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Figure 1: Using our framework various vector field design goals can be easily posed as linear constraints. Here, given three
symmetry maps: rotational (S1), bilateral (S2) and front/back (S3), we can generate a symmetric vector field using only S1
(left), S1 + S2 (center) and S1 + S2 + S3 (right). The top row shows the front of the 3D model, and the bottom row its back.

Abstract
In this paper, we introduce a novel coordinate-free method for manipulating and analyzing vector fields on discrete
surfaces. Unlike the commonly used representations of a vector field as an assignment of vectors to the faces of
the mesh, or as real values on edges, we argue that vector fields can also be naturally viewed as operators whose
domain and range are functions defined on the mesh. Although this point of view is common in differential geometry
it has so far not been adopted in geometry processing applications. We recall the theoretical properties of vector
fields represented as operators, and show that composition of vector fields with other functional operators is
natural in this setup. This leads to the characterization of vector field properties through commutativity with other
operators such as the Laplace-Beltrami and symmetry operators, as well as to a straight-forward definition of
differential properties such as the Lie derivative. Finally, we demonstrate a range of applications, such as Killing
vector field design, symmetric vector field estimation and joint design on multiple surfaces.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—

1. Introduction

Manipulating and designing tangent vector fields on discrete
domains is a fundamental operation in areas as diverse as dy-
namical systems, finite elements and geometry processing.
The first question that needs to be addressed before design-
ing a vector field processing toolbox, is how will the vector
fields be represented in the discrete setting? The goal of this
paper is to propose a representation, which is inspired by
the point of view of vector fields in differential geometry as
operators or derivations.

In the continuous setting, there are a few common ways
of defining a tangent vector field on a surface. The first, is

to consider a smooth assignment of a vector in the tangent
space at each point on the surface. This is, perhaps, the most
intuitive way to extend the definition of vector fields from
the Euclidean space to manifolds. However, it comes with a
price, since on a curved surface one must keep track of the
relation between the tangent spaces at different points. A nat-
ural discretization corresponding to this point of view (used
e.g. in [PP03]) is to assign a single Euclidean vector to each
simplex of a polygonal mesh (either a vertex or a face), and
to extend them through interpolation. While this represen-
tation is clearly useful in many applications, the non-trivial
relationships between the tangent spaces complicate tasks
such as vector field design and manipulation.
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An alternative approach in the continuous case, is to work
with differential forms (see e.g. [Mor01]) which are linear
operators taking tangent vector fields to scalar functions. In
the discrete setting this point of view leads to the famous
Discrete Exterior Calculus [Hir03, FSDH07], where dis-
crete 1-forms are represented as real-valued functions de-
fined over the edges of the mesh. While this approach is
coordinate-free (as no basis for the tangent space needs to
be defined), and has many advantages over the previous
method, there are still some operations which are natural in
the continuous setting, and not easily representable in DEC.
For example, the flow of a tangent vector field is a one pa-
rameter set of self-maps and various vector field properties
can be defined by composition with its flow, an operation
which is somewhat challenging to perform using DEC.

Finally, another point of view of tangent vector fields in the
continuous case is to consider their action on scalar func-
tions. Namely, for a given vector field, its covariant deriva-
tive is an operator that associates to any smooth function f
on the manifold another function which equals the deriva-
tive of f in the direction given by the vector field. It is well
known that a vector field can be recovered from its covariant
derivative operator, and thus any vector field can be uniquely
represented as a functional operator. We will refer to these
operators as functional vector fields (FVFs). Note, that while
this point of view is classical in differential geometry, it has
so far received limited attention in geometry processing.

In this paper, we argue that the operator point of view yields
a useful coordinate-free representation of vector fields on
discrete surfaces that is complementary to existing repre-
sentations and that can facilitate a number of novel applica-
tions. For example, we show that constructing a Killing vec-
tor field [Pet97] on a surface can be done by simply finding
a functional vector field that commutes with the Laplace-
Beltrami operator. Furthermore, we show that it is possi-
ble to transport vector fields across surfaces, find symmet-
ric vector fields and even compute the flow of a vector field
easily by employing the natural relationship between FVFs
and functional maps [OBCS∗12]. Finally, the Lie derivative
of two vector fields is given by the commutator of the two
respective operators, and as a result the covariant derivative
of a tangent vector field with respect to another can be com-
puted through the Koszul formula [Pet97].

To employ this representation in practice, we show that for
a suitable choice of basis, a functional vector field can be
represented as a (possibly infinite) matrix. As not all such
matrices represent vector fields, we show how to parameter-
ize the space of vector fields using a basis for the operators.
With these tools in hand, we propose a Finite Element-based
discretization for functional vector fields, and demonstrate
its consistency and empirical convergence. Finally, we apply
our framework to various vector field processing tasks show-
ing comparable results to existing methods, as well as novel
applications which were challenging so far.

