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Figure 1: Using our method, we can find correspondences and map functions defined on shapes from two collections, given
only maps within the same collection. This map is easy to compute, and provides a meaningful representation of the relation
between shapes from different collections, for which a point-to-point map is difficult to obtain and is not well defined. (a)
original collections, (b) collection alignment, (c) functional map approximation between all shapes in both collections.

Abstract

Inferring maps between shapes is a long standing problem in geometry processing. The less similar the shapes
are, the harder it is to compute a map, or even define criteria to evaluate it. In many cases, shapes appear as
part of a collection, e.g. an animation or a series of faces or poses of the same character, where the shapes are
similar enough, such that maps within the collection are easy to obtain. Our main observation is that given two
collections of shapes whose “shape space” structure is similar, it is possible to find a correspondence between the
collections, and then compute a cross-collection map. The cross-map is given as a functional correspondence, and
thus it is more appropriate in cases where a bijective point-to-point map is not well defined. Our core idea is to
treat each collection as a point-sampling from a low-dimensional shape-space manifold, and use dimensionality
reduction techniques to find a low-dimensional Euclidean embedding of this sampling. To measure distances on the
shape-space manifold, we use the recently introduced shape differences, which lead to a similar low-dimensional
structure of the shape spaces, even if the shapes themselves are quite different. This allows us to use standard
affine registration for point-clouds to align the shape-spaces, and then find a functional cross-map using a linear
solve. We demonstrate the results of our algorithm on various shape collections and discuss its properties.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: —Shape Analysis.

1. Introduction canning and analysis of medical data, to mention just a few.
In many cases, correspondences between shapes are repre-
sented as a point-to-point map, taking points on the first
shape to points on the second. Such maps are appropriate

Shape correspondence and shape collection analysis are fun-
damental tasks in geometry processing, at the core of many
applications, such as animation, geometric modeling, 3D s-
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when the shapes are similar, e.g. different poses of the same
person. For more complicated cases, e.g. the same pose of d-
ifferent characters, it is not always clear which points should
be in correspondence. In such cases, it is easier to model a
correspondence as a function-to-function map [OBCS*12],
taking functions on the first shape to functions on the second.
This approach is more flexible and allows us to encode the
uncertainty inherent to the solution of an ill-posed problem.

Often, shapes do not appear in isolation, but in collec-
tions of related shapes with certain structure. For example, a
densely sampled animation between two poses has a differ-
ent structure than a set of unrelated poses. If the collection
is homogeneous, i.e., the shapes are similar to each other, it
is often feasible to obtain a good correspondence between
shapes within the collection, and then leverage this informa-
tion for further analysis of the collection’s structure.

We address the following problem: given two homoge-
neous shape collections with intra-collection maps, we seek
a correspondence between the shapes (namely which shape
in collection A maps to which shape in collection B), as well
as the cross-map between all the shapes (see Fig. 1). While
this seems harder than finding a map between every pair of
shapes in the two collections, we demonstrate that the struc-
ture within each collection can be extracted and represented
concisely, such that if the structures are similar, the collec-
tions can be aligned. This allows us to compute only maps
between corresponding shapes, which are easier to obtain.

To align two collections of shapes whose geometries are
different, we need to define a shape representation such that
the similar structure can emerge. Thus, we need a represen-
tation which can encode relations like “shape A is to B, like
Cis to D”, and allow us to compare differences of differences
of shapes. Recently, exactly such a representation was intro-
duced [ROA*13], where the difference between two shapes,
for which we have a correspondence, can be represented us-
ing a linear operator which acts on functions on one of the
shapes. Comparing two such operators provides a meaning-
ful measure of the shape difference as it can encode not only
whether two shapes are different, but also where they differ.
This brings all the “shape differences” in the same collection
to a common ground, and allows us to use standard tech-
niques for Euclidean point clouds to perform the analysis.

We assume that each collection includes shapes which are
sampled from a low-dimensional shape space manifold. We
therefore use a standard non-linear dimensionality reduction
technique [CLO6] to find a low-dimensional Euclidean em-
bedding which reproduces as best as possible the original in-
trinsic distances on the shape space manifold. We repeat this
procedure for both collections, and then align the resulting
point clouds using an affine registration method [MS10].

