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Figure 1: Results obtained with our method. See the corresponding figures (Figs. 15,12, and 10) for additional details.

Abstract

We present a new structure-preserving numerical scheme for solving the Euler–Poincaré Differential (EPDiff) equation on ar-
bitrary triangle meshes. Unlike existing techniques, our method solves the difficult non-linear EPDiff equation by constructing
energy preserving, yet fully explicit, update rules. Our approach uses standard differential operators on triangle meshes, al-
lowing for a simple and efficient implementation. Key to the structure-preserving features that our method exhibits is a novel
numerical splitting scheme. Namely, we break the integration into three steps which rely on linear solves with a fixed sparse
matrix that is independent of the simulation and thus can be pre-factored. We test our method in the context of simulating con-
centrated reconnecting wavefronts on flat and curved domains. In particular, EPDiff is known to generate geometrical fronts
which exhibit wave-like behavior when they interact with each other. In addition, we also show that at a small additional
cost, we can produce globally-supported periodic waves by using our simulated fronts with wavefronts tracking techniques.
We provide quantitative graphs showing that our method exactly preserves the energy in practice. In addition, we demonstrate
various interesting results including annihilation and recreation of a circular front, a wave splitting and merging when hitting
an obstacle and two separate fronts propagating and bending due to the curvature of the domain.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically based modeling

1. Introduction

Structure-preserving integrators [HLW06] play an important role in
many applications in pure and applied mathematics. These methods
are unique in that they solve a differential equation while keeping
certain geometrical invariant properties of the system. Numerical
integrators that respect the underlying invariants of the dynamics
are especially important in computer graphics, where gain/loss of
vorticity [AWO∗14] or kinetic energy [AVW∗15, MCP∗09] may
lead to inaccurate long-integration and undesirable visual artifacts.
The goal of this paper is to suggest an efficient structure-preserving
numerical scheme for solving the challenging EPDiff equation.

EPDiff arises in several applications and domains. For exam-
ple, in computational anatomy, EPDiff are the governing equations
in the diffeomorphic deformation framework [MTY02], where the
goal is to compute a non-linear deformation between a given pair of
source and target images. In fluid mechanics, EPDiff is used in the
context of turbulence with the so-called Navier–Stokes-α model. A
similar formulation was devised to better handle an effect known
as energy cascading [LMH∗15]. Perhaps closest to our focus is
the link to shallow water wave dynamics, where EPDiff are used
to model ocean wavefronts, 100–200 km in length (see the images
in [HS13]). We also use EPDiff to model interacting surface waves.
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Intuitively, EPDiff describes the evolution of “waves” on a fixed
domain that can reconnect after collision, i.e., concentrated waves
can pass through each other and maintain their shape. To capture
the reconnection effect, EPDiff encodes the following key idea.
Upon collision, an exchange of momentum occurs between the in-
volved fronts. Figure 2 illustrates this behavior for 1D singular
waves (peakons) where the initial peaked solitons “switch" places
due to exchange of momentum, and we further show a correspond-
ing 2D example in Figure 11. The derived model can be interpreted
as the advection of the concentrated momentum over the velocity
field (a non-linear term) where the velocity is a smoothened version
of the momentum (a non-local term). Interestingly, the above setup
is reminiscent of the vorticity equation (see e.g., [Saf92]) which
governs the kinematics of ideal incompressible flows where vor-
ticity is being transported by the velocity and these quantities are
linked through the Biot–Savart law. We provide a further elaborate
discussion on the similarities between the models in Section 2.

The Euler–Poincaré (EPDiff) equation has received increasing
attention in the literature (see e.g., [HS13]). However, while there
are some works which manage to discretize this complex PDE in
various configurations, its discretization is still considered a non-
trivial task since it involves several challenges. For example, any
discrete method must be relatively accurate because the advected
momentum is highly concentrated and thus discretization errors be-
come visible quite quickly. Moreover, the stability and behaviour
of the fronts depend heavily on the particular non-linearity of the
equation; if that is not discretized correctly, the concentrated waves
will be unstable regardless of how numerically accurate the dis-
cretization is. Similarly, time integration is equally important as it
is expected to preserve the properties of the continuous problem as
much as possible. Finally, the spatial differential operators should
gracefully handle boundaries and deal with curved domains.

To better assess the proposed approach, we will try to classify it
with respect to other methods for simulation of fronts and waves.
From a broader perspective, our model can be considered as part of
the family of shallow water equations (see e.g., [Vre13]). In these
models, the assumptions of columnar motion and averaged velocity
over the fluid height naturally lead to a reduction of dimensionality.
Thus, although the 3D Navier–Stokes (NS) equations could capture
the effects we are interested in, the involved computational cost is

Figure 2: Momentum exchange. The 1D simulation illustrates how
two peakons with different momenta interact over space (horizon-
tal axis) and time (vertical axis), left. Notice that the left peakon
transfers momentum to the right peakon when they collide. Paths of
the left/right soliton peaks are shown with red/blue curves on the
right.

Figure 3: Tracking fronts shown here as red curves can be done
using the eikonal eq. leading to viscosity solutions (left). Alterna-
tively, periodic functions yield superimposed interaction between
waves denoted by the blue curve (middle). Our method tracks con-
centrated waves which interact with other waves (right). See also
Fig. 5.

too prohibitive for practical uses when compared to a 2D model
such as ours [Bri08]. Moreover, qualitative properties are usually
hard to infer from the general NS model. For instance, certain sin-
gular solutions are known to exist for our model, allowing for a
better qualitative and quantitative understanding of the model.

Alternative approaches to wave simulation are commonly based
on insights from linearized water wave theory (see e.g., [DD91]).
At the core of the linearized model we are given descriptions of
the wave function as a sum of sinusoidal functions and of the wave
propagation speed as the solution of the eikonal equation. Numer-
ical methods based on this framework can be categorized into the
following two groups. The first group of techniques treat the prop-
agated front as a geometrical wave and thus obtain viscosity solu-
tions, i.e., concentrated fronts are possible, however, the superposi-
tion principle of waves does not hold, see Fig. 3, left. Schemes from
the second group approximate the wave function, and the obtained
results do exhibit superposition, but modeling concentrated waves
is difficult, Fig. 3, middle. Our method enjoys the advantages of
both approaches, thus achieving superimposed concentrated waves
as we illustrate in Fig. 3, right.

