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Abstract 
Barycentric coordinates are heavily used in computer graphics applications to generalize a set of given data val-
ues. Traditionally, the coordinates are required to satisfy a number of key properties, the first being that they are 
real and positive. In this paper we relax this requirement, allowing the barycentric coordinates to be complex num-
bers. This allows us to generate new families of barycentric coordinates, which have some powerful advantages 
over traditional ones. Applying complex barycentric coordinates to data which is itself complex-valued allows to 
manipulate functions from the complex plane to itself, which may be interpreted as planar mappings. These map-
pings are useful in shape and image deformation applications. We use Cauchy’s theorem from complex analysis to 
construct complex barycentric coordinates on (not necessarily convex) polygons, which are shown to be equivalent 
to planar Green coordinates. These generate conformal mappings from a given source region to a given target re-
gion, such that the image of the source region is close to the target region. We then show how to improve the Green 
coordinates in two ways. The first provides a much better fit to the polygonal target region, and the second allows 
to generate deformations based on positional constraints, which provide a more intuitive user interface than the 
conventional cage-based approach. These define two new types of complex barycentric coordinates, which are 
shown to be very effective in interactive deformation and animation scenarios. 
 

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry 
and Object Modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism 

 

 

 
1.   Introduction 
Barycentric coordinates are a very useful mathematical tool 
for computer graphics applications. Since they allow to 
infer continuous data over a domain from discrete or con-
tinuous values on the boundary of the domain, barycentric 
coordinates are used in a wide range of applications - from 
shading, interpolation [JSW05], and parameterization 
[DMA02, SAPH04] to, more recently, space deformations 
[JMD*07, LKCOL07, LLCO08].  

Traditionally, barycentric coordinates in Rn are defined 
as the real coefficients of an affine combination of vectors 

in Rn. As such, they operate identically on each coordinate. 
When working in the plane, barycentric coordinates in R2 
can also be considered as an affine combination of complex 
numbers with real coefficients, thus we propose to consider 
also the case where the coefficients are themselves allowed 
to be complex. This new point of view has a few advan-
tages: First, it allows the definition of complex barycentric 
coordinates, permitting a different linear operation for each 
of the two coordinates, through which new effects can be 
achieved. Second, it unleashes the rich theory of complex 
analysis, simplifying the underlying theory considerably. 
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Complex barycentric coordinates are especially useful 
for 2D shape and image deformation. In a typical applica-
tion scenario, the user defines a source contour, usually a 
polygon, and deforms it to a target contour by moving its 
vertices. This indicates to the application that the region 
within the source contour should be deformed in some 
natural way to the region within the target contour, such 
that the per-edge correspondence is respected. As this op-
eration is fundamental for 2D animation applications, many 
algorithms have been proposed for it, a large number of 
them based on barycentric coordinates [JMD*07, 
LKCOL07]. Using barycentric coordinates means that the 
coordinates of a point x in the source polygon are expressed 
as an affine combination of the coordinates of the source 
polygon vertices, and x is then mapped to f(x) – the same 
affine combination of the coordinates of the vertices of the 
target polygon. Recently, observing that traditional (real) 
barycentric coordinates by definition reproduce affine 
transformations, hence not ideal for shape-preserving de-
formations because they may introduce shears, Lipman et 
al. [LLC08] generalized the concept of barycentric coordi-
nates to be the standard linear combination of the coordi-
nates of the vertices of the polygon plus a linear combina-
tion of the normals to the edges of the polygon. They 
showed how to use these coordinates in order to generate a 
conformal mapping of the interior of the source polygon. 
Conformal mappings preserve infinitesimal angles, hence 
preserve details better than arbitrary mappings 

We show that Lipman's Green coordinates are a special 
case of complex barycentric coordinates, and provide a 
very simple analytic formula for them. In addition, we 
propose new complex barycentric coordinates for 2D shape 
deformation, which are shown to improve the Green coor-
dinates, as the deformation better fits the user's specifica-
tions, without losing any of the properties of the Green 
coordinates. Finally, we give simple analytic formulae for 
the derivatives of the Green coordinates. This allows us to 
define constraints on the derivative of the deformation, in 
addition to positional constraints, This allows to replace the 
source-target polygon contour (“cage”) user interface with 
a more intuitive and user-friendly point-to-point user inter-
face.   

1.1. Previous work 
The simplest real barycentric coordinates in the