Once the collections are aligned, we can use the assump-
tion on the common structure, to specify constraints of the
type “A is to B as C is to D” as linear constraints on a func-
tional map which maps a shape from the first collection to

a shape in the second. These constraints are enough to re-
cover the cross-collection functional map without requiring
any additional descriptors. We then extend this map to the
rest of the collection, through composition, which puts both
collections in correspondence.

1.1. Related Work

The concept of registering two shape collections using di-
mensionality reduction techniques has not (to the best of our
knowledge) been proposed before, nor has the task of finding
a cross-collection functional map. Nevertheless, the tasks of
finding a map between two shapes and the analysis of shape
collections have been widely studied in different contexts.

The task of finding a map between two shapes has been
studied from different points of view, under various assump-
tions, e.g. in [KLF11, OBCS*12]. See [TCL*13] for a re-
cent survey. It is worth noting that our method incorporates
much more information, as the whole collection is consid-
ered when computing the map.

Considering the entire collection when computing map-
s within the collection has also been addressed previously.
In [NBCW*11,HZG*12,HG13, HWL14] , the authors add
the constraint of global map consistency in order to improve
a set of initial maps, using different optimization methods. In
addition, structural information from the collection is com-
monly used for co-segmentation, e.g. in [HKG11,KLM*13,
ZCOAM14], among others. In general, we differ from these
methods by our assumption of having fwo homogeneous
shape collections, with good maps within the collection, in-
stead of having a single heterogeneous collection. This al-
lows us to assume there exists common structure, and use it
to align the collections as a whole.

Spectral analysis of shape collections using dimension-
ality reduction techniques has been used in [ESKO07, T-
SK09, TESK11] for shape de-noising. In [ROA*13], the au-
thors proposed a way to represent the intrinsic shape-space
of a collection using functional operators. This allows to
represent differences between shapes as comparable objects
instead of merely distances, and then to embed the shape-
space in two dimensions, e.g. for visualization. However,
the dimensionality reduction was performed using Principal
Component Analysis, which assumes the underlying shape-
space manifold is linear. In many cases, though, such an as-
sumption is too restrictive, and projecting the shape-space
on a linear manifold might destroy its structure. We use non-
linear dimensionality reduction instead to overcome this dif-
ficulty.

Finally, the registration of two collections was studied in
the context of video sequences [CI00, CPSKO04, LBPWOS5].
There, however, the problem is better posed, as there are
considerably less parameters and more available data.

To conclude, the main difference between previous work
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Figure 2: Similar structure in two collections. Although the
geometry of the cat (left) differs from the geometry of the
lioness (right), the difference between the cats is similar to
the difference between the lionesses.

and our approach is that none of the previous approaches at-
tempted to register directly two shape collections. The main
obstacle to doing that is finding a common representation
such that an alignment is possible. By leveraging the func-
tional approach, namely considering maps and shape differ-
ences as linear operators, we can map both shape-spaces to a
common space, where alignment is possible. Furthermore,
we can use this alignment to compute a functional map,
which takes into consideration both collections as a whole.

Algorithm outline. Given two shape collections A and B
with internal correspondences, we do the following:

e Choose a base shape in each collection, and use it to cal-
culate the shape differences representation (Section 2).

e Reduce the dimensionality of the collections using diffu-
sion maps on the shape differences representation to ob-
tain two point clouds, then use affine registration to align
the clouds, and find corresponding shape pairs (Section 3).

e Define shape-analogies constraints between correspond-
ing pairs and the base shapes, and obtain an approximated
functional map between the base shapes (Section 4).

2. Collection Representation

Given two shape collections, we assume they are sampled
from two low-dimensional space-shape manifolds. Our goal
is to represent each shape as a point in R”, such that Eu-
clidean distances in this representation have some intrinsic
geometric meaning, and we can later align the resulting point
clouds. If we are given additionally maps between every t-
wo shapes within each collection, we can use these maps
to compute a notion of a shape difference. This is a linear
operator, which encodes the variation induced by the map.
Assuming that shapes which are corresponding in two col-
lections undergo a similar transformation under a map from
some base shape, e.g. the change from a neutral face to a
frowning face is similar for two different characters, such a
shape difference would provide the intrinsic representation
we require.