In this work, we present a fully (time- and space-) discrete
scheme for the EPDiff equation, with the explicit aim that it is
structure-preserving, i.e., that it conserves a physically appropriate
energy, and that it is applicable to general meshes of complex sur-
faces. The first goal is achieved via a novel time integrator, which
despite being fully explicit, is energy preserving (and therefore sta-
ble) by construction, under some mild conditions. Furthermore, the
scheme is based on standard discrete (differential and interpola-
tion) operators that are well-behaved on unstructured triangulations
of curved surfaces. Overall, our method is efficient as it involves,
per step, at most three sparse linear solves with a fixed matrix, that
depends only on the mesh and thus can be pre-factored for the en-
tire simulation. Moreover, as a post-processing step, we can cou-
ple the wavefronts tracked by our scheme with periodic waves of
various speeds, to achieve a combined reconnection-superposition-
dispersal effect. Finally, we show several results including bending
of waves due to curvature effects, plausible behavior of waves in-
teracting with boundaries, and reconnection of concentrated fronts
after collision.
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1.1. Related Work

Mathematical mechanics. The EPDiff equation has received in-
creasing attention over the last decade, and the interested reader is
referred to the book [HSSE09] which presents theoretical aspects
of the problem, as well as several applications. Unfortunately, there
exist only a few numerical methods which discretize this equation,
possibly due to its complexity and related challenges. For instance,
it is known [HM05] that solutions might develop discontinuities,
even though the initial conditions are smooth (we also show it in,
e.g., Fig. 10). Nevertheless, various particle methods approximate
the solution as a linear combination of Dirac functions and exhibit
momentum preservation [CTM12] or apply different boundary con-
ditions [CKL14]. The Eulerian approach presented in [HS13] uses
an explicit Runge–Kutta temporal integrator on logically rectan-
gular flat domains, and thus, it is not structure-preserving. Prob-
ably closest to our method is the technique which was recently
suggested by Larsson et al. [LMMM16]. They introduce structure-
preserving schemes for EPDiff on a regular structured grid. Their
method preserves energy but it is not time invertible. In addition,
extending their method to support curvature effects is non-trivial,
as it would require generalizing it to handle triangle meshes which
are frequently used for representing curved domains.

Fluid simulation. The topic of ocean and wave simulation is well
researched in computer graphics and reviewing the vast associated
literature is beyond the scope of this paper. In our discussion, we
mainly focus on methods which specifically model waves and their
interaction, and we refer to the available reviews [Bri08,DCGG11]
which provide an extensive discussion. Moreover, we emphasize
that we only suggest to capture wave-like phenomena using EPDiff
as a testing environment for our numerical scheme. In practice,
while our approach may provide certain advantages over existing
techniques, it should be generally considered as a complementary
approach. We base our summary of related-work on the follow-
ing classification. In the linear model of waves, the function whose
gradient determines the propagation speed is known as the phase
function. Mathematically, describing the aforementioned reconnec-
tion effect is equivalent to requiring a multi-valued phase function,
whereas single-valued phase functions discard wave interactions,
i.e., wave reconnection is lost. In what follows, we divide methods
depending on whether their approximated phase function is multi-
valued or single-valued.

A popular approach for phase function approximation is to as-
sume it is a sum of fixed propagation velocities [MWM∗87], which
can be further improved [T∗01,HNC02]. A natural extension of the
former approach aims for a better integration of the eikonal equa-
tion by assuming varying speeds [FR86, Pea86], and consequently,
it allows for additional wave effects. Another common alternative
is to employ reductions such as shallow water equations [KM90]
whose extensions enable intricate effects of interaction with rigid
and soft bodies [CM10] and even breaking of waves [TMFSG07].
Keeler and Bridson [KB14] simulate deep ocean waves by solving
for a potential flow using a boundary integral equation. Yuksel et
al. [YHK07] present an interesting approach where fronts are rep-
resented using particles achieving interaction with dynamic objects

at realtime rates. Other works attempt to design waves using guide
shapes [NB11] or through fitting a desired look [NSB13].

Supporting multi-valued phase functions can be achieved
through solving the volumetric Navier–Stokes eqs. [FF01]. How-
ever, while this method captures several effects and in particular
concentrated fronts are doable, the involved computational cost is
too restrictive when compared to other methods. iWave [Tes04]
offers an attractive framework for achieving wave behaviors as
diffraction and refraction. Recently, Jeschke and Wojtan [JW15]
facilitated a Lagrangian technique known as wavefront tracking to
reconstruct high-frequency wave functions, and to obtain interest-
ing wave behaviors while improving on former methods [GLS00,
TB87, GM02].

Computational imaging. Finally, we briefly mention that the
EPDiff equation also appears in computational anatomy in shape
matching problems. Given initial and final outlines of an image,
the goal is to interpolate between the input outlines using an opti-
mization problem whose solution satisfies the EPDiff equation. An
attractive application of this framework is the 3D reconstruction of
the human brain from 2D PET scans [BMTY05]. However, since
the above setup involves boundary value problems, it requires other
approaches than those used for initial value problems as ours, see
e.g., [AVBC16]. Therefore, we only point out this interesting link
and refer to a detailed review on the subject [MTY02].

1.2. Contributions

The contributions of our method can be summarized as follows.

Discrete EPDiff on curved domains. Our method is based on an
efficient discretization of the EPDiff PDE by devising a novel fully
explicit splitting scheme for the temporal integration which is en-
ergy preserving by construction. Additionally, our method offers a
tradeoff between exactly maintaining the velocity-momentum non-
local relation or obtaining a time invertible scheme. Finally, our
spatial discretization makes use of standard operators defined di-
rectly on triangle meshes and thus can be easily implemented.

Figure 4: Our method is adapted to work on curved geometries,
allowing to propagate general initial wave profiles.
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Concentrated reconnecting wavefronts. We simulate geometri-
cal fronts whose behavior closely reflects the non-linear interaction
between waves. Our fronts are different from the viscosity solu-
tions arising from the eikonal equation. In addition, we convolve
the simulated data with various wave sources to support globally-
supported periodic waves in a fashion similar to wavefront tracking
methods.