1.1. Related Work

The body of literature devoted to vector fields in graph-
ics, visualization and geometry processing is vast and a full
overview is beyond our scope. Thus, we will focus on the
representation and discretization of vector fields, as these as-
pects of vector field processing are most related to our work.

One approach to discretization (e.g. [PP03, TLHD03]) is to
use piecewise constant vector fields, where vectors are de-
fined per face and represented in the standard basis in R3.
This approach is simple and allows to define discrete ver-
sions of standard operators such as div and curl, which are
consistent with their continuous counterparts (e.g. one can
define a discrete Hodge decomposition [PP03]). However,
since the representation is based on coordinate frames, it
makes vector field design challenging as the relationship be-
tween tangent spaces is non-trivial, leading to difficult opti-
mization problems.

An alternative discretization of vector fields was suggested
as part of the formalism of Discrete Exterior Calculus
(DEC) [Hir03], where vector fields are identified with dis-
crete 1-forms, represented as a single scalar per edge. This
approach is inherently coordinate-free, allowing to formu-
late vector field design as a linear system [FSDH07]. Un-
fortunately, computing the Lie derivative of vector fields re-
mains a complex task using DEC (as shown in [MMP∗11]).

Vector field design and processing applications are also
tightly connected to the analysis of rotationally symmetric
(RoSy) fields, see e.g. [PZ07,RVAL09,CDS10]. In the latter
work, for example, a vector field (or a symmetric direction
field) is represented using an angle per edge (an angle val-
ued dual 1-form), which represents how the vector changes
between neighboring triangles. While these approaches are
also coordinate-free and lead to linear optimization problems
for direction field design, it is not clear how vector-field val-
ued operators can be represented in such a setup.

In this paper, we argue that in addition to the existing dis-
cretization methods, it is often useful to represent vector
fields through their covariant derivatives as linear functional
operators. This representation is coordinate-free and, in ad-
dition, elucidates the intimate connection between vector
fields and self maps of the surface, allowing us to extend the
basic vector field processing toolbox to computational tasks
which are challenging using existing discretization tools.

Note that the operator representation of vector fields has
been used in the context of fluid simulation by Pavlov et al.
[PMT∗11]. However, in that work, the authors were primar-
ily interested in representing divergence-free vector fields
and did not use this representation for tangent vector field
analysis and design. In this paper, we consider general vec-
tor fields, demonstrate how this representation can be used
for vector field processing, and show a deep connection with
the functional map framework [OBCS∗12].

c© 2013 The Author(s)
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1.2. Contributions

Our main observation is that tangent vector fields can be rep-
resented in a coordinate-free way as functional operators.
While this view is classical in differential geometry [Mor01],
it has so far received limited attention in geometry process-
ing. Using this perspective we:

• Show how functional vector fields can be naturally com-
posed with other operators, and thus relate vector fields
to other common operators such as maps between shapes
and the Laplace-Beltrami operator (Section 2).

• Provide a novel coordinate-free discretization of tangent
vector fields (Section 4).

• Describe various applications for vector field processing
including Killing vector field design, design of symmet-
ric vector fields and joint vector field design on multiple
shapes, which are all easily solvable as linear systems in
our framework (Section 5).

2. Vector Fields as Operators

In this section we define the coordinate-free view of vector
fields as abstract derivations of functions in the continuous
setting. This point of view is well-known in differential ge-
ometry (see e.g. [Mor01] for an excellent reference). Thus,
we only recall the standard definition and its main properties.

2.1. The Covariant Derivative of Functions

We first assume that we are given a compact smooth Rie-
mannian manifold M and a tangent vector field V , which can
be thought of as a smooth assignment of a tangent vector
V (p) to each point p ∈ M. The vector field defines a one-
parameter family of maps, Φ

t
V : M→M for t ∈R, called the

flow of V . The flow is formally defined as the unique solution
to the differential equation:

d
dt

Φ
t
V (p) =V (Φt

V (p)), Φ
0
V (p) = p. (1)

Then, for a given function f ∈C∞(M), the covariant deriva-
tive DV ( f ) of f with respect to V is a function g, which in-
tuitively measures the change in f with respect to the flow
under V . Formally,

g(p) = DV ( f )(p) = lim
t→0

f (Φt
V (p))− f (p)

t
.

A classical result in Riemannian geometry ( [Mor01], p. 148)
is that the covariant derivative can also be computed as :

DV ( f )(p) = g(p) = 〈(∇ f )(p),V (p)〉p , (2)

where 〈,〉p denotes the inner product in the tangent space of
p, and∇ f is the gradient of f (see Figure 2).

2.2. The Covariant Derivative as a Functional Operator

We stress that DV is best viewed as an operator, which maps
smooth functions on M to smooth functions on M. Moreover,

Figure 2: Given a vector field V (left) and a function f (cen-
ter left), the inner product of ∇ f (center right) with V is the
covariant derivative DV ( f ) (right). For the marked point,
for example, V is orthogonal to ∇ f , yielding 0 for DV ( f ).
Vector fields are visualized by color coding their norm, and
showing a few flow lines for a fixed time t.

one can show that DV encodes V so that if V1 and V2 are
vector fields such that DV1 f = DV2 f for any f ∈ C∞(M),
then V1 = V2 (see [Mor01], p.38). Said differently, there is
no loss of information when moving from V to DV .

