best of our knowledge none of these possess all of the properties

mentioned above. In other words, either these flows do not con-

verge to a sphere, or they do not generate encapsulating layers,

and most of them, if not all, are not controllable. 
∗ Corresponding author. 
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We show experimentally that our formulation generates a fo-

iation of the input domain when the input surface is a star-like

enus zero surface with respect to the injection point. Further-

ore, we demonstrate our flow on a variety of surfaces, showing

ontrollability, similar foliations for semantically similar shapes,

nd interesting generalized foliations of high-genus surfaces. These

esults can potentially be used for further geometric processing,

uch as computing volumetric maps, and transferring volumetric

extures. 

.1. Related work 

At the core of our method lies the three-dimensional Hele-Shaw

ow with an injection singular point. The Computational Fluid Dy-

amics (CFD) literature is rich with analytical, numerical and ex-

erimental studies of the Hele-Shaw flow as well as other related

ow types. A full review is beyond the scope of this work. Our

iterature review is thus limited to the most relevant results and

ethods related to our suggested method. 

eometric flows. Geometric flows are abundant in the mathemat-

cal literature, e.g. flows such as the Ricci flow [3] , Willmore flow

7] and mean curvature flow [4] , to mention just a few. In the

eometry processing literature, corresponding discrete flows have

een developed, where some examples include discrete Ricci flow

8] , discrete Willmore flow [9] , conformal Willmore flow [10] and

onformalized mean curvature flow [5] . While all these flows con-

erge to a sphere, they do not have the property that we require

or generating a foliation, namely that the resulting surfaces are

ncapsulating . Furthermore, these flows are fully defined by the

https://doi.org/10.1016/j.cag.2019.05.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2019.05.015&domain=pdf
mailto:david.co@cs.technion.ac.il
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Fig. 1. Overview of our approach: (top) conformally invert the input mesh, (bottom, 

left part, zoomed out) then evolve the boundary using 3D Hele-Shaw flow, (bottom, 

right part) and finally invert back to get the foliation leaves. Every domain and its 

transformed domain have the same color. Origin is marked with � . Injection point 

in the inverted domain, where the flow is executed, is at the origin. 
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nitial surface, leaving no room for controllability. Our flow, on the

ther hand, has both these properties. 

ele-Shaw flows. Our method is based on the three-dimensional

odel of the Hele-Shaw flow with an injection singular point.

 mathematical treatment of Hele-Shaw flows from the point of

iew of geometric function theory and potential theory, includ-

ng a complex analytic approach can be found in [11] . The model

quations we use are based on Darcy’s equations, which were de-

ived from the Navier–Stokes equations via homogenization [12] .

he same model, with suction instead of injection, is known to

e unstable in some cases, yielding the viscous fingering phe-

omenon [13] . A two-dimensional computer graphics simulation

f this model, both its stable and unstable versions and includ-

ng two-phase flow and interactive control, was presented in [14] .

iscous fingering is closely related to other pattern formation phe-

omena such as bacterial growth and snowflake formation, among

thers, all of which are examples of Laplacian growth . A thorough

nvestigation of this topic can be found in [15] . We focus on a spe-

ific setting of 3D Hele-Shaw flow, which leads to a geometric flow

hat has the properties that we require. 

oliations. The field of foliations has emerged as a distinct field

ith the publication by Ehresmann and Reeb [16] . Being a well es-

ablished mathematical field, many introductory texts are available.

 summarized introduction to the topic is given in [17] , while a

ore recent and thorough introduction to the theory of foliations

an be found in [18] . Another book presenting the basic concepts

n the theory of foliations together with some more advanced top-

cs such as aspects of the spectral theory for Riemannian foliations

s well as applications of the heat equation method to Riemannian

oliations appears in [19] . In the context of computer graphics, a

ecent work [20] has presented an algorithm for constructing fo-

iations in a discrete setting which are then used for the bijective

arametrization of two and three-dimensional objects, over canon-

cal domains. In that work though, the authors handle foliations

ith one-dimensional leaves, i.e. any such foliation is a decompo-

ition of a domain into disjoint curves. The volumetric bijective

arameterization is then generated by the transversal sections of

he the one-dimensional foliation. We, on the other hand, generate

irectly the two-dimensional leaves, of which the inner-most is a

phere. Our work can be considered complimentary as it provides

n alternative solution using two-dimensional foliations which can

pur further work on this topic. 

.2. Overview and motivation 

The decomposition of a manifold into immersed sub-manifolds,

amely leaves , is called a foliation . These leaves are of the same

imension, and “fit together nicely” (see [17,18] for a rigorous def-

nition). We propose a method for computing the foliation of the

nterior of a triangular mesh M by leaves which are closed sur-

aces, using a three dimensional Hele-Shaw flow in a conformally in-

erted domain . Our algorithm is composed of the following steps

see Fig. 1 ): 

1. Normalize the initial input mesh M such that it resides inside

the unit sphere. 