Non-trivial effects. We show several intricate results on flat and
curved domains including annihilation and recreation of a circular
front (Fig. 10), a wave splitting to two as it interacts with an obsta-
cle (Fig. 15), waves exhibiting different spatial profiles due to the
underlying curvature (Fig. 12) and other interesting results.

2. Smooth Setting

We seek to simulate, via the EPDiff equation, the motion of wave-
fronts such that the resulting fronts exhibit profiles which are real-
istic, see e.g., Fig. 5. Although the equation itself is the product of a
rather complicated chain of reductions, regularizations and approx-
imations of the Navier–Stokes equations, we will try to motivate it
here in a more direct manner.

The key intuition is that an expanding wavefront can be seen as
a self-propagating concentration of linear momentum, much in the
same way that a vortex is a self-propagating concentration of vor-
ticity (i.e., angular momentum). In other words, a wavefront forces
the fluid to move linearly, just as the vortex forces the fluid to ro-
tate around it. An initial set of vortices, each localized along a curve
(vortex filament) or a hypersurface (vortex sheet), interact in a non-
local manner as they are advected by the sum of their individual
induced velocity fields. In the case of an inviscid and incompress-
ible fluid (the Euler equation regime), this motion is described by
the vorticity equation (see e.g., [ZBG15]), which can be written as

∂ω

∂t
+ v ·∇ω︸ ︷︷ ︸

advection

− ω ·∇v︸ ︷︷ ︸
stretching

= 0 . (1)

This PDE is used to update the vorticity, given a velocity field, via a
combination of transporting and stretching. To close the system we
need to specify the relation between the velocity and the vorticity,
which is given by ω =∇× v. In integral form, this relation is the
Biot–Savart law v(x) = 1

4π

∫ ω(y)×|x−y|
|x−y|3 dy, which gives the velocity

as a function of the vorticity, and thus makes clear the non-local
interaction between the vortices.

In a similar manner, the EPDiff equation [HSSE09, Eq. 11.20] is
given by

∂m
∂t

+ v ·∇m︸ ︷︷ ︸
advection

+∇vT ·m+(divv)m︸ ︷︷ ︸
stretching

= 0 , (2)

together with the non-penetration boundary condition v · n = 0 at
the boundary of the domain, and it describes the motion of wave-
fronts, i.e., concentrations of linear momentum localized along hy-
persurfaces, each with its own direction and speed. Like the vor-
ticity, the momentum m is advected by the velocity field v, while

the stretching terms (with an extra (divv)m term because of com-
pressibility) are necessary to ensure the preservation of the (total)
kinetic energy 1

2
∫

v ·mdx.

As before, we need to close the system with a suitable constitu-
tive relation between the velocity v and the momentum m. In most
applications, where the fluid density ρ is constant, we essentially
identify the momentum with the velocity; the Navier–Stokes for
instance, although describing momentum transport as EPDiff does,
are written exclusively in terms of the velocity. However, given the
almost singular distribution of momentum in this case, attempting
to self-advect with v = m does not lead to a well-behaved flow. We
take instead the Kelvin-filtered velocity (see e.g., [FHT01]):

v = D−1
α m = (I−α

2
∆)−1m , (3)

where ∆ is the vector Laplacian and α is a regularization parame-
ter that regulates the typical thickness of the fronts. The non-local
nature of the velocity field, and hence of the interaction between
the wavefronts, becomes clearer if we rewrite it in the integral form
v(x) =

∫
G(x,y)m(y)dy where G(x,y) is the Green function of the

elliptic operator Dα. In Fig. 6, we demonstrate the non-local rela-
tionship between the velocity and the momentum, by showing how
initial conditions are typically set for varying values of α.

Our goal is to design a stable and efficient numerical scheme for
EPDiff, and our guiding principle is to use an as-cheap-as-possible
integrator which still satisfies the properties of the smooth equa-
tions: energy preservation, time-reversibility and the constitutive
relationship between the momentum and the velocity. To do that,
we re-formulate EPDiff in a way that makes it easier to see how the
these properties arise in the smooth case. Then, we will use these
insights to guide our choice of numerics.

First we note that Equation (2) can be written as:

∂m
∂t
−R(v,m) = 0, m = Dαv , (4)

Figure 5: Our method propagates momentum over velocity. We
show the norm of the velocity v using the colorbar on the right.
The obtained fronts exhibit a unique behavior. In particular, after
collision, we obtain both the standard viscosity solution and addi-
tional fronts which appear in the periodic solution. See also Fig. 3.
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β α 2α

Figure 6: Typical initial conditions. (left) A concentrated unit
length momentum in black is smoothened with a vector Laplacian
with parameter β yielding m0 (left, middle). Then, v0 is achieved by
smoothening m0 with parameter α (right, middle). Taking twice as
large parameter leads to a smoother result (right). Notice that the
direction of m0 and v0 is not affected by the smoothening, and it is
shown with the blue arrow (left).

with R(v,m) =−
(

v ·∇m+∇vT ·m+(divv)m
)

. This formulation
allows us to focus on the two important operators R and Dα, and
the properties they need to have for the smooth properties to hold.
Specifically, we have that:

Lemma. Let (m(t),v(t)) be a solution of Equation (4). If Dα is a
self-adjoint operator with respect to the L2 inner product 〈u,v〉 :=∫

u · vdx, i.e., 〈u,Dαv〉= 〈Dαu,v〉, then d
dt

1
2 〈v,m〉= 0.

Proof Since Dα is time-independent and self-adjoint, we get mt =
Dαvt and 〈vt ,m〉= 〈v,mt〉 where mt is the time derivative of m, and
so it follows that

d
dt

1
2
〈v,m〉= 〈v,mt〉 .

Using Eq. (4), we have 〈v,mt〉= 〈v,R(v,m)〉. Thus to complete the
proof we need 〈v,R(v,m)〉= 0 for any v, which can be shown using
standard vector calculus identities (see Appendix A).

