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Fig. 1. Given a target surface, our fully automatic method computes a commuting unit length PolyVector guiding field with optimally placed singularities (left)

that are adapted for integrating into an approximate Chebyshev net where all edge lengths are equal (middle). This global Chebyshev net with singularities is

physically realized with an interwoven net of nearly inextensible yarns (right).

We propose a method for computing global Chebyshev nets on triangular
meshes. We formulate the corresponding global parameterization problem
in terms of commuting PolyVector fields, and design an efficient optimization
method to solve it. We compute, for the first time, Chebyshev nets with
automatically-placed singularities, and demonstrate the realizability of our
approach using real material.
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1 INTRODUCTION

Chebyshev nets model two-dimensional materials that are built
from grids of flexible, nearly inextensible rods. Everyday exam-
ples range from large architectural gridshells to fruit packaging
(Fig. 2). Important applications include static reinforcement, as in
composite materials for industrial design, and dynamic reinforce-
ment, as in medical meshes such as stents. Finding a Chebyshev net
that approximates an arbitrary surface is essential to these applica-
tions. However, this task is well known to be challenging due to the
anisotropic inextensibility of such nets.
The inextensibility along the two rod directions of a Chebyshev

net induces geometric obstructions to encoding large regions of
curvature. These geometric constraints lead to places where the
angle between adjacent rods collapses, resulting in degenerate con-
figurations. Such configurations must be avoided because physical
rods have finite thickness, resulting in a minimum and maximum
angle that can be achieved in fabrication. One can locally propa-
gate a Chebyshev net from initial curves along a target surface,
but generically this leads to degeneracies, which prevent further
propagation. Previous works have either presented algorithms to
compute Chebyshev nets on local patches of surfaces, or overcame
degeneracies by manually choosing initial data and then having
user-aided guidance or heuristically inserting singularities.

Our goal is to design an algorithm that automatically computes a
global Chebyshev net, where the singularities arise automatically.
Discrete Chebyshev nets are quad meshes where all edge lengths are
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stent catheter

guide
wire

Fig. 2. Three examples of Chebyshev nets: Mannheim Multihalle architec-

tural gridshell (top left, Wikipedia, public domain [Giel, Immanuel 2010]),

fruit packaging from a supermarket (top right), a stent in a coronary artery

(bottom, Wikipedia, CC BY [Blausen 2014] with title removed).

equal, and singularities are vertices with degree different than 4.
Hence, our goal lies in the domain of quadrangular mesh design with
automatically placed singularities, which has seen great progress
in recent years. Specifically, one of the most robust and prominent
approaches is to first compute a global seamless parameterization,
and uniformly sample its iso-lines to extract a quadrangular mesh.

Parameterizing a surface can be done either through the tangents
of the parameter lines, which we denote as the guiding fields, or
through the gradients of the 2D coordinate functions. The condi-
tion for a pair of vector fields to integrate into a parameterization
is different for these two formulations. Candidate gradient fields
should be curl-free, while the guiding fields should commute, i.e.
have vanishing Lie bracket.
To the best of our knowledge, all existing methods for seamless

global parameterization use candidate gradients, and enforce a curl-
free solution to guarantee that a parameterization exists. However,
a Chebyshev parameterization is naturally expressed using guiding
fields: a necessary and sufficient condition is that they have unit
length. Therefore, to employ a general purpose seamless parame-
terization algorithm, we devise an alternative notion of commuting

guiding fields. By additionally asking for unit length, we can approx-
imately integrate the guiding fields into a Chebyshev net.

We present an optimization algorithm that computes a Chebyshev
net covering an arbitrary input shape automatically. To this end, we
compute a pair of vector fields on the target surface, encoded as a
single PolyVector field that allows singularities. The vector fields are
optimized to have unit length and to commute. We then integrate the
resulting fields into a Chebyshev net, and extract quad meshes with

Fig. 3. Given a branched target arterial geometry (left), our algorithm auto-

matically finds an integrable guiding field with optimal singularities that

yield a global discrete Chebyshev net for a stent reinforcement (right).

near unit length edges. Finally, a gentle post-process optimization
produces a discrete Chebyshev net using standard techniques.
We demonstrate our results on a variety of architectural and

general meshes, and show Chebyshev nets that were not possible
to compute previously. We additionally use our parameterization
layout as a guide for cutting and fastening real material (Fig. 1),
demonstrating that the resulting mesh is in excellent agreement
with the computed quad mesh.

1.1 Contributions

Our main technical contributions are:

• We formulate the patch parameterization problem in terms
of commuting vector fields, and formally discuss its relation to
curl-free vector fields. We generalize this approach to global
parameterizations with singularities, by using commuting

PolyVector fields.
• We design, discretize, and solve an optimization problem for
finding unit-length commuting PolyVector fields.

• We formulate and prove a relationship between Chebyshev
nets and Killing vector fields on surfaces.

• We generate, for the first time, Chebyshev nets with automat-

ically placed singularities for a given input triangle mesh.

2 RELATED WORK

2.1 Chebyshev nets

Chebyshev net refers either to a discrete or continuous object. Dis-
crete Chebyshev nets are quad meshes with all edge lengths equal.
Continuous Chebyshev nets are a collection of surface patches pa-
rameterized with two unit speed parameters. Physically, the edge
length/unit speed constraint corresponds to inextensibility of rods
in a two-dimensional network.

Continuous Chebyshev nets as parameterized patches. Russian
mathematician Pafnuty Chebyshev came to his definition as a con-
tinuum model for woven fabric while asking the question of how to
clothe an arbitrary surface, and explicitly found a solution for the
(hemi)sphere [Ghys 2011; Tschebyscheff 1878]. Locally, a Chebyshev
net exists around each point of a surface [Bakelman 1965; Bieber-
bach 1926]. However, arbitrary surfaces, even with disk-topology,
are not guaranteed to exhibit a global singularity-free Chebyshev
net; there exist global geometric obstructions that depend on a sur-
face’s distribution of Gaussian curvature [Hazzidakis 1879; Stoker
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1969]. Nevertheless, surfaces of revolution that do not meet their
axis exhibit singularity-free Chebyshev nets, despite having arbi-
trarily large total Gaussian curvature [Voss 1882]. Theoretical re-
search on the existence of global Chebyshev nets is ongoing. Recent
results include curvature bounds that guarantee existence either
without singularities [Burago et al. 2007; Masson and Monasse 2017;
Samelson 1991; Samelson and Dayawansa 1995] or with singulari-
ties [Masson 2017], on surfaces homeomorphic to a disk or plane.
Continuous Chebyshev nets also arise in applications. For example,
as a continuum model for networks of inextensible cords [Rivlin
1955, 1958], possibly with shearing [Adkins 1956; Pipkin 1984] or
bending [Wang and Pipkin 1986] resistance. They have been used to
rationalize the shape of buckled elastic gridshells [Baek et al. 2018].

Discrete Chebyshev nets as quad meshes. Defining discrete Cheby-
shev nets as quadmeshes with unit edge lengths arose from studying
discrete analogues of special mathematical surfaces [Bobenko and
Pinkall 1996; Sauer 1970; Wunderlich 1951]. Each quad is consid-
ered as a discrete analogue of a continuous Chebyshev net patch.
Similarly to quad meshes, vertices with valence not equal to four
are interpreted as singularities. Applications for discrete Cheby-
shev nets include the design of architectural gridshells [Hennicke
et al. 1974], of woven composites [Aono 1994], and of wire mesh
sculptures [Garg et al. 2014].
Computational algorithms, therefore, seek discrete Chebyshev

nets approximating an arbitrary target surface. Current methods
can be broadly divided into two categories:

(1) single-patch methods compute a singularity-free discrete
Chebyshev net that approximates a portion of a target surface.
Some methods optimize for a Chebyshev net patch automat-
ically from initial user-defined data [Robertson et al. 1981],
found via genetic algorithms [Bouhaya et al. 2014], or by
solving a related geometric problem [Hernández et al. 2013],
while others use physical simulation [Bouhaya et al. 2009;
Douthe et al. 2006; van West et al. 1990]. Another method
allows the user to interactively grow a Chebyshev net patch,
while remaining close to a target shape [Garg et al. 2014].