Assumptions. For our algorithm to be applicable, we must
make a few assumptions on the input shape collections. First,
we assume that both collections are homogeneous, e.g. rep-
resent the same character or the same object in different pos-
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Figure 3: Two similar animations of different shapes, sam-
pled at different rates (30 shapes and 60 shapes). Some
shapes in the dense collection are considered as outliers, as
they do not have compatible matches in the sparse collec-
tion. After removing the outliers, the remaining shapes are
matched correctly.

es, and we are given maps between all pairs. Next, we as-
sume that the collections have similar structure. Specifically,
this means that there is a subset of shapes in both collections
which can be paired, such that the differences between them
are similar. For example, in Figure 2 we show two shapes
(a cat and a lioness) which have different geometries, how-
ever the difference between the two cats is similar to the
difference between the two lionesses. Furthermore, we as-
sume that for each collection there exists a base shape which
can be used to evaluate the shape differences to all the other
shapes in the collection. Finally, we assume that the low di-
mensional Euclidean embeddings of the two collections are
not symmetric, and thus can be reliably registered.

We emphasize that the two collections can differ in their
number of shapes. In such cases, some of the shapes in the
larger collection are expected to be considered as outliers,
enabling the other shapes to be matched successfully. Fig-
ure 3 shows an example of the alignment of two collections
with a different number of shapes: a dense and a sparse sam-
pling from an animation sequence.

2.1. Functional Maps and Shape Differences

The functional maps framework [OBCS™*12] is used to rep-
resent maps between surfaces. Namely, given two surfaces
M and N, amap T : N — M between them induces a map
between function spaces F : L*>(M) — L*(N), where L*(-)
is the set of square integrable real-valued functions on a sur-
face. This functional map F takes a function f : M — R and
maps itto g : N — R, and is defined using g = F(f) = foT.
As explained in [OBCS*12], F is a linear transformation be-
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Figure 4: Shape irregularities in two collections, the chosen base shapes, the alignment results (in percentages) and the
approximated map. (a, b) Best and worst base shapes in collection A. (c, d) Best and worst base shapes in collection B. (e) A
bad pair of base shapes yields a bad map, as can be seen by pushing a coordinate function. (f) Choosing a good pair results in
a good map. (g) Choosing non-optimal base shapes (#19 in A and #40 in B) yields sub-optimal, yet reasonable, results.

tween function spaces. Therefore, given a choice of basis, it
can be represented as a matrix in the discrete setting.

A shape difference [ROA*13] is a linear operator which
encodes the disparity between two shapes M and N under
a given functional map F. We use the two types of shape
differences defined in [ROA™13], one based on the area dis-
tortion and another based on the conformal distortion, as
induced by the map. Together these two shape differences
completely encode the map F.

The area-based shape difference is marked Vj y and the
conformal-based shape difference is marked Ry n, where
the respective map is usually clear from the context. We em-
phasize that both Vjs 5 and Ry are not numbers but op-
erators. Note that two shape differences, Vi n, and Vi n,,
represent linear operators with the same domain and range,
L*(M), even if Nj # N». Hence, the shape difference be-
tween M and N; is comparable to the shape difference be-
tween M and N,, as they are both linear operators acting on
functions on M.

In order to represent a functional map discretely, we need
to pick a basis for the space of discrete functions on meshes.
We choose the eigenvectors of the Laplace-Beltrami opera-
tor, as proposed in [ROA*13], as it provides a multi-scale
basis which allows to represent smooth functions with a s-
mall number of basis functions. As described in [ROA™13],
given a functional map F we compute the shape differences
using:

Vun=F'F, and Ryy=D")'F'D"F, (1)

where DM = diag(—{A\"}), MM is the i™ eigenvalue of the
Laplacian of M, and similarly for N. We typically use be-
tween 30 and 70 eigenfunctions for the representation.

Finally, the shape difference distance (SDD) between two
shapes N1, N,, given a base shape M is defined as:

g (N1 N2) = Vi, — Vi [+ R, — R, I3 (2)

2.2. Base Shape Selection

We represent all the shapes in a collection as a shape differ-
ence to a chosen base shape M. Specifically, each shape is
represented as a linear operator which takes functions on M
and returns functions on M, therefore, all the shape differ-
ences are encoded in the basis of M.