Thus, we have identified the two properties which are neces-
sary for energy preservation, namely Dα should be self adjoint and
〈v,R(v,m)〉= 0 for any v. We will therefore assume these properties
as given, and design a time discretization accordingly. We first pro-
pose a structure-preserving integrator (SPI), solving separately for
v and m, such that the resulting scheme is time-invertible at the price
of allowing v and m to drift from their constitutive relation. We then
show how this can be amended by giving up time-invertibility and
proposing an averaged structure-preserving integrator (ASPI). We
also mention how all these properties can be achieved with an im-
plicit scheme, at the expense of a higher computational burden (see
Appendix B).

3. Discrete Setting

3.1. Time discretization

Structure-preserving integrator (SPI). We integrate the abstract
form of the EPDiff equation as given in Eq. (4) using a splitting
scheme. Our integrator is made up of successive substeps that up-
date either the momentum or the velocity alone, and it eventually
outputs the next (mk+1,vk+1) at time tk+1 = tk + τ. While the pro-
posed method preserves the energy and can be inverted in time, it
unfortunately breaks the relation between m and v as is defined in

Eq. (3). Thus, we introduce the notation v̄ = D−1
α m and m̄ = Dαv

to simplify notation and to better distinguish between the quanti-
ties m,v that we track in practice vs. their corresponding v̄, m̄. Our
update rule is then

mk+ 1
2 = mk +

τ

2
R(vk, m̄k) , (5a)

vk+1 = vk + τD−1
α R(v̄k+ 1

2 ,mk+ 1
2 ) , (5b)

mk+1 = mk+ 1
2 +

τ

2
R(vk+1, m̄k+1) , (5c)

where (mk,vk) are the momentum and velocity at time tk. It is
straightforward to check that the proposed scheme is fully explicit
and second order accurate in time. The proposed form of "half
step—entire step—half step" can be identified on the one hand as
a Strang splitting [Str68], while on the other hand it closely mir-
rors the structure of the well-known second order symplectic Verlet
integrator [Rut83] for separable Hamiltonian systems.

Energy preservation and time invertibility. We can show that
each substep, and therefore the entire scheme, leaves the kinetic
energy E = 1

2 〈v,m〉 invariant, see the Appendix A for a proof. In
Fig. 7 we show that indeed, energy is preserved in all our sim-
ulations up to machine precision. A second important property
which Eq. (2) satisfies is time invertibility, namely that the trans-
formation m → −m, v → −v and t → −t leaves the constitu-
tive relation (3) and the entire PDE invariant. This property also
holds in the time discrete case when integrating with the update
rule in Eqs. (5) in the following sense. Given a set of solutions
{(mi,vi)} computed using SPI, one can arrive at (−mk,−vk) by
starting from (−mk+1,−vk+1) and applying the integrator. This can
be shown for a substep and similarly for all steps by noticing that
−mk+ 1

2 =−mk+1+ τ

2 R(−vk+1,−m̄k+1) since R is bilinear and Dα

is linear. See Fig. 8 for an example of this property.

1

1‒ε

Figure 7: The relative energy Ek/E1 for all the simulations we
demonstrate. Notice that the error is close to machine precision
since ε = 2×10−13.

Second order convergence. Our splitting scheme voids the con-
nection between velocities and momenta, i.e., vk+1 is not exactly
the smoothened version of mk+1 and a certain drift occurs. Nev-
ertheless, we confirm that our method is second order in time by
measuring the drift and showing convergence in Fig. 9. We tried
two different and complex scenarios on the sphere (red and blue)
with exponentially decreasing time steps τ. We quantify the numer-
ical error using the α norm ‖u‖2

α := 〈u,Dαu〉:

‖e‖α = ‖v−D−1
α m‖α = 〈v−D−1

α m,Dαv−m〉
1
2 ,

and, for comparison, show a quadratic function of τ (black).

Ideally, one would expect a numerical scheme which preserves
all the properties that we listed, and, indeed, we discuss in Ap-
pendix B how to devise such a scheme, based on a mid-point rule,
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that is fully implicit. However, this scheme is less practical since it
involves a linear solve per step of a matrix which depends on the
current step (compare with SPI which only inverts Dα). Instead, we
show next a modified integrator that is again fully explicit, and of-
fers a practical tradeoff – the energy and the constitutive relation
m = Dαv are preserved, but time invertibility is no longer main-
tained.

Averaged structured-preserving integrator (ASPI). Using the
integrator (5) we have at the end of a full step vk+1 6= D−1

α mk+1.
One could attempt to rectify this by, for instance, discarding the
computed velocity and taking the associated quantity v̄k+1 :=
D−1

α mk+1 instead. The problem is that, although this restores the
constitutive relation, it breaks energy preservation since

〈v̄k+1,mk+1〉 6= 〈vk+1,mk+1〉= 〈vk,mk〉 .

Interestingly, the tuple (v̄k+1,mk+1) overshoots the energy, whereas
the alternative tuple (vk+1, m̄k+1) undershoots it (see the section
’Energy preservation for the ASPI’ in Appendix A). Thus, since
vk+1 and v̄k+1 are both estimates of the velocity at time tk+1, we can
look for a (step dependent) convex combination that blends these
velocities and keeps the energy fixed. We therefore choose a scalar
parameter λ≡ λ(v̄k+1,vk+1) as

λ(v̄,v) :=

(
1+
∣∣∣∣ 〈v̄, v̄− v〉
〈v, v̄− v〉

∣∣∣∣ 1
2
)−1

≤ 1 , (6)

and compute the next velocity using vλ = (1− λ)vk+1 + λv̄k+1,
with its associated momentum mλ := Dαvλ. It turns out (see Ap-
pendix A) that when the ratio of the inner products is positive, then
〈vλ,mλ〉 = 〈vk,mk〉 and the energy is preserved exactly. This is in-
deed the case under normal circumstances, since v and v̄ are both
approximations of v(tk+1). If, on the other hand, the ratio is nega-
tive, we still have 〈vλ,mλ〉= 〈vk,mk〉+O(τ3).

