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Fig. 1. Our CageNet generalizes a segmentation network pre-trained on nearly-manifold inputs to a mesh in the wild (middle) with multiple connected
components, non-manifold elements, and internal structures (left). CageNet also enables training on wild meshes, such as predicting skinning weights for
animation (right).

Learning on triangle meshes has recently proven to be instrumental to a
myriad of tasks, from shape classification, to segmentation, to deformation
and animation, to mention just a few. While some of these applications
are tackled through neural network architectures which are tailored to
the application at hand, many others use generic frameworks for triangle
meshes where the only customization required is the modification of the
input features and the loss function. Our goal in this paper is to broaden
the applicability of these generic frameworks to “wild” meshes, i.e. meshes
in-the-wild which often have multiple components, non-manifold elements,
disrupted connectivity, or a combination of these. We propose a configurable
meta-framework based on the concept of caged geometry: Given a mesh, a
cage is a single component manifold triangle mesh that envelopes it closely.
Generalized barycentric coordinates map between functions on the cage, and
functions on the mesh, allowing us to learn and test on a variety of data, in
different applications. We demonstrate this concept by learning segmenta-
tion and skinning weights on difficult data, achieving better performance to
state of the art techniques on wild meshes.
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1 Introduction
The impact that neural networks have had on geometry processing is
unquestionable. The state-of-the-art methods for applications such
as shape classification, segmentation, correspondence, deformation
and many others, are all using neural networks, either supervised or
unsupervised. These methods are much stronger when they are able
to leverage the toolbox of discrete geometry processing, including
various discrete differential operators such as the Laplace-Beltrami
operator. One such example is DiffusionNet [Sharp et al. 2022],
which is a general architecture that has been successfully applied
to many of the previously mentioned applications.

One obstacle towider adoption of these approaches, is thatmeshes
“in-the-wild”, e.g. meshes that are generated by artists, are often in-
convenient from the point of view of geometry processing: they
have multiple components, can be non-manifold, and often have
non-triangular faces. While geometry processing operators can be
potentially generalized to handle these cases, this would inevitably
require custommodifications for each artifact, making it not scalable
to “wild” mesh datasets. Furthermore, multiple-component geome-
try is specifically difficult to deal with without adding connections
that allow information to pass between the components.

We propose CageNet, a meta-framework that fills this gap by en-
veloping the troublesome geometry with a cage, providing a map be-
tween the cage and the input geometry using generalized barycentric
coordinates, and applying a geometry-processing informed neural
net on the cage geometry. We use DiffusionNet [Sharp et al. 2022] to
demonstrate our framework, due to its wide applicability and easy

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

HTTPS://ORCID.ORG/0000-0001-9126-1617
HTTPS://ORCID.ORG/0009-0001-1753-4485
HTTPS://ORCID.ORG/0000-0002-1732-2327
https://orcid.org/0000-0001-9126-1617
https://orcid.org/0009-0001-1753-4485
https://orcid.org/0000-0002-1732-2327
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3721238.3730654
https://doi.org/10.1145/3721238.3730654
https://doi.org/10.1145/3721238.3730654


2 • Michal Edelstein, Hsueh-Ti Derek Liu, and Mirela Ben-Chen

setup. We illustrate our framework using two applications: learning
mesh segmentation and skinning weights. We achieve comparable
performance as the state-of-the-art on a segmentation benchmark
consisting of clean mostly-manifold inputs, while obtaining much
better generalization to meshes in the wild (see Figure 1). Compared
to networks which are tailored to computing skinning weights, our
method also achieves the lowest error on wild meshes. Thus, using
CageNet one benefits from both worlds: a generic network archi-
tecture with minimal setup (defining the input features and the
loss), which works out-of-the-box on wild meshes, and achieves the
performance of specialized networks.

1.1 Related Work
1.1.1 Machine Learning Architectures on Meshes. Developing ma-
chine learning architectures for processing meshes has been an
active subject [Bronstein et al. 2017]. A key element in these archi-
tectures is how to generalize common operators, such as message
passing or convolution, for signals defined on the surface. Several
works rely on discrete operators (e.g., convolution) defined on ver-
tices [Gong et al. 2019; Lahav and Tal 2020; Lim et al. 2018], edges
[Hanocka et al. 2019; Liu et al. 2020], faces [Hertz et al. 2020; Hu et al.
2022], or a mixture of different mesh elements [Milano et al. 2020].
One can also leverage spectral operators, such as the Laplacian, to
process scalar [Sharp et al. 2022; Smirnov and Solomon 2021] or
vector signals [Gao et al. 2024] on surfaces.