It has been shown in [ROA*13], that if there is cycle con-
sistency in the collection (namely, given any three shapes
M ,N,K, and functional maps Fyy : L>(M) — L*(N) and
similarly for Fyk,Fyk, we have Fyyx = FykxFyn), then it
is possible to transport shape differences between differen-
t base shapes by applying a change of basis. Specifically,
given a functional map G from M; to M, we can compute
VMI N = GilVMle G. If additionally G is orthogonal (name-
ly, the map is volume preserving), then we have:

VM]N] - VM1N2 = VMzN[ - VMzNz (3)

hence the distance between the shape differences as viewed
on M are equivalent to those viewed on M. The further G
is from being orthogonal, the more influence the choice of
base shape will have on the resulting distances, which can
potentially be harmful for our registration process.

Therefore, there are two practical problems. First, since
we only use the first k eigenvectors of the Laplace-Beltrami
operator, we lose cycle consistency, and Equation 3 does not
hold anymore. Second, the distances are “distorted” by G,
and therefore there is a dependence on the choice of base
shape in the two collections. For example, if G has a non-
trivial kernel, e.g. if there exists a part on M which does not
exist on M», then there is loss of information when chang-
ing base shapes. Effectively, the difference between shapes
which differ at the missing part cannot be represented using
the base shape M,.

Therefore, we would like to choose, in both collections,
base shapes on which the differences between all the shapes
are well represented. To do that, we search for a shape M
such that Fysy for all the shapes N in the collection is close
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Figure 5: Two collections of 40 blend shapes after reducing their dimensionality using diffusion maps and projecting the
resulting 9-dimensional cloud into 2D: (a) collection A cloud, (b) collection B cloud, (c) A to B alignment using an affine
transformation with reflection. Even though additional energy is contained in higher dimensions, some of the similarities can
be seen in 2D, such as the corresponding shapes (in matching colors) along the edges of the marked polygon.

to an orthogonal matrix. We define this concept as the shape
irregularity. Specifically, we compute:

k
argmin Z Z|6571|2 4

MEA NcAN#AMi=1

where o; is the i-th singular value of the functional map Fysy
from M to N, and k is the number of basis vectors we are
using for the representation.

Figure 4 demonstrates the effect the choice of base shape
has on our algorithm as described in Sections 3 and 4. When
the worst shapes (b, d) according to the shape irregularity
measure are chosen as base shapes, the resulting approxi-
mated functional map is not satisfactory (e), as can be seen
from the density of the matrix, the errors in transferring a
smooth function between the source and target shapes, and
the alignment results (only 18% of the shapes were paired
correctly). For a good choice of base shapes (a,c), the re-
sulting alignment is 90%, and the functional map is close
to the ground truth (f). For a choice of base shapes which
is non-optimal, we still get a reasonable, yet sub-optimal,
functional map (g). Hence, while our algorithm is dependent
on the choice of base shapes, this is done automatically in
a manner which optimizes the resulting functional map be-
tween the collections. Furthermore, the result is stable under
a choice of sub-optimal base shape.

After choosing the base shapes in the collections, we com-
pute the shape difference representation for every shape, and
compute the intrinsic distances between the shapes using E-
quation (2).

3. Collection Alignment

After obtaining the shape differences, we would like to find
a correspondence between the two collections. However, the

submitted to EUROGRAPHICS 2014.

Cumulative Energy
1.4 : :

= Diffusion Maps
—PCA
1.2+ il
d: 13 —
i E: 0.9504 (y = 0.95)

&5 mmm————— P e e
E: 0.8074
_________________ E: 0.9526 ..__|

d: 13
E: 0.8067

0 . . .
0 5 10 15 20 25 30

Dimension

Figure 6: Dimensionality reduction allows us to reveal the
intrinsic dimension of a shape collection. Here we can see
the cumulative energy (E in Equation 5) of a collection of 40
blend shapes when applying PCA or diffusion maps and the
estimated dimension of the data. Choosing a higher value for
Y would yield a higher estimated dimension. Since diffusion
maps is a non-linear technique, it is capable of recovering
the true, non-linear structure of the data (9-dimensional). P-
CA, on the other hand, assumes a linear structure and there-
fore identifies an higher intrinsic dimension of 19.

shape differences in different collections cannot be com-
pared directly since different base shapes are used. We there-
fore assume that each shape collection is a point sampling
from a low-dimensional shape space, and use the intrinsic
shape difference distances to embed this point cloud in Eu-
clidean space. We then align the resulting point clouds.