3.2. Spatial discretization

Geometry, functions, vector fields and inner products. We con-
sider a triangle meshM where V,E and F are its vertices, edges
and faces, respectively. When required, we attach subscripts to

Figure 8: Our SPI scheme is time invertible which allows to flow
forward in time (top row and left bottom row), and then flow back-
wards and arrive at the initial conditions (black frame to the right).

10-4

10-3

10-210-3

10-1

10 0

10-2

10 1

10 2

Figure 9: Quadratic convergence in time. Error plots for two
simulations (blue, red) where we measure how far v is from the
smoothened m for decreasing time steps. For comparison, we show
a quadratic function of τ (black). See the text for details.

quantities to denote their domain, e.g., fV is a function on vertices,
and we similarly use E or F . We use a typical setup of piecewise-
linear functions and piecewise-constant vector fields, along with
their associated inner products. Namely, we represent real-valued
functions as scalars on the vertices of the mesh, i.e., f ∈ R|V|,
and extend them to the whole mesh using piecewise-linear hat ba-
sis functions. Notice that in this case gradients of functions are
piecewise-constant, and thus in our setup vector fields are sampled
using a constant tangent vector per face, i.e., v ∈ R3|F|.

For defining mass matrices we require vertex, edge, and face ar-
eas, denoted by aV ∈R|V|, aE ∈R|E| and aF ∈R|F|, respectively.
Vertex areas are 1/3 of the total area of their adjacent triangles, and
similarly, we use 1/3 of the sum of area of the neighboring triangles
for edge area. The resulting diagonal mass matrices are denoted by
GV ∈ R|V|×|V|, GE ∈ R|E|×|E|, and GF ∈ R|F|×|F| for vertices,
edges and faces, respectively. Additionally, we use 〈,〉 to denote L2

inner products; for example the inner product between functions
on vertices is given by 〈 fV ,gV 〉= f T

VGVgV . For L2 inner products
between vector fields on the faces and on the vertices, we define
G3F ,G3V by repeating the corresponding mass matrices 3 times.
This yields, e.g., the discrete inner product 〈v,m〉= vT G3Fm.

We define a matrix IFV ∈ R|V|×|F| which interpolates quantities
from faces to vertices, i.e., IFV (i, j) = (1/3)aF ( j)/aV (i), iff vertex
i belongs to face j and 0 otherwise. Similarly, IVF interpolates data
from vertices to faces and is defined by IVF = G−1

F (IFV )T GV , such
that 〈 fF , IVFgV 〉 = 〈IFV fF ,gV 〉 holds. To reduce clutter we some-
times denote an interpolated quantity fV = IFV fF by f̃ .

Differential Operators. To preserve energy discretely, we need the
operators grad ∈ R3|F|×|V| and div ∈ R|V|×3|F| to fulfill discrete
integration by parts, thus we define div = −G−1

V gradT G3F . This
definition coincides with the standard construction of these oper-
ators (e.g., as defined in [BKP∗10, Chapter 3]). To construct Dα

we further need a vectorial Laplacian. Instead of using the scalar
Laplacian component-wise, we use the following Hodge Lapla-
cian [dGDT15] suited for curved domains

∆ = G−1
3F

(
divT GV div+JT divT

E GE divE J
)
,
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Figure 10: A circular front is shrinking towards the center of the bowl till it collapses, then the front re-emerges and propagates outward.

where J is an operator which rotates tangent vectors with respect
to the face normal, and divE is the edge-based divergence operator.
It is easy to verify that ∆ is self-adjoint with respect to the inner
product since the operator in the parentheses can be written as a
multiplication between a matrix and its transpose.

Finally, we need an operator ∇m̃ which provides the Jacobian
of a vertex-based vector field m̃, at the j-th face. Thus we define
(∇m̃) j =

(
(grad m̃x) j (grad m̃y) j (grad m̃z) j

)T ∈ R3×3.

Discrete EPDiff equation. Using the above notation and discrete
operators, we can discretize R(v,m) as follows:

R(v,m) j :=−
{
(∇m̃) jv j− (∇m̃)T

j v j +(grad(m̃ · ṽ)) j

+∑
i
(IVF ) ji(divv)im̃i

}
. (7)

Comparing with the EPDiff equation (2), this is a rather direct
discretization, additionally using necessary interpolations between
face- and vertex-based quantities (see also the section ’Energy
Preservation for the SPI’ in Appendix A). As we have seen in
the previous sections, the kinetic energy is preserved as long as
〈v,R(v,m)〉 = 0 for all (discrete) velocities v. Indeed, we note that
〈v,R(v,m)〉= ∑ j aF ( j)vT

j R(v,m) j and the contributions of the first
two terms in (7) cancel out, since vT

j (∇m̃) jv j = (vT
j (∇m̃) jv j)

T =

vT
j (∇m̃)T

j v j. Likewise, the contribution of the last two terms
also cancel out. In the smooth setting, integration by parts leads
to 〈v,grad(m · v)〉 = −〈v,(divv)m〉. Similarly, using our discrete
operators, it is straightforward to show that 〈v,grad(m̃ · ṽ)〉 =
−
〈

v, IVF (divv)m̃
〉

. Furthermore, the resulting scheme is time-

invertible, as it is easy to check that R(−v,−m) = R(v,m).

4. Implementation details

We implemented our technique in MATLAB. Given initial m0 and
its corresponding v0, at each step we integrate in time using our
SPI or ASPI methods by computing the discrete R(v,m) which ap-
pears in Eq (7), evaluating the discrete Dα and facilitating its pre-
computed factorization for solving the required linear systems.

The initial momentum is set by prescribing a delta function over
the faces which represent the front, and smoothening it using a
small parameter β. This provides the norm of m0 and its direc-
tion was commonly chosen as the normalized gradient of a distance
function. Then, the initial velocity v0 is computed by the non-local
relation, see also Fig. 6. A rule of thumb for choosing α is to use
3-4 times the average edge length of the mesh. We provide the pa-
rameters α and β for our simulations in Table 1.

Per step, the inverse of the non-local Dα matrix is needed twice
in SPI and three times in ASPI. Fortunately, this matrix depends
only on the mesh and is independent from the entire simulation.
Thus, we pre-factor it once as a pre-processing step using the
SuiteSparse library [Dav06]. With the pre-factorization in place,
the estimate for the computational cost per step can be roughly di-
vided to 60% for evaluations of R and 40% for the linear solves for
SPI and 50%/50% for ASPI. We show further details and timings
of our simulations in Table 1.