2. Conformally invert M using a Möbius inversion through the

unit sphere to get ˜ M . 

3. Evolve ˜ M using a 3D Hele-Shaw flow until it converges to a

sphere, leading to a series of surfaces ˜ M 

n . 

4. Conformally invert ˜ M 

n using a Möbius inversion through the
n 
unit sphere, to get the final foliation M . 
he flow. The 3D Hele-Shaw flow that we use is a normal flow ,

here the normal velocity is determined by the gradient of a vol-

metric harmonic function which is 0 on the boundary of the do-

ain, and negative in the interior. One important property of this

ow, is that it is positive by definition , i.e. the inner product of the

radient of the harmonic function with the normal direction will

e non-negative, hence, the domain that is occupied by the fluid

t some instant encapsulates the domain occupied by the fluid in

ach of the previous times, leading to a foliation structure. 

Further, our flow is derived from a physical model, where the

xistence of a solution globally in time was proven under the as-

umption that the initial domain is star-shaped with respect to the

njection point [15 , Theorem 4.5.2]. In addition, initial domains that

re perturbations of balls converge to balls under this flow [21,22] .

n our experiments, we demonstrate that even for initial domains

hat are not perturbations of balls, nor necessarily adhere to the

tar-likeness requirement, the resulting domain indeed converges

o a ball. 

he inversion map. The inversion map that we use maps the fam-

ly of spheres centered at the origin to itself, so that a sphere is

apped to another sphere under this map, and the unit sphere re-

ains unchanged. Furthermore, under this map, the interior of the

nit sphere is mapped to be the exterior of the unit sphere, and

ice-versa. Finally, this inversion map is conformal [23] , hence the

ormal flow in the inverted domain is mapped to a normal flow in

he original domain bounded by the initial input mesh. Since the

nversion map is its own inverse, our method then finds the foli-

tion leaves by applying the inversion map again on each of the

esulting domains after each step of the viscous flow evolution. 

. Method 

.1. Notations 

 inversion map, a Möbius transformation. 

 (V M 

, F M 

) triangular surface mesh, faces are triangles. 

 (V T , F T ) tetrahedral volumetric mesh, elements are 

tetrahedrons. 
˜ 
 triangular surface mesh after applying inver-

sion I . 
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Fig. 2. The model geometry. The domain � with its boundary ∂� = �, O is the 

singularity, placed at the origin. Half of the interior of the model is transparent for 

visualization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The evolution of a star-like domain. (left) The input surface (orange) to- 

gether with the final surface (red), which is a sphere. (right) The full injection flow, 

where every layer appears in a different color. We show the cross-section of 10 

sampled layers. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

f

�  

w  

b  

f  

m  

a  

e

�  

�  

u  

T  

w  

H  

f

 

p  

t  

F  

w

2

 

a  

e  

E  

m  

f  

x  

 

s  

a  

t  

t  

o  

b  

i  

a

˜ T the mesh generated after tetrahedralizing the

volume whose boundary surface is ˜ M . 

∂ ̃  T the triangular mesh which is the boundary of

the tetrahedral mesh 

˜ T . 
L ˜ T ∈ R 

| V ˜ T | ×| V ˜ T | the Laplacian operator matrix of the tetrahe-

dral mesh 

˜ T . 
L ˜ M 

∈ R 

| V ˜ M 

| ×| V ˜ M 

| the Laplacian operator matrix of the triangular

mesh 

˜ M . 

G ˜ T ∈ R 

3 | F ˜ T | ×| V ˜ T | the gradient operator matrix of the tetrahedral

mesh 

˜ T . 
G ˜ M 

∈ R 

3 | F ˜ M 

| ×| V ˜ M 

| the gradient operator matrix of the triangular

mesh 

˜ M . 

Our goal is to compute a series of encapsulating surfaces in the

interior of our input domain M . Since injection flow is stable and

converges to a ball, we first invert the input mesh through the unit

sphere, then run the flow to get the layers, and then invert back. 

2.2. The flow 

We assume the model of the Hele-Shaw problem in R 

3 . We

consider the evolution of an incompressible three-dimensional vis-

cous fluid, under the influence of injection through a singular point

x 0 internal to the fluid domain 

˜ �. The velocity is divergence free

everywhere except at the singular point x 0 . See Fig. 2 for an illus-

tration of the model geometry. We follow the model Eqs. (1.1)–(1.3)

from [2] , with two minor modifications. First, we define the injec-

tion rate with an opposite sign, and second, we denote the pres-

sure as the velocity potential � : � → R , so that the velocity u is

defined by, 

u = −∇�. (1)

We get: 

�� = Qδx 0 (x ) , x, x 0 ∈ 

˜ �(t) (2)