Diffusion maps. The “diffusion maps” algorithm [CLO6] is
a widely known method for non-linear dimensionality re-
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Figure 7: Aligning two collections of 40 blend shapes: (a)
identified outliers, (b) correct matches. See also Figure 10.

duction which has been used in many diverse fields, such
as computer vision, medical imaging and shape analysis. It
has also been used for the analysis of shape collections [T-
SKO09].

In diffusion maps, we first construct a symmetric weight-
ed graph where each node corresponds to a data point. The
weights of the edges represent the similarities between the
data points. In our setting, these weights are determined ac-
cording to the SDD between the shapes, as defined in Equa-
tion (2). Then, we calculate the diffusion matrix by normal-
izing the rows of the matrix of the graph. Taking powers of
the diffusion matrix allows us to observe the data at differ-
ent scales and see the global connectivity of the data set.
Figure 5 (left, middle) shows two collections after reducing
their dimensionality and projecting the result into 2D.

Coherent point drift. When aligning two point clouds we
need to assume some prior on the allowed transformation-
s between them. In general, since our sampling is relatively
sparse compared to the dimension (e.g. 40 shapes in dimen-
sion 9), we need to assume a somewhat restrictive prior to
avoid over-fitting. Assuming the transformation between the
point clouds is rigid (i.e. rotation and translation) is too re-
strictive, as is uniform scaling. Allowing an affine map be-
tween the point clouds allows the algorithm to tolerate some
error in the SDDs between the shapes (e.g. because the col-
lections are not exactly aligned, or the choice of base shape
is not optimal), while still avoiding over-fitting. In addition,
we allow reflection, as the diffusion map embedding is on-
ly defined up to isometries. We use “coherent point drift”
(CPD) for the alignment, which is a state-of-the-art registra-
tion algorithm that supports affine registration. Fig. 5 (right)
shows the cloud of collection A after aligning it to the cloud
of collection B using the resulting affine transformation.

Intrinsic dimension estimation. In many cases, we do not
know the intrinsic dimension d in advance. In such cases, we
can estimate d from the data. We use a method similar to the
one proposed in [SW12]. We set a threshold y between 0 and
1. Then, we sum the energy along increasing dimensions un-
til the ratio to the total energy exceeds the chosen threshold.
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Figure 8: Functional map approximation: (a) source shape
in collection A (b) “ground-truth” map to the target shape
in collection B, used for comparison and computed from a
manually created point-to-point map, (c) least-squares solu-
tion G to the map between the base shapes, (d) approximated
functional map using iterative refinement and map composi-
tion as described in Section 4.

Namely, we choose the minimal d such that:

Tucy [l
E(d) = =vert 2
@D =F ol

where Y and Y" are the result of reducing Y to d or n dimen-
sions (no reduction), respectively. For example, Y= 0.9 indi-
cates that the chosen dimension consists at least 90% of the
total energy of the data set. In our setting, given two shape
collections A and B with estimated intrinsic dimensions dy4
and dp, we choose d = max {d4,dp}. This way, we do not
lose information about either collections.

>y (&)

Figure 6 demonstrates the effect of y on the resulting es-
timated dimension, as well as the advantage of a non-linear
dimensionality reduction technique over a linear one (PCA),
using the discussed dimension estimation technique.

Shape pairing. An important observation is that CPD is an
asymmetric registration method. Namely, cloud B is regis-
tered to cloud A or vice-versa. However, in our setting, we
do wish for a symmetric registration. Therefore, we perform
the registration in the following way: first, we do not allow
a point in the source cloud to match more than one point in
the target cloud. If a source point matches more than one tar-
get point, we choose the target point which is closer as the
match. Second, we match both A to B and B to A, and then
choose the direction which yields more matching points. Fi-
nally, a point which does not match any other point after the
described process is considered to be an outlier. A result of
this symmetric alignment is presented in Figure 7.