Finally, we employ a basic Courant–Friedrichs–Lewy (CFL) rule
for the dynamic time stepping. Specifically, the next time step τ

k+1

is updated using the relation

τ
k+1 = γ δx/‖vk‖∞ ,

where γ is a fixed constant in all of our simulations taken to be 0.4
for SPI and 0.8 for ASPI, and the average edge length δx is divided
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by the infinity norm of the current velocity, so that propagation
distance is limited to at most a single cell per step.

Limitations. Our method has a few inherent disadvantages which
suggest future exploration. For instance, our model makes use of
the averaged velocity per fluid column, thus effects that result from
different velocities, e.g., breaking of waves, are not possible. An-
other shortcoming of our method is its Eulerian nature, enforcing
the usage of highly resolved triangle meshes with relatively small
time steps. However, since the simulated fronts are extremely con-
centrated, one might consider to extend our method to incorporate
adaptive techniques and we leave it for future investigation.

5. Results

Self-collapsing circular front. The initial circular front is propa-
gating quickly towards the center of the bowl till it collapses into a
small region (Fig 10, top row). The visible amount of fluid is pre-
served in this experiment exactly due to energy conservation which
is crucial in such stress tests. However, the velocity-momentum re-
lation must be also maintained in such extreme cases. For compari-
son, the SPI method stops (τ becomes zero) at the collapsing point,
whereas the ASPI method passes this point, allowing the circular
front to re-emerge and flow outward (Fig 10, bottom row).

Newton’s cradle on a torus. In Fig. 11, three rings of different
momenta are placed on the torus where the ring with the higher
momentum travels faster than the other two rings. When two rings
collide, an exchange of momentum occurs, similar to the 1D case
shown in Fig. 2. Thus, this experiment mimics the rigid body sce-
nario where there is a perfect exchange of momentum between
swinging spheres. Notice that while momentum is not perfectly ex-
changed in our simulation, the general shape and intensity of the
rings are preserved.

Multiple fronts on a curved geometry. We can easily set mul-
tiple fronts in the same simulation allowing them to interact be-
tween themselves. Additionally, we show that the left front exhibits
a different profile compared to the right front due to the underlying
bump (Fig. 12, top row, left). Then, the fronts collide and secondary
waves naturally emerge (Fig. 12, top row, middle and right). Later,
the concentrated waves continue to propagate and interact with the
scene in a plausible manner (12, bottom row).

Flow behind obstacles. Fig. 15, top left shows how a concentrated
wave breaks when it hits the cylinder. The front then passes the ob-
stacle and reconnects afterwards, see Fig. 15, top right. It continues
to sweep through the pool in a natural way, while additional fronts
are generated from behind the cylinder, see Fig. 15, bottom.

6. Wavefront-driven globally-supported periodic waves

In this section we show how our approach can be easily extended to
support periodic wave functions in a post-processing step. To this
end, we employ a basic version of a wavefront tracking method
(see e.g., [JW15]) where our simulated concentrated wave replaces
the traditional tracked front resulting from solving the eikonal eq.

Specifically, we stack the interpolated velocity norms onto a ma-
trix V ∈ R|V|×|T |, i.e., each column is given by V j = IFV |v j|,
where |v j| ∈ R|F| is the point-wise norm of the velocity at time
t j ∈ T , where T = {0, . . . , tmax} is the set of discrete times that
we have data for. Interestingly, the non-zero entries of the ma-
trix V exactly identify the locations of our concentrated wave
over time. Thus, each non-zero Vi j represents that the front vis-
ited node xi at time t j. Notice that due to the nature of the EPDiff
eq., the concentrated fronts are attenuated over time, therefore, in
practice, we modify the entries by applying a gamma correction,
(Vγ)i j =Vmax(Vi j/Vmax)

γ,γ < 1.

What is left to determine is the correct amplitude per node at
each time t. We assume that the source of the wavefront starts oscil-
lating at time t = 0 with an amplitude that is a sum of N sinusoidal
modes

φ(t) =
N

∑
k=1

φk(t) =
N

∑
k=1

ak sin(ωk max(t,0)),

with amplitudes ak and (angular) frequencies ωk. The amplitude
then at node xi sampled at a time t, can be written as a convolu-
tion of a) the velocities Vi j at the node at various times t j with b)
the time-delayed amplitude of the source φ(t− t j). As mentioned,
every non-zero velocity entry Vi j implies that a new wavefront ar-
rives at node xi at time t j, bringing with it a time-shifted (and po-
tentially attenuated) copy of the source signal. Taking into account
the extra effect of (shallow/deep) water dispersion, where different
frequencies propagate at different speeds [JW15], we arrive at the
following sum over modes φk and times t j:

η(xi, t) =
N

∑
k=1

∑
t j∈T

(Vγ)i j φk(bkt− t j) (8)

The parameters bk = b(ωk) implement the dependency of the speed
of the sinusoidal waves (as a fraction of the fixed pre-calculated
speed of the wavefront) on the frequency. In Fig. 13 we demonstrate
a graphical interpretation of the proposed method, where a 1D wave
is traveling and bouncing off the boundary of the domain over time
(black line). The front data is then coupled with two wave sources
propagating at different speeds and different frequencies (blue and
red curves shown on top). The resulting convolution (black vertical
curve to the right) is the sum of the separate convolutions (red and
blue vertical curves).