The covariant derivative (viewed as a functional operator, i.e.
an FVF) satisfies the following two key properties:

Linearity:
D(α f +βg) = αD( f )+βD(g), (3)

and Leibnitz (product) rule:

D( f g) = f D(g)+gD( f ). (4)

Conversely, a functional operator D corresponds to a vector
field, if and only if it satisfies (3) and (4) (see [Spi99] p. 79).

Why are these the necessary properties for operators that
represent vector fields? Intuitively, this is because vector
fields can be thought of as first order directional deriva-
tives, which have two essential properties. First, that con-
stant functions are mapped to the zero function. And second,
that DV ( f ) depends on f only to first order.

One of the advantages of considering vector fields as ab-
stract derivations is that this point of view can be gener-
alized to settings where differential quantities are not well
defined. For example, on a discrete surface there is no well
defined normal direction at vertices and edges. By working
with purely algebraic constructs, such as linear operators, we
can define differentiation without requiring the concept of a
limit, which is useful when the underlying surface is not con-
tinuous and such a limit does not exist. Moreover, as we will
see, the operator point of view makes it easier to manipulate
vector fields and relate them to other functional operators.

2.3. Properties

While the operator point of view is equivalent to the standard
notion of a vector field as a smooth assignment of tangent
vectors, certain operations are more natural in this represen-
tation. Below we list such operations, which we will use in
our applications in Section 5. The proofs of all lemmas are
provided in the supplemental material.

Operator composition. By using the operator point of view

c© 2013 The Author(s)
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Figure 3: Two orthogonal vector fields on the torus V1,V2,
whose Lie derivative is 0. Modifying the norm of V2 using a
function s yields a lie derivative which is parallel to V2.

of vector fields, it becomes easy to define their composition
both with other vector fields and other more general func-
tional operators. Unfortunately, given two vector fields DV1

and DV2 , the operator DV1 ◦DV2 does not necessarily corre-
spond to a vector field. However, one can modify this oper-
ator to obtain a fundamental notion:

Lie derivative of a vector field. Given two vector fields V1
and V2, the Lie derivative (or Lie bracket) of V2 with respect
to V1 is a vector field V3 defined as:

LV1(V2) = [V1,V2] = DV3 = DV1 ◦DV2 −DV2 ◦DV1 . (5)

It is easy to see that DV3 thus defined is both linear and satis-
fies the product rule. Hence, DV3 corresponds to a unique
vector field V3. Intuitively, the Lie derivative captures the
commutativity of the flows of V1 and V2. In particular, the
Lie derivative is zero if and only if the flows defined by V1
and V2 commute (see [Spi99], p.157):

Φ
−s
V2
◦Φ
−t
V1
◦Φ

s
V2 ◦Φ

t
V1 = Id ∀s, t ∈ R (6)

Figure 3 illustrates the computation of the Lie derivative on
a torus. We consider two vector fields V1 and V2 whose flows
commute. The average norm of [V1,V2] computed using the
discrete operators we describe in Section 4 is on the order of
1e-8, close to 0 as expected. In general, if [V1,V2] = 0, it can
be shown that for any scalar function s : M → R, [V1,sV2]
must be parallel to V2. In Figure 3, we show a scaling func-
tion s, and the computed vector field V3 = [V1,sV2], which is
parallel to V2, as expected.

Composition with other operators. Of course, it is possible
to consider the composition of the FVF operator DV with
other functional operators. Interestingly, the commutativity
of DV with a differential operator D is closely related to the
commutativity of its flow with D.

Lemma 2.1 Let T t
F , t ∈ R be the functional operator repre-

sentations of the flow diffeomorphisms Φ
t
V : M→ M of V ,

defined by T t
F ( f ) = f ◦Φ

t
V for any function f ∈ C∞(M).

If D is a linear partial differential operator then DV ◦D =
D◦DV if and only if for any t ∈ R, T t

F ◦D = D◦T t
F .

For example, on a Riemannian manifold, we can consider
composition with the Laplace-Beltrami operator L. The
commutativity of DV with L is then closely related to the
metric distortion imposed by the flow of V . In particular, re-

Figure 4: Using commutativity with L, we compute the KVFs
on the sphere (V1,V2,V3). Alternatively, we compute V4 =
[V1,V2], note the similarity of V3 and V4.

call that a vector field is called a Killing vector field (KVF)
if Φ

t
V is an isometry for all t (see [Pet97], Chapter 7). Then:

Lemma 2.2 A vector field V is a Killing vector field if and
only if DV ◦L = L◦DV .