(2) multi-patchmethods compute a global discrete Chebyshev
net for a target surface by introducing singularities. Cur-
rent methods grow the Chebyshev net from either a local
patch [Aono 1994; Aono et al. 2001, 1996] or out of a singu-
larity [Masson 2017]. Seams of tangential discontinuity and
new singularities are then successively introduced to cover
the entire shape. Therefore, the choice of initial local data
from which to grow the net strongly influences the quality
of the result. It is a priori unclear how to make this choice.

Here, we introduce an alternative approach to multi-patch meth-
ods that does not require a choice of initial local data. By optimizing
a variational problem, our algorithm accounts for the geometric
constraints of a Chebyshev net while optimally placing singularities.
Specifically, we integrate a global Chebyshev net from a pair of
commuting, unit length vector fields. Moreover, we do not intro-
duce seams; we approximate global Chebyshev nets that are smooth
except at isolated singularities. Our overall approach is completely
automatic and related to existing quad meshing algorithms.

2.2 Quad meshing with integrable directional fields

Quad meshing is a rich subject [Bommes et al. 2013b] and often
seeks seamless global parameterizations for a given mesh. We do not
attempt to review all literature on global parameterizations [Bright
et al. 2017; Chien et al. 2016; Fu and Liu 2016; Myles and Zorin 2013]
and integer-grid matching [Bommes et al. 2013a, 2009; Campen et al.
2015], since it is beyond the scope of our contribution. A common
paradigm is to design a directional field as candidate gradients for
desired coordinate functions, and then integrate it [Vaxman et al.
2016]. Integration methods often solve Poisson equations or use
periodic function representations [Fang et al. 2018; Ray et al. 2006].
Not all directional fields are the gradients of coordinates, so the
problem is usually only approximately solved. There are multiple
approaches to designing improved directional fields that optimize
for integrability, in other words that the directional field is curl-
free [Diamanti et al. 2015; Myles et al. 2014; Ray et al. 2006].

Our algorithm designs guiding fields for a Chebyshev net that are
not pairs of candidate gradients. Instead, they are tangent vectors of
the desired parameter lines, where the defining property of a Cheby-
shev net is naturally phrased: both tangent vectors should have unit
length. The integrability condition translates from vanishing curl to
vanishing Lie bracket, in other words that the pair of guiding vector
fields commute (Sec. 4).

2.3 Local parameterization with commuting vector fields

Discretizations of a Lie bracket operator of two vector fields have
been previously used to design discrete fields. These approaches
leverage smooth formulations of the Lie bracket, e.g. as the com-
mutator of differential operators [Azencot et al. 2013], or through
its relation to the Levi-Civita covariant derivative [Azencot et al.
2015; de Goes et al. 2014]. However, all these approaches treat a pair
of vector fields on a local patch. To the best of our knowledge, the
generalization of a Lie bracket operator to the branched case, i.e. to
PolyVector fields, has not been addressed before.

3 FORMULATION OUTLINE

Our main objective is to find a Chebyshev net on a given target
surface. We first describe the main idea in the smooth setting, where
the target surface is given as a compact oriented smooth surfaceM
with a Riemannian metric. In Sec. 4 we restrict the exposition to local
patches of the surface, and then generalize to a global Chebyshev
net that covers the full surface in Sec. 5. In Sec. 6 we formulate
the smooth optimization problem that we work with, and show
how to discretize it and optimize it in Sections 7 and 8, respectively.

u

v

r

r−1 =
(
u
v

)

p
U

V

Ω

M

U

4 CHEBYSHEV
NETS ON PATCHES

4.1 Nets as coordinate systems

In the continuous setting, a net on
a surface patch Ω ⊂ M is modeled
as a coordinate system. That is, Ω is
parameterized by two variables (u,v)
in some parameter domainU ⊂ R2
via a map r : U → Ω positioning
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each point as p = r (u,v) ∈ Ω. In reverse, u,v are also viewed as the
coordinate functions which are the components of the inverse map
r−1 : Ω → R2 that reads off the coordinates r−1(p) = (u(p),v(p))ᵀ ∈
R
2. The parameterization is assumed to be regular with positive

orientation, namely the coordinate vectors

U �
∂r

∂u
, V �

∂r

∂v

form a basis, or frame, for the tangent space TpM
Fp =

(
Up Vp

)
, det(Fp ) > 0.

We write the space of frame fields over Ω as

ΦΩ � {F | Fp ∈ Φp for p ∈ Ω} (1)

where

Φp �
{
Fp ∈ TpM ×TpM

�� det(Fp ) > 0
}

(2)

is the set of positively oriented pairs of vectors. Note that the inverse
of the frame Fp is the Jacobian of the coordinate map

F−1p =
(
Up Vp

)−1
= dr−1 |p =

(
du
dv

)
p

.

From F−1p Fp = I one particularly has dv(U ) = du(V ) = 0 for all
p ∈ Ω. In other words,U is parallel to the level lines of v and V is
parallel to the level lines of u. The coordinate vector fieldsU ,V are
therefore a pair of guiding fields for a net, where the net refers to the
pattern formed by the two families of level lines of the coordinate
functions u,v , one family per coordinate, sampled with equally
spaced coordinate values.
A net is a Chebyshev net if the underlying coordinate system

has unit coordinate vectors |U | = |V | = 1. What this means is
that the level lines of v—the integral curves of U—are arclength-
parameterized by u and vice versa.

4.2 Synthesizing vectors into coordinates

We reduce the problem of finding a Chebyshev coordinate system to
the problem of finding a pair of guiding vector fieldsU ,V . Working
with these “differential quantities” is attractive since the defining
property for a Chebyshev net only amounts to pointwise algebraic
constraints |U | = |V | = 1 rather than differential relations. The
only remaining question is the integration problem: given a pair of
guiding fieldsU ,V , how do we find a pair of coordinates u,v such
thatU ,V are its coordinate vectors? What integrability conditions
doU ,V need to satisfy to ensure the existence of these coordinates?

U

V

α

β

Following Sec. 4.1, we define the frame
field F �

(
U V

) ∈ ΦΩ from a given
pair of linearly independent, positively
oriented vector fields U ,V over a sur-
face patch Ω ⊂ M. The inverse of the
frame produces two 1-forms α, β and cor-

responding vector fields α �, β� (see inset):1

F−1 �
(
α
β

)
.

1The covectors (α , β ) are known as the dual basis for the dual spaceT ∗
pM with respect

to the basis (U ,V ) for the tangent space at p .

The desired coordinates are then solutions to

du = α, dv = β . (3)

The necessary and sufficient conditions for the local existence of
(3) is that the 1-forms α, β are closed

dα = dβ = 0, (4)

also known as the curl-free conditions.

4.3 Existing approaches to (3)

In the surface quadrangulation literature, there have been multiple
state of the art solutions to (3) and (4). A straightforward approach
to the problem could be to incorporate the unit norm constraint
|U | = |V | = 1 into an existing scheme. Unfortunately, this is chal-
lenging with existing strategies. To clarify this point, we give a
brief overview of the existing methods to the coordinate integration
problem before returning to our formulation in Sec. 4.4.