Figure 11: Newton’s cradle on a torus with rings of different mo-
menta. Upon collision, an exchange of momentum occurs allowing
the rings to “switch" places while roughly maintaining their origi-
nal shape and intensity. Fig 2 shows a similar experiment in 1D.
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Figure |V| δx α β #steps Average time per step Total time
Fig. 4, Bunny 166427 0.0027 0.01 1e-5 401 4.095 1642.1
Fig. 5, Circular fronts 66141 0.003 0.015 1.5e-5 101 0.879 88.7
Fig. 8, Time reversibility 40962 0.019 0.05 5e-5 957 0.554 531.1
Fig. 10, Mercury on a bowl 50876 0.005 0.015 1.5e-5 381 0.843 321.5
Fig. 11, Newton’s cradle on a torus 40000 0.009 0.015 1.5e-4 191 0.685 131
Fig. 12, Ocean 43676 0.005 0.017 5.6e-5 286 0.688 196.9
Fig. 14, Periodic circular wave 66141 0.003 0.015 1.5e-5 141 0.879 124
Fig. 15, Pool 39990 0.005 0.018 1.8e-5 201 0.383 77
Fig. 16, Atlas 79952 0.0025 0.01 0 786 0.758 595.8

Table 1: We show various statistics for our simulations including the number of vertices |V|, the average edge length δx, the smoothening
parameters α,β, the number of steps and computation times in seconds.

Figure 12: Multiple fronts on a curved domain propagate with different profiles due to the underlying geometry (top row, left). When the
fronts meet, additional concentrated waves appear (top row, middle and right). The general behavior is realistic showing wave-wave and
wave-scene interactions (bottom row).

x

t

x

t

b T1 b T2
η(T )

Figure 13: To support periodic waves, we convolve the tracked
front (black line) with wave sources having different frequencies
and propagation speeds (red and blue curves shown on top). The
resulting periodic wave is obtained from the sum of the two convo-
lutions (black curve to the right).

In practical terms, the calculation of the vector η(t) of the ampli-
tude of all the nodes xi at a given time t can be performed efficiently
as the matrix-matrix-vector product:

η(t) =Vγ Φ(t)a (9)

where Vγ is the gamma-corrected wavefront velocity matrix, the
columns of Φ(t) ∈ R|T |×N are the time-shifted sinusoidal modes
sampled at the times T of the form sin(ωk max(bkt −T ,0)), and
a = (a1 . . .aN)

T is the vector of the amplitudes of the various
source modes. Note that the generated wave η(t) is a piecewise-
linear function on vertices which is sufficiently sampled in time
and space due to our CFL condition (see Section 4), thus linear
interpolation in space produces reasonable results. In Fig. 14 we
show how a single circular front (left) can be convolved with a sin-
gle periodic source to produce a periodic behavior (middle). Also,
coupling with two sources traveling at different speeds, allows to
achieve dispersion-like effects (right).
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Figure 14: A circular front (left) is coupled with a single shifted
source, producing a periodic wave (middle). Using the same tech-
nique, several sources can be blended, achieving dispersion effects.

7. Conclusion

We proposed a novel numerical scheme for the EPDiff equation
while maintaining geometrical invariants. We tested our approach
in the context of simulating concentrated and globally-supported
waves on general triangle meshes. Moreover, we presented two nu-
merical splitting schemes which are fully explicit and conserve the
energy by construction, allowing to choose time invertibility over
preservation of the velocity-momentum relation and vice versa. Our
method is extremely efficient since it involves at most three inver-
sions of a fixed matrix which we factorize as a pre-processing step.
Additionally, we showed that our numerical data can be used in the
context of wavefront tracking methods where several linear wave
sources are blended to obtain various wave effects such as period-
icity and dispersion. We demonstrated interesting wave-wave and
wave-scene interaction effects on flat and curved domains.

We believe that many potential extensions are worth exploring.
In particular, adding various forcing terms to the governing PDE
will probably yield intricate new effects. Also, extending the tech-
nique to support adaptive meshes will be useful, since large parts
of the domain do not contain any parts of the resulting front, and
thus the resolution of these parts can be reduced. Finally, allowing
layers of velocities instead of a single tangential vector might be
an interesting direction as it will allow to achieve a richer span of
motion effects such as breaking of waves.
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Appendix A: Energy preservation and time invertibility

Energy Preservation for the SPI. The key technical lemma that
we need for the energy preservation of the integrator (5), is the
following orthogonality result:

Let R(v,m) := −
(

v ·∇m+∇vT ·m+(divv)m
)

. Then

〈v,R(v,m)〉= 0 for any v,m.

Proof Noting that ∇vT ·m = m ·∇v+m× (∇× v), we can show
that R(v,m) =−∇(v ·m)+ v× (∇×m)− (divv)m, a known alter-
nate formulation for the EPDiff. Testing this expression with the
velocity v, we get

〈v,R(v,m)〉
=−〈v,∇(v ·m)〉+ 〈v,v× (∇×m)〉−〈v,(divv)m〉
=−〈v,∇(v ·m)〉−〈v,(divv)m〉

where we immediately cancelled the middle term, since by the
triple product identity a · (b× c) = c · (a×b) we have v · (v× (∇×
m)) = (∇×m) · (v× v) = 0.
We need to integrate the first term by parts. Integrating the vector
calculus identity div( f v) = f divv+∇ f ·v with f = v ·m, and using
the divergence theorem, gives us∫

Ω

v ·∇(v ·m) =
∫

∂Ω

(v ·m)(v ·n)−
∫

Ω

(divv)(v ·m)

By the standard no-penetration boundary condition v · n = 0 the
boundary integral on the RHS vanishes. It follows that 〈v,∇(v ·
m)〉=−〈v,(divv)m〉, and so indeed 〈v,R(v,m)〉= 0.

The lemma can be used to show the following result:

If Dα is self-adjoint and 〈v,R(v,m)〉 = 0 for any v, then
〈vk,mk〉= 〈vk+1,mk+1〉.

Proof Let Rk, Rk+ 1
2 and Rk+1 denote the three R(·, ·) terms

in the three steps of the integrator (5) respectively. The
property 〈v,R(v,m)〉 = 0 implies immediately that 〈vk,Rk〉 =
〈v̄k+ 1

2 ,Rk+ 1
2 〉= 〈vk+1,Rk+1〉= 0. It follows that every momentum

Figure 15: Our method allows the concentrated waves to interact
with obstacles in the scene in a natural way. The propagated front
splits into two due to the cylinder and reconnects afterwards. No-
tice that additional waves are generated from behind the cylinder
due to the no-penetration boundary conditions that our differential
operators maintain.
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update is in an orthogonal direction to the associated velocity:

〈mk+1,vk+1〉= 〈mk+ 1
2 +

τ

2
Rk+1,vk+1〉

=〈mk+ 1
2 ,vk+1〉= 〈mk+ 1

2 ,vk + τD−1
α Rk+ 1

2 )〉

=〈mk+ 1
2 ,vk〉= 〈mk +

τ

2
Rk,vk〉

=〈mk,vk〉

Note that we used the fact that Dα is self-adjoint (and so D−1
α

too), together with the definition v̄ = D−1
α m, to eliminate the term

〈mk+ 1
2 ,D−1

α Rk+ 1
2 〉= 〈D−1

α mk+ 1
2 ,Rk+ 1

2 〉= 〈v̄k+ 1
2 ,Rk+ 1

2 〉.