� = σH, on 

˜ �(t) , (3)

where � is the Laplacian, Q a constant indicating a rate of injection

( Q < 0 for a source) or suction ( Q > 0 for a sink), δx 0 (x ) is the three-

dimensional Dirac distribution centered at x 0 , ˜ � ⊂ R 

3 is the fluid

domain, ∂ ̃  � = 

˜ � is the domain boundary, σ is the surface tension

and H is the mean curvature. The solution for � determines the

velocity of the boundary: 

u n = 〈−∇�(x ) , ̂  n (x ) 〉 x ∈ 

˜ �(t) (4)

where ˆ n (x ) is the outward unit normal direction to the boundary
˜ � and u n is the normal component of the velocity at the boundary
˜ �. A solution to the partial differential equation in (2) is of the
orm: 

= QG (x, x 0 ) + g(x ) x, x 0 ∈ 

˜ � (5)

here G ( x , x 0 ) is the Green’s function for the Laplacian in R 

3 , given

y G (x, x 0 ) = − 1 
4 π | x −x 0 | , and g ( x ) is a harmonic function necessary

or fulfilling the boundary conditions. Also, for the purpose of our

ethod we assume a flow with a constant rate of injection Q < 0

nd without surface tension. Hence, the following are our model

quations, 

(x ) = QG (x, x 0 ) + g(x ) x ∈ 

˜ � (6)

(x ) = 0 x ∈ 

˜ � (7)

 n = 〈−∇�(x ) , ̂  n (x ) 〉 x ∈ 

˜ � (8)

his derivation is similar to the derivation presented in [11] which

as also used in [14] to model the one-phase two-dimensional

ele-Shaw flow. We refer the reader to [2,11] as well as [15] for

urther details. 

Since we consider a viscous flow with injection (i.e. Q < 0), the

otential � in all the domain 

˜ � is positive and the velocity at

he boundary ˜ � points outwards such that the boundary expands.

ig. 3 shows an example of the evolution of a star-like domain

hich shows the expanding boundary. 

.3. The inversion map 

Given an input initial triangular mesh M , which we consider

s the boundary of an initial domain ∂�(0) = �(0) , our goal is to

fficiently find a family of domains ˜ �(t) which fulfill the model

qs. (6) –(8) . ˜ �(0) is the domain bounded by the inverted input

esh 

˜ M , i.e. the domain obtained after applying a Möbius trans-

orm I : x 	→ ˜ x , x, ̃  x ∈ R 

3 to the given input mesh M as follows,

˜ 
 = 

{ 

x/ | | x | | 2 if x 
 = 0 , ∞ 

0 if x = ∞ 

∞ if x = 0 

(9)

The map I is the inversion of R 

3 ∪ { ∞ } with respect to the unit

phere, such that for x 
∈ {0, ∞ }, ˜ x is on the ray with an endpoint

t the origin which passes through x , with | ̃ x | = 1 / | x | . It is easy

o see that the map is continuous and is its own inverse. Once

he family of domains ˜ �(t) is obtained, the volumetric foliation

f the volume bounded by the initial input mesh M is computed

y applying the map I to each domain and taking its boundary,

.e. the foliation leaves are ∂�( t ). Fig. 4 shows an example of the

pplication of the inversion map. 
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Fig. 4. Example of the inversion map, the meshes are color coded such that corre- 

sponding points have the same color. (left) The original mesh. (right) An inversion 

of the standing man mesh. 

2

 

m  

d  

W  

b  

i  

d  

a  

m  

t  

f  

T  

fi

L  

w  

m  

a[
w  

a  

p  

E

g

w  

a  

s

[  

w  

t  

t  

d  

fi

2

 

d  

h  

t  

v  

t

t  

t  

I  

v

G

2

 

c  

T

-  

v  

i  

E  

t  

g  

P  

p  

w  

w  

b  

f  

a  

h  

i  

n  

s  

t  

s  

m  

t  

t[

g  

m  

e

2

 

−  

b

o  

v  

t[
H  

L  

v  

e  

ε  

D  

b  

i  

i  
.4. Discretization 

For solving model Eqs. (6) –(8) , we take the inverted initial input

esh 

˜ M (V ˜ M 

, F ˜ M 

) which we refer to as ∂ ˜ �(0) , and discretize the

omain it bounds, i.e. ˜ �(0) , using a tetrahedral mesh 

˜ T (V ˜ T , F ˜ T ) .
e denote by ∂ ̃  T (V ∂ ̃  T , F ∂ ̃  T ) the triangular mesh which is the

oundary of ˜ T , which should be exactly ˜ M , but as tetrahedral-

zation procedures tend to generate meshes with boundaries that

o not perfectly fit the mesh that was used to define their bound-

ry, we will need to refer to this surface as well. Solving the model

eans finding the harmonic g ( x ), as implied from Eq. (2) . We chose

o work with FEM as our discretization, hence we consider a scalar

unction as a piecewise linear function defined over the vertices.