Poisson Solve. Regardless of the closedness condition (4) one can
solve (3) in the least squares sense

d �du = d � α, d �dv = d � β . (5)

The Poisson equations (5) effectively find the potentials u,v for
the exact part of α, β in their Helmholtz–Hodge decompositions.
However, removing the non-exact part modifies the guiding field
and one loses control of both the norms |U | and |V |.
Curl-free fields. The work of Diamanti et al. [2015] incorporates

(4) and formulates optimal designs of α, β so that they are as-closed-
as-possible. The subsequent Poisson problem (5) can therefore faith-
fully solve (3). However, there is no clean translation of the desired
Chebyshev net condition |U | = |V | = 1 into the design of the 1-
forms α, β . Note that the magnitudes |α | ≈ |du |, |β | ≈ |dv | only
measure the orthogonal spacing of the level lines, not the edge arc-

lengths. Moreover, α �, β� are orthogonal to the parameter lines,
whereas U ,V are tangent; therefore, methods that target the design

of α �, β� might not achieve the intended purpose of user alignment
to constraints—unless the coordinates lines are orthogonal.

4.4 Integrability condition

We formulate the integrability conditions directly in terms of the
guiding fieldsU ,V . By evaluating the 2-forms dα,dβ with the vec-
torsU ,V we have [Lee 2013, Prop. 14.29]:

0 = (dα)(U ,V ) = dU (α(V )) − dV (α(U )) − α([U ,V ])
0 = (dβ)(U ,V ) = dU (β(V )) − dV (β(U )) − β([U ,V ]),

as α and β are closed. Moreover, since α(V ) = β(U ) = 0 and α(U ) =
β(V ) = 1 we have

0 = (dα)(U ,V ) = −α([U ,V ])
0 = (dβ)(U ,V ) = −β([U ,V ]).

Since U ,V is a (non-degenerate) basis, the integrability condition
(4) is equivalent to the vanishing of the Lie bracket betweenU ,V

[U ,V ] = 0. (6)
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Since we are on a Riemannian manifold which comes with the
torsion-free Levi-Civita connection ∇ with ∇UV − ∇VU = [U ,V ],
we also write (6) alternatively as

∇UV − ∇VU = 0. (7)

Moreover, (6) means the associated directional derivatives com-

mute

dU ◦ dV = dV ◦ dU .

This condition can be understood intuitively as creating consistent
infinitesimal quads: if we travel along aU vector and then aV vector,
we reach the same point as if we had traveled the other way around.
Thus there exist integrals u,v over the surface patch that record
exactly the number of grids traversed along the guiding fields U ,V .
In particular, if |U | = |V | = 1, we obtain a Chebyshev net.

5 GLOBAL CHEBYSHEV NETS WITH 1/4-SINGULARITIES
So far we formulated Chebyshev nets on a surface patch Ω ⊂ M. On
this sufficiently small patch a coordinate system can be described
in terms of a pair of commuting vector fields. However, this repre-
sentation may not be possible over a larger domain, particularly for
domains that contain homologically nontrivial loops or singulari-
ties of the guiding fields. Obstructions arise from being unable to
globally chooseU and V .

5.1 Ambiguities in pairs of vector fields

Consider the permutation that acts on the setΦp (see (2)) of positively-
oriented pairs of vectors

Π : Φp → Φp , Π(Up ,Vp ) � (−Vp ,Up ),

which generates a cyclic group of order 4:

Π2(Up ,Vp ) = (−Up ,−Vp ), Π3(Up ,Vp ) = (Vp ,−Up ), Π4 = id.

The four elements (Up ,Vp ),Π(Up ,Vp ),Π2(Up ,Vp ),Π3(Up ,Vp ) in Φp
represent the same guiding field at p. Conversely, each guiding field
at p has exactly these four representatives. Therefore, designing a
guiding field of a net amounts to assigning to each p an element of
the collection of orbits Φp/Π:

[(U ,V )]p ∈ Φp/Π, [(U ,V )]p =
{
Πi (Up ,Vp )

�� i ∈ Z4} .
In each surface patch Ω ⊂ M, the field [(U ,V )] ∈ ΦΩ/Π has four
lifts into pairs of vector fields (U ,V ) ∈ ΦΩ . However, after tracking
a lift continuously around a non-contractible loop (e.g. around a
singularity) one may return to a different lift. The index of each
singularity is an integer multiple of 1/4 since Π4 = id.

Note that despite the ambiguity, the notion of a Chebyshev net is
well defined away from singularities, and invariant to the chosen lift.
Explicitly, if (U ,V ) is integrable, i.e. ∇UV = ∇VU and |U | = |V | = 1,
then so are the other lifts of [(U ,V )]. We can therefore formulate
the Chebyshev net problem in terms of guiding fields not only on
local patches Ω, but also on the entireM using the globally defined
object [(U ,V )] ∈ ΦM/Π.

5.2 PolyVectors

The technique of PolyVectors provides an elegant way to parame-
terize the seemingly abstract space Φ/Π, and in general tuples of
vectors modulo permutations. The technique was introduced only
in the discrete setting [Diamanti et al. 2014]. For completeness, we
give an exposition of the continuous formulation.
We choose a smooth orthonormal basis bp , Jbp ∈ TpM at each

p in some local patch Ω ⊂ M, where |bp | = 1 and J is the ro-
tation counterclockwise by 90◦. Then, each vector field U on Ω
is represented as a complex-valued function Û : Ω → C, with

Up = Re
(
Û (p)

)
bp + Im

(
Û (p)

)
Jbp for p ∈ Ω. Equivalently, one

can simply writeU = Ûb by identifying ib = Jb. Likewise, a tuple
of vector fields (U1, . . . ,Um ) is a Cm-valued function (Û1, . . . , Ûm )
over Ω under the basis. To describe such a tuple of vectors modulo
permutations, one views (Û1(p), . . . , Ûm (p)) at each p as them roots
of the polynomial

Pp (z) �
m∏
i=1

(z − Ûi (p)) = zm +
m−1∑
j=0

X̂ j (p)z j .

The coefficients X̂0, . . . , X̂m−1 of this smoothly varying polynomial,
known as a PolyVector field, constitute a representation of the field
(Û1, . . . , Ûm ) modulo permutations.

In our case, the field [(U ,V )] is represented via the PolyVector

P(z) = (z − Û )(z − V̂ )(z + Û )(z + V̂ ) = z4 + X̂2z
2 + X̂0.

The transformation from the guiding field to its PolyVector is then

PV ([(U ,V )]) = (X̂0, X̂2), with X̂0 = Û
2V̂ 2, X̂2 = −(Û 2 + V̂ 2). (8)

Conversely, given X̂0, X̂2, one can reconstruct the guiding field
[(U ,V )] by assigning the four roots of P(z)

±

√√√
−X̂2 ±

√
X̂ 2
2 − 4X̂0

2
(9)

to (Û , V̂ ,−Û ,−V̂ ) so that (Û , V̂ ) is positively oriented. This defines
PV−1 up to Π.
The differential calculus for the PolyVector fields involves co-

variant derivatives, similar to those used for vector fields. In the
case of a vector field, the covariant derivative in a directionW is
represented in the basis as

∇WU = (∇W Û )b, ∇W Û = (dW − iA(W ))Û ,
where A is the 1-form that measures the rotation speed of the basis
field b. Alternatively, ∇Û = (d − iA)Û is a complex-valued 1-form.
The corresponding covariant derivatives for X̂0 and X̂2 are given by

∇X̂0 = (d − 4iA)X̂0, ∇X̂2 = (d − 2iA)X̂2.

Under a change of basis b 	→ e−iθb, the basis-dependent quanti-
ties change according to

Û 	→ eiθ Û , V̂ 	→ eiθ V̂ , A 	→ A + dθ,

X̂0 	→ e4iθ X̂0, X̂2 	→ e2iθ X̂2. (10)
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φ
0 π/2

ω

0

π

Fig. 4. The configuration space of a unit length field [(U ,V )] at p forms

a Möbius strip. It is parameterized by the rotation angle φ of the frame

[(U ,V )]p from the positive real axis, and the angle ω between the frame

vectors measured in positive orientation. The frame [(U ,V )]p does not

distinguish between ω and π − ω . The spine (in gray) defined by (φ , π /2)
corresponds to orthogonal frames, and changing ω shears the frame.