Time invertibility for the SPI. Let (mk,vk) and (mk+1,vk+1) sat-
isfy the equations (5), and assume that R(−v,−m) = R(v,m) for all
v,m. Then starting with (m̃k, ṽk) = (−mk+1,−vk+1) and applying
the integrator, we arrive at (m̃k+1, ṽk+1) = (−mk,−vk).

Proof Starting from ṽk =−vk+1 and using the assumption on R, we
can verify that R̃k = Rk+1, and so m̃k+ 1

2 = m̃k + τ

2 R̃k = −mk+1 +
τ

2 Rk+1 =−mk+ 1
2 . In the same manner we can follow the integrator

steps backwards, flipping the signs of m and v on the way, to arrive
at m̃k+1 =−mk.

Energy preservation for the ASPI. Consider the integrator (5),
under the assumption that mk = Dαvk, and in addition let v̄k+1 :=
D−1

α mk+1. If we take vλ := (1−λ)vk+1 +λv̄k+1 and mλ := Dαvλ

with λ as in Eq (6), then

1. If 〈vk+1,Q〉〈v̄k+1,Q〉 ≥ 0 then 〈vλ,mλ〉= 〈vk,mk〉.
2. In any case, as long as R(·, ·) is bilinear, 〈vλ,mλ〉 = 〈vk,mk〉+

O(τ3).

where Q := v̄k+1− vk+1.

Proof Noting that the product of a velocity v with its associated
momentum m = Dαv is equal to (the square of) its α norm, 〈v,m〉=
‖v‖2

α, and making good use of the chain of equalities in the proof
of the energy preservation of the integrator (5) (see above), we can
show that

‖v̄k+1‖2
α−‖vk‖2

α = τ〈v̄k+1,Q〉

‖vk+1‖2
α−‖vk‖2

α =−τ〈vk+1,Q〉

1. Using these, the desired condition ‖vλ‖2
α = ‖vk‖2

α is eventually
equivalent to λ

2〈v̄k+1,Q〉 = (1−λ)2〈vk+1,Q〉. If the two inner
products have the same sign, then we can solve this quadratic
for λ. The lambda given in (6) is the root in [0,1].

2. On the other hand, if R(·, ·) is bilinear, then we can go back
to the definition of the integrator and derive expansions of the
form Rk+ 1

2 = Rk + τ

2 . . . and Rk+1 = Rk + τ . . . , where the coef-
ficients are functions of vk,mk alone. From these we can check
that Q = O(τ2), and so the relations above can be read as
‖v̄k+1‖2

α = ‖vk‖2
α+O(τ3) and ‖vk+1‖2

α = ‖vk‖2
α+O(τ3). Keep-

ing in mind that 〈v̄k+1,vk+1〉 = ‖vk‖2
α, it is easy then to show

that ‖(1−λ)vk+1 +λv̄k+1‖2
α = ‖vk‖2

α +O(τ3) too.

Appendix B: A family of implicit schemes

The following result prescribes a family of implicit integrators that
also preserve the kinetic energy 1

2 〈v,m〉.

If the operator Dα is self-adjoint w.r.t. to the inner product 〈·, ·〉,
and 〈v,R(v,m)〉= 0 for any v,m, then any scheme of the form:

Dαv̇ = R(vk +
τ

2
v̇, m̂) (10a)

vk+1 = vk + τ v̇ (10b)

mk+1 = mk + τDαv̇ (10c)

preserves the kinetic energy 1
2 〈m,v〉 exactly in the sense that

〈mk,vk〉 = 〈mk+1,vk+1〉. This is independent of the choice of m̂,
which can be taken to be mk (semi-explicit), mk+1 (implicit) or
mk+ 1

2 = mk + τ

2 ṁ (mid-point).

Proof

〈mk+1,vk+1〉−〈mk,vk〉= 〈Dαvk+1,vk+1〉−〈Dαvk,vk〉

= 〈Dα(vk+1− vk),vk+1 + vk〉

= 2〈τDαv̇,
vk+1 + vk

2
〉

= 〈R(vk+ 1
2 , m̂),vk+ 1

2 〉= 0

Furthermore, if Dαvk = mk, then Dαvk+1 = mk+1, so these
schemes preserve the constitutive relation, contrary to the explicit
scheme (5). The price to pay for this is that we need to assemble and
solve a different system at each time step. Given that R(v,m) (both
in the continuous and in the fully discrete case) is a bilinear form,
we can define the linear operators (matrices in the discrete case)
L∗v := R(v, ·) and Pm := R(·,m). In the semi-discrete case, where
m̂ = mk, we need to solve at each time step a linear system of the

Figure 16: Our SPI method is time invertible, allowing to generate
seemingly random initial conditions (top, left) by flowing forward
in time from the target setup (bottom, right) and then running the
simulation with a negative time step (top, right and bottom, left).
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form

(Dα−
τ

2
Pmk )vk+1 = (Dα +

τ

2
Pmk )vk (11)

In the mid-point (second order accurate) case, where m̂ = mk+ 1
2 ,

we have to solve the non-linear system

f (v̇) = Dαv̇−R(vk +
τ

2
v̇,mk +

τ

2
Dαv̇) = 0 (12)

Applying Newton’s method to this system forces us to assemble
and invert the Jacobian J f (v̇) = Dα− τ

2 L∗vk+ τ

2 v̇Dα− τ

2 Pmk+ τ

2 Dα v̇ a
couple of times per time step. This has proven in practice to be
rather slow compared to the explicit integrator (5).
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