Despite their effectiveness, these architectures either fail to pro-
cess multiple connected mesh components jointly or non-manifold
elements, which form a majority of the meshes in existing datasets
such as ShapeNet [Chang et al. 2015]. For instance, the convolution
stencil of MeshCNN [Hanocka et al. 2019] assumes that each edge
only contains two neighboring faces, which is not the case for non-
manifold edges. Such a limitation poses a significant challenge to
deploying existing architectures to mesh data in the wild (see, e.g.,
Figure 2). Even if one considers mesh repair before passing it into
a neural network, this often leads to the loss of surface attributes
[Hu et al. 2020, 2018] or to degraded geometric quality [Huang et al.
2020] (see also the Supplemental). This motivates our CageNet to
operate directly on these multi-component, non-manifold meshes
by parameterizing volumetric signals with manifold cages.

Ground Truth Di�usionNet CageNet

Single Connected Component Cut into 3 Connected Components

93.9% 93.7%68.7%93.5%

Ground Truth Di�usionNet CageNet
[Sharp et al. 2022] [Sharp et al. 2022] (ours)(ours)

Fig. 2. When the input is a single component manifold mesh (left), the
existing method [Sharp et al. 2022] and our CageNet lead to comparable
results. However, when the input contains multiple connected components
(right), our method results in better generalization. We show the computed
segmentation color coded on the mesh, and the resulting accuracy.

1.1.2 Cage-based Geometry Processing. Cages have been utilized
for processing geometry, most notably for shape deformation [Ströter
et al. 2024]. Additional classic applications are deformation trans-
fer [Ben-Chen et al. 2009; Chen et al. 2010], tracking [Savoye and
Franco 2010] and computing “skinning templates” [Ju et al. 2008].
More recently, cages were used in learning-based deformation

with learned key point handles [Jakab et al. 2021], learned cages [Yi-
fan et al. 2020]; cages have been combined with NeRFs for editing
and deformation transfer [Peng et al. 2022; Xu andHarada 2022], and
have been used to deform Gaussian splatting [Huang and Yu 2024].
Our method is different from these approaches, since it provides a
general framework for learning different tasks on wild meshes.

1.1.3 Geometry Processing on Wild Meshes. Another option for
handling difficult meshes, is to address each problem separately. Ex-
amples include the non-manifold Laplace Beltrami operator [Sharp
and Crane 2020] (see also citations within for additional examples
of non-manifold geometry processing), or adding connectivity to
handle meshes with multiple connected components [Garland and
Heckbert 1997; Zhou et al. 2010], and other approaches such as
repairing meshes [Hu et al. 2018]. However, adapting an existing
network architecture using such approaches would require a cus-
tom solution for each type of mesh defect, re-implementing parts of
the network and retraining it. Using our framework, it is possible
to use off-the-shelf mesh-based architectures and apply them to
in-the-wild meshes directly.

1.2 Contributions
Our contributions are as follows:

• Ameta-framework for learning on in-the-wild 3D geometries,
such as meshes with interior structures, multiple components,
that may be non-manifold.

• Using cages and generalized barycentric coordinates to pa-
rameterize volumetric functions for neural networks.

• Demonstrating the applicability of our framework to shape
segmentation and computing skinning weights, achieving
better performance on wild meshes than state-of-the-art tech-
niques in a generic framework.

2 Method
Mesh-based neural network architectures are often restricted to
manifold meshes [Hanocka et al. 2019] or have poor performance
on meshes with multiple connected components [Sharp et al. 2022].
CageNet is a neural network architecture that generalizes mesh-
based architectures to such wild meshes.

Consider a neural network FΘ that maps multi-dimensional input
features 𝑥 defined on the vertices (or faces) of the mesh to a set
of output features 𝑦. Given a non-manifold or multiple component
mesh𝑀 , we cannot use FΘ directly, either for training or for testing.
Instead, we construct a single component, manifold cage denoted
by 𝑀 , that fully encapsulates the model (Sec 2.1). In addition, we
define a differentiable mapping operator P that maps functions on
𝑀 to functions on 𝑀 (Sec 2.2). We note that the reverse mapping,
from𝑀 to𝑀 is not required. At training time, we apply FΘ to the
cage𝑀 , and map the resulting output features to𝑀 using P. Thus,
the loss function is applied to features on the input 𝑀 , where the
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Fig. 3. Given an input mesh𝑀 , possibly with multiple components and non-manifold elements, our CageNet constructs a single component, manifold cage𝑀
and the corresponding mapping operator P which maps signals from𝑀 to𝑀 . We then apply a neural network for “nice” meshes F𝜃 on the cage𝑀 (where
the input features �̃� are computed). The learned output features �̃� of the cage are projected using P on the input mesh, yielding the output features 𝑦 on𝑀 ,
which are used to compute the loss on𝑀 , where the training data is provided.

training data is provided (Sec. 2.3). For testing we again apply FΘ to
𝑀 , and map the output with P, yielding features on the input mesh
𝑀 (Sec. 2.4). This is illustrated in Figure 3.

2.1 The Cage
Given a mesh 𝑀 , we require a (1) manifold, (2) single component
cage𝑀 such that (3)𝑀 is geometrically “close” to𝑀 to minimize the
loss of detail. Since we apply our method to large datasets, the cage
construction must be (4) fully automatic. These are the 4 necessary
requirements for the cage. Additional, nice-to-have properties, are
that the cage is (5) topologically equivalent to the input mesh, and
(6) that𝑀 is in the interior of𝑀 for well-behaved cage weights.