These transformation rules ensure that the covariant derivatives
transform like invariant objects

∇Û 	→ eiθ∇Û , ∇X̂0 	→ e4iθ∇X̂0,

∇X̂2 	→ e2iθ∇X̂2. (11)

5.3 Discussion: Geometry of unit length guiding fields

In Sec. 5.2 we showed that the space Φp/Π can be algebraically pa-

rametrized with PolyVectors X̂0 and X̂2 in C. Here we illustrate ge-
ometrically how X̂0, X̂2 control the guiding field [(U ,V )]p ∈ Φp/Π
at the point p. As Chebyshev nets are our primary interest, we only
consider unit length guiding fields |Up | = |Vp | = 1. It turns out that
with the constraints |Up | = |Vp | = 1, the topological space(

Φp ∩
{|Up | = |Vp | = 1

}) /Π (12)

is a Möbius strip as shown in Fig. 4.
To see this, consider the guiding field [(U ,V )]p at the point

p, which can be visualized as a pair of lines through the origin.
There exists an angular bisecting unit vector eiφ ,φ ∈ [0, π2 ) in the

first quadrant, such that Ûp = eiφe−i
ω
2 and V̂p = eiφei

ω
2 , where

ω ∈ (0, π ) is the angle between the lines. We can therefore param-
etrize a positively oriented pair of nonparallel vectors Ûp , V̂p by
(φ,ω) ∈ [0, π2 ) × (0, π ). In this setup, the PolyVector coefficient

X̂0 = e4iφ encodes the angular bisector, while the other PolyVector
coefficient is X̂2 = −2e2iφ cosω. Taken together, we find the relation

cosω = ± X̂2

2
√
X̂0

. The sign ambiguity in solving for cosω introduces

an identification of (0,ω) along ( π2 , π −ω) in (φ,ω)-parameter space,
which yields a Möbius strip. Roughly speaking, the PolyVector coef-
ficients cannot distinguish pairs of positively-oriented lines with an
oriented angle ω from those with an oriented angle π − ω.

6 OPTIMIZATION PROBLEM

Our goal is to find a Chebyshev net on M that is as-smooth-as-
possible away from an optimal set of isolated 1/4-singularities. We
synthesize this Chebyshev net from a continuous guiding field

[(U ,V )] ∈ ΦM/Π, which is found by solving a variational prob-
lem that automatically introduces singularities in locations adapted
to the geometric constraints.

6.1 Geometric constraints

Away from its singularities, the guiding field [(U ,V )] should satisfy
the following conditions:

(1) Integrability. The vector fields commute:

|∇UV − ∇VU |2 = 0.

(2) Unit length. The vector fields are unit length:

|U |2 = |V |2 = 1.

(3) Angle bound. The angles are bounded by ζ > 0:

min
(U ,V )∈[(U ,V )]

〈U ,V 〉 ≥ cos ζ .

These three conditions are invariant to an explicit choice of lift
to (U ,V ), (−V ,U ), (−U ,−V ), or (V ,−U ). Therefore, they are well
defined on [(U ,V )].

6.2 Ginzburg–Landau energy

At a singularity, the guiding field [(U ,V )] has U = V = 0, so the
unit-length constraint cannot be satisfied. Instead of relaxing the
constraint [Knöppel et al. 2013], we follow the methodology of
Viertel and Osting [2019] and formulate the unit-length constraint
using a Ginzburg–Landau approach. We consider the energy

EGL([(U ,V )]) = Eint([(U ,V )]) +
1

ε2
Enorm([(U ,V )]), (13)

where

Eint([(U ,V )]) =
∫
M
|∇UV − ∇VU |2 and (14)

Enorm([(U ,V )]) =
∫
M

(
(|U |2 − 1)2 + (|V |2 − 1)2

)
. (15)

Minimizing EGL is similar to minimizing the deviation from inte-
grability subject to the unit-length constraint. This is analogous to
the following well known fact: as ε → 0, minimizing the Ginzburg–
Landau energy ∫

M
|∇U |2 + 1

ε2
(|U |2 − 1)2

is asymptotically equivalent to minimizing the Dirichlet energy of
a unit-length vector field over the manifold M after removing a
ball of radius ε around each singularity. The energy of minimizers
of the Ginzburg–Landau energy is bounded away from zero in the
presence of singularities [Bethuel et al. 1994].
A significant advantage of a Ginzburg–Landau approach to sat-

isfying the integrability and unit-length constraints on [(U ,V )] is
that singularities of the guiding field will automatically arise during
optimization. Fig. 5 demonstrates the importance of allowing the
singularities to move freely.
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Fig. 5. Comparing between an approximate Chebyshev net computed using

our algorithm, with prescribed fixed singularities (left) vs automatically

arising from our Ginzburg–Landau optimization (right). The prescribed

singularities are optimal for orthogonal cross fields, and are found using the

algorithm of [Knöppel et al. 2013]. Our optimization yields singularities that

are adapted to unit length and integrable guiding fields. In this example,

our optimization removes the unnecessary singularities on the legs leading

to a more evenly distributed shearing of the Chebyshev net.

6.3 As-smooth-as-possible guiding fields

We regularize the guiding fields [(U ,V )] using the Dirichlet energies
arising from the explicit PolyVector parameterization:

Ereg(X̂0, X̂2) =
∫
M
|∇X̂0 |2 + |∇X̂2 |2, (16)

where the differential operators are defined for X̂0 and X̂2 in Sec. 5.2.
Minimizing this energy alongside EGL leads to optimal singularity

locations that achieve the tradeoff between smoothness of the unit-
length guiding fields and their integrability.

6.4 Continuous optimization problem

We solve the following optimization problem for continuous guiding
fields [(U ,V )] parameterized by complex-valued PolyVectors X̂0, X̂2
that lead to Chebyshev nets with optimally placed singularities:

minimize
[(Û ,V̂ )]

λGLEGL([(Û , V̂ )]) + λregEreg(X̂0, X̂2)

subject to X̂0 = Û
2V̂ 2,

X̂2 = −
(
Û 2 + V̂ 2

)
, and

min
(Û ,V̂ )∈[(Û ,V̂ )]

〈Û , V̂ 〉 ≥ cos ζ ,

(17)

for scalar parameters λGL, λreg > 0. Specifically, we seek solutions
in the limit λreg/λGL → 0 so that, away from their optimally placed
singularities, the resulting fields will be as-integrable-as-possible.
The angle bound constraint prevents the trivial solution Û = V̂ .

However, enforcing this constraint requires working with the lifts

Fig. 6. On a surface of revolution, our initial Killing vector field solution leads

to a guiding field (left) that is unit length and commuting, so it integrates

into a Chebyshev net (right) without any further integrability optimization.

Û and V̂ explicitly. This is because PolyVector coefficients admit the
ω and π − ω ambiguity discussed in Sec. 5.3.

6.5 Initialization from approximate Killing vector fields

The optimization problem we consider is nonconvex and benefits
from good initialization. Our initial solution builds from the fol-
lowing theorem, which is a straightforward calculation (given in
Appendix A), but we believe has not been formulated before. As a
reminder, Killing vector fields are ones that generate an intrinsic
isometric flow [Lee 2013, pp 343].

Theorem 1. LetM be a 2-dimensional Riemannian manifold that

admits a non-vanishing Killing vector field Y with |Y | < 1/c0 for some

global constant c0 ∈ R. Then for each 0 < c < c0 the vector fields

U � cY + s(|Y |)JY and V � cY − s(|Y |)JY
with s(t) �

√
t−2 − c2

(18)

are linearly independent and satisfy |U | = |V | = 1 and [U ,V ] = 0. In
particular,M admits a global Chebyshev net that is singularity-free.

Remark 1. This generalizes a result by A. Voss [1882], which states

that surfaces of revolution that do not meet their axis exhibit global

Chebyshev nets that are singularity-free. Surfaces of revolution are rep-

resentative examples of surfaces that admit Killing vector fields (Fig. 6).