From this lemma, it is easy to see that KVFs form a group
under the Lie derivative. Indeed, the following lemma, which
follows directly from the definition of the Lie derivative, is
useful in general:

Lemma 2.3 Given two vector fields DV1 and DV2 that both
commute with some operator D, the Lie derivative LV1(V2)
will also commute with D.

Figure 4 demonstrates these properties on the sphere. On the
left, we show V1,V2,V3, the three KVFs of the sphere, com-
puted using Lemma 2.2 by constructing a linear system (as
explained in Section 5). On the right, we show V4 = [V1,V2],
which was computed as the Lie bracket of the first two
KVFs. Note the similarity between V3 and V4. We will use
these results for designing approximate KVFs in Section 5.

Composition with mappings. In many settings we are also
interested in the relation between vector fields on multiple
surfaces related by mappings. In particular, given a vector
field V1 on surface M and a diffeomorphism T : M → N,
one can define the vector field V2 on surface N via the push
forward: V2(q) = dT (V1(T

−1(q))). Note that in the discrete
case, it is often difficult to compute the differential dT of a
map T between shapes with different discretizations. At the
same time, one can equivalently define the vector field V2 us-
ing the operator approach, without relying on dT , by using
the functional representation of the map T .

As mentioned in [OBCS∗12], the functional representation
TF of a map T is a linear operator on the space of func-
tions, taking functions on N to functions on M defined by
TF (g) = g◦T for any function g ∈C∞(N). This means that
the functional vector field DV2 , and thus V2 itself can be ob-
tained by simple composition of three linear functional oper-
ators without the need to estimate the differential dT , using:

Lemma 2.4 DV2 = (TF )
−1 ◦DV1 ◦TF .

Figure 5 illustrates vector field transportation using this ap-
proach (vector fields are visualized using [PZ11]). Given V1
on M, and a map T : M → N, we generate V2 on N using
Lemma 2.4. V3 is computed using the differential of the map,

c© 2013 The Author(s)
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Figure 5: Given a vector field V1 on M and a map T : M→
N, we generate a vector field V2 on N using Lemma 2.4.
Compare with directly transporting V1 using the differential
of the map, yielding V3. Note the ringing artifacts in V3.

given by the affine map between corresponding triangles.
Note that V3 tends to be noisy, due to the locality of the trans-
port procedure, as opposed to the smoother V2. Furthermore,
this approach is applicable to shapes with different connec-
tivity, where computing dT is challenging. In Section 5 we
use a similar approach to design vector fields which are con-
sistent with the map T : M→ N.

Vector field flow. The FVF DV representing a vector field
is also closely related to the functional representation of the
flow Φ

t
V . In particular:

Lemma 2.5 Let T t =Φ
t
V be the self-map associated with the

flow of V at time t. Then if T t
F is the functional representation

of T t , for any real analytic function f (see [DFN92], p. 210):

T t
F f = exp(t DV ) f =

∞
∑
k=0

(tDV )
k f

k!
.

This lemma is particularly useful since it allows to avoid the
potentially costly solution of the system of equations (1) and
directly estimate the functional representation of the map Φ

t
V

through operator exponentiation. Note that DV is a moder-
ately sized matrix when represented in a basis, and therefore
its exponent can be computed efficiently. Figure 6 shows an
example of function flow using this method.

Covariant derivative of a tangent vector field. Some PDEs
can be described using the covariant derivative [Mor01] of
a vector field V1 with respect to another vector field V2, de-
noted∇V2V1. For planar vector fields, for example,∇V2V1 =
J(V1)V2, where J(V1) is the Jacobian matrix of V1.

On a surface, however, this representation requires a basis
for the tangent space at every point, and a suitable connec-
tion that allows to transport a vector V (p) to a neighbor-
ing point q, which makes ∇V2V1 elusive to compute in a
coordinate-free way. Fortunately, there is an intimate con-
nection between the Lie and covariant derivatives of vector
fields, through the Koszul formula, ( [Pet97], p. 25):

2g(∇V1V2,Z) = DV1(g(V2,Z))−g(V1, [V2,Z])

+DV2(g(V1,Z))−g(V2, [V1,Z])

−DZ(g(V1,V2))+g(Z, [V1,V2]).

(7)

Here, Z is an arbitrary vector field, g(·, ·) = 〈·, ·〉p is the inner

Figure 6: Applying the flow of a vector field (left) to a func-
tion (center left) using Lemma 2.5. (center right, right) The
function after the flow, for two sample t values.

product in the tangent space of p, and [·, ·] is the Lie bracket
(Eq. 5). Hence, given an operator representation of DV1 and
DV2 , we can use Equation (7) to compute ∇V1V2. We leave
further investigation of this direction, and possible applica-
tions for future work.

3. Representation in a Basis

The properties mentioned above suggest that representing
and analyzing tangent vector fields through their functional
representation can enable a number of applications which
are challenging using standard methods. Our goal, therefore,
will be to represent this operator such that it can be easily an-
alyzed and manipulated in practice.