4. Functional Map Inference

Shape analogies constraints. So far we have used the
shape differences for computing distances between shapes
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Figure 9: Pushing coordinates functions (left — right) and
Gaussians (top — bottom) through approximated functional
maps between collections A and B: (a) A base shape to B
base shape, (b) A arbitrary shape to B arbitrary shape, (c)
B arbitrary shape to A arbitrary shape, (d) B outlier to A
outlier. Notice that a functional map between two outliers is
approximated successfully.

(©)

within the same collection. However, shape differences en-
code more information, which can be leveraged for comput-
ing a functional map between the collections.

Specifically, if we know that two shapes M4, N4 € A cor-
respond to two shapes Mp,Np € B, and we assume that the
collections have similar structure, we can additionally as-
sume that the shape differences correspond. Namely that
Vm,n, 18 similar to Vyz,n,, and similarly for R. In the pre-
vious section we computed a pairing between shapes in both
collections, hence, given such pairs we can pose constraints
which enforce this similarity.

Specifically, let M; € A and N; € B be such that (M;,N;)
are a corresponding shape pair. Further, let M4 be the base
shape on A, and N, its corresponding shape on in B. Finally
let G be the unknown functional map between M4 and Ny4.
Since we cannot compare Vjy, p;, with Vi, y, directly as they
are defined on different function spaces, we apply G on the
left and on the right such that all operators take functions on
My and return functions on Ny. This leads to the following
energy:

K

arg(r;nin Y (IIGVMAM,- — VGl + | GRuu, —RNANiGH%)
i=1

(6)

where K is the number of matching pairs. In order to mini-
mize this energy, we solve a set of equations which are lin-
ear in the elements of G. This is a homogeneous problem and
thus it can be solved using SVD. Intuitively, these constraints
enforce shape analogies, namely, My is to M; as Ny is to
N;. Note, that in [ROA*13] similar constraints were used for
finding corresponding shapes given the map G, whereas we
solve for the map given the corresponding shapes. Note that
these constraints are completely automatic, as the only in-
put they require is the shape pairing between M; and N; and
between M4 and Ny.
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Figure 10: Correspondence and maps between two tester-
s from the FaceWarehouse database [CWZ" 13]. Functional
maps were approximated correctly for all shapes. (a) iden-
tified outliers (17%), (b) wrong matches (19%), (c) correct
matches (64%), (d) maps between shapes which are part of
a correct match, (e) maps between shapes which are outliers
or part of a wrong match.

Iterative refinement. In general, the matrix G which min-
imizes the energy in Equation (6) does not correspond to a
bijection, as we did not enforce any additional constraints
beyond the shape analogies. However, we can proceed us-
ing a post-processing iterative refinement algorithm, as pro-
posed in [OBCS™*12], used to refine a given matrix to make
it closer to a point-to-point map. We refer to Gy as an initial
estimate to G and denote the Laplacian eigenvectors matri-
ces of A and B by @4 and @p. As noted in [OBCS*12], if
Go : M — N is a functional map corresponding to a volume
preserving map, then Gg should be such that each column
of GO(pM coincides with some column of (pN . We treat @4
and @p as two point clouds with dimensionality equal to the
number of eigenvalues which we used. In addition, for a vol-
ume preserving map we also expect the mapping matrix Gy
to be orthonormal, thus we can perform a rigid alignment
between @4 and @p by the following iterative algorithm:

1. For each column v of Go(pM find its closest ¥ in (pN .
2. Find the orthonormal G which minimizes Y [|Gv — 7]|.
3. Set Gy = G and iterate for a fixed number of iterations.

This algorithm is effectively ICP in eigenspace, using the
minimizer of Equation (6) as the initial solution.
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Using this method, we are able to reconstruct an approxi-
mated functional map. Note that since this is a homogeneous
problem the solution will be up to a constant multiplication
(positive or negative). We can ignore the scaling factor — the
functional map is a linear operator and we normalize every
function pushed through it. However, the sign of this con-
stant does affect the resulting G. Therefore, we apply itera-
tive refinement separately for Gy and (—Gy) and choose the
solution which minimizes the noted sum of distances.