We therefore initialize our optimization by computing an approxi-

mate Killing vector field Y [Azencot et al. 2013; Ben-Chen et al. 2010],
and then define our initial solution to be the U ,V given by Equa-
tion (18) with c = c0/5. In the special case that the surface is exactly
a surface of revolution, our initial solution is already a Chebyshev
net (see Fig. 6). On a general surface, the initial solution provides a
good initialization for our optimization scheme.
In what follows, we show how to discretize and solve this opti-

mization problem in practice.

7 DISCRETIZATION

Our computational setup takes an input target surface as a triangle
mesh. We next formulate an optimization problem approximating
(17) using guiding fields discretized on the input mesh.

7.1 Representation

Notation. The surface is represented as an orientable triangle
meshM = {V, E, F } with arbitrary genus and boundary compo-
nents. The edge vector of the mutual edge of two faces fi , fj ∈F is
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denoted by ei j . In the basis of face fj , we represent the dual edge

e∗i j as ê
∗
i j = i

hi j
|êi j | êi j , where hi j is the sum of the barycenter heights

in both faces with respect to the mutual edge.

Vector fields. We denote by X the space of face-based piecewise-
constant vector fields. We construct the complex representation
for X by defining a local (arbitrary) orthonormal basis bf , Jbf per
face f ∈ F . The representation of a tangent vector Vf ∈ TfM
at the face f is given by the complex number V̂f = 〈Vf ,bf 〉 +
i〈Vf , Jbf 〉 [Knöppel et al. 2013]. Hence, V̂ ∈C |F | .

Connections. The connection 1-formA is discretized by a complex
number ri j on dual edges e∗i j , where ri j is a discontinuous “jump”

across the edge. Explicitly, ri j = êj/êi , where êi (resp. êj ) is the
complex number representing the mutual edge vector ei j in the
basis of face fi (resp. fj ). The discrete covariant derivative of a

vector field V̂ in the direction of a dual edge e∗i j is given by

D |i jV̂ = V̂iri j − V̂j , (19)

and is with respect to the basis at fj . It can be therefore represented

by a sparse complex matrix D ∈C |E |×|F | .

PolyVectors. The PolyVector coefficients X̂0, X̂2 are similarly rep-
resented as face-based complex numbers [Diamanti et al. 2014],
where X̂0,i represents X̂0 in the face fi using the corresponding
local basis. The discrete covariant derivative of the PolyVector coef-
ficients in the direction of the dual edge e∗i j is given by:

D
(0)
|i j X̂0 = X̂0,ir

4
i j − X̂0, j , D

(2)
|i j X̂2 = X̂2,ir

2
i j − X̂2, j , (20)

with respect to the basis at fj . These can similarly represented as

sparse complex matrices D(0),D(2) ∈C |E |×|F | .

Lifts and matchings. The transformation PV −1 that computes
(Ûf , V̂f ) from the PolyVector coefficients (X̂0,f , X̂2,f ) at every face
f ∈ F is defined only up to Π. When computing the covariant
derivative of one of the lifted vector fields, we need to take into
consideration that neighboring triangles may have different lifts. We
therefore define an edge-based permutation matrix, parameterized
by an integer κi j , given by πi j =

( 0 −1
1 0

)κi j , and incorporate it into
the definition of the covariant derivative, in the direction of a dual
edge, of a lift (Û , V̂ ) as follows:

D|i j
(
Û

V̂

)
= πi j

(
Ûi
V̂i

)
ri j −

(
Ûj

V̂j .

)
(21)

The covariant derivativeD|i j (Û , V̂ ) is locally a complex vector with
two entries, represented in the basis of face fj .

Singularities. The integerκi j is called the (order-preserving)match-

ing between the vectors across an edge. The fractional index of a
vertex v ∈V is defined as

κv =
1
4mod

( ∑
ei j ∈N (v) κi j , 4

)
,

where a vertex is singular if κv � 0.

Principalmatching. In general,πi j can be chosen arbitrarily, which
will affect the covariant derivatives and the singularity structure.
We choose a specific matching, denoted as the principal matching,
which is the matching that leads locally to a smooth choice of lift.
Specifically, we do a closest-angle matching on the four rotationally-
symmetric roots of X̂0, which are the bisectors between the (Û , V̂ )
vectors, and consequently match the vectors (Û , V̂ ) according to the
resulting matching sectors.

7.2 Discretized integrability energy

To formulate the integrability energy in the discrete case we require
a discretization of ∇U V̂ , whereas Equation (19) is a discretization
of only ∇e∗i j V̂ . To that end, we represent ∇V̂ in a local orthogonal

basis (Z , JZ ), and note that we have:

∇U V̂ = 〈U ,Z 〉∇Z V̂ + 〈U , JZ 〉∇JZ V̂ . (22)

Taking Z = ei j/|ei j |, and noting that the covariant derivative parallel
to the edge ei j is 0 for piecewise-constant fields, leads to:

(DU V̂ ) |i j =
1

|e∗i j |2
〈U , e∗i j 〉D |i jV̂ . (23)

This covariant derivative is further generalized to a branched (Û , V̂ )
field by employing (21) with the principal matching:(

DU

(
Û

V̂

))
|i j
=

1

|e∗i j |2
〈U , e∗i j 〉D|i j

(
Û

V̂

)
. (24)

This leads to matricesDU and similarlyDV of type C2 |E |×2 |F | that
implement the branched directional derivative.

Both (23) and (24) require evaluating 〈U , e∗i j 〉 on an edge. For this

evaluation, we use Ûi j =
1
2 (Ûiri j + Ûj ), which is an average of Ûi

and Ûj represented in the basis of fj . In the branched case,(
Ûi j
V̂i j

)
=

1

2

(
πi j

(
Ûi
V̂i

)
ri j +

(
Ûj

V̂j

))
.

Lie Derivative. Using the discrete covariant derivatives defined
above, the Lie derivative [U ,V ] = ∇UV − ∇VU is discretized as a
vector per edge ij as a complex number in the basis at face fj :(

L
(
Û

V̂

))
|i j
=
(
0 1

) (DU

(
Û

V̂

))
|i j
− (

1 0
) (DV

(
Û

V̂

))
|i j

This defines a sparse matrix L ∈ C |E |×2 |F | that can be constructed
using the previously defined matrices:

L
(
Û

V̂

)
=
(
0 I −I 0

) (DU

DV

) (
Û

V̂

)
,

where 0, I are the zero and identity matrices of size |E |.
Integrability energy. The integrability energy (14) is then dis-

cretized as

Eint(U ,V ) =
(
Û V̂

)
LᵀMEL︸�����︷︷�����︸
�B(U ,V )

(
Û

V̂

)
(25)

with a diagonal matrixME of edge areasME(e, e) = 1
2 |e | |e∗ |, where

(·) is complex conjugation. Note that (25) is not an actual quadratic
form onU and V , as B(U ,V ) depends onU and V .
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7.3 The full system

The discrete version of the system (17) is given as follows:

minimize
(X̂0,X̂2,Û ,V̂ )

λGL

[
Eint +

1

ε2

((��Û ��2 − 1��V̂ ��2 − 1

)ᵀ (
MF

MF

) (��Û ��2 − 1��V̂ ��2 − 1

))]

+ λreg
[
X̂
ᵀ
0 L0X̂0 + X̂

ᵀ
2 L2X̂2

]
subject to X̂0 = Û

2V̂ 2, X̂2 = −
(
Û 2 + V̂ 2

)
, and

〈Û , V̂ 〉 ≥ cos ζ ,
(26)

where

• MF is the diagonal face-based areas mass matrix.

• L0 = D(0)
ᵀ
WD(0) and L2 = D(2)

ᵀ
WD(2) are the Laplacians

implementing the Dirichlet energy for the PolyVector coeffi-
cients, whereW = diag( |e |/|e∗ |)e ∈E .