Due to the popularity of cages in geometry processing, there
exists a myriad of methods for generating them (see e.g. the recent
review by Ströter et al. [2024], Sec. 4.2). Unfortunately, none of
the publicly available methods fulfills all our necessary constraints.
Hence, we opted for a basic approach: we compute the unsigned
distance field of the input shape, and extract a 𝜀 level set surface
with marching cubes (using the implementation by Wang et al.
[2022]). To obtain a single component mesh, we first remove internal
components (by computing winding numbers for vertices relative to
other components [Barill et al. 2018; Sellán et al. 2023]). We repeat
the process with a larger offset 𝜀 if we obtain multiple disjoint
components. The new offset is 𝜀𝑛𝑒𝑤 =𝜀𝑜𝑙𝑑 + 1

2𝑑𝑚𝑎𝑥 , where 𝑑𝑚𝑎𝑥 is
the largest distance between two of the disjoint components. This
guarantees that the new offset surface has a single component.
Finally, we simplify the result using quadric error edge collapse

[Garland and Heckbert 1997] as implemented in MeshLab [Cignoni
et al. 2008], to obtain a cage with𝑚 faces. We use𝑚 = 12𝐾 for most
meshes. If the result does not encapsulate the input mesh (which
happens rarely), and an encapsulating cage is required, we add more
faces by simplifying to a larger number of faces, up to 𝑚 = 24𝐾 .
Figure 4 shows that the process is not sensitive to the exact number
𝑚, yielding very similar results at test time for different𝑚 values.

We emphasize that the process is fully automatic, and results in a
single component manifold cage that encapsulates the input mesh,
thus fulfilling our requirements. This does not, however, guarantee
that the cage is topologically equivalent to the input mesh. Figure 6
shows a few resulting cages for different offsets 𝜀. Note that for
a large offset, the hands connect to the body, leading to a high
genus mesh. We optionally compute multiple cages for each mesh
to augment the data, see the segmentation experiment in Sec. 4.

2.2 The Mapping Operator P
The mapping operator P takes as input the mesh𝑀 = (V, F ), the
cage 𝑀 = (Ṽ, F̃ ) and a function on the cage 𝑦 : Ṽ → R, and
computes a function on the input mesh 𝑦 : V → R. We opted
for a very simple solution, using a linear map computed using
generalized barycentric coordinates. Given a point 𝑝 ∈ 𝑀 , its gen-
eralized barycentric coordinates with respect to the cage 𝑀 are
{𝜆1 (𝑝), 𝜆2 (𝑝), ..., 𝜆𝑛 (𝑝)} ∈ R𝑛 , such that

∑
𝑗 𝜆 𝑗 = 1 [Ströter et al.

2024, Sec 2.1]. Here, 𝑛 = |Ṽ |. The mapping operator P is thus
defined as:

P(𝑀,𝑀,𝑦) = 𝐶
𝑀
(𝑋𝑀 )𝑦, (1)

where 𝑋𝑀 ∈R𝑛×3 are the coordinates of the vertices of the input
mesh𝑀 , with 𝑛 = |V|. Further, 𝐶

𝑀
is a matrix of size 𝑛 × 𝑛, whose

(𝑖, 𝑗)-th entry is 𝜆 𝑗 (𝑝𝑖 ) where 𝑝𝑖 ∈ R3 is the embedding of the
vertex 𝑣𝑖 ∈V . Hence, 𝑦 = P(𝑀,𝑀,𝑦) contains weighted averages
of the values of 𝑦, where the weights are given by the generalized
barycentric coordinates.
Different coordinate functions have different expressivity, and

computational complexity. E.g., the Mean Value Coordinates (MVC)
by Floater et al. [2003] have a closed form expression, do not require
an encapsulating cage and are very efficient to compute. On the
other hand, Harmonic [Joshi et al. 2007] and biharmonic [Jacobson
et al. 2011] coordinates require an encapsulating cage, do not have a
closed form, and require solving a PDE based optimization problem,
leading to much higher computational costs. In practice, for PDE
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91.2% 91.4% 91.2% 91.2%Ground Truth

12K faces 6K faces 30K faces
[Guo et al. 2023]

20K faces

Fig. 4. Our method is robust to different cage resolutions, an advantage
inherited from DiffusionNet [Sharp et al. 2022]. We show that the segmen-
tation results are comparable (bottom row) even if the cages have different
resolutions (top row). We show the accuracy of the segmentation result
compared to the ground truth. The three leftmost cages are generated using
our approach, whereas the rightmost cage is generated by Guo et al. [2023].

based coordinates, we create a tetrahedral mesh of the cage [Hu
et al. 2020], solve the PDE using FEM, and linearly interpolate the
coordinates from the vertices of each tetrahedron to its interior.
In terms of expressivity, MVC and biharmonic coordinates are

similar, whereas harmonic coordinates struggle to represent encap-
sulated structures with different function values. Since a harmonic
function is determined by its boundary values, this is to be expected.