We note again that G is a functional map between the
base shape in A and its corresponding shape in B. In or-
der to get the functional map between two arbitrary shapes
M; € A and N; € B, we compose the functional maps to the
base shape M4 and to its corresponding shape N4. We mark
Fya, 1 L*(M;) — L*(My) and Fy,, : L*(Na) — L*(N;) and
compose them with G:

Fyun; = Fngn; - G- Fymy @)

Note that using Equation (7) we can compute a function-
al map between any two shapes in the collections, including
shapes which were considered outliers or were not matched
during the registration step. Figure 8 demonstrates the pro-
cess of approximating a map between two shapes using the
algorithm described above.

In order to calculate the functional maps in the opposite
direction (namely, from B to A), we simply produce the cor-
responding equations by swapping A and B, and proceed
as described above. Figure 9 shows approximated maps be-
tween various shapes in both collections. The maps are eval-
uated between shapes which belong to a matching pair, as
well as between shapes which were classified as outliers or
were a part of wrong match.

5. Experimental Results

We tested our algorithm on different data sets. We present
the results and compare them to “ground-truth” results:

e A known point-to-point map between the two collections,
if such exists, is used to compute a “ground-truth” func-
tional map for comparison purposes only. We compare our
results to this map.

e If the correspondence between the two collections is
known (for example, corresponding facial expressions),
we demonstrate our registration results with respect to this
known correspondence: correct matches, wrong matches,
outliers (shapes which were not matched at all) and the
corresponding percentages.

Our parameters setting was as follows. We used 32 eigen-
values of the Laplacian for the computation of functional
maps and shape differences. The parameters for diffusion
maps were t = 1, 6 = 1 and y = 0.9 for the intrinsic dimen-
sion estimation. For CPD we used ® = 0.1 and default values
for the other parameters, as described in [MS10].

Limitations. First, our algorithm assumes a similar struc-
ture in both collections — if the two given collections do not
have a similar structure we will not be able to align them.
Second, as explained in [ROA*13], the shape differences
are based on externally supplied maps between shapes, and
they therefore depend on the quality of these maps. Anoth-
er requirement is for the collection to contain a minimum
amount of shapes (e.g. at least 30). Given a smaller amount
of shapes, the collection alignment is not feasible, since the
point cloud is too sparse compared to its dimension. In addi-
tion, a small collection means that the number of terms in E-
quation (6) will be smaller, leading to a larger approximation
error. Finally, the algorithm depends on several parameters
which must be chosen in advance.

Blend shape collections. As presented throughout the pa-
per, we tested our method on two collections of 40 blend
shapes each.

e Diffusion maps produced two 9-dimensional point clouds.

e Registering the two collections resulted in 36 correc-
t matching pairs (90%), no wrong matches and 4 outliers
in each collection (10%). The results are shown in Fig-
ure 7.

e A functional map approximation was recovered and suc-
cessfully extended to all the shape pairs, including the
non-matching shapes in each collection. The results are
presented in Figure 9.

FaceWarehouse database. FaceWarehouse [CWZ*13] is a
database of 150 individual testers. Each collection consists
of 47 different facial expressions and the collections are in
correspondence. As mentioned before, we used this known
correspondence only for comparison purposes. We tested our
algorithm on four different pairs of testers. A summary of all
the different pairs is presented in Figure 11.

e Testers pair 1. Specific results are presented in Fig-
ure 10. Diffusion maps produced two 11-dimensional
point clouds. Our algorithm identified correctly 30 match-
ing facial expressions (64%), 8 outliers (17%) and 9 pairs
were wrong matches (19%). As can be seen in Figure 10,
most pairs which were wrong matches are indeed similar.

e Testers pair 2: Diffusion maps produced two 11-
dimensional point clouds. Our algorithm identified cor-
rectly 28 matching facial expressions (60%), 6 outliers
(13%) and 13 pairs were wrong matches (27%).

e Testers pair 3. Diffusion maps produced two 11-
dimensional point clouds. Our algorithm identified cor-
rectly 17 matching facial expressions (36%), 18 outliers
(38%) and 12 pairs were wrong matches (26%).

o Testers pair 4. Diffusion maps produced two 13-
dimensional point clouds. Our algorithm identified cor-
rectly 22 matching facial expressions (47%), 11 outliers
(23%) and 14 pairs were wrong matches (30%).