• ζ is a user-chosen angle bound. We use π/6 for all examples.

8 OPTIMIZATION

We illustrate our pipeline in Figure 7.

8.1 Initial solution

We initialize our algorithm by first finding an approximate Killing
vector field Y on the surface using [Azencot et al. 2013] and then
defining Û , V̂ as explained in Sec. 6.5.

8.2 Computing the guiding fields

The objective function of the optimization problem (26) has a natural
separation between the variable sets (X̂0, X̂2) and (Û , V̂ ). In addition,
our constraints (angle bounds and compatibility between the two
sets) can be enforced locally per face or edge. Consequently, we
design an alternating optimization scheme.
We split the two variable sets, at each iteration keeping either

(X̂0, X̂2) or (Û , V̂ ) fixed, while optimizing for the other variable pair.
We denote the value of the variables at iteration i with a superscript,
e.g., (Û , V̂ )i . We denote the PolyVector transformation as PV (Sec-
tion 5.2), and the root extractions and principal matching as PV −1
accordingly. The algorithm is given in Algorithm 1.

8.2.1 Schedule: parameter scheduling. For all our examples, we run
the algorithm for k = 60 iterations. We keep λGL = 1 constant
throughout, and halve λreg every ten iterations starting from i = 20,
to let the regularization energy be more dominant in the beginning,
and focus on GL integrability once the singularities have settled.

8.2.2 Reg: regularization. This step aims to improve the regular-
ization energy Ereg given in Equation (16). Following [Viertel and
Osting 2019], we use an implicit smoothing step to reduce the Dirich-
let energy. Hence, we solve the following two linear equations:

(
MF + τ0 λireg L0

)
X̂ ′
0 = MF X̂0(

MF +
1

2
τ2 λ

i
reg L2

)
X̂ ′
2 = MF X̂2,

(27)

and then set (X̂0, X̂2) ← (X̂ ′
0, X̂

′
2). Here,L2 andL0 are the 2-monomial

and 0-monomial Laplacians (Section 7.3), and MF is the triangle-
area diagonal matrix. For the time scales we take τ0 = μ−10 , τ2 = μ−12 ,
where μ0, μ2 are the smallest non-zero eigenvalues of L0, L2, re-
spectively. We use an extra factor of 1/2 to smoothen X̂2 because it
empirically corresponds better with subsequent integrability steps.
Note that as X̂0 changes, so may the singularities of the field.

8.2.3 AngleUnit: projection. To adhere to the angle bound con-
straints, we project (Û , V̂ ) to the feasible set by rotating them away
from the bisector symmetrically, as described in [Diamanti et al.
2014]. We note that the bisector itself (which is encoded by the
resulting X̂0) is invariant to this operation, and thus the singulari-
ties of the entire field do not change in this step. We additionally
normalize (Û , V̂ ) to have unit length.

8.2.4 GL: Ginzburg–Landau integrability. The goal of this step is
to improve the integrability energy given in Equation (25). Noting
that B(U ,V ) is positive semi-definite for any Û , V̂ , we employ semi-
implicit smoothing, similarly to the regularization step. We solve:( (MF

MF

)
+ λGLB(U ,V )

) (Û ′
V̂ ′

)
=

(
MF Û
MF V̂

)
, (28)

and then set (Û , V̂ ) = (Û ′, V̂ ′).
8.2.5 Extension: diagonal alignment. We can align a Chebyshev
net with a mesh’s sharp features or boundaries. Contrary to the
common case, our desired alignment is diagonal—the sharp features
should align with the diagonals of quads rather than their edges, so
the net folds flexibly across these features. To achieve this, we define
an edge e to be a feature when its dihedral angle is bigger than π/3,
or if it is a boundary edge, and denote by C ⊂ F the set of faces
neighboring such edges. For every face c ∈ C adjacent to a feature
edge ec , we constrain X̂0,c to be (êc )4 (the 4th power representative
of the unit-length vector of ec in the basis of c), as X̂c ,0 is exactly the
bisector to Ûc , V̂c . See Figure 8 for an example. Diagonal alignment
is turned on by default for all meshes shown and we did not observe
problems between initialization and diagonal alignment.

Algorithm 1 Optimize Chebyshev Field

1: Input: meshM = {V, E, F }.
2: Output: Chebyshev guiding fields (Û , V̂ ).
3: Compute an approximate Killing field Y . � Section 8.1
4: Extract (Û , V̂ )0 from Y . � Equation (18)
5: λ0reg := 1, λGL := 1.
6: for i = 1, 2, . . .k do

7: λireg ← Schedule(λi−1reg ) � Section 8.2.1

8: (X̂0, X̂2)i ← PV
((Û , V̂ )i−1) � Equation (8)

9: ∀c ∈ C, X̂ i
0,c ← (êc )4 � Section 8.2.5

10: (X̂0, X̂2)i ← Reg
((X̂0, X̂2)i

)
� Section 8.2.2

11: (Û , V̂ )i ← PV −1
((X̂0, X̂2)i

)
� Equation (9), Section 7.1

12: (Û , V̂ )i ← AngleUnit
((Û , V̂ )i ) � Section 8.2.3

13: (Û , V̂ )i ← GL
((Û , V̂ )i ) � Section 8.2.4

14: end for

ACM Trans. Graph., Vol. 38, No. 6, Article 172. Publication date: November 2019.



172:10 • Andrew O. Sageman-Furnas, Albert Chern, Mirela Ben-Chen, and Amir Vaxman

Fig. 7. Algorithm pipeline. Initial guiding fields are constructed from an approximate Killing vector field (left). Our main Algorithm 1 solves for unit length

commuting guiding fields with optimally placed singularities (middle-left). The resulting guiding fields are integrated into a globally seamless parameterization,

yielding a quad mesh approximating a Chebyshev net (middle-right). A ShapeUp post-processing step gives a discrete Chebyshev net (right).

Fig. 8. Fandisk without (top row) and with (middle row) the sharp-feature

alignment constraint. Our diagonal alignment algorithm allows the Cheby-

shev net to naturally bend over sharp features, even though the initial

approximate Killing field (bottom row, left) may be far from the aligned

optimal field (bottom row, right).

8.3 Computing the candidate gradient vector fields

Our next step is to extract (u,v) coordinate functions that corre-
spond to guiding fields (U ,V ). To avoid explicit tracing, we use a
seamless parameterization approach. Recall that our formulation
computes a guiding field tangent to the integral lines (Sec. 4), so

we first compute the candidate gradient vector fields (α �, β�) of the

coordinate functions. The relation between the two pairs of vector
fields is pointwise, and in the smooth case is given by:(

αp
βp

) (
Up Vp

)
= Id .

The following conditions should then hold for (α �
f
, β

�
f
) in face f ∈F :

〈α �
f
,Uf 〉 = 1, 〈α �

f
,Vf 〉 = 0

〈β�,Uf 〉 = 0, 〈β�
f
,Vf 〉 = 1.

(29)

Since we enforce the angle bound constraints, (Uf ,Vf ) cannot be
parallel, and therefore these linear constraints exactly determine

(α �
f
, β

�
f
) per face, up to the lift Π.

8.4 Candidate gradient vector fields to discrete Chebyshev
nets

Having computed the candidate gradient vector fields, we proceed
to create a Chebyshev global seamless parameterization, and conse-
quently a discrete Chebyshev quad net.

Global parameterization. The candidate gradient vector fields

(α �
f
, β

�
f
) are defined up to some choice of lift Π per face. Following

standard quadrangular remeshing schemes [Bommes et al. 2013b],
we first cut themesh such that the singularities are on the boundaries
of the cut mesh, and then compute two separate vector fields. Finally,
a Poisson equation is solved, taking into account the rotation and
translation period jumps across cuts. A global scaling factor 1/� is
used in the Poisson solve to control the density of the resulting
quadrangulation; we use � = 0.02 for all our examples, unless stated
otherwise. To obtain pure quadrilateral meshes, we set singularities
to be in integral positions on the uv grid, using greedy rounding.