herefore, we seek a discretized harmonic function g which satis-

es 

 ˜ T g = 0 , (10)

here L ˜ T is the Laplacian operator matrix defined for a tetrahedral

esh 

˜ T . Writing our discretized model (10) , including the bound-

ry conditions, in matrix form we get 

L ˜ T I×I 
L ˜ T I×B 

0 I B 

][
X I 
X B 

]
= 

[
0 

g B 

]
, (11) 

here I and B are the sets of indices of the interior and bound-

ry vertices, respectively, and I B is the identity matrix of the ap-

ropriate size. We evaluate the boundary values g B = g 
∣∣
∂ ̃  T using

qs. (6) and (7) , 

 B = −Q · G, (12) 

here G is the vector of Green’s function G (v , v 0 ) values evaluated

t every vertex v ∈ ∂ ̃  T . Since g I is what we seek, the system is

implified to be, 

 L ˜ T I×I 
][ X I ] = [ −L ˜ T I×B 

· g B ] (13)

hich gives the values of g I , and together with the values g B ob-

ained in (12) we have the values of the discretized harmonic func-

ion g for all v ∈ V ˜ T . Using the discrete gradient operator matrix

efined for a tetrahedron-mesh, we can calculate G 

g 
F ˜ T 

= G ˜ T g de-

ned over the tetrahedrons t ∈ F ˜ T . 

.5. Interpolating ∇g to Vertices of ∂ ̃  T 

We use the barycentric volume (adapted from barycentric area

efined in [24] ) in order to interpolate G 

g 
F ˜ T 

values from the tetra-

edrons to the mesh vertices. Denoting V ol F (t j ) , t j ∈ F ˜ T as the

etrahedral volume of t j , then V ol V (v i ) = 

∑ 

t j ∈ N 1 i 
V ol F (t j ) / 4 is the

ertex volume of v i , where N 1 i 
is vertex v i 1 −ring neighborhood of

etrahedrons. We define an interpolation operator I F ∈ R 

| V ˜ T | ×| F ˜ T | 
V 
o interpolate values from the tetrahedrons to the vertices, in order

o get the values G 

g 
V ˜ T 

defined over the vertices v ∈ V ˜ T . Practically,

 

F 
V (i, j) = 

Vol F (t j ) 

4 Vol V (v i ) 
iff face j belongs to the 1 −ring neighborhood of

ertex i and 0 otherwise, so that, 

 

g 
V ˜ T 

= I F V · G 

g 
F ˜ T 

(14) 

.6. Interpolating velocity to vertices of ˜ M 

Having G 

g 
V ˜ T 

, we can easily calculate the gradient of the dis-

retized potential defined over the vertices v ∈ V ˜ T , denoted G 

φ
V ˜ T 

.

hough, what we would actually like to find are the values G 

φ
V ˜ M 

 the gradient values of the discretized potential defined over the

ertices v ∈ V ˜ M 

, since this is our surface mesh of interest. Find-

ng the velocity of those vertices is then merely u = −G 

φ
V ˜ M 

, as

q. (1) suggests. Though, for finding G 

φ
V ˜ M 

we project the vertices

hat belong to the boundary surface of ˜ T , i.e. v ∈ ∂ ̃  T , on the trian-

ular surface ˜ M . We denote those projected vertices positions by

 . We have ∀ p ∈ P , ∃ f ∈ F ˜ M 

s.t. p is on the plane defined by f (the

ositions p are somewhere on the faces of ˜ M ). As a side note we

ill mention that a tetrahedral mesh can be generated in such a

ay that it can be guaranteed that the vertices that belong to its

oundary surface are on the faces of the mesh used as an input

or the generation process, meaning the projection step described

bove is not needed. Nevertheless, as we do not generate a tetra-

edral mesh every step for a better performance, but rather evolve

t as well for a few iterations, therefore this projection step can

ot be discarded. Refer to Section 2.8 for further details. We as-

ume the gradient values of the discretized potential evaluated at

he vertices v ∈ ∂ ̃  T are the same as the values evaluated at the po-

itions P after projection, denoted G 

φ
P 

. Defining B ∈ R 

| P | ×| V ˜ M 

| as the

atrix of barycentric coordinates of the projected positions p rela-

ive to the faces F ˜ M 

, and solving, in the Least Squares (LS) sense,

he regularized system, 

B 

ε1 G ˜ M 

][
X 

]
| V ˜ M 

| ×1 
= 

[
G 

φ
P 

0 

]
(15) 

ives the desired values of G 

φ
V ˜ M 

, where G ˜ M 

is the gradient operator

atrix of the surface mesh 

˜ M and ε1 is a factor determining how

ffective the regularization will be. 