Figure 5 compares these three types of generalized barycentric
coordinates for representing a segmentation function. We show the
ground truth color coded segmentation, as well as the representation
obtained by overfitting CageNet to this function (see Sec 2.3), using
the different coordinates. For representing the segmentation of a
human (top row), all coordinates are equally good. For a shape with
“internal organs” (bottom rows), which are classified differently
by the segmentation function, MVC and biharmonic coordinates
perform significantly better, while MVC is much faster to compute.
Thus, in all our experiments we use MVC.

2.3 CageNet Training
We first compute all the cages and their corresponding generalized
barycentric coordinates for all the input meshes.

In our experiments, we use DiffusionNet [Sharp et al. 2022] as the
underlying network due to its robustness to cage tessellation. Our
framework, however, is general, and other mesh-based networks
could be used instead.
We use the default DiffusionNet input features, which are com-

puted on the input cages. We elaborate on the features when de-
scribing the specific experiments in Section 3. We emphasize that
the loss is computed on the input data directly, by mapping the cage

Mean Value
Coordinates

Harmonic
Coordinates

Without
Internal
Organs

Biharmonic
Coordinates

With
Internal
Organs

Ground Truth

Cut View

99.88% 99.94% 99.87%

97.12% 99.93% 99.98%

Fig. 5. The choice of coordinates influences the generalization of CageNet.
When the input is a single manifold mesh without interior structure (top
row), CageNet can overfit the segmentation perfectly using all three coor-
dinate choices. But when the input contains interior components (bottom
rows), the harmonic coordinates fail near the brain region (second column),
while the biharmonic (third column) and the mean value coordinates (fourth
column) still lead to perfect predictions.

output features computed by the network to the input meshes using
the mapping operator P. When the labeling data is provided on
the edges or the faces (for example, for segmentation), we first map
from the cage to the input mesh vertices, then average to the edges
or faces, and apply the last activation as appropriate.

2.4 CageNet Testing
The cage and barycentric coordinates are computed on the input
mesh. Then the network is tested as usual, with the output signal
again mapped to the source mesh using the mapping operator P.

CageNet can generalize from training on “nice” meshes, to testing
on “wild” meshes. For example, in Section 4 we train CageNet on the
human segmentation benchmark [Maron et al. 2017], where all the
models are single component meshes. In Figure 1 we test the trained
network on a model which is non-manifold, has internal structures
and multiple components. Indeed, the network generalizes well to
this type of “inconvenient” (though abundant in the wild) meshes.

Figure 4 demonstrates that the method is not sensitive at test time
to the cage resolution. Specifically, we test the segmentation network
trained in Sec 4 using cages with different resolutions generated
with our method, as well as a cage generated by the method of Guo
et al. [2023]. We note that the segmentation results are very similar,
regardless of the cage used.
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3 Experimental Results
We apply CageNet to two applications: segmentation and computa-
tion of skinning weights. We used the authors’ implementation of
DiffusionNet [Sharp et al. 2022], and implemented CageNet in Py-
Torch [Paszke et al. 2019]. All training was done on a single machine
with NVIDIA RTX A4500 GPU (20GB GPU memory) and 128GB
system memory. We elaborate on the training data, input features,
loss, hyper-parameters and evaluation metrics for each application
separately.

4 Human segmentation
Semantic segmentation [Gao et al. 2023] is one of the most basic
shape processing tasks, and as such is addressed by many different
methods. We focus here on the Human Segmentation dataset by
Maron et al. [2017], due to its popularity as a benchmark.

4.1 Implementation Details
4.1.1 Input features and hyper-parameters. We use a very similar
setup as DiffusionNet’s original segmentation setup, using HKS fea-
tures. The only different hyper-parameters are the network width
(64 instead of 128), and the initial learning rate (0.0005 instead of
0.001). We provide the full list of hyper-parameters in the supple-
mental material for completeness.

4.1.2 Loss. We apply a cross-entropy loss on vertex labels averaged
to the faces (as does DiffusionNet). In our case, to obtain the vertex
labels we use the operator P to map the cage functions to functions
on the vertices of the input mesh.

4.1.3 Evaluation Metrics. As is standard, we use the segmentation
accuracy as the evaluation metric.

4.2 Results
In Table 1 we show that our method achieves the same results as
DiffusionNet on nice single-component manifold meshes. Indeed,
since our method is based on DiffusionNet, it cannot be expected
to surpass it. In contrast, when testing on a broken mesh as in
Figure 2, our method generalizes much better than DiffusionNet.
Here, we remove some faces from one of the meshes in the dataset to
generate a mesh with multiple connected components. This allows
us to compute the accuracy, since we have the ground truth data for

CageInput Mesh CageCage
ε = 0.005 ε = 0.01 ε = 0.015

Fig. 6. We augment the training data by generating multiple cages with
different offset values. This increases the robustness of CageNet against
topological noise as the cage topology may change with different offsets,
such as the hand region in this example.