3.1. Basis for the Function Space

As mentioned in Section 2.2, an FVF is a linear operator act-
ing on smooth functions defined on the manifold. In practice,
we will assume that the functional space of interest can be
endowed with a (possibly infinite) basis, so that any func-
tion can be represented as a linear combination of some ba-
sis functions {φi}. Then, for any given function f = ∑i aiφi,
we have that g = DV ( f ) = DV (∑i aiφi) = ∑i aiDV (φi). Since
DV (φi) is also a function, it can be represented in the ba-
sis as DV (φi) = ∑ j Di jφ j. Therefore, g = ∑ j(∑i Di jai)φ j =

∑ j b jφ j. In other words, if one thinks of the coefficients
ai,bi as vectors a,b and D =

(
Di j
)

as a matrix, then the
transformation between the basis representations of f and
g = DV ( f ) is given by: b = Da.

When the basis functions φi are orthonormal with respect to
the standard functional inner product on M, i.e.

∫
M φiφ jdµ =

1 if i = j and 0 otherwise, then the (i, j)th element Di j of the
FVF corresponding to V is given by:

Di j =
∫

M
φiDV (φ j)dµ(p) =

∫
M

φi(p)
〈
V (p),∇φ j

〉
p dµ(p),

(8)
where 〈,〉p denotes the inner product in the tangent space of
the point p, and dµ(p) represents the volume measure at p.

The Laplace-Beltrami basis. A useful basis for the space
of smooth functions on a compact manifold, which we will
often use in practice, is the basis given by the eigenfunctions
of the Laplace-Beltrami operator (note that on a compact
manifold the space L2(M) is strictly larger than the space of

c© 2013 The Author(s)
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Figure 7: Prescribing directional constraints (left) or sin-
gularities (right).

smooth functions). Since each eigenfunction of the Laplace-
Beltrami operator is smooth, Equation (8) is well defined.
One advantage of this basis is that the basis functions are
ordered and can be attributed a notion of scale, given by
the corresponding eigenvalue. This has been exploited in a
number of scenarios including the work on functional maps
[OBCS∗12] where a mapping between two shapes is com-
pactly encoded using a sub-matrix of a possibly infinite func-
tional map matrix. This choice of basis yields a compact rep-
resentation of the FVF operator as an N f ×N f matrix, where
N f is the number of basis functions we use.

3.2. Parameterization with Basis Operators

As mentioned in Section 2.2, the space of linear functional
operators is strictly larger than the space of vector fields.
Therefore, in order to work with this representation in prac-
tice, it is useful to have a parametrization of the space of
FVFs, which is easy to manipulate.

One possible such parameterization, is to consider a basis
for the space of tangent vector fields ψi, and to represent an
operator DV as a linear combination of the functional vector
field operators Dψi . In our work, we consider the eigenfunc-
tions of the 1-form Laplace-de Rham operator to generate a
basis for the 1-forms on a surface, and use these as a basis
for the tangent vectors, by duality [Mor01].

Given such basis operators Dψi , the FVF operator DV that
represents a vector field V = ∑i aiψi is given by: DV =

∑i aiDψi . Note, that this basis is also ordered, so that
smoother vector fields can be represented using fewer ba-
sis operators. In practice, we truncate the basis, and limit the
number of basis operators to a fixed value ND.

With this parameterization, it is straightforward to use the
properties we mentioned in Section 2 to design a vector field
that has various desirable characteristics, simply by solving a
linear system for the coefficients ai. Figure 7 shows a vector
field designed by posing a small number of directional con-
straints (one direction for the teddy (left) and 4 zero valued
vectors for the kitten (right)), and solving for the coefficients
as explained in Section 5.

Figure 8: Given a vector field (left), we reconstruct it with
growing accuracy by increasing the number of basis oper-
ators ND (right). Note that the index 2 singularity is accu-
rately reconstructed given enough basis operators.
Figure 8 demonstrates the effect of using a varying number
of basis operators. Given a direction field (left), we project
it on a growing number of basis operators and show the re-
construction error as a function of ND (right). We addition-
ally show the reconstructed vector field, for a few choices of
ND. Note, that although the direction field is smooth, due to
the jump from unit length norm to zero norm at the singu-
lar point, it is difficult to reconstruct this vector field exactly.
However, using a growing number of basis operators we can
approximate better this discontinuity in scale.

4. Discretization

So far we have described the properties of tangent vector
fields as functional operators in the continuous case. In this
section we will focus on the discretization of these concepts
to surfaces which are represented as triangle meshes. We
propose a finite-element based discretization, and discuss its
consistency and experimental convergence properties.

4.1. Representation

We will first address the following problem: given a triangle
mesh M = (X ,F,N), where X are the vertices, F the faces
and N the normals to the faces, and a piecewise constant
tangent vector field V = {vr ∈ R3|r ∈ F,vr ⊥ Nr}, how do
we represent the functional vector field DV ?