.7. Evolving the surface boundary 

As noted earlier, applying Eq. (1) we get the velocities u =
G 

φ
V ˜ M 

of the vertices v ∈ V ˜ M 

, and we can evolve the surface

oundary mesh 

˜ M . We project the velocity u of each vertex v ∈ V ˜ M 

n the appropriate surface normal at each vertex to get the normal

elocities u n . Finding the new locations of the vertices v ∈ V ˜ M 

is

hen being done by solving the system, in the LS sense, 

I n ˜ M 

ε2 μL ˜ M 

][
X 

]
= 

[
v̄ + ∂τ · u n 

0 

]
. (16) 

ere I n ˜ M 

is the identity matrix of the appropriate size, L ˜ M 

is the

aplacian operator matrix of ˜ M , ∂τ is the time interval length,

¯
 being the vector of the vertices v ∈ V ˜ M 

, μ being the smallest

igenvalue (which is not 0) of L ˜ M 

that acts as a regularizer, and

2 is a factor determining how effective the regularization will be.

enoting the resulting set of vertices as V τ+ ∂τ
˜ M 

, the mesh defined

y (V τ+ ∂τ
˜ M 

, F ˜ M 

) is set to be the surface mesh 

˜ M 

n (V n 
˜ M 

, F 

n 
˜ M 

) which

s the boundary of the domain for the next iteration. Once in a few

terations the mesh defined by (V τ+ ∂τ
˜ 

, F ˜ M 

) is first being remeshed
M 
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Fig. 5. SDF values for different meshes. (left) Eight. (right) Bob the duck. 

Fig. 6. High genus. Result obtained after allowing the flow to progress beyond the 

flow singularities, with the heuristic described at Section 2.9 . 
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and only then set to be ˜ M 

n (V n 
˜ M 

, F 

n 
˜ M 

) . The current foliation leaf is

the surface mesh defined by the faces F 

n 
˜ M 

and by the vertices ob-

tained by applying the inversion map (9) to the vertices V n 
˜ M 

. In

cases where we want to have all the foliation leaves with the same

triangulation as the original manifold, then a post process opera-

tion of iteratively projecting on each leaf, from outermost to in-

nermost, the set of vertices projected on the previous leaf, where

initially this set is V ˜ M 

. This processing can also be done in parallel

to the evolution, at the end of each step, and not necessarily as a

post process step. 

2.8. Reusing tetrahedral mesh ˜ T 

In order to speed up execution time, we reduce the number of

tetrahedral mesh generations and reuse results from previous iter-

ations. Since we know G 

g 
V ˜ ∂T 

for the vertices on the boundary sur-

face of the mesh ∂ ̃  T , we therefore can calculate the velocity of

those vertices, denoted by w B , and we can evolve the boundary

of the tetrahedral mesh. As for updating the locations of the in-

terior vertices of ˜ T , since we do not need those vertices to move

according to the model Eqs. (6) –(8) we rather use the velocity of

the boundary vertices and find a smooth solution for the interior

vertices, i.e. solve in the LS sense the following system, [
L I×I L I×B 

0 I B×B 

][
X I 
X B 

]
= 

[
0 

w B 

]
(17)

Similar to before, simplifying of the system yields, 

[ L ˜ T I×I 
][ X I ] = [ −L ˜ T I×B 

· w B ] (18)

and we get w I . With the complete velocity vector w for the ver-

tices of the tetrahedral mesh we then advance the vertices V ˜ T lo-

cations by ∂τ · w to get their new locations. We still regenerate a

new tetrahedral mesh but only once in a few iterations. 

2.9. High genus 

Our method is capable of handling high genus meshes with-

out boundaries, if we allow the flow to change the topology of

the evolved surface by continuing beyond a flow singularity, when

such occurs. Our method handles flow singularities by using the

following rather simple heuristic: 

• Find the number of degenerate triangular faces (see below for

further details), let’s call this number d . 
• If d > t 1 , where t 1 is the minimal number of degenerate trian-

gles that we would like to remove at once, then: 

– If d has increased from the previous evolution iteration, and

d < t 2 then continue, where t 2 is the maximal number of de-

generate triangles that allowed to exist unhandled. 

– If d > t 2 , or d has remained the same as in the previous evo-

lution iteration (but d > t 1 ), then all the degenerate triangles

are being marked to be removed from the surface. 
• Apply removal of faces marked to be removed, only if the genus

after the removal will decrease. 

Whenever such faces are removed, our method executes a holes

filling procedure to fill up the holes that were created due the

faces removal, so that the resulted mesh is again without bound-

aries. The evolution continues with this new surface of lower order

genus, until a convergence to a sphere is reached. 

We tried two methods to determine whether a triangular face

is considered degenerate for the heuristic above: 

• A face whose area is less than a threshold θ , where θ � 1. 
• A face whose Shape Diameter Function (SDF) value is less than
a threshold μ, where μ< 1. 
The SDF, as appeared in [25] , is a scalar function defined on

he mesh surface. It expresses an estimate of the diameter of the

bject’s volume in the neighborhood of each point on the sur-

ace. The SDF values remain almost the same for different poses

f the same object. Fig. 5 shows examples for SDF values of two

eshes, after a few evaluations of our flow, and before reaching a

ow singularity. It is noticeable in both of the examples that the

reas where flow singularity is about to occur are areas of low

DF values. In our tests we used values of θ ∈ (1 e −7 , 1 e −5 ) and

∈ (5 e −3 , 2 e −2 ) . Although the method that designates degenerate

aces according to their area is simpler to implement, the method

hat uses the SDF values seems to perform better, and operates as

xpected on more high-genus objects. We used the implementa-

ion of the SDF values calculation provided as part of CGAL [26] .

igs. 6 and 19 show results of our method when running on high-

enus meshes. 

