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1 Hyper Parameters
For both segmentation and skinning weights prediction, we use
the basic 4-block DiffusionNet architecture [Sharp et al. 2022], with
spectral acceleration and 𝑘 = 128 eigenbasis. We vary the width
between the applications, where we use a 64-width NN for the
segmentation and a 128-width NN for the skinning weights. We use
an ADAM optimizer with an initial initial learning rate of 0.0005 for
segmentation and 0.001 for skinning weights. For both applications,
we use a batch size of 1, and train for 200 epochs while decaying
the learning rate by a factor of 0.5 every 50 epochs, as suggested
by Sharp et al. [2022]. We also normalize the cages to the unit
sphere, and, when HKS features are used, we utilize DiffusionNet’s
computation and default parameters – the heat kernel signatures
are sampled at 16 values of 𝑡 logarithmically spaced on [0.01, 1].

2 Skinning Weights Dataset
We evaluate the performance on skinning weights generation on a
dataset of 753 artist-created biped characters (see Figure 1) obtained
from the Roblox platform, where we hold out 75 meshes as the
test set. Meshes in the dataset share the same pose, orientation and
skeleton topology.

3 Skinning Weights Symmetry Loss

Let 𝑠 ∈ R𝑛×𝑘 be the ground truth skinning weights matrix, and take
𝑠𝑖 to be its 𝑖-th column. Further, let {S}𝑁

𝑖=1 be the set of symmetric
vertices, i.e. those which have a close match when reflected around
the𝑦𝑧 plane. Define𝐴 ∈ {0, 1}𝑛×𝑛 as the diagonal binarymatrix that
extracts the symmetric vertices, namely 𝐴𝑖𝑖 = 1 iff 𝑣𝑖 ∈ S. Hence,
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for a vector ℎ, 𝐴ℎ zeros out all the entries of the non-symmetric
vertices. We use 𝐴 to identify all the joints whose weights have a
large support on symmetric vertices, by finding all indices 1 ≤ 𝑝 ≤ 𝑘

such that | |𝐴𝑠𝑝 | |1 > 𝛿𝑠 . Denote this set by I.
Now, take 𝐵 ∈ {0, 1}𝑛×𝑛 to be the binary matrix that maps the

symmetric vertices to their match. Thus, 𝐵𝑖 𝑗 = 1 iff 𝑣𝑖 , 𝑣 𝑗 are sym-
metric w.r.t. 𝑦𝑧 plane. For each 𝑝 ∈ I we check if there exists a
joint 𝑞, such that the weights 𝑠𝑝 , 𝑠𝑞 are symmetric on the symmetric
vertices. Specifically, for each 𝑝 ∈ I we find 1 ≤ 𝑞 ≤ 𝑘 such that
∥𝐴𝑠𝑝−𝐵𝑠𝑞 ∥
𝑁 ∥𝑠𝑝 ∥ < 𝜖𝑠 . We take 𝜖𝑠 = 10−5, 𝛿𝑠 = 30.
Finally, let K = {(𝑝, 𝑞)} be the set of all such pairs. Compute for

each pair 𝑙 = (𝑝, 𝑞) and each vertex 1 ≤ 𝑖 ≤ 𝑛 the symmetry error
𝑤 (𝑖, 𝑙) =

(
(𝐴𝑠𝑝 ) (𝑖) − (𝐵𝑠𝑞) (𝑖)

)2, where 𝑠 are the predicted skinning
weights. The symmetry loss is given by:

𝑆𝑦𝑚(𝑠, 𝑠) = 1
𝑛

𝑛∑︁
𝑖=1

√√√√ |K |∑︁
𝑙=1

𝑤 (𝑖, 𝑙) .