NN trained with
Augmentations

NN trained without
Augmentations

Fig. 7. We compare the segmentation results on a wild mesh that does not
belong to the training dataset, when the network is trainedwithout (left) and
with (right) cage offset augmentation (see Sec. 4.3). In each pair, the mesh
on the right has problematic regions (the left hand) which leads to different
cage topologies for different offsets, whereas the mesh on the left does
not. The mesh on the left yields good segmentation results with or without
augmentation (see e.g. the ground truth segmentation in Fig. 4). However,
the mesh on the right leads to erroneous segmentation on the left hand
without augmentation, which is resolved when adding the augmentation.

the remaining faces. We also show our robustness to wild meshes by
testing on a "souped" dataset. We split each model in the test dataset
into a triangle soup and randomly inverted half of the face normals.
We obtain 91.7% accuracy, the same as for the clean dataset.

As another experiment, in Figure 8 we test on wild mesh in-
puts, which have multiple connected components. Here as well
our method leads to better generalization than the baselines. Fig-
ure 1 shows another example, where we test on a mesh which has
multiple components, interior parts and non-manifold elements,
and achieve good generalization. For the wild meshes ground truth
is not available, so we do not compute accuracy. A qualitative com-
parison is possible with the ground truth segmentation of one of the
meshes from the training dataset, shown on the top left. We show
additional results on wild meshes in the Supplemental material.

4.3 Cage offset augmentation
For each training mesh we generate cages at offsets 0.005, 0.01, 0.015,
and 0.02 (models are normalized in the unit box), see Figure 6. At
each epoch, for eachmesh, we randomly choose one of the generated
cages. For testing we use the smallest training offset. Note that while
each additional cage increases preprocessing time during training,
it does not affect the training loop time. In addition, it does not
affect inference time, as testing is performed with a single cage
offset. Figure 7 shows an example of testing using a net that was
trained without (left) and with (right) cage offset augmentation.
Note the correction obtained for the segmentation of the left hand
of the model when the augmentation is used. The results on the
human segmentation dataset without the augmentation are given
in Table. 1. Indeed, the accuracy without the augmentation is lower.

5 Skinning Weights
Skinning is one of the most popular methods for real-time shape
deformation [Jacobson et al. 2014]. A core ingredient is the creation
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Table 1. We report the segmentation results on the manifold mesh dataset
[Maron et al. 2017]. Our CageNet does not deteriorate the performance of
existing methods on clean meshes, getting the same accuracy (%) as the
DiffusionNet [Sharp et al. 2022] where our method is based on. In contrast,
we can achieve better generalization to wild inputs in Figure 7.

Method Acc. Method Acc.
GCNN [Masci et al. 2015] 86.4 MeshWalker [Lahav et al. 2020] 92.7
ACNN [Boscaini et al. 2016] 83.7 CGConv [Yang et al. 2021] 89.9
Toric Cover [Maron et al. 2017] 88.0 FC [Mitchel et al. 2021] 92.5
PointNet++ [Qi et al. 2017] 90.8 DiffusionNet [Sharp et al. 2022] 91.7
MDGCNN [Poulenard et al. 2018] 88.6 MeshMAE [Liang et al. 2022] 90.0
DGCNN [Wang et al. 2019] 89.7 SubdivNet [Hu et al. 2022] 93.0
SNGC [Haim et al. 2019] 91.0 SieveNet [Yuan et al. 2023] 93.2
PFCNN [Yang et al. 2020] 91.5 CageNet (ours) w/o aug. 90.4
HSN [Wiersma et al. 2020] 91.1 CageNet (ours) 91.7
PD-MeshNet [Milano et al. 2020] 86.9 CageNet (ours) - "Souped" dataset 91.7

of skinning weights to bind vertices with skeletons to drive defor-
mation. Some existing techniques offer a semi-automatic interface
to aid in the creation [Bang and Lee 2018; Ma et al. 2024]. Some
rely on fully automatic approaches to optimize for smoothed and
localized skinning weights based purely on geometric information
[Dionne and de Lasa 2013; Jacobson et al. 2011; Wang and Solomon
2021]. However, these techniques may struggle to create weights
that are aligned with, for instance, semantics. This issue has been
motivating the development of several learning-based techniques,
including [Liu et al. 2019; Ma and Zhang 2023; Mosella-Montoro
and Hidalgo 2022; Ouyang and Feng 2020; Pan et al. 2021; Xu et al.
2020], to capture semantic information by learning from data, using
neural nets tailored to this problem. Our approach, on the other
hand, is, to our best knowledge, the first to treat this problem (albeit
with a known constant skeleton) in a general mesh-based network.

We evaluate the performance on skinning weight generation on
a dataset of 753 artist-created biped characters (see supplemental,
Figure 1) obtained from the Roblox platform, where we hold out 75
meshes as the test set. Meshes in the dataset share the same pose,
orientation and skeleton topology.