The answer is in fact straightforward, when we consider the
representation of DV in the functional basis given by the
standard hat functions. On a triangle mesh we can repre-
sent functions in a piecewise linear basis, namely f (p) =

∑
|X|
j=1 b jγ j(p), where γ j are the standard hat functions (val-

ued 1 at vertex i and 0 at all other vertices), and b j ∈ R are
the coefficients. Now, given the function f (p) = ∑ j b jγ j(p),
and a piecewise constant vector field V , we wish to com-
pute g = DV ( f ). We set g(p) = ∑ j a jγ j(p), and solve (2)
in the weak sense, as is standard in Finite Element Analysis
(see [AFW06] for a complete discussion of this approach):∫

M
γigdµ =

∫
M

γiDV ( f )dµ, ∀i.

Plugging in the expressions for f , g and DV we get ∀i:

∑
j

a j

∫
M

γiγ jdµ = ∑
j

b j

∫
M

γi
〈
∇γ j,V

〉
dµ. (9)

c© 2013 The Author(s)
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The integrands in (9) vanish everywhere, except on the set
of triangles Ri j ⊂ F , for which both γi and γ j are non-zero.
For i = j, these are the triangles neighboring the vertex i. For
i 6= j, we have that (i, j) must be an edge, and Ri j contains
only the two triangles which share that edge.

This leads to ∑ j a jBi j = ∑ j b jSi j , where:

Bi j = ∑
tr∈Ri j

∫
tr

γiγ jdµ, Si j = ∑
tr∈Ri j

∫
tr

γi
〈
∇γ j,V

〉
dµ.

Computing the elements Bi j yields the standard mass ma-
trix used in the solution of Laplacian systems, whereas Si j is
given by (see the inset figure for the notations):

Si j =
1
6

(〈
V1,e

⊥
1

〉
+
〈

V2,e
⊥
2

〉)

Sii =− ∑
j∈N(i)

Si j.

i j

e1

„

e2

„

V1

V2

Here, r1 and r2 are the two faces that share the edge (i, j), V1
is the value of V on the face r1, e⊥1 is the rotation by π/2 of
the edge opposite to the vertex j in the face r1 (similarly for
V2 and e⊥2 ), and N(i) are the neighboring vertices of vertex
i. The derivation is given in the supplemental material.

We further replace B with a diagonal lumped mass matrix W
of the Voronoi areas wi of the vertices [Bot10], and get:

a = D̂V b, D̂V =W−1S. (10)

Note, that the size of D̂V is |X |× |X |, but it is sparse, as only
the diagonal and entries of adjacent vertices are non-zero.

It is sometimes useful to decompose D̂V as a product of two
operators: D̂V = P|X|×|F|(D̂

F
V )|F|×|X|, where P is indepen-

dent of V and depends only on the mesh. We take:

(P)ir =
1

3wi
Ar, (D̂F

V )ri = 〈∇γi,V 〉r , (11)

where Ar is the area of the triangle tr. In fact, the operator
D̂F

V is simply the smooth operator DV per triangle, where V
is fixed. Therefore, it preserves most of the properties of its
smooth counterpart. However, to get an operator which com-
mutes with other operators, we need to apply P, averaging
values from faces to vertices. This introduces a discretiza-
tion error into our formulation, due to the discontinuity of
the vector field near the vertices.

Alternatively, we can use the first N f eigenvectors φ̂i of the
discrete Laplace-Beltrami operator as the basis for the func-
tion space, and then DV will be represented using an N f ×N f

matrix, which we will denote by D̂LB
V . We compute D̂LB

V by
using a change of basis:

D̂LB
V = B+D̂V B, (12)

where B is a matrix whose columns are φ̂i and B+ is its
pseudo-inverse. This representation introduces some addi-
tional error, due to the truncation of the basis, and there ex-

ists a trade-off between the complexity of the representation
(in terms of N f ) and the amount of detail the functions we
work with can represent.

4.2. Properties

It is interesting to investigate which properties of DV are pre-
served from the smooth case, and which are not but converge
under refinement of the mesh.

Constant functions. We have that DV (c) = 0, for any con-
stant function c. It is easy to see this property is preserved
in the discrete case, since the rows of D̂V sum to zero, hence
the constant functions are in its kernel.

Product rule. The continuous DV fulfills two defining prop-
erties: linearity (Equation (3)) and the Leibnitz product rule
(Equation (4)). Since D̂V is a matrix, linearity is clearly sat-
isfied. However, as we work in a limited subspace of func-
tions, the product rule is no longer valid: given two PL func-
tions f ,g, their pointwise product f g is no longer PL, and
therefore we cannot apply D̂V to it. However, we can show
empirically that when applying increasingly finer discretiza-
tions of DV to increasingly finer discretizations of continu-
ous functions f ,g, the product rule error decreases.