We discuss the performance of our algorithm according to
the irregularity of its shapes as defined in Section 2.2. Fig-
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Figure 11: Map approximations between testers pairs 1-4
of the FaceWarehouse database. For each pair we see the
percentage of correct matches, two maps between arbitrary
shapes (A to B and B to A), the true functional map ma-
trix and the approximated one, and the shape irregularities
when the two collections are aligned perfectly. The function-
al map was approximated successfully for all pairs. Notice
testers pair 4 which resulted in a higher approximation error,
corresponding to its shape irregularities graphs.

ure 11 shows the shape irregularities of the different tester
pairs. As we can see, when considering two collections after
alignment, the shape irregularities graph provides a measure
of the similarity between their structures. According to our
experiments, we can see that correspondence in the shape
irregularities graph predicts successful alignment and func-
tional map approximation.

To summarize, we were able to align the collections of d-
ifferent testers with various percentage rates and functional
map approximations were successful for all the tester pairs.
Dissimilarities in the shape irregularities graph lead to a
higher approximation error, as can be seen in the case of
testers pair 4.

Varying collection size. This experiment is intended to
measure the effect of the size of the collections on regis-
tration and map approximation. We used the blend shape
collections presented throughout the article, but took only
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a subset of the shapes (the same subset in both collections).
The alignments results were as follows:

e Using 20 shapes: 35% correct matches.
e Using 25 shapes: 36% correct matches.
e Using 35 shapes: 63% correct matches.
o Using 40 shapes: 90% correct matches.

The approximated maps corresponding to the size of the col-
lections are presented in Figure 12. As we can see, using s-
mall collections leads to poor alignment, since the clouds are
very sparse compared to their dimension. As we increase the
number of shapes, alignment becomes feasible and thus the
approximated map improves.

Small collections with perfect alignment. This experi-
ment is intended to test the approximated map in a rough
setting when using small collections with perfect alignment
(namely, we provided the matching shape pairs in advance).
We used collections of 10 shapes from the Sumner and
Popovié database [SP04]. The resulting map was noisy but
was still able to capture some of the information. The results
are presented in Figure 13.

6. Conclusion and Future Work

We presented a novel approach for aligning two shape col-
lections and approximating the functional cross-collection
map, using only the maps within the collection as prior
knowledge. We use shape differences to assess the distances
between shapes intrinsically and generate a low-dimensional
shape-space embedding, as well as for posing shape analo-
gies constraints for recovering the cross-collection function-
al map. We demonstrated the effectiveness of our algorithm
on various collections, achieving smooth informative func-
tional maps.

Our work provides a glimpse at the possibility of using
existing shape analysis tools, such as dimensionality reduc-
tion and point registration, for analysing shape-space man-
ifolds. The key to making the leap from shapes to shape
spaces is having an intrinsic way to represent differences
between shapes, which we achieved by using the shape d-
ifference linear operator. It is interesting to consider other
functional operators for this task, as well as consider ap-
plying other common geometry processing tools directly to
the shape-space manifold. Finally, as research progressed
from analysing shapes in isolation to analysing collection-
s of shapes, it is possible that the next layer of abstraction
is analysing collections of collections. This can serve as a
convenient way to model heterogeneous shape collections,
simply as a collection of shape-spaces.
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Figure 12: Alignment and map approximations for differ-
ent subsets of the 40 blend shapes collections. We show the
maps between the base shapes (collection A to collection B).
(a) source shape in A, (b) “ground-truth” map, (c) using 20
shapes, 35% correct matches, (d) using 25 shapes, 36% cor-
rect matches, (e) using 35 shapes, 63% correct matches, (f)
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Figure 13: Functional map approximation for small col-
lections (10 shapes) from the Sumner and Popovi¢ database
[SPO4]. Since the collections are small, registering them as
point clouds is not feasible. However, given an optimal reg-
istration, a rough functional map can still be approximated.
This functional map captures a certain amount of the data,
but is noisy due to the small size of the collections.
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