. Implementation details 

In our experiments we executed our method on surfaces that

re bounded by the unit sphere. That way, after applying the in-

ersion, the inverted surface is then completely outside the unit

phere. Working in that manner is not obligatory, but rather it

elped in keeping each parameter used in our method of the same

rder of magnitude when running on different surfaces. In the fol-

owing subsections we will describe the parameters we used when

xecuting our method and how we set their values. 

.1. Time step interval ∂τ and injection rate Q 

In our experiment we kept the time interval constant and used

he value of ∂τ = 0 . 1 . Since the evolution happens in the inverted

omain, and is executed as a flow of injection from a singular

oint, therefore as the boundary expands at every iteration of

he simulation, the injection rate affects less and less, since the

istance from the singularity to the boundary increases. In other

ords, the relative progress of the simulation is reduced along the

xecution. This behavior can be demonstrated when considering

he evolution of a sphere according to our model. It can easily be

hown that when the initial domain is a sphere, then when apply-

ng our model Eqs. (6) –(8) in that domain gives rise to the follow-

ng equation for the radius of the sphere, 

 (t) = 

3 

√ 

R 

3 
0 

− 3 Qt 

4 π
(19)
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Fig. 7. ε1 effectiveness demonstrated on a teddy mesh foliation result. Meshes are 

clipped using 3 planes. (left) ε1 = 0 . 09 . (right) ε1 = 0 . 9 . 

Fig. 8. ε2 effectiveness demonstrated on a teddy mesh foliation result. (left) ε2 = 

6 e −7 . (right) ε2 = 6 e −5 . 
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hich supports our claim on the slowing in the simulation

rogress. Reminder: we handle a flow of injection, i.e. Q < 0. See

ppendix A for a derivation of Eq. (19) . In order to tackle this

roblem, we use a heuristic for adaptively changing the value of

he injection rate Q . The main idea is that we have a predefined

arameter α determining the requested movement of the closest

oint to the singularity in percentage from its distance to the sin-

ularity. Notice that the closest point to the singularity, denoted

y ρ , can change between iterations. In other words, we would

ike the movement of ρ to be of size α ·ρ . At every iteration we

heck the actual movement that we achieved, denoted ∂ρ . Ac-

ording to the difference (α · ρ − ∂ρ) , we increase or decrease (by

 constant factor) yet another parameter γ , where if the current

ime is τ then γ should take the value as in the following rela-

ion (γ ρ(τ )) 3 = ρ(τ − ∂τ ) 3 − ρ(τ ) 3 . The new value of Q is then

in the spirit of Eq. (19) , as if the domain is spherical), 

 = 

γ 3 · 4 π

3 · ∂τ
(20) 

.2. Triangular and tetrahedral meshes handling 

In our implementation we chose to use the Finite Element

ethod (FEM). Alternative approaches can be taken for implement-

ng the method described in Section 2 . For instance, in [27] the

uthors used the Boundary Element Method (BEM) for address-

ng a model closely related to the model we use for simulating

he 3D Hele-Shaw flow. In our experiments we also tried to utilize

 method suggested in [28] which is another BEM alternative for

olving our model. However, since we did not experience any per-

ormance benefit, we decided to choose FEM. For discretizing the

olumetric domain, we tried using two alternatives, CGAL [26] and

etWild [29] . We used TetWild while it was still in development,

nd though it gave results that seem to be better for our needs

for example, controlling the deviation of the generated tetrahe-

ral mesh boundary surface from the triangular surface that was

iven as an input is much easier than CGAL), we eventually chose

o use CGAL for tetrahedral mesh generation due its better perfor-

ance, and since it is easier to work with it as it has a C/C ++ API,

hile TetWild is black box utility. We also used CGAL capabilities

or triangular mesh remeshing and hole filling. In our implementa-

ion, after evolving the boundary and applying the inversion map I ,

e remesh the resulting surface to get the current foliation leaf. As

or the tetrahedral mesh generation, we execute it once in every 20

terations, while in the other iterations we update the tetrahedral

esh vertices as described in Section 2.8 . 