5.1 Implementation Details
5.1.1 Input features and hyper-parameters. We use a cage offset
of 𝜖 = 0.01. The cage vertex locations and the volumetric geodesic
distance from the cage vertices to the skeleton’s bones are the in-
put features to our network, as suggested in Xu et al. [2020]. Our
network uses DiffusionNet’s default hyper-parameters, with a 128-
width. After obtaining output features on the cage, we use the
cage coordinates to map the results to the input mesh. As skinning
weights need to be positive and sum up to 1, we apply the softmax
activation to the weights at each vertex to satisfy these constraints.

5.1.2 Loss. Our loss function consists of a KL divergence term, an
𝐿𝑝 loss to encourage sparsity, and a symmetry loss to encourage
symmetric weights for symmetric meshes. Thus our loss is:

L = KL(𝑠, 𝑠) + 𝜆𝑝𝐿𝑝 (𝑠) + 𝜆symSym(𝑠, 𝑠), (2)

where 𝑠 are the ground truth skinning weights, 𝑠 are the predicted
skinning weights and 𝜆𝑝 and 𝜆sym balance the different terms. We
use 𝑝 = 0.3, 𝜆𝑝 = 0.1, 𝜆sym = 0.05.

The skinning weights per vertex are effectively a distribution with
respect to the bones (since they are positive and sum to 1). Hence
we use the KL divergence to measure the error of the predicted
weights w.r.t. ground truth, as in [Liu et al. 2019]. We compute the
KL divergence per vertex, and then average over the vertices.

The skinning weights are expected to be sparse, thus each vertex
should be affected by a small number of bones. The 𝐿𝑝 loss, with
0 < 𝑝 ≤ 1 is used in classic optimization methods to encourage
sparsity [Bruckstein et al. 2009]. While 𝑝 = 1 is a common choice
[Tibshirani 1996], it is known that smaller 𝑝 values are more benefi-
cial for sparsity. We find that 𝑝 = 0.3 leads to the best results. The
𝐿𝑝 -norm of the skinning weights is computed per vertex, and then
averaged over the vertices.

Di�usionNet [Sharp et al. 2022]
CageNet

(ours)
Con.

Comp. Mesh Point Cloud PC w. Blue Noise

GT

Fig. 8. Segmentation results on wild biped characters, consisting of multiple
connected components visualized using component-wise colors (first col-
umn). DiffusionNet [Sharp et al. 2022] trained only on a single component
mostly-manifold mesh dataset [Maron et al. 2017] fails to generalize, regard-
less of using mesh connectivity (second column), vertex point cloud connec-
tivity (third column), or uniformly sampled [Yuksel 2015] point connectivity
(fourth column). In contrast, our CageNet (fifth column) generalizes to wild
characters to produce desired segmentation results. These in-the-wild mod-
els do not have ground truth segmentation. The ground truth on one of the
meshes from the training dataset is shown for comparison on the top left.
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The symmetry loss is designed to improve the symmetry of the
predicted weights in areas where both the mesh and the ground
truth weights are symmetric. Hence, it measures the symmetry
error of the predicted weights in these regions. For simplicity, we
consider only extrinsic symmetrywith respect to the𝑦𝑧 plane, which
is compatible with our consistently oriented dataset.

5.1.3 Evaluation Metrics. We use a few evaluation metrics, follow-
ing Xu et al. [2020]. (1) The average 𝐿1 loss compares the predicted
and ground truth weights in the 𝐿1 norm. (2) Precision and recall
measure the success of finding the influential (weight larger than
0.0001) bones of a vertex, and the 𝐹1 score is the harmonic mean of
precision and recall, representing both in one metric. (3) We mea-
sure the normalized vertex distance between an animation frame
generated by the predicted v.s. the ground truth weights, and report
the average and the maximum. The vertex distances are evaluated
on 8 artist-created animations (see the supplementary video).

5.2 Results
5.2.1 Quantitative Results. We evaluate our method by comparing
the predicted skinning weights against different baselines, including
BBW [Jacobson et al. 2011], GeoVoxel [Dionne and de Lasa 2013],
and RigNet [Xu et al. 2020]. For BBW, we use the authors implemen-
tation, where we first tetrahedralize the mesh using fTetWild [Hu
et al. 2020]. For GeoVoxel, we useMaya’s implementation [Autodesk,
Inc. 2024]. We show the results both with the default parameters,
and with the recommended parameters in [Xu et al. 2020]. For both
of these methods, we remove meshes with joints that are outside
the body, which are about 5% of the test set.
RigNet and our CageNet are trained on 90% randomly selected

meshes from our dataset (see Supplementary Figure 1) and evaluated
on the test set. We present our results using our predicted skinning
(“Ours”) and with sparsity enforced by thresholding values below
0.2 to zero (“Ours-S”).