Quad-net optimization. We proceed by extracting a quad mesh
from the seamless parameterization. As the Chebyshev net condi-
tions are discretized and local, the quad mesh is only approximately
a Chebyshev quad mesh. That is because the resulting quads are not
infinitesimal, and therefore we get a first-order approximation at
best. However, this still gives a good candidate net for post-process
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optimization. We do so by employing ShapeUp [Bouaziz et al. 2012],
constraining all edge lengths to be equal. Since we expect our initial
quad mesh to be close enough to a Chebyshev quad mesh, we do
not employ any auxiliary proximity terms to the original mesh. We
use 200 iterations for all the examples we show in this paper.

9 ANALYSIS

9.1 Implementation details

We implemented our algorithm using MATLAB, where we used
auxiliary C++ code from the software package Directional [Vaxman
et al. 2017] to compute the seamless parameterization and trace the
visualized streamlines, libQEx [Ebke et al. 2013] to extract the quad
mesh from the parameterization, and libigl [Jacobson et al. 2018] to
perform the ShapeUp optimization.

9.2 Timings and convergence

Our code runs on a 2.3 GHz i7 Macbook Pro with 16 GB of mem-
ory. In Table 1 we list the run times for the different steps of the
algorithm, together with position error ηpos (30), deformation error
ηdef (31), and edge length deviation error ηlen (32). It is evident that
the guiding field optimization and initialization times are primarily
correlated with the number of triangles in the input mesh, whereas
the parameterization time is naturally correlated with the number of
singularities. ShapeUp mesh optimization time is overall negligible.
In Figures 9 and 10 we demonstrate that our optimization effec-

tively minimizes the integrability energy Eint (25) of the guiding
field. As explained in Sec. 6.2, we generically do not expect conver-
gence to zero energy. We observed that 60 iterations are sufficient
for our examples to converge to a constant energy level. The result-
ing quad mesh is nearly a discrete Chebyshev net, so the ShapeUp
optimized net remains close to the desired target shape.

9.3 Effects of integrability and post-processing

We demonstrate the necessity to optimize for integrability of the
guiding field to solve for Chebyshev nets. Figure 11 shows that
Poisson-integrated quadrangulations from a non-integrable guiding
field may not be aligned with the underlying field. In Figure 12, a
unit length guiding field results in a well-aligned Poisson-integrated
quadrangulation, yet it is far from being a Chebyshev net since the
guiding field is non-integrable. This causes the ShapeUp optimiza-
tion to drastically alter the shape of the net. As such, maintaining
the integrability of the guiding field is essential to the success of our
algorithm, as quantified by the following three error measurements.
The relative position error ηpos > 0 is defined by:

η2pos =
1��VQ

�� · R2
∑

v ∈VQ

��vp −vs
��2, (30)

whereVQ is the set of vertices of the resulting quad mesh, vp are
the vertex coordinates on the target surface after parameterization,
and vs the quad mesh vertex coordinates after the ShapeUp opti-
mization. To make ηpos scale invariant, R is a circumsphere of the
target surface given by the longest distance between the vertices’
barycenter and every vertex in vp .
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Fig. 9. The integrability energy
√
Eint at each iteration of Algorithm 1, where

the final result is shown in Figure 10. The inset models compare between the

initial solution and our optimized solution over the iterations, by showing

the guiding fields with singularities and the deviations from having constant

edge lengths in the quad mesh obtained after parameterization, but before

the ShapeUp optimization. Note that we expect Eint to converge to a nonzero

constant (Sec. 6.2). The edge length error measures deviation from the mean.

The deformation error ηdef > 0 is defined by:

η2def =
1

6|Q|
∑
q∈Q

∑
(i , j)∈q

( ��vi ,s −vj ,s
��2��vi ,p −vj ,p
��2 − 1

)2
, (31)

where Q is the set of quads and (i, j) is every edge or diagonal in a
quad q ∈ Q. The deformation error is 0 when two quad meshes are
isometric while treating each quad as a tetrahedron; in other words,
corresponding edge and diagonal lengths of both meshes agree.

The edge length deviation error ηlen ≥ 0 is defined by:

ηlen = max
(i , j)∈EQ

���� |vi ,s −vj ,s |
�Q

− 1

���� , (32)

where (i, j) is an edge from the set of quad-mesh edges EQ , vs are
the quad-mesh vertex coordinates after ShapeUp optimization, and
�Q is the average edge length over the entire mesh. The edge length
deviation error is 0 when the post-processed quad mesh has all edge
lengths equal, i.e., when the final result is a discrete Chebyshev net.
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Mesh # Tri. # Quad. # Sing.
Run time (in seconds) Error measures

Pre. Init. Field. Param. Mesh. Post. ηpos ηdef ηlen
Botijo 82332 2497 92 3.03 15.94 312.94 1379.14 4.08 0.52 0.016 0.124 0.006
Bumpy torus 33630 3426 144 3.23 36.63 100.68 445.72 2.81 0.72 0.019 0.114 0.003
Bunny 22490 2312 38 0.81 14.22 77.91 61.82 1.79 0.47 0.015 0.089 0.001
Chair 24994 5288 100 1.22 14.27 77.41 144.11 3.33 1.04 0.015 0.099 0.003
3 Holes 11776 3956 32 0.87 21.77 36.94 62.31 2.16 0.8 0.017 0.174 0.012
Elk 10388 2430 106 0.44 20.69 31.4 43.01 1.48 0.45 0.018 0.142 0.002
Fandisk 12946 2500 30 0.48 13.95 41.41 19.85 1.51 0.52 0.025 0.113 0.003
Human 13730 1792 28 0.49 14.01 39.50 15.70 1.28 0.35 0.014 0.115 0.003
Intersection 3328 817 12 0.28 13.75 12.53 1.22 0.48 0.16 0.011 0.065 0.002
Kitten 28944 2492 26 0.93 14.41 100.03 61.71 2.13 0.51 0.016 0.086 0.003
Mango 4851 2296 4 0.24 13.72 18.85 1.05 1.07 0.47 0.027 0.086 0.002
Schwarz P 6144 1799 16 0.28 13.81 19.92 3.01 1.01 0.35 0.017 0.063 0.004
Soumaya 17718 1893 6 0.59 14.09 58.92 5.43 1.45 0.38 0.017 0.069 0.004
Stent 4004 1429 4 0.22 13.69 14.66 0.93 0.72 0.28 0.010 0.051 0.004
Teddy 29806 2004 42 1.55 14.77 95.12 68.59 1.98 0.41 0.012 0.081 0.002
Train Station 3330 1097 4 0.32 14.02 13.99 0.53 0.60 0.22 0.008 0.052 0.002

Table 1. Algorithm statistics. Left to right: input number of triangles, output number of quads and singularities, timings: pre-processing (operator construction),

initial solution (approximate Killing vector field), guiding field optimization, seamless parameterization, quad meshing, and post-processing ShapeUp

optimization. Error measures: position error (30), deformation error (31), and edge length deviation error (32).

Fig. 10. Results for the Schwarz P (top) and Botijo (bottom) models. After

optimizing for integrability (see Figure 9) one has guiding fields with optimal

singularities (left), which is post-processed into a quad mesh (middle) that

remains near the target surface after ShapeUp optimization (right).

Fig. 11. The Poisson-integrated quadrangulation from unit length guiding

fields that are non-integrable (left) and integrable (right). Non-integrability

leads to a visible discrepancy in alignment between the guiding field and

the integrated net, as shown in the middle overlapping region. Integrable

unit length guiding fields integrate to Chebyshev nets.
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Fig. 12. Comparison between using a non-integrable field (top row) and

using an integrable field (bottom row) to find Chebyshev nets. For a non-

integrable guiding field, integrating into a quadrangulation does not pre-

serve arclength along parameter lines (middle). This leads to large deviations

from the target shape, when requiring unit length edges during ShapeUp

optimization (right). The top-right has relative position error ηpos = 0.0261
and deformation error ηdef = 0.0367, whereas the bottom-right has relative

position error ηpos = 0.0021 and deformation error ηdef = 0.0107.