.3. Regularization factors 

.3.1. ε1 

The purpose of ε1 is to prevent the system in Eq. (15) from be-

ng rank deficient. As we would like to interpolate values from the

rojected positions P which are on the faces F ˜ M 

, to the vertices

 ˜ M 

, it is not guaranteed that for every face f ∈ F ˜ M 

there exists a

oint p ∈ P which is on the face f . Therefore, there might be ver-

ices which all the faces they belong to have no points in P placed

n them. Meaning, no interpolation of the velocity can be done for

hose vertices when solving Eq. (15) . That is where the regulariza-

ion factor ε1 comes in, as it causes to the velocity to be smooth.

ig. 7 shows how ε1 affects the flow. The value of ε1 needs not

o be too big as it causes aggressive smoothing to the velocity of

he boundary mesh vertices, which slows down the evolution. Fur-

hermore, it can be seen that for larger values of ε1 features (such

s the hands, legs, ears, etc.) disappear at a later stage in the flow.

e should note that the result on the right in Fig. 7 , that shows an

volution with larger ε1 value, does not converge to a sphere only

ecause the simulation was halted, due to very long running time.
e found that the value of ε = 0 . 09 works fine for the desired re-

ults, and used it in all of our experiments. 

.3.2. ε2 

The purpose of ε2 is to smooth the new positions of the ver-

ices V ˜ M 

. Having this factor helps to obtain better evolution re-

ults. A value too big of ε2 is problematic though. In Fig. 8 , the re-

ult on the right, which matches an evolution with a rather large

alue of ε2 , demonstrates the problems with a smoothing of the

ew positions which is too aggressive. Besides having the features

such as the hands, legs, ears, etc.) taking spherical shapes, the big-

er problem is that it causes intersections between the layers, as

an be clearly seen happens in the right leg. We used the value of

2 = 6 e −7 in all of our experiments. 

.4. Limitations 

.4.1. Flow singularities 

As indicated already in Section 1.2 , the Hele-Shaw flow with in-

ection is in principle well posed. Though, when requiring a so-

ution that is not allowed to change topology, a flow singularity

ill be encountered for an initial geometry sufficiently entangled

see [15] , Chapter 4 Section 4.2 and Theorem 4.5.2). High-genus

eshes are a typical example for such a geometry where the flow

ill reach a singularity. Such singularities, however, can also arise

n from genus zero meshes as well. See Fig. 9 for such an example.
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Fig. 9. Spring mesh, genus-zero failure case. (left) Layers obtained until flow sin- 

gularity reached. (right) The mesh in time of flow singularity. The mesh is a one 

component mesh with degenerate triangles. 

Fig. 10. Controlling the flow. Showing the same mesh with different singular 

points. 
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3.4.2. Layer intersections 

Results obtained using our implementation might encounter in-

tersections of the layers, that should be non-intersecting in gen-

eral. Two typical reasons for this to happen: 

• The parameter ε2 , described in Section 3.3.2 in detail, might

cause such layer intersections if not tuned properly, as demon-

strated in Fig. 8 . 
• An inherent flaw in our implementation due to relying on

remeshes. In general, our method remeshes the currently
Fig. 11. Teddy meshes 
evolved mesh after the new positions for the vertices were cal-

culated. 

– In areas of low to no velocity such a remesh means essen-

tially the effective velocity would differ from the original

one not only in magnitude, but even in its direction. There-

fore, areas that are almost static in a rather long period of

the evolution might suffer intersections of their appropriate

layers. 

– In a similar manner, areas of high curvature are more likely

to suffer intersections of their appropriate layers, as easily

can be seen in our results for high-genus meshes, in areas

forming the holes. 

. Experimental results 

We demonstrate our method on various genus-zero meshes and

n higher-genus meshes as well. In Figs. 15 –17 we show the re-

ults of our method applied on inputs of closely related meshes,

ith the singular point being located in similar positions along the

eshes. In Figs. 20 –22 we show results after applying our method

n inputs of the same mesh at different poses. In both of these

ets of results it is noticeable that similar meshes produce similar

ayers, or phrasing it differently, the convergence to a sphere looks

imilar for similar meshes. In Fig. 19 we show some more results

f our method when applied on high-genus meshes. In Fig. 14 we

emonstrate the use of the texture of the object. We show results

or 3 meshes and present only the initial mesh given as an input

nd the final mesh obtained at the end of the evolution, though all

he intermediate surface meshes from all the evolution steps have

 texture. We use the same texture coordinates of the initial mesh

iven as an input for all the layers obtained during the evolution,

eaning we need the same triangulation for all the layers, which

s accomplished by the method described in Section 2.7 . 

.1. Controlling the flow 

One of the novelties of our method is that it introduces a flow

hat is controllable, and this control is achieved by choosing the

ocation of the injection point, when simulating the 3D Hele-Shaw

ow in the inverted domain. Choosing a location that the domain

s starshaped with respect to it, results in a flow that is guaranteed

o converge, but as our results show, convergence can be achieved

ven for non starshaped configurations. In our implementation,

e chose to always use the origin as the injection point, and

ranslated the domain according to the desired location of the
volume mapping. 
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Fig. 12. Ant meshes volume mapping. 

Fig. 13. Bird meshes volume mapping. 