The results are reported in Table 2. We note that for the average
𝐿1 distance, which measures the error of the predicted weights,
our method achieves the best results (with and without enforcing
sparsity). The statistical 𝐹1 score, which combines both the precision
and recall of finding the influential bones, is also the best for our
approach. As expected, enforcing sparsity by thresholding increases
precision and reduces recall, however the combined 𝐹1 measure
shows that the trade-off is reasonable and not much is lost. In terms
of vertex distance of the generated animation frames, we achieve the
best average distance (tied with RigNet). The best maximal distance
is achieved by BBW, with the rest of the methods achieving mostly
similar results. BBW wins on this metric, as it is the only method
that is not affected by regions of the mesh that are close in Euclidean
distance but far in geodesic distance.

To summarize, our method shows very good results, comparable
or surpassing existing techniques. The closest to our performance is
RigNet, which is tailored for computing skinning weights (and thus
for example can also handle different skeleton structures), whereas
we achieve these results using a generic network.

5.2.2 Qualitative Results. We show qualitative results in Figure 12.
We show for each model the rest pose and skeleton (left most col-
umn), and the ground truth weights. The weights are visualized
by setting a different color for each bone, and combining these col-
ors using the weights. In addition, we show the ground truth for
one animation frame from a set of user-generated animations. The
animation frame is computed using Linear Blend Skinning (LBS) [Ja-
cobson et al. 2014] with the ground truth skinning weights. For each
method we show the computed skinning weights, and the corre-
sponding animation frame computed with LBS and the computed
weights. The animation frame is color-coded with the pointwise
normalized vertex displacement error. Note that in all cases our
error is considerably lower than the other methods, with RigNet
arguably as the closest competitor. We provide the full animation
sequence in the supplemental video and the average normalized
vertex error per frame in the Supplemental.

In addition to baseline comparisons, in Figure 9 we demonstrate
our resilience to multi-component meshes by decomposing a mesh
into a triangle soup (second row), as well as adding vertex noise to
the triangle soup (third row), and flipping randomly the orientation
of some of the faces (fourth row). For each case we show the mesh,
the cage, the ground truth weights, predicted weights, and color
coded 𝐿1 pointwise error, as well as the average error. We note that
for both types of noise the predicted result is very similar to the
predicted result on the original mesh.
In Figure 13 we apply our method to wild AI meshes generated

by [Xiang et al. 2024] and Meshy, and compare it with the baselines.
These meshes do not have ground truth, hence we show only the re-
sulting weights, and a corresponding animation frame. The weights
can be qualitatively compared to the ground truth weights of the
Roblox dataset in Figure 12, since we used the same skeleton (which

Ground TruthCageMesh Prediction

Triangle
Mesh

Noisy
Triangle

Soup

Triangle Soup
with

Flipped
Normals

L1

Avg L1 = 0.078

Avg L1 = 0.092

Avg L1 = 0.078

Fig. 9. Generalization to triangle soups. We train on a single-component
triangle mesh (top) and test on a triangle soup with vertex noise (middle) and
with flipped triangles (bottom). Note that our method leads to the desired
skinning weight prediction (4-th column) with low error (5-th column).
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Avg L1 = 0.044 Avg L1 = 0.049Avg L1 = 0.068Avg L1 = 0.046

Ground Truth HarmonicCageNet λsym = 0λp = 0

Fig. 10. Our ablation study on the skinning weight experiment shows that our choice of coordinates and incorporating the Lp and the symmetry loss terms
lead to more accurate predictions. Specifically, removing the 𝐿𝑝 loss increases the error significantly, since weights are no longer sparse. Removing the
symmetry loss leads to non-symmetric weights (visible in the non-symmetric error) in addition to a higher error term.

was manually posed to fit the generated mesh). We note that our
results are most similar semantically to the ground truth weights.
While RigNet leads to good results as well, artifacts are visible for
all three models. See the video for the animation sequence.
We also show additional results on wild meshes, and an experi-

ment demonstrating the cage topology effect on the results in the
Supplementary.

5.2.3 Ablation. In Figure 10 we modify different parts of our algo-
rithm for this application. For each option we show the predicted
weights and the 𝐿1 error. We use harmonic weights instead of MVC,
which results in a minor increase in the 𝐿1 error (third column).
We remove the 𝐿𝑝 loss leading to a significant increase in the 𝐿1
error, as well as smoothing of the error, and its distribution in a
larger area, as expected (fourth column). Finally, we remove the
symmetry loss leading again to an increase in the 𝐿1 loss, as well as
loss of symmetry of the weights, which can be seen by the loss of
symmetry of the 𝐿1 error function (fifth column).
Additionally, Table 3, shows the quantitative ablation results on

the Roblox dataset. We note that the full configuration, with MVC
and all the loss parts, achieves the best average 𝐿1 loss, closely fol-
lowed by the harmonic coordinates (as in Figure 10). We conjecture
that even though the dataset has interior parts, for which harmonic
coordinates do not work as well), for skinning weights we expect
the interior parts to deform similarly to the exterior parts, thus
allowing for a good weight approximation by harmonic coordinates.