Let fh,gh, be the two
random smooth piece-
wise linear functions de-
fined on a mesh with
h vertices, and take V
to be a smooth tangen-
tial vector field. Now,
for every h, compute the
error eh = DV ( fhgh)− (ghDV ( fh)+ fhDV (gh)), where the
multiplication is done vertex-wise. The inset figure shows
the graph of ‖eh‖2/h as a function of h, in loglog scale, for
a few choices of models. Note that the graph is linear, im-
plying exponential convergence under refinement.

Uniqueness. The correspondence between a vector field V
and its FVF operator DV is one-to-one and onto in the con-
tinuous case, implying that given an operator DV we can
uniquely reconstruct the vector field V . This property, unfor-
tunately, may not hold in the discrete case. We do, however
have the following weaker result:

Lemma 4.1 Let M = (X ,F,N) and let V1,V2 be two piece-
wise constant vector fields on M. Then: D̂F

V1
= D̂F

V2
if and

only if V1 =V2.

In practice, given an operator D̂V we reconstruct the corre-
sponding vector field V by projecting on the operator basis,
as described in Section 3.2.

Metric invariance. The continuous functional vector field
operator DV commutes with the pushforward under a map.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



O. Azencot & M. Ben-Chen & F. Chazal & M. Ovsjanikov / An Operator Approach to Tangent Vector Field Processing

Figure 9: Geodesic distances between pairs of starting
points are measured before and after the flow. Comparing
the normalized average error for the models shown yields
(left to right): 0.2,0.96, 2.47 for our method, and 0.23,1.15,
4.5 for [BCBSG10] (units are average edge length).

Specifically, given a bijective diffeomorphism T : M→ N, a
vector field V1 on M and a function f : M→R, we have that
DV1( f )(p) = DV2( f ◦T−1)(T (p)), where V2 = dT (V1(p)),
and dT is the differential of T . As a consequence, DV does
not depend on the embedding of the shape M.

As we do not have the uniqueness property, the discrete met-
ric invariance property is also limited to the D̂F

V operator:

Lemma 4.2 Let M1 = (X1,F,N1) and M2 = (X2,F,N2) be
two triangle meshes with the same connectivity but different
metric (i.e. different embedding). Additionally, let V1 be a
piecewise constant vector field on M1, then D̂F

V1
= D̂F

V2
.

Here (V2)r = A(V1)r, where A is the linear transformation
that takes the triangle r in M1 to the corresponding triangle
in M2. Note that D̂Vi is computed using the embedding Xi.

Integration by parts. For a closed surface, we have that∫
M f (∇·V ) =

∫
M 〈∇ f ,V 〉 =

∫
M DV ( f ), for all f : M→ R.

This holds exactly in the discrete case, when using the stan-
dard vertex-based discrete divergence, defined as in [PP03]:

Lemma 4.3 Let M = (X ,F,N), V a piecewise constant vec-
tor field on M, f = ∑i fiγi a PL function on M, and wi the
Voronoi area weights, then:

|X|

∑
i=1

wi(D̂V f )i =
|X|

∑
i=1

wi fi(div(V ))i.

5. Applications

In this section, we describe how our representation can be
used to compute vector fields which have various desirable
properties. While some of the suggested applications have
been attempted before (e.g. designing vector fields using di-
rection and singularity constraints [FSDH07, CDS10], com-
puting Killing vector fields [BCBSG10] and symmetric vec-
tor fields [PLPZ12], among others), our framework is unique
in that it allows to combine any such constraints into a single
optimization problem. In addition, we provide a proof-of-
concept for more advanced tools, such as jointly designing
vector fields on two or more surfaces.

Figure 10: An AKVF V (left), an indicator function f (cen-
ter), and its symmetrization computed by projecting f on the
kernel of DV (right).

5.1. Implementation Details

Given a mesh M, scalars N f ,ND and a set of desired proper-
ties for a vector field, we propose the following algorithm:

1. Compute the first N f eigenfunctions of the LB operator
φ̂i, using the area normalized cotangent scheme [Bot10].

2. Compute the first ND 1-form eigenfunctions of the
Laplace-de Rham operator, and convert those to piece-
wise constant vector fields ψ̂i. We used the definitions
from [FSDH07] for both operations.

3. Convert ψ̂i to D̂LB
ψ̂i

using Equation (12).

4. Optimize simultaneously for the vector field V = ∑i aiψ̂i
and its functional representation DV = ∑i aiD̂LB

ψ̂i
, by solv-

ing a linear system for ai. The joint formulation allows us
to stack constraints which are best represented using the
operator (e.g. commutativity constraints) together with
constraints which require the vector field (e.g. prescribed
directions at specified locations). This yields a linear sys-
tem Wa = c, which we solve in the least squares sense.

5. Output the computed vector field V = ∑i aiψ̂i.

Throughout our experiments we used meshes in the range
of 5k-200k vertices, with N f and ND between 50 and 300,
depending on the experiment. The computational time was
dominated by the eigen-decompositions and took a few min-
utes on a standard laptop.