Since our algorithm is parameterization-based, we can create
Chebyshev nets of varying length scales that are effectively opti-
mized into Chebyshev net quad meshes without considerable defor-
mation. We find that the relative position and deformation errors
correlate with visual inspection (Fig. 13).
In summary, we demonstrate that our optimization for integra-

bility is essential to the design of Chebyshev nets.

9.4 Effect of the angle bound

A nonzero angle bound is necessary to prevent quads from collaps-
ing to zero, while different angle bounds may reflect the particular
material properties of a physically realized Chebyshev net. The space
of Chebyshev nets with a specific angle-bound, however, may be too
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relative position error

length scale

deformation errorηdef

ηpos
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Fig. 13. The results of the ShapeUp optimization on the quadrangulation

obtained from the prameterization at different length scales.
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Fig. 14. Plots of the integrability energy during optimization of the trun-

cated mango shown in Fig. 18, with varying angle bounds. Note the clear

separation between the trend of the integrability energy with small angle

bounds < 50◦ versus large angle bounds > 50◦.

restrictive for particular geometries. For example, only developable
surfaces admit Chebyshev nets with all angles π/2 = 90◦. In Fig. 14
we show the effect of varying the angle bound (default for all other
meshes is π/6) on the integrability energy during optimization.

10 APPLICATIONS

Our algorithm can be used to automatically design Chebyshev nets
for a diverse set of applications requiring a variety of complicated
geometries. We present examples for architectural gridshells (Fig. 15,
Fig. 16), transportation packaging (Fig. 18), medical devices (Fig. 3),
and armor design (Fig. 17). Figure 19 shows the output of our algo-
rithm on some challenging meshes from the benchmark in [Myles
et al. 2014] for general quad meshing algorithms.

10.1 Physical realizability from planar pieces

To demonstrate the physical realizability of our designs, we con-
structed a global Chebyshev net on the Stanford Bunny (Fig. 20).
To realize the net, we used a woven mesh with nearly inextensible

Fig. 15. An architectural gridshell designed from a Chebyshev net.

Fig. 16. Chebyshev nets automatically computed for intricate architectural

models of a train station (top) and of the Museo Soumaya (bottom).

Fig. 17. A custom-made armor designed from a Chebyshev net.

yarns that can shear with respect to each other. Our algorithm com-
putes a global Chebyshev net. Unfolding the resulting net into the
plane requires that we introduce cut lines, which connect pairs of
singularities. In practice, we use the cut lines found during the u,v
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Fig. 18. Part of a mango (left) fitted with a Chebyshev net packaging (right).

Fig. 19. Our global Chebyshev nets on quad-meshing benchmark meshes.

global parameterization step. Note that the global parameterization
is seamless, and therefore the choice of specific cut lines can be made
arbitrarily. There are overlapping regions in u,v space that need
to be separated. We do so by manually introducing additional cut
lines that separate the domain into a collection of non-overlapping
regions. We obtained five pieces: one piece for the body, one for
each ear, and one for each foot. Each piece was then traced onto the
woven material with all singularities and cut lines marked. We left
an extra layer of material around the cut lines to provide structural
stability for when they were aligned and then stapled or fastened
together. To realize each singularity, the material was manually
rotated about the singularity by 90◦ and then stapled to itself on the
surplus material. After assembling the five pieces into a connected
multi-patch net, it was wrapped around a Stanford Bunny that was
3D-printed in two pieces and glued together. The remaining cut lines
were then aligned and fastened together with medical bandage clips
to form a closed surface. Note the considerable visual resemblance
between the digital and the physical Chebyshev nets (Fig. 1).

11 DISCUSSION

11.1 Limitations

Our algorithm is based on a Ginzburg–Landau type of energy, and
therefore encourages smooth guiding fields with low-order singu-
larities of index ±1/4 around which most of the integrability error

is concentrated. This may lead to a quad mesh with sharp corners
when optimized to have unit edge length. Moreover, when ±1/4 sin-
gularities cannot suitably concentrate all integrability error, the post
processing algorithm may not preserve volume. This effect can be
seen both in the legs and back-support of the chairs in Fig. 22, and
in the top handle of the Botijo mesh, where Fig. 9 shows before and
after integrability optimization and Fig. 10 shows before and after
post processing. There are Chebyshev nets on surfaces that our ap-
proach does not promote—specifically, nets that admit higher-order
“rosette” singularities and non-smooth patch boundaries [Masson
2017]. We demonstrate this in Fig. 21. It would be interesting to
develop methods that allow for optimizing over this larger space of
Chebyshev nets with singularities.

Additionally, our discretization of the integrability energy is not
fully invariant to the triangulation, and a non-uniformmesh can lead
to higher integrability errors (Fig. 22). We leave further investigation
of a consistent discrete formulation of the Lie bracket operator for
future work. Note that despite this limitation the final Chebyshev
net is mostly similar to the one obtained using a uniform mesh.
Finally, we rely on standard integer rounding of the u,v coordi-

nates to get truly seamless (not just rotationally seamless) parame-
terizations that give quad meshes. As such, our integrability does
not guarantee bijectivity to produce consistent quad meshes. In
practice, this has not been problematic for the meshes we consider.

11.2 Future work

An essential future direction is to explore the design of fabrication-
aware nets, where not only the singularities, but also the cut lines
would be located in places that are convenient to manufacture and
assemble. An intriguing possibility would be to design dynamic nets
that flex only in desired directions. This could prove invaluable for
medical applications, e.g., for the dynamic reinforcement of tissues.
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A PROOF OF THEOREM 1

Since 0 < c < c0, the linear independence ofU ,V and the unit norm
condition |U |2 = |V |2 = 1 follow immediately from (18). It remains
to be shown that [U ,V ] = 0.
A vector field Y is Killing if and only if for all vector fields

Z ,W [do Carmo 1992, Chap. 3, Ex. 5d]

〈∇ZY ,W 〉 + 〈∇W Y ,Z 〉 = 0. (33)

Therefore, for every vector field Z we have

〈∇ZY ,Z 〉 = 0. (34)

In particular, dY |Y |2 = 2〈∇YY ,Y 〉 = 0, and by the chain rule

dY (s(|Y |)) = 0, (35)

for all differentiable functions s of |Y |. Now, by substituting the
definition ofU ,V , we compute

[U ,V ] = [cY + s(|Y |)JY , cY − s(|Y |)JY ]
= −2c[Y , s(|Y |)JY ]
= −2cs(|Y |)[Y , JY ],

where the last equality follows from (35). Since both c and s(|Y |)
are nonzero, verifying [U ,V ] = 0 amounts to checking [Y , JY ] = 0.
To see that [Y , JY ] = 0, we show that its projections onto Y and JY
both vanish. On the one hand, since 〈Y , JY 〉 = 0 we compute

0 = dY 〈Y , JY 〉 = 〈∇YY , JY 〉 + 〈Y ,∇Y (JY )〉
(33)
= −〈∇JYY ,Y 〉 + 〈Y ,∇Y (JY )〉 = 〈∇Y (JY ) − ∇JYY ,Y 〉
= 〈[Y , JY ],Y 〉.

On the other hand, we find

〈[Y , JY ], JY 〉 = 〈∇Y (JY ), JY 〉 − 〈∇JYY , JY 〉 = 0

since 〈∇Y (JY ), JY 〉 = 1
2dY |JY |2 = 1

2dY |Y |2 = 0 and 〈∇JYY , JY 〉 =
0 by (34). Therefore, [Y , JY ] = 0, which implies that [U ,V ] = 0. �
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