Table 2. We compare our predicted skinning weights vs. existing base-
lines: bounded biharmonic weights (BBW [Jacobson et al. 2011]), GeoVoxel
([Dionne and de Lasa 2013] GV with default parameters, GV* with param-
eters recommended by Xu et al. [2020]), and RigNet [Xu et al. 2020]. We
report the following metrics: average 𝐿1 error (↓), Precision (↑), Recall (↑),
F1-score (↑), average vertex distance (↓), and maximum vertex distance (↓).

Method Avg 𝐿1 Prec. Recall 𝐹1 Avg D. Max D.
BBW 0.575 45.80 97.06 56.58 0.009 0.410
GV 0.687 42.14 99.99 55.54 0.009 0.658
GV* 0.645 75.11 89.24 76.80 0.008 0.7046

RigNet 0.153 98.11 87.17 90.41 0.002 0.697
Ours 0.124 88.70 98.78 91.72 0.002 0.692
Ours-S 0.135 98.09 88.85 91.53 0.002 0.697

Naturally, these are muchmore expensive to compute, so we provide
this example for illustrative purposes only. The 𝐹1 score is similar
for all configurations, with the exception of removing the 𝐿𝑝 loss. In
this case, the precision reduces significantly, as we falsely identify
many more bones as influential (since the weights are not as sparse),
leading to more false positives. The average and maximal vertex
distance error on the animated frames is also similar between the
different configurations. The smallest maximal distance is obtained
by removing the 𝐿𝑝 loss and reducing sparsity, leading to a more
uniform error distribution and smaller maximal error.

6 Limitations, Future Work and Conclusion
Meshes that have self-intersections (Figure 11 left) are problematic
for CageNet if the regions that intersect have different labels or
feature values. Since our features are volumetric scalar functions
on the interior of the cage, they cannot be multi-valued at a given
point. Using multi-valued functions (e.g., polynomial roots repre-
sented by the polynomial coefficients) may alleviate this restriction
in future work. Despite the cage-offset augmentation (Figure 7), our
approach is still somewhat sensitive to topological inconsistencies
due to cage generation (such as the extreme case in Figure 11 right).
Future improvements on cage generation, such as adaptive offsets or
a topologically robust method (e.g., [Zint et al. 2024]), could further
improve the stability of CageNet. We demonstrate the efficacy of
our CageNet using DiffusionNet [Sharp et al. 2022] as an exam-
ple. Future explorations on combining our approach with different
network architectures and with other generalized barycentric coor-
dinates (e.g., [de Goes and Desbrun 2024; Thiery et al. 2024]) could
further boost CageNet’s performance, and improve its efficacy in
applications (e.g., generalizing to different skeleton topologies).

Table 3. We show an ablation study with different cage coordinates and
loss terms, using the same metrics as in Table 2. See the text for details.

Ablation Avg 𝐿1 Prec. Recall 𝐹1 Avg D. Max D.
CageNet 0.124 88.70 98.78 91.72 0.002 0.692
Harmonic 0.127 89.21 98.54 91.92 0.002 0.705
𝜆𝑝 = 0 0.135 59.10 99.93 71.15 0.002 0.688
𝜆sym = 0 0.133 89.47 98.49 92.06 0.002 0.748
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Mesh & Cage

Mesh with Intersections

Cage - Cut View

Mesh with Tight Regions

Fig. 11. Limitations. CageNet learns parametrized volumetric functions,
and thus it cannot represent multiple values at the same spatial position.
Thus, intersections in the input mesh (left) will be problematic if labeled
differently. Additionally, if the mesh has large areas in close proximity (right),
the cage may envelope them together, restricting the diversity of functions
representable in these areas.

To conclude, we have shown that caging wild meshes is beneficial
for data-driven shape processing with neural networks. We believe
that CageNet can find many additional applications, and inspire
future work in the realm of robust geometry processing.
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Fig. 12. Comparison against baselines, each column shows the skinning weights (left) and an animation frame resulting from these weights, color coded with
the corresponding normalized vertex displacement error (right). Here GeoVoxel* uses the parameters recommended by Xu et al. [2020]. Our approach achieves
better skinning weight predictions compared to the baselines, leading to less artifacts in the resulting animation frame. Please refer to the supplementary
video for the full animation sequences.

Input
BBW

[Jacobson et al. 2011]
RigNet

[Xu et. al. 2020]
CageNet

(ours)
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Fig. 13. Our method can be applied to AI-generated meshes, such as [Xiang et al. 2024]. We show qualitative comparisons of the generated skinning weights
(left) and a resulting deformation frame (right) on these characters. Here GeoVoxel* uses the parameters recommended by Xu et al. [2020]. As the ground
truth weights are not available here, compare with the dataset ground truth in Figure 12. We note that our approach leads to weights which are most similar
to the ground truth, with the least artifacts in the deformed frame. Please refer to the supplementary video for the full animation sequences.
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