Fig. 14. Applying texture. (left) The result of our flow. (middle) Initial mesh tex- 

tured. (right) Final mesh textured, zoomed in. 

s  

e  

fl  

Fig. 15. Hands. In each row two different views of the same result. 

w  

p  

i  

t

ingularity inside the domain. This choice was taken only for the

ase of implementation. Fig. 10 demonstrates the ability of our

ow to be controlled. We present 2 different meshes, each one
ith 3 different positions of the singular point. By changing the

osition of the singular point we affect the way the layers are be-

ng formed, i.e. the way the mesh converges to a sphere - the areas

hat will be the first and the last to move during the evolution. 
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Fig. 16. Fish. 

Fig. 17. Birds. 

Fig. 18. Horse. (left) side view. (right) bottom view. 

Fig. 19. High genus. (left) genus 5. (right) genus 3. 

 

 

 

 

 

 

 

Fig. 20. Teddy meshes in different poses. 

Fig. 21. Man meshes in different poses. 

Fig. 22. Ant meshes in different poses. 
4.2. Volumetric mapping 

Using our method, we can easily find a volumetric mapping,

between two meshes, assuming we know a correspondence of a

rather small set of point landmarks between those meshes. For

building the volumetric map we utilize the method presented

in [30] to get a mapping between the two initial input meshes.

We then apply our method to each of the meshes until each

of the meshes converges to a sphere, assuming the flow indeed
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onverges, and having each layer in each of the evolutions with

he same triangulation as the input meshes, using the method

entioned in Section 2.7 . The mapping we got for the initial

nput meshes is then being used to map all the matching layers

f the volumes. Furthermore, with this method we actually get a

apping between each of the layers of the volumes, rather than

nly the matching ones. Figs. 11 –13 demonstrate the volumetric

apping obtained using our method. 

. Conclusions 

In this paper we propose a method to generate a generalized

oliation of a volume given its boundary surface as an input. We

ccomplish it by relying on a generalization of the Hele-Shaw flow

ith injection in three-dimensions, where the flow is being exe-

uted in the domain bounded by the Möbius inverted input bound-

ry surface. Our foliation leaves are then obtained when inverting

ack the surfaces obtained at each simulation step. Our method

roduces a controllable flow that converges to a sphere. We be-

ieve that our flow could potentially be used for further mesh pro-

essing tasks, such as mesh smoothing, volumetric correspondence

nd volumetric texture transfer. It could also be used as a pre-

rocess step for correspondence matching methods and for three

imensional point cloud recognition and classification algorithms.

t is also interesting to investigate generalizations of the Hele-Shaw

ow, such as more general singularity structures, and two-phase

ows. 
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ppendix A. Evolution of a sphere 

An analytic solution for the model when domain is a sphere.

he Laplacian in spherical coordinates (after neglecting the terms

ependant of θ and φ due to symmetry) is, 

� = 

1 

r 2 
∂ 

∂r 

(
r 2 

∂�

∂r 

)
(A.1) 

q. (2) is then, 

� = Qδ(r) (A.2) 

he Green function for the Laplacian in spherical coordinates, 

 (r) = − 1 

4 π r 
(A.3) 

 solution is of the following form, 

(r) = − Q 

4 π r 
+ c 1 , c 1 const (A.4) 

pplying boundary condition - Eq. (7) , 

(r = R ) = σH ⇒ σH = − Q 

4 πR 

+ c 1 (A.5) 

 c 1 = σH + 

Q 

4 πR 

(A.6) 

he potential is therefore, 

(r) = σH − Q 

4 π r 
+ 

Q 

4 πR 

(A.7) 
(r, t) = σH(t ) − Q 

4 π r 
+ 

Q 

4 πR (t ) 
(A.8) 

he velocity is the normal derivative of the potential, 

 

′ (t) = v = −∂�

∂ ̂  n 

∣∣∣
r= R (t) 

= −∂�

∂r 

∣∣∣
r= R (t) 

= − Q 

4 π r 2 

∣∣∣
r= R (t) 

(A.9) 

o that we get an ODE, 

 

′ (t) = − Q 

4 πR (t) 2 
(A.10) 

dR 

dt 
= − Q 

4 πR (t) 2 
(A.11) 

 

4 πR (t) 2 dR = −
∫ 

Qdt (A.12) 

4 πR (t) 3 

3 

= −Qt + c 2 (A.13) 

 (t) = 

3 

√ 

3 

4 π
(−Qt + c 2 ) (A.14) 

 (t = 0) = R 0 ⇒ R 0 = 

3 

√ 

3 

4 π
c 2 ⇒ c 2 = R 

3 
0 

4 π

3 

(A.15) 

 (t) = 

3 

√ 

3 

4 π

(
−Qt + R 

3 
0 

4 π

3 

)
= 

3 

√ 

R 

3 
0 

− 3 Qt 

4 π
(A.16) 

If Q > 0, i.e. the flow is a suction flow, then the sphere will van-

sh at t = R 3 
0 

4 π
3 Q . Our flow is an injection flow, i.e. Q < 0. 
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