4 CageNet vs. Mesh Repair
Repairing the meshes and then applying a baseline network is prob-
lematic for two main reasons. First, meshes may have many variants
of issues (non manifold elements, internal components, multiple
components), and each such issue will require a different repair
method, the choice of which is sometimes manual (and thus not
scalable to large datasets). Second, one would still need to map the
features between the input mesh and the repaired mesh. Such map-
ping (e.g. using nearest neighbors) introduces large errors in the
functions. For example, for the experiment in Figure 5 in the paper,
if we repair the mesh using TetWild [Hu et al. 2018] (obtaining only
the exterior surface), and then map the presented function back and
forth, we get low accuracy (44.28%) since the internal components
are mapped to the exterior surface. Using a cage and barycentric
coordinates solves this issue (accuracy 99.98% as we show in Fig. 5),
since our setting provides an accurate representation of volumetric
functions using a manifold surface. Figure 2 demonstrates this.

5 Segmentation - Additional Results
In Figure 5, we test our segmentation network on wild meshes con-
taining multiple connected components, including a non-manifold
one. The segmentation results are consistent with the ground truth
of a training mesh shown for reference.

6 Skinning Weights - Additional Results
Quantitative Comparison. Figure 3 shows the average normalized

vertex displacement error for each of the animations presented in
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Fig. 1. To evaluate our method on in-the-wild meshes, we collected 753 artist-created characters from the Roblox platform. Here we present samples from the
dataset to demonstrate the variety of characters with different complexities.

  - Repaired Mesh
Using TetWild [Hu et al. 2018]

Original Mesh with Labels 
Mapped back-and-Forth
Using Nearest-Neigbhors

Ground Truth

44.28%

Cut View Cut View Cut View

Fig. 2. For a mesh with internal components (left), repairing it using
TetWild [Hu et al. 2018] yields a repaired surface (center), such that mapping
the labels back and forth from the input to the repaired surface and back
leads to a high labeling error (right). Compare with Fig. 5 in the main paper.

the Supplemental video. Note that for all 5 animation sequences,
our mean error is lower than the other methods.

Topological Changes. We show our method’s performance given
topological changes in the cage in Figure 4. Notably, since our train-
ing dataset consists of shapes in the A-pose, the neural network
was not trained on cages with such topological variations, or the
cage offset augmentation, which were unnecessary for this dataset.
There, it can be that as the hand grows closer to the body, the error
increases. To achieve improved robustness to such variations, the
training set would need to incorporate meshes with diverse poses
and training should be done with the cage offset augmentation.

MoreWildMeshes. Wealso show additional results onwildmeshes
in Figure 6. A skeleton was manually created for each shape. The
predicted skinning weights align well with the ground truth weights,
shown on a referencemodel from the Roblox dataset. For eachmodel,
we include an animation frame to illustrate the effectiveness of the
predicted weights.
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Fig. 3. The average normalized vertex error per frame for all the methods and meshes displayed in the video. Our method has the lowest error across the
entire video.

Avg L1 = 0.071 Avg L1 = 0.123 Avg L1 = 0.216 Avg L1 = 0.228

Fig. 4. To demonstrate the effect of topological changes on our skinning results, we deformed a mesh from the test set by moving its arm closer to the body.
As the arm approaches, the cage encompasses a larger area of the hand and thigh together, resulting in a larger error in this region.

CageNet
(ours)

Con.
Comp.

GT

Fig. 5. Segmentation results on wild meshes. Each mesh contains multiple connected components, visualized using distinct colors (first row), with the
corresponding segmentation results shown in the second row. The meshes are taken from the Roblox dataset and from Turbosquid [TurboSquid 2000]
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Fig. 6. Skinning weights results on wild meshes containing multiple connected components and non-manifold elements. For each model (top row), we
manually created a skeleton consistent with our dataset. We then applied our skinning weight prediction network and show the resulting weights (middle
row), as well as one animation frame per model (bottom row). Model sources: Turbosquid [TurboSquid 2000], Windows 3D Library [Microsoft Corporation
2025], Sketchfab [20062020year 2025; Hill 2025; rocklee.ff123 2025; Sketchfab 2012].
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