Figures 3, 4, 5 and 7 from the previous sections were gen-
erated using this framework. In addition, we describe a few
examples of potential applications of our framework, related
to the properties discussed in Section 2.

5.2. Approximate Killing Vector Fields

Lemma 2.2 provides a linear constraint on the FVF opera-
tor, which guarantees that a given vector field is a KVF. We
can use this result, and optimize for the best KVF on a given
surface, by optimizing for a set of coefficients a such that
the resulting operator DV will commute with the Laplace-
Beltrami operator, i.e. ||DV ◦L−L◦DV | | = 0. Here we get
a homogeneous system Wa = 0, hence the AKVF is the sin-
gular vector corresponding to the lowest singular value.

c© 2013 The Author(s)
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Figure 11: On the human model (left and center) we show design results with and without symmetry constraints - note the
difference on the right hand. On the spot model (right) we show symmetric and anti-symmetric vector fields.

Figure 9 shows a comparison of the resulting vec-
tor fields with the results of the state-of-the-art algo-
rithm [BCBSG10]. The comparison is done using the same
meshes, where on each mesh we pick a few vertices and
show the flow lines for a fixed time t starting from these ver-
tices. Note, that we achieve similar results, but in our frame-
work we can easily combine the KVF constraint with other
constraints such as commutativity with a symmetry operator.

Interestingly, the spectral decomposition of the functional
vector field operator is meaningful and potentially useful in
applications. Specifically, functions are in the kernel of DV
if and only if they are fixed points of the flow Φ

t
V for all t

(since DV f = 0 if and only if exp(tDV ) f = f ,∀t ). There-
fore, the kernel of an AKVF operator spans the linear sub-
space of symmetric functions under the corresponding sym-
metry. This implies, that given an arbitrary function f , we
can symmetrize it by projecting it onto the kernel of such
an operator. Figure 10 shows an example of an AKVF V , an
indicator function f and its symmetrization sym( f ).

5.3. Composition with Mappings

Given a self-map S, we design a symmetric vector field by
posing a constraint of the form ||DV ◦S−S◦DV | |= 0. Fig-
ure 11 (left and center) shows an example of a vector field
designed with directional constraints and one designed with
both directional and symmetry commutativity constraints.
Note the difference on the hand of the model, as the sym-
metric constraints enforce similar behavior on both hands.
Additionally, we can define an anti-symmetric vector field,
by requiring V (S(p)) = −V (p), where S is the symmetry
map. To enforce this requirement, we use the constraint
||DV ◦S+S◦DV | |= 0. Figure 11 (right) shows an example
of symmetric and anti-symmetric vector fields.

Given a collection of shapes, a desirable goal when design-
ing vector fields is to have different constraints on each
shape, yet generate compatible vector fields across the col-
lection. In Figure 12 (right) we achieve this goal using the
map composition property. We are given two shapes M1
and M2 and a functional map TF between the corresponding
function spaces. In addition, on each shape we are given a set
of directional constraints c1,c2. We wish to generate vector
fields Vi on the shapes Mi, such that Vi commute with TF ,

and fulfill the constraints. A natural approach would be to
transfer the constraints and solve separately for each mesh.
However, as shown in Figure 12 (left), there is a large dif-
ference between the resulting fields - e.g in the locations of
the singularities. Figure 12 (right), shows the result when
solving jointly for both shapes. Note that the singularities on
the back of the shape are consistent between the models. For
evaluation, we transport V1 to M2 and measure the angle dif-
ference between the resulting vector field and V2. Figure 12
(center) shows the resulting histogram, emphasizing that our
joint design method preserves the directions better.

6. Discussion

Tangent vector fields on surfaces are used in a myriad of
applications in computer graphics and geometry processing.
We propose to represent them as functional operators, thus
enabling applications which were not easily attainable us-
ing standard representations. We have provided a discretiza-
tion of the operator, and demonstrated it is consistent and
experimentally convergent under refinement. Finally, we de-
scribed some high level vector field design applications, such
as Killing, symmetric and joint vector field design.

We believe the proposed representation opens the door
for many additional applications. Specifically, the covari-
ant derivative of one vector field with respect to another
could potentially be useful for computing the Gaussian cur-
vature, and for posing smoothness constraints for vector field
design. Further applications include finding pairs of vector
fields with zero Lie derivative for surface parameterization.

In general, we feel that we only uncovered the tip of the ice-
berg of possible applications and extensions of this frame-
work. In an even broader context, considering both the op-
erator representation of maps between surfaces, and the op-
erator representation of vector fields, seems to imply that a
lot is to gain by abstracting common notions in geometry
processing, and viewing them more generally as operators.
It remains to be seen whether this approach is applicable to
additional concepts as well.
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Figure 12: (left) Independent design on two shapes which are in correspondence does not yield a consistent vector field,
even if compatible constraints are used. (right) Solving jointly using our framework yields consistent vector fields (note the
corresponding locations of the singularities on the back of the shape). See the text for details.
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