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Figure 1: Given two collections of shapes in various poses (top and bottom) and the intra-collection maps, our algorithm automatically
finds a matching (color coded) between the poses. Using this matching, we further find an inter-collection correspondence between two
automatically-chosen shapes, one from each collection (center). We can therefore automatically extract a high-quality non-isometric corre-
spondence solely from the two collections, without any user input.

Abstract
We propose a method to automatically match two shape collections with a similar shape space structure, e.g. two characters
in similar poses, and compute the inter-maps between the collections. Given the intra-maps in each collection, we extract the
corresponding shape difference operators, and use them to construct an embedding of the shape space of each collection. We
then align the two shape spaces, and use the knowledge gained from the alignment to compute the inter-maps. Unlike existing
approaches for collection alignment, our method is applicable to small and large collections alike, and requires no parameter
tuning. Furthermore, unlike most approaches for non-isometric correspondence, our method uses solely the variation within
the collection to extract the inter-maps, and therefore does not require landmarks, descriptors or any additional input. We
demonstrate that we achieve high matching accuracy rates, and compute high quality maps on non-isometric shapes, which
compare favorably with automatic state-of-the-art methods for non-isometric shape correspondence.

CCS Concepts
• Computing methodologies → Shape analysis;

1. Introduction

A shape space contains variations of a given 3D model, for exam-
ple, a sampling of an animation, or a character in different poses.
Such spaces arise, e.g., when animators generate blend shapes for

standard poses (smile, frown, A-pose, T-pose, etc.) or use rigged
models for generating walking or running cycles. In many appli-
cations, a few such shape spaces are given (e.g. a walking cycle
of a man and a woman), and it is required to transfer information
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between them. For example, transferring shape annotations such as
pose labeling, or transferring point-wise data such as texture.

Often, it is possible to automatically obtain a high quality corre-
spondence between variations of a single model, i.e., maps within
the shape collection, which we denote by intra-maps. On the other
hand, correspondences between shapes in different collections,
which we denote as inter-maps, are harder to compute, as these
models will often have large non-isometric deformations.

Automatic computation of correspondences between non-rigid
and non-isometric shapes is an active research problem. Most
existing methods for computing a correspondence between non-
isometric shapes require some additional semantic input, such as
corresponding landmarks, and are therefore not fully automatic.
We, on the other hand, leverage the cues of the variations within
the collection as the semantic information, and use them to design
a completely automatic method.

We draw our inspiration from a recent approach to this prob-
lem [SBC14], which similarly leverages shape variations as the se-
mantic cues. Unfortunately, many aspects of that approach intro-
duce technical difficulties which make the method not robust and
impractical in many cases, derailing the hope for a completely au-
tomatic method. Specifically, a large sampling of shapes is required
in both collections, as well as hand tuning of multiple dataset-
dependent parameters. Practically, the existing approach yields low
quality maps which are not on-par with state of the art methods.

While working in the same general setting, we propose very dif-
ferent design choices, leading to a considerably more robust sys-
tem. Our method is simple to implement, completely automatic,
and applicable to any mesh topology, yielding significantly bet-
ter results. Additionally, our method extracts high quality point-
wise maps between non-isometric shapes, generating maps which
surpass state-of-the-art automatic methods for non-isometric shape
correspondence. Our approach is applicable to both benchmark
data-sets, e.g. FAUST, as well as rigged models available for pur-
chase from 3D modeling websites. Finally, it is important to note
that the shape collections we can handle are not limited to the same
character in different poses, but can rather be sets of shapes with
any variations yielding similar enough shape spaces. For instance,
a collection can include different people in the same pose, then
matched to a collection of the same people in a different pose.

1.1. Related Work

Shape Collections. Collections of shapes are useful for a variety
of applications. Some examples include deformation transfer, aim-
ing to produce shapes with desired deformations that can be in-
duced by given deformations in another collection. Some methods
include learning models for 3D shape processing and shape recon-
struction [GYQ∗18, HRA∗19]. Another example is creating a col-
lection from one shape using modal analysis of the hessian of the
mesh as described in [HWAG09]. Other aspects of shape collection
analysis exploit the idea that the composition of maps along cy-
cles should be identity maps, which led to the map synchronization
problem, taking maps between pairs of objects and returning im-
proved maps that are consistent along cycles [SLHH18]. This no-
tion is further exploited in [NBCW∗11,CRA∗17] in order to obtain

high quality intra-maps, that we require as an input, and which are
easier to obtain than the inter-maps we compute. Other approaches
use modular latent spaces, based on nonlinear embedding spaces,
to find the correspondences within a collection [GSDG18].

In [ROA∗13] some approaches to exploring shape collections are
presented, including browsing shapes by a user-defined region of
interest, taking advantage of the localization property of the shape
difference operator. Shape analogies are also used in [ROA∗13] to
match corresponding shapes from two collections. However, they
use a brute-force search among all the permutations of the shapes
that best aligns them with the other collection, limiting the ap-
plicability to very small collections. The shape difference opera-
tor has been further investigated and analyzed in terms of stability
[HCO18] and optimal shape collection representation [HAGO19].

Our work generalizes the method proposed by [SBC14]. In that
approach, given two shape collections, each representing a shape
space, it is assumed that the intra-maps are given, and they are used
to compute the shape variations, represented by shape difference
operators. These variations are then considered as points on a high
dimensional manifold, and a non-linear dimensionality reduction
approach is used to generate a low-dimensional embedding of the
shape spaces. The shape spaces are then aligned using affine point
cloud alignment. Finally, an inter-map is computed using the align-
ment. This approach has several severe limitations. First, a large
sampling of shapes is required to reliably represent the diffusion
map, and hand tuning of parameters is required to align the shape
spaces using an affine map. Furthermore, the existing approach fails
to obtain high accuracy rates for aligning the shape spaces, and in
addition the resulting inter-maps are of low quality and are not com-
parable to other correspondence methods.

We, on the other hand, have made critically different design
choices, leading to an algorithm that is more robust and yields maps
comparable to other automatic methods. Specifically, we leverage
the fact that in some cases the shape difference operators lie on
a manifold which has a closed form expression for geodesic dis-
tances, therefore, we use these distances as a better representation
of the shape space structure. Second, we use a linear dimensional-
ity reduction approach, which is far less sensitive to the number of
shapes in the collection. Furthermore, we use rigid alignment us-
ing a robust convex relaxation, which is parameter-free. Finally, we
add a regularization to the shape correspondence formulation, and
a post processing, which yield considerably better pointwise maps.

Automatic Correspondences. Computing shape correspondence
using automatic algorithms, i.e. when no landmarks or user in-
put are given, acts as a benchmark for the second part of our al-
gorithm, aiming to obtain the correspondences between shapes in
different collections. Blended intrinsic maps (BIM) [KLF11] is
an automatic method to recover the point-to-point map between
two given shapes. It often yields excellent results, however it
is restricted to genus zero shapes. Bijective and continuous ICP
(BCICP) [RPWO18] tackles this problem as well and is able to
produce correspondences without landmarks. We compare our al-
gorithm, which uses the shape differences within the collection as
the additional information required for automatically extracting an
inter-collection map, to these methods and demonstrate that we
achieve a better performance than both.
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Figure 2: Block diagram of our algorithm, see the outline in Section 1.2.

Matching Problems and Procrustes Analysis. In order to solve
the matching problem, i.e. finding the matching pairs from the
two collections, one can make use of the distance matrix between
the shape differences of each collection. The distances represent
the differences between the variations in the collection. One ap-
proach to solve the matching problem is to use the method pre-
sented in [KKBL15] in order to find the best permutation on the
distance matrices’ rows and columns such that they have the same
structure. The retrieved permutation defines the pairing of shapes
we wish to obtain. Unfortunately, this approach is not feasible for
large data-sets where the distance matrices are large. An improved
method has been proposed in [DML17] (see also references within
for additional approaches to quadratic matching).

Instead of aligning the distance matrices, it is also possible to
generate a low dimensional embedding of the point clouds, and use
Procrustes matching (PM) for the registration. We chose to take
this approach, first using linear dimensionality reduction to gener-
ate a point cloud representation of the shape collections, and then
convex semidefinite programming (SDP) relaxation [MDK∗16] for
the Procrustes matching of the point clouds. This approach has a
few advantages. First, linear dimensionality reduction requires less
parameters. Second, the SDP relaxation scheme is tight leading to
close to optimal results, and finally, it is very efficient, enabling us
to handle larger collection sizes.

1.2. Method Outline

Our algorithm follows the general structure suggested in [SBC14],
yet with some critically different design choices. We first describe
the general pipeline (see Figure 2), and then explain each compo-
nent separately in Section 3.

Input: Two shape collections that represent two shape spaces of
different models, not necessarily with the same number of shapes,
and the intra-maps within each collection.

Output: (1) An injective function from the smaller collection to
the larger one, which represents the matching pairs, and (2) a point-
to-point inter-map for any shape in one collection to any shape in
the other.

Algorithm:

1. Use the input intra-maps to construct the shape differences be-
tween the input shapes in the same collection (Section 2.2).

2. Use the shape differences to construct a low-dimensional shape
space embedding for both collections (Section 3.1).

3. Align the two shape spaces using Procrustes analysis to obtain
the matching pairs and automatically determine an optimal base
shape in each collection (Section 3.2).

4. Use the matches and the base shapes to compute a functional
inter-map for the base shape pair (Section 3.3).

5. Recover a point-to-point inter-map from the functional map
(Section 3.4).

1.3. Contributions

Our main contributions are:

• Matching corresponding pairs from two shape collections with a
high rate of accuracy.
• Automatically obtaining a high-quality non-isometric inter-map

between any shape in one collection to any shape in the other.

2. Background

2.1. Functional Maps

Functional maps [OBCS∗12] have been widely used in many ge-
ometry processing applications, especially for shape correspon-
dence. The main observation in this framework is that we can look
at how functions on one shape are transformed to the other, rather
than finding a point-to-point map between the shapes. The space
of functions can often be well represented using a compact, yet in-
formative, functional basis, allowing us to represent a map in this
space as a change of basis linear operator, i.e., as a compact matrix.

Given two surfaces M and N, with a map T : N → M between
them, a map between function spaces F : L2(M)→ L2(N) is in-
duced. Here, L2(·) represents the set of square integrable real val-
ued functions defined on the surface. F is called the functional
map, mapping functions defined on M to functions defined on N,
i.e. g = F( f ) = f ◦ T where f : M → R and g : N → R. F is a
linear transformation between function spaces, and given reduced
bases ΨM ,ΨN of dimensions kM ,kN , for M,N, respectively, is rep-
resented as a matrix C∈RkN×kM .

2.2. Shape Difference Operators

Given two shapes and the map between them, the shape difference
operator [ROA∗13] captures the variations between the shapes. It
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constitutes the main tool in our algorithm, allowing us to compare
differences between shapes. This operator stores information about
how a function on one of the shapes should be modified, such that
the inner product of any two functions defined on the first surface
equals to the inner product of the mapped functions on the other
surface. In that way, it captures information about how and where
one shape differs from the other. In addition, by modifying the in-
ner product, we can quantify different types of differences, or dis-
tortions, between the shapes.

Given two shapes M and N, and a functional map F : L2(M)→
L2(N), let hM : L2(M)×L2(M)→R and hN : L2(N)×L2(N)→R
be inner products defined on M and N respectively, acting on
two functions on the shape. Then there exists [ROA∗13, Thm
2] a unique linear operator DhM ,hN : L2(M) → L2(M), denoted
as the shape difference operator, satisfying hM( f ,DhM ,hN (g)) =
hN(F( f ),F(g)) for any two functions f ,g : M→ R. Note that this
operator depends only on the chosen inner products on M and N and
the functional map F . Moreover, it is a linear self-map on the space
of functions over M. Thus, the operators DhM ,hN1

,DhM ,hN2
have the

same domain and range L2(M), allowing us to compare the oper-
ators even if N1 6= N2. Two inner products that are of interest, are
the area-based inner product ha( f ,g) =

∫
M f (x)g(x)dµ(x) and the

conformal inner product hc( f ,g) =
∫

M〈∇ f (x),∇g(x)〉xdµ(x). In-
tuitively, the first encodes variations in area due to the map, and the
second encodes variations in angles.

Given a choice of reduced basis ΨM ,ΨN , the shape difference
operators are represented as matrices of dimensions kM × kM . Of-
ten, the eigenvectors of the Laplace-Beltrami operator correspond-
ing to the lowest eigenvalues are chosen for the basis Ψ, as this
choice leads to a multi-scale basis, which can represent well smooth
functions using only a small number of basis functions. In this
case, the explicit expressions for the shape difference operators
are [ROA∗13, Eq. (4)]:

VM,N , Dha
M ,ha

N
= FT F (1)

RM,N , Dhc
M ,hc

N
= (DM)−1FT DNF, (2)

where F is the functional map represented in the bases ΨM ,ΨN ,
and DM is a diagonal matrix of the lowest non-zero kM eigenvalues
of the Laplace-Beltrami operator of shape M.

3. Algorithm

3.1. Shape Space Embedding

Given two shape collectionsA= {Mi}nA
1 , B= {Ni}nB

1 , we assume
that each collection includes shapes sampled from a single shape
space. We further assume, that the samplings are “compatible” in
the sense that they include similar shape variations. Then, given a
choice of two base shapes, one in each collection, MBS∈A,NBS∈
B, we compute for each collection separately the shape difference
operators with respect to the base shapes. These operators encode
information about the variability of the collection, and the distances
between them encode the structure of the shape space.

We first select a random shape in each collection as the base
shape for the following part. Later we show that the base shape can
indeed be chosen randomly without affecting the performance of
the algorithm.

Base Shape

Figure 3: A collection of facial expressions (top) with its shape dif-
ferences’ principal components and their explained variance (bot-
tom). The sign is arbitrary, thus both dark blue and dark orange
indicate high variation, mainly around the mouth and eyes area.

3.1.1. Shape difference operators computation

Once we have chosen a random base shape for each collection, we
compute the shape difference operators for all the shapes in the
collection with respect to this base shape. As shown in the pre-
vious section, shape difference operators can be computed using
either the area-based inner product (Eq. (1)) or the conformal inner
product (Eq. (2)). We later show how the choice of inner product
depends on the nature of the collection. However, for typical data-
sets, we choose the conformal inner product since the variations
within the collection are mostly non-conformal.

Given the intra-map between shapes within the collection, we
compute the functional map between the base shape and any other
shape in the set using k1 eigenvectors of the Laplace-Beltrami op-
erator of the base shape, and k2 eigenvectors for the other shape. A
collection of n shapes yields a set of n shape difference matrices of
size k1×k1. Each of them represents the modification that needs to
be done on functions on the base shape such that inner products on
the base shape equal to inner products on the other shape.

Figure 3 shows the principal components of the shape difference
operators for a given collection using the area-based inner product.
The principal components are visualized by testing how they act on
a constant function, thus visualizing the main variations between
the shapes and their location. The percentage of the total variance
explained by each principal component is shown as well, demon-
strating the significance of each component in the collection.

Now that we have the set of shape difference operators, our goal
is to embed them in a low dimensional space such that the informa-
tion of the distances between the operators is best preserved.

3.1.2. Distance matrix construction

To construct a distance matrix for a given collection, we treat sepa-
rately the area-based and conformal shape differences, as they have
a different structure as operators.

Area based. The area-based shape difference operator, given by
Eq. (1), is a symmetric positive-definite (SPD) matrix, as long as
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the functional map F is an invertible matrix. We therefore use the
manifold of SPD matrices to compute the geodesic distances be-
tween the shape difference operators. The manifold of SPD matri-
ces has a unique shortest geodesic curve between any two points,
and its length has a closed form expression. Specifically, given two
SPD matrices, V1,V2, their geodesic distance on the SPD manifold
is [Bha09, Eq. (6.14)]:

d2
SPD(V1,V2) =

n

∑
i=1

log2
(

λi(V1V−1
2 )

)
, (3)

where λi(V ) is the ith eigenvalue of the matrix V .

Conformal. The conformal shape difference matrices, given by
Eq. (2), are not SPD, and we therefore use the Euclidean distances
between the vectorized matrices.

Figure 4 shows the distance matrices obtained for the Sumner
data-set (Figure 1), where the shapes are ordered correspondingly
for better visualization. The distance matrix for the set of cats (col-
lection A) has a similar structure to the distance matrix computed
for the set of lions (collection B). In both sets we use the shape dif-
ferences operators derived for the conformal inner product, since
the variations within each collection are mainly non-conformal.
Hence, in this case, the conformal shape differences capture more
reliably the information about the variations compared to the area-
based shape differences.

3.1.3. Dimensionality reduction

To solve the matching problem, we first apply multidimensional
scaling (MDS) [Mea92] on the distance matrix obtained in order
to embed the operators in a d-dimensional space, the shape space
embedding. The dimension d is determined such that the energy
accumulated in this d-dimensional space is at least β of the total
energy, for both shape collections. The energy of each dimension
is defined as the variance explained by this dimension using PCA.
For instance, choosing β = 0.95 means that we use at least 95% of
the total energy for both collections. In this case, we lose only up
to 5% of the information regarding the variations, but store it in a
space of dimension in the range of 3-8 for typical data-sets.
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Figure 4: Distance matrices of the collections from Figure 1, for
the conformal shape differences (both collections are ordered corre-
spondingly fo better visualization). Note that the cats (collectionA)
and the lions (collection B) have similar distance matrices, which
we use for matching the collections.

3.2. Shape Space Alignment

After constructing the shape space embedding of each collection,
our goal is to align them such that we can match shapes from the
two collections. We treat the two shape space embeddings as two
point clouds, and assume that the distance matrices of the two col-
lections are similar, so that we can use rigid alignment. In this set-
ting, the alignment problem is known as the Procrustes matching
problem, formulated as follows.

We are given two point clouds P and Q of dimension d and n1,n2
points respectively, P∈Rd×n1 ,Q∈Rd×n2 , where we assume, with-
out loss of generality, that n1 ≤ n2. Our goal is to find a linear isom-
etry (an orthogonal transformation) R ∈ O(d) and a permutation
X ∈Πn2×n1 , minimizing the distance between the point clouds:

d(P,Q) = min
X ,R
||RP−QX ||2F

s.t.

X ∈Πn2×n1 , R ∈ O(d).

(4)

Since n1 ≤ n2, this formulation matches every point in P to exactly
one point in Q, where some points in Q can remain unmatched.

This is in general a difficult, non-convex problem, however, re-
cently, a very effective convex relaxation to the problem has been
proposed [MDK∗16], which we leverage to find the alignment.

Let X∗,R∗ be the optimal solutions of the optimization prob-
lem (4), then the alignment error d(P∗,Q∗) provides a quantitative
measure of the success of the alignment process. We define the nor-
malized alignment error:

ê =
||R∗P−QX∗||F
||P||F + ||Q||F

, (5)

which is invariant to the dimensions of the point clouds. We will
later use this error to evaluate the matching accuracy of our results.

Optimal Base Shape Selection. The point clouds P̃ = R∗P ∈
Rd×n1 and Q̃ = QX∗ ∈ Rd×n1 include only pairs of matching
shapes after the alignment. The closest pair of points in P̃, Q̃ are
the two shapes which are most likely to have been matched cor-
rectly. Therefore, we select these as the new base shapes MBS,NBS,
and the shape difference operators are recomputed with respect to
them, yielding a better input for the next part of the algorithm.

3.3. Functional Inter-Map Computation

The next goal of the algorithm is to compute the functional map
between the newly chosen base shapes of the two collections, thus
retrieving the inter-map correspondence.

Shape analogies. We use the shape analogies constraint pre-
sented in [SBC14], taking advantage of the similarity between the
shape difference matrices of matching pairs. More precisely, let
{(Mi,Ni) |Mi ∈A,Ni ∈B , i = 1, . . . ,n}, be the n = min{nA,nB}
matched pairs extracted by the shape space alignment. Recall that
(MBS,NBS) are the pair of base shapes of the two collections, de-
fined as the closest matching pair. Our goal is to find a matrix C,
the functional map between the base shapes.

Our main assumption is that the shape difference operators of
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matching shapes in both collections, i.e., VMBS,Mi and VNBS,Ni act
similarly on functions. Hence, first applying a map between the
collections, and then applying the shape difference operator, should
yield a similar function to first applying the shape difference and
then mapping the function to the other collection.

Regularization. Differently from [SBC14], we observe that with-
out a regularization term the optimization results are unstable, lead-
ing to poor functional maps. This is especially evident for areas on
the shapes with none or few variations, where the shape differences
do not hold any information. To handle this problem, we adopt the
regularization term that forces the functional map to commute with
the Laplace-Beltrami operator [OBCS∗12].

Optimization problem. Our optimization problem is therefore:

min
C∈RkB×kA

n

∑
i=1

(
‖CVABS,i−VBBS,iC‖2

F +‖CRABS,i−RBBS,iC‖2
F

)
+α‖C∆

A
BS−∆

B
BSC‖2

F ,

(6)

where kA = kB = k1, n is the number of matching pairs, VABS,i is
the area based shape difference from the base shape in A to Mi∈
A, ∆

A
M is a diagonal matrix with the eigenvalues of the Laplace-

Beltrami operator of shape M∈A, and α is a parameter controlling
the regularizer.

To solve this optimization problem we observe that the objective
is linear in the elements of C, resulting in a homogeneous linear
system that is solved using SVD.

As proposed in [OBCS∗12, SBC14], we apply iterative refine-
ment as post-processing to the minimizer of Eq. (6) in order to re-
fine the solution so that it better represents a point-to-point map.
The refinement process is effectively ICP in eigenspace, where the
solution of the optimization problem is used as initialization.

Finally, we compute the functional map, FN j ,Mi between any two
shapes in the two collections, Mi∈A and N j∈B using the following
composition:

FN j ,Mi = FBj,BSCNBS,MBS FABS,i, (7)

where the functional map CNBS,MBS : L2(MBS) → L2(NBS) is the
computed inter-map, i.e. the minimizer of Eq. (6), and the func-
tional maps FABS,i : L2(Mi) → L2(MBS) and FBj,BS : L2(NBS) →
L2(N j) are the input intra-maps within the collections.

In Figure 5 we visualize the computed functional map and
demonstrate it with a function transferred from the apple (center) to
the orange (right) for a data-set of rigged shapes (top and bottom).
Note that a high quality map can be derived for the areas where the
shape differences hold the information about the shapes, i.e. areas
with more variations such as the "face" of the apple and the or-
ange. However, the map might be distorted in areas where there is
no information in the shape differences, such as the side of the ap-
ple and orange, since there are no variations within the set in these
regions. Our last step is to recover the point-to-point map, which
additionally alleviates theses issues (Fig. 15).

��� ���

Figure 5: The computed functional map is of high quality in areas
with informative shape differences (the "face"), and distorted where
there is less variation (the sides). When recovering the point-to-
point map these distortions are fixed (Fig. 15).

3.4. Recovering a Point-to-Point Inter-Map

The final step of our algorithm is to produce a point-to-point map
using the functional map we computed. As we aim for a high qual-
ity map that can be used to transport textures, we use a recent map
reconstruction approach [EBC17] to obtain a vertex-to-point map.

Some data-sets require post-processing of the point-to-point map
using Reversible Harmonic Maps (RHM) [ESBC19]. This post-
processing scheme is especially effective in areas on the shape
where there are few or no variations within the collection, such
that the shape difference operators contain no information for these
areas. As a result, in these regions, the shape analogy constraints
are not effective, resulting, locally, in a poor map. Post-processing
using a map smoothing algorithm allows us to smoothly interpolate
the map in such regions. To make a fair comparison, we also apply
post-processing using RHM to all the methods that we compare to.
Both [EBC17] and [ESBC19] are publicly available.

4. Analysis

In this section we evaluate our design choices, and investigate the
properties of our approach. We show that the initial choice of base
shapes can indeed be random, without affecting the algorithm’s per-
formance; discuss the considerations for choosing different shape
difference operators; and show our algorithm’s ability to handle
collections of different size.

4.1. Resilience to Base Shape Choice

We show that our method is resilient to the choice of base shape,
thus we can select it randomly, without requiring additional input.

In [SBC14] the result strongly depended on the choice of base
shape in each collection, i.e. a bad base shape choice led to poor
matching and poor functional maps. Our algorithm, on the other
hand, is able to match corresponding pairs successfully, even when
the choice of base shape is random. With a random choice of base
shape in each collection, the chosen shapes (in most cases) do not
represent a matching pair. Yet, the first part of our algorithm, aim-
ing to match pairs of the two collections, is barely affected. The
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Table 1: Resilience to Base Shape Choice, for corresponding and non-corresponding base shape pairs.

corresponding base shape pair non-corresponding base shape pair

Result\Data-Set Blend Shapes Sumner Rigged FAUST Blend Shapes Sumner Rigged FAUST

Average matching accuracy 99.88% 100% 100% 87.9% 99.25% 100% 100% 85.5%
Average normalized alignment error 0.1542 0.1950 0.0566 0.3383 0.2012 0.3119 0.1481 0.3555
Rate of corresponding base shapes after alignment 40/40 10/10 10/10 86/100 39/40 10/10 10/10 85/100

second part of the algorithm, producing the functional map, is af-
fected by the choice of base shape, however it benefits from the
result of the first part by using the computed matched pairs.

Shape space alignment. To demonstrate the invariance of our ap-
proach to the choice of base shape, we test all possible base shape
choices on a few datasets, and compare with the ground truth. We
test both the case that the base shapes correspond, i.e., represent the
same pose (Table 1, middle), and the case where the base shapes do
not correspond (Table 1, right). For each possible choice of base
shapes, we run the algorithm and measure a few performance in-
dicators. Matching accuracy represents the percent of shapes that
were matched correctly to the corresponding shape in the second
collection, and it is averaged over all choices of base shape pair. The
normalized alignment error, defined in Eq. (5), indicates how well
the two point clouds are aligned after applying the rigid transforma-
tion. It is also averaged over all experiments. Finally, as discussed
previously, after alignment we choose the pair with the smallest dis-
tance as the new base shape pair. The rate of corresponding base
shapes after alignment indicates in how many cases the chosen base
shape pair after alignment indeed represents a corresponding pair.
For the FAUST data set we averaged the result over 10 subset pairs,
each subset containing 10 shapes referring to the same person.

Corresponding base shapes (1)

Non-corresponding base shapes (2)

Corresponding base shapes map (1) Non-corresponding base shapes map (2)

Optimized Optimized Ground TruthGround Truth

Figure 6: Functional maps and their visualization for corresponding
and non-corresponding base shapes. Corresponding base shapes
lead to a higher quality functional map (e.g. arms area).

Note that for tested data-sets, the choice of base shapes, and
whether or not the base shapes correspond, does not significantly
affect the average matching accuracy nor the rate of corresponding
base shapes chosen after alignment. The reason is that the princi-
pal components derived from PCA do not significantly depend on
the base shape choice, causing only small variations in the shape
space, that our alignment procedure can handle. Although the av-
erage normalized alignment error is larger for non-corresponding
base shapes, the matching accuracy is hardly affected, meaning that
we can still align successfully the two point clouds. These results
also demonstrate that in most cases the new chosen base shape pair
is a corresponding pair.

Inter-map computation. In the second part of the algorithm, it is
more important to have corresponding base shapes. Figure 6 shows
that the functional map computation has preferable results for cor-
responding base shapes, resulting in a less noisy functional map
matrix, which is more similar to the ground truth. This motivates
our choice to leverage the alignment results from the first part of
the algorithm, and choose a new pair of base shapes which are more
likely to match for computation of the functional inter-map.

4.2. Area-based vs. Conformal Shape Differences

The choice of using area-based or conformal shape difference op-
erators depends on the nature of the data-set. For collections in
which the variations between the shapes are area preserving but
not conformal (e.g. the same person in different poses, Figure 7),
it is beneficial to use the conformal shape difference operator, as
it better captures the variations in such a collection. Similarly, for
collections with conformal variations but not area preserving (e.g.
different people in the same pose, Figure 8) we would rather use
the area-based shape differences.

Figure 9 demonstrates how the choice of shape difference type
affects the performance of the algorithm, in the case of data-sets in
which each collection has non-conformal variations and in the case
of non-area-preserving variations. We show the matching accuracy
(top) and the normalized alignment error (bottom left), defined in
Eq. (5), as a function of the dimension of the shape space. Note
that for non-conformal variations, using the conformal shape dif-
ference operators yields better results, using a lower shape space
dimension, and vice versa for the non-area-preserving case.

Figure 9 (bottom, right) shows the cumulative energy, defined as
the sum of variances explained up to a certain dimension by using
PCA. We demonstrate that for a collection with mostly area varia-
tions (same pose), the area based shape difference explains the data
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using less principal components than the conformal shape differ-
ence. For the data-set with the non-conformal variations, the num-
ber of principal components required to explain the data is similar
for conformal and area-based shape differences.

Note that even if the distances between the shape differences are
similar in both collections, the low-dimensional embedding can be
unstable, as the principal components are only defined up to sign.
Furthermore, even for identical shape differences, the order of prin-
cipal components that have a similar explained variance is arbitrary.
However, as we seek a rigid transformation that matches the two
sets, our method is robust to these instabilities. If, however, we take
a considerably smaller number of dimensions, some principal com-
ponents might appear in one collection and not the other, leading to
the non-monotonic performance graphs in Figure 9.

4.3. Collections of different size

For collections of different size, some shapes in the bigger collec-
tion do not have a match in the smaller collection. Our algorithm
naturally handles this case, since we find a permutation matrix that
selects points from the larger collection’s point cloud such that they
align better with the rotated smaller point cloud (see Eq. (4)). We
analyze how the excess shapes in the bigger collection affect our
results. We split the answer into two cases.

4.3.1. Small collections

For small collections, e.g. containing five shapes, adding an excess
shape can significantly affect the shape space of the resulting ex-
tended collection. This happens since the variations of the added
shape are not always explained by a linear combination of the
existing principal components. Hence, the newly computed prin-
cipal components are significantly different, leading to very dif-
ferent shape space embeddings for the two collections, yielding
poorer matching accuracy after aligning the two point clouds. Fig-
ure 10 (left) shows the matching accuracy for various small data-
sets. Starting from collections of five shapes each, we added one

Base Shape

Figure 7: A collection with non-conformal variations (top) and their
first 3 conformal shape differences’ principal components (bottom)
with their explained variance. Variations are located at joints, where
motion occurs, mainly in the shoulders (first and second principal
components) and the right knee (third principal component).

Base Shape

Figure 8: A collection with non-area-preserving variations (top)
and their first 3 area based shape differences’ principal components
(bottom) with their explained variance. Variations occur at areas
where people differ, mostly hips, torso and abdominal area. E.g.,
the second principal component corresponds to greater abdominal
area at the expense of thicker arms (or vice versa).

shape at a time to one of the collections and tested the matching ac-
curacy averaged over all possible choices of base shapes for the two
collections. Finally, the bigger collection had twice as many shapes
as the original. It can indeed be seen that the matching accuracy
is significantly affected and decreases quickly. The notation A,B
and C for the Blend Shapes data-set refers to three different subsets
from this data-set. Note that each collection in the FAUST data-set
contains up to ten shapes, thus it is treated as a small collection.

4.3.2. Large collections

In the case of large collections, containing twenty shapes for in-
stance, it is likely that the variations of the added shapes can be
described using a linear combination of the existing principal com-
ponents. In this case, since we use linear dimensionality reduction,
the shape space is not significantly affected, and adding shapes is
equivalent to adding points to the point cloud without moving the
original points. Figure 10 (right) demonstrates this, as the match-
ing accuracy is less affected in this case. Here we start with origi-
nal collections of size twenty and add up to twenty more shapes to
one of the collections resulting in a collection which has twice as
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Figure 9: Comparison of our results for two collection types, with
two shape difference operators. Note that for a collection with
same-person-different-poses (Figure 7), the conformal shape dif-
ferences show better performance. On the other hand, for a col-
lection with same-pose-different-people (Figure 8) the area-based
shape differences are better. See the text for details.
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Figure 10: Matching accuracy for collections of different size. Note
the considerable effect on the matching accuracy for small collec-
tions (left) in contrast to large collections (right).

many shapes. Despite this, the matching accuracy decreases only
to 65− 85%, depending on the data-set. Also note that due to the
linear dimensionality reduction, we do not have a strict limit on the
largest collection size. However, the point cloud alignment timing
will be the performance bottle neck for very large data-sets.

5. Experimental Results

In this section we show some results of our algorithm, compare to
the previous shape collection matching method, and to other au-
tomatic correspondence methods. We show that our method auto-
matically computes high-quality maps, which compare favorably
to existing automatic methods, given even two small collections or
short animations, and even for less-than-perfect matching results.

5.1. Implementation details

Parameters. Our algorithm does not require data-dependent pa-
rameter tuning and we fixed the parameters to k1 = 50 eigenfunc-
tions on the base shape and k2 = 3k1 = 150 eigenfunctions on the
other shape when computing the shape difference operators result-
ing in 50×50 matrices. The matching part has been done with con-
formal shape differences, unless stated otherwise. We set β = 0.95
to determine the shape space dimension and α = 0.1 for the Lapla-
cian commutativity in the energy we minimize (after normalizing
both terms to have the same Frobenius norm). We run the ICP
refinement of the functional map until the biggest change in the
functional map matrix elements is smaller than 10−10. We set the
number of iterations in the RHM post-processing to 200, as recom-
mended by the authors.

Timing. Our timings are comparable to other automatic methods
for computing correspondences. Implemented with MATLAB, on a
desktop machine with an Intel Core i7 @3.4GHz processor, the first
part of the algorithm matches the pairs of the two collections of 10
shapes each, with shapes of 5K− 8K vertices in 45 seconds. The
second part of the algorithm extracts the point-to-point inter-map
in 130 seconds. The RHM post-processing takes 220 seconds on
our machine. For most data-sets, it is possible to use smaller func-
tional map matrices, e.g. k1 = 30 and k2 = 3k1 = 90 without sig-
nificantly decreasing the performance and obtaining both matches
and an inter-map in approximately 75 seconds.

Limitations. We assume that the collections will lead to a similar
point cloud structure of the shape space embedding, i.e., the varia-

tions within each collection should be similar. We also require non-
symmetric shape space embeddings to allow unambiguous rigid
alignment. For a very high dimensional shape space embedding (12
and greater) alignment using PM-SDP [MDK∗16] can be slow.

5.2. Comparison: Matching Corresponding Shapes

In the previous Section, Table 1 showed our algorithm’s matching
accuracy on four different data-sets, regardless of the base shape
choice and demonstrated the robustness of our algorithm on several
data-sets. For the FAUST data-set, it was enough to mistake only
two pairs to decrease the matching accuracy to 80%, since every
collection contains ten shapes.

Now we compare our algorithm to the only method known to
us having the same goal of matching corresponding pairs from two
collections. We test our algorithm and the method in [SBC14] on
the Blend Shapes data-set with varying collection size. The results
appear in Table 2 and show that in contrast to [SBC14], our method
does not require large data-sets for successful matching and we get
perfect matching for any collection size. Our results were averaged
over 100 random initial base shapes choices since our algorithm
selects a base shape randomly.

Table 2: Blend Shapes data-set: Matching accuracy vs [SBC14]

Method \ Collection Size 20 25 35 40

SBC14 35% 36% 63% 90%
Ours 99.47% 99.78% 99.54% 99.41%

Figure 11 shows the quality of our functional map compared to
that of [SBC14], for the case of 40 shapes. Note that our map is
better, even though the matching accuracy of [SBC14] is 90%. It
is clear that using the regularization term of the Laplacian commu-
tativity in Eq. (6) significantly improves the results, allowing us to
obtain a functional map very similar to the ground truth.

5.3. Comparison: Point-to-Point Inter-Map Computation

Now we evaluate the computation of the point-to-point inter-map
between the two base shapes, one from each collection. For the
qualitative comparison, we show the texture on the target mesh
and the ground truth, if it exists, of the source mesh. We com-
pare our method to other automatic methods: BIM [KLF11] and
BCICP [RPWO18]. For all methods, we show the results with and
without post-processing using RHM for map refinement. For the
quantitative evaluation we measure the map smoothness through
its conformal and area distortions, and its semantic accuracy, using
the distance to the ground truth correspondence, when given.

5.3.1. Quality Metrics

Conformal distortion. We use the definition given in [HG00, Eq.
(3)] for the conformal distortion of a single triangle fMBS ∈FMBS :
κ( f ) =

σMBS
σNBS

+
σNBS
σMBS

where σMBS ≥σNBS are the singular values of
the linear transformation which maps fMBS from MBS to NBS. We
subtract 2 such that the minimal conformal distortion is zero and
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Figure 11: Comparing the functional maps obtained using our algo-
rithm and [SBC14] using function transport (top), and comparison
to the ground truth matrix (bottom). Our algorithm obtains a high-
quality functional map, very similar to the ground truth.

visualize the result as a cumulative graph showing the percentage
of triangles with less than a certain distortion value.

Area distortion. We measure the distortion in the area of each tri-
angle caused by the map from MBS to NBS. For each triangle we

compute
∣∣∣log

(
A(PNBS ,MBS fMBS )

A( fNBS )

)∣∣∣ where A( fNBS) denotes the area of

a triangle fNBS ∈FNBS and A(PNBS,MBS fMBS) the area of that triangle
mapped by PNBS,MBS , the extracted point-to-point inter-map. We vi-
sualize the result as a cumulative graph showing the percentage of
triangles with less than a certain area distortion value.

Distance from ground truth. When a ground truth map is given,
we measure the distance from the ground truth using the protocol
suggested by [KLF11, Section 8.2]. For every mapped vertex, we
measure its geodesic distance from the ground truth location, rel-
ative to the square root of the total area of NBS, and visualize the
percent of vertices whose distortion is less than a given value.

5.3.2. Setup

Choice of pairs. We always compute the map between the auto-
matically computed base shapes after alignment. Since the initial
choice of base shapes is random, the pair with the smallest distance
after alignment may vary, resulting in a different pair of shapes (one
from each collection) that we map between. Therefore, We aver-
age the results obtained by running the algorithm n times, where n
equals the (smaller) collection size. For n experiments, we compute
the correspondence for the computed base shape pair, where each
base shape pair can be considered at most once. This procedure
gives a set of m≤ n pairs, on which we run the other methods and
average the results. As shown in Table 1, in most cases we indeed
get a corresponding base shape pair.

Parameters for comparison methods. For BIM, we use the de-
fault parameters (no need to set them maually). When apply-
ing BCICP we use the parameters recommended by the authors

[RPWO18]: k1 = k2 = 50 (the number of eigenfunctions used for
each shape), the weight for the orientation-preserving term was set
to 0.1 and we used 10 iterations for the BCICP refinement step. For
the FAUST data-set we set the time-scale parameter for comput-
ing the WKS descriptors to 100 and the skip size for the computed
descriptors to 10. For all the other data-sets, we use the parameters
suggested for the non-isometric TOSCA data-set, i.e. the time-scale
parameter for the WKS descriptors was set to 50.

Mesh normalization. While our method does not require all the
meshes to have the same surface area, other methods do, hence we
normalized all the meshes to the same area.

5.3.3. Blend Shapes data-set

We use our method to compute the correspondences for the Blend
Shapes data-set (using 10 shapes) (Figure 12). For this data-set, our
algorithm did not benefit from RHM refinement while the other
methods did. It is seen both qualitatively and quantitatively that our
method achieves the best performance while the others fail to com-
pute a high-quality map or resolve symmetry ambiguities (BCICP
flips the upper part of the head while maintaining the correct orien-
tation of the bottom part).

5.3.4. FAUST data-set

For the FAUST data-set, we use the ten subsets that represent ten
different people as collections and use all the subset pairs to eval-
uate our algorithm (45 combinations in total). For the chosen base
shapes in each subset pair we compute the resulting map using the
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Figure 12: Blend Shapes, qualitative (top) and quantitative (bot-
tom) comparison to other automatic methods BIM [KLF11] and
BCICP [RPWO18], with and without final refinement using RHM.
Our method yields high-quality maps, while others suffer from dis-
tortions or do not resolve symmetry ambiguities.
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(a) Our algorithm refined with RHM obtains the highest quality map: Note that
the feet and hands areas are closer to the ground truth than BIM. BCICP cannot
completely resolve symmetry ambiguity, flipping the hands.
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(b) Despite imperfections of our results on the hands and feet, our map refined
with RHM leads to a smaller geodesic error.
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(c) Quantitative results.

Figure 13: FAUST - qualitative and quantitative comparison: Our
method and other automatic methods - BIM and BCICP, with and
without final refinement using RHM.

comparison methods. When RHM is not used, BIM obtains prefer-
able results. However, after the refinement our method achieves
similar conformal and area distortion, yet the smallest distance
from the ground truth (Figure 13 (c)). Note, that BIM is only ap-
plicable to genus zero shapes, whereas our method (including the
RHM post-processing) is applicable to any mesh topology.

Qualitatively, Figure 13 (a) shows that our algorithm refined with
RHM obtains the highest quality map. Note that the feet and hands
areas are closer to the ground truth than BIM. On the other hand,
BCICP cannot completely resolve the symmetry ambiguity, flip-
ping the right arm with the left one, while maintaining the cor-
rect orientation for the other parts. In Figure 13 (b), despite im-
perfections of our method on the hands and feet, our map refined
with RHM still obtains the smallest geodesic error. We conjecture
that BCICP has difficulties resolving symmetry ambiguities. In our
case, the base shape pairs computed by our algorithm are, in most
cases, corresponding pairs, yielding more symmetric shapes for
both the source and the target than in averaging over all random
pairs in this data-set (most of the shapes in this data-set are extrin-
sically symmetric). Moreover, BCICP appears to be very sensitive
to the parameters of the WKS descriptors, which need to be tuned
for each data-set separately.

5.3.5. Sumner data-set

The Sumner data-set does not have ground truth correspondences,
hence we show only conformal and area distortion as well as a qual-
itative visualization. For this data-set, after RHM refinement we get
conformal distortion similar to that of BIM and a smaller area dis-
tortion. The qualitative results in Figure 14 show that we indeed
get high-quality maps. Since every time we run the algorithm we
might get two different shapes that we put in correspondence, we
get a different choice of base shape pair than in Figure 1, demon-
strating the results on another pair.

5.3.6. Rigged fruit data-set

We acquired this dataset on TurboSquid, and the ground truth map
is not available. In this data-set all the shapes are symmetric, hence,
the maps obtained cannot distinguish between left and right. How-
ever, note that BIM also flips the map upside-down, which is fixed
using RHM refinement. In this data-set, when no RHM refinement
is applied, our method yields the best map since it is not as noisy
as BCICP and does not flip up and down as BIM. After RHM re-
finement good results are obtained for all methods (see figure 15).

5.4. Inter-Map Computation using Composition of Maps

We now demonstrate that it is possible to obtain the inter-map from
any shape in collection A to any shape in collection B using the
map composition in Eq. 7, exploiting the inter-map for the corre-
sponding base shapes and the given intra-maps. Figure 16 shows
the case of an inter-map for non-corresponding shapes. First, we
show the case of an inter-map computed directly for the two shapes
(as if they were chosen as base shapes). As explained in section 4.1,
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Figure 14: Sumner, qualitative and quantitative comparison with
automatic methods BIM and BCICP, with and without RHM refine-
ment. Note that we achieve conformal distortion similar to BIM, yet
a better area distortion.

this case of non-corresponding base shapes yields poorer maps as
indeed can be seen. Second, we visualize the map obtained using
Eq. 7 where the base shapes are corresponding (as in Figure 13). In
this case, the computed maps are of high-quality. We also compare
to the results obtained using BIM and BCICP. In all cases maps are
visualized after RHM post-processing.

5.5. Inter-Map Computation with Low Matching Accuracy

After we showed that the cross collection map computation using
our method leads to good results both qualitatively and quantita-
tively, we test the resilience of this part of the algorithm when the
matching accuracy, determined in the first part of the algorithm, is
low. Using the ground truth of the matches, we set them manually
to obtain the desired accuracy and test the results of the map com-
putation. The matching accuracy affects the analogies constraints
(Eq. (6)), since we use also wrong matches as constraints. We show
that our approach can handle wrong matching in the first phase of
the algorithm and still retrieve high-quality maps.

In Figure 17 we demonstrate the experiment for FAUST data-
set, all the results and visualizations include RHM refinement. Note
that starting from 80% accuracy it is possible to obtain high-quality
maps. In other words, the algorithm can tolerate the wrong match-
ing of two pairs, when we use collections with ten shapes.

Figure 18 shows the same experiment for the Blend Shapes data-
set (using 40 shapes). Here we visualize the maps after RHM refine-
ment, all achieving similar conformal and area distortion and high-
quality maps, Figure 18 (top). We conclude that in spite of the low
matching accuracy, RHM refinement is able to recover a map very
similar to the ground truth. Hence, to show the differences between
different matching accuracies, we plotted the conformal and area
distortion for the results without RHM refinement, Figure 18 (bot-
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Figure 15: Rigged fruit, qualitative and quantitative comparison
with BIM and BCICP, with and without RHM refinement.

tom). For this data-set high-quality maps are obtained even when
the matching accuracy is as low as 40%. Since this data-set has
more shapes than FAUST (40 vs 10), we have more terms in the

Target Ground Truth Direct Map Ours BIM BCICP

Figure 16: Map composition leads to a higher quality inter-map
for non-corresponding shapes compared with computing the map
directly. All maps include RHM refinement.
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Figure 17: FAUST, qualitative (top) and quantitative (bottom)
comparison for varying matching accuracy. We manually set the
matches to allow varying accuracy and evaluate the computed map.
Note that starting from 80% we get high-quality maps. All results
include RHM as post-processing.

energy function (Eq. (6)) and since the variations within the shapes
are localized to the face region, we recover the functional map even
with a lower matching accuracy.

5.6. Inter-Map Computation for Varying Collection Size

We evaluate the computed map depending on the collection size,
especially for small collections, i.e. with collection size as low as
2 or 3. We demonstrate that computing correspondences using our
method is possible for such small collections, allowing us to re-
trieve high-quality maps even when only few shapes are given. In
Figure 19 (left) we see that for the Blend Shapes data-set it is possi-
ble to get a high-quality map using any collection size varying from
2 to 40. For the case with 2 shapes, we set the matches manually
since aligning point clouds with two points each has 50% success
rate as they are necessarily symmetric. Results are shown without
RHM refinement. This result means that we can get the cross col-
lection map when we have only three shapes in each collection, or
two with manual matching, and still get higher-quality map than
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Figure 18: Blend shapes, qualitative (with RHM, top) and quan-
titative (without RHM, bottom) comparison for varying matching
accuracy. We manually set the matches to allow varying accuracy
and evaluate the computed map. We obtain a high-quality refined
map with matching accuracy as low as 40%.
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Figure 19: Varying collection size, Blend Shapes (left, without
RHM) and Sumner (center and right, with RHM) datasets. We ob-
tain a high-quality map even for collections with only 2 shapes.

other methods, with very low timing, since for smaller collection
size the time needed for our algorithm notably decreases. It is im-
portant to mention that matching accuracy remained as high as
100% in all cases of collection sizes, even for 3 shapes only (except
the manual matching for the case with 2 shapes). Figure 19 (cen-
ter, right) shows the same experiment for Sumner data-set. Note
that the conformal and area distortion of the map are not affected
when we decrease the number of shapes, neither is the matching ac-
curacy. Our results include post-processing using RHM. As in the
demonstration for the Blend Shapes data-set, we set the matches
manually for the case with 2 shapes in a collection, to handle the
case of symmetric shape space.

5.7. Regularization Effect

We analyze the quality of the functional map for varying α (the
weight of the regularization) and varying collection size on the
Blend Shapes data-set. We measure the error of the optimized func-
tional map CNBS,MBS (after ICP refinement), and plot the error as
a function of α (Figure 20). The error is the distance from the
ground truth map CGT , namely ‖CNBS,MBS −CGT ‖F . Analysing the
results, we see that without regularization (α = 0), the error is neg-
atively correlated with the collection size: more analogies yield
better maps. If, however, the amount of data is limited to a small
number of analogies, there exists a range of α (0.1 ≤ α ≤ 0.15),
for which we get the same best-optimized functional map with the
same error for any collection size. Hence, a good regularization
decreases the dependency on the collection size. Finally, for any
collection size, as α increases the error converges to the error value
with no analogies term (the black horizontal line). Hence, at least
two analogies are required, and regularization alone (α→∞), can-
not yield a good functional map.
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Figure 20: Functional map error for varying regularizer weight and
several collection sizes. See the text for details.
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6. Conclusion

In this work, we presented a robust and simple to implement
method for matching two shape collections with high rates of accu-
racy. Unlike previous approaches, our method can perfectly handle
small and large collections alike, while for the latter we maintain
high accuracy rates even when one of the collections contains ex-
cess shapes that do not need to be matched, thus allowing to handle
various noisy sampling of the shape space.

Furthermore, a high-quality inter-map is obtained using only
the analogies as the semantic information, allowing our algorithm
to serve as a fully-automatic method for computing correspon-
dences, surpassing other state-of-the-art automatic methods for
non-isometric shape correspondence. As an additional proof of its
robustness, we showed that even if not every shape has a match or
matching was imperfect, the second step of the algorithm, comput-
ing the inter-map, is resilient to it. Finally, the variation within the
collection can be large, and both quasi-isometric or non-isometric
making our approach applicable to various data-sets.

We believe that our approach can serve as an important new tool
in the shape analysis and correspondence toolbox. Future work and
generalizations include using other inner product metrics to tailor
the shape differences for specific applications [CO19], and using
better regularization constraints [RPWO19]. Moreover, it might be
beneficial to use multiple base shapes, and to learn the shape dif-
ferences operators from data. Finally, since the functional map ap-
proach is agnostic to the geometry representation, it can be interest-
ing to apply our approach to settings where the data has an intrinsic
parametric structure allowing to generate many corresponding in-
stances, e.g. parametric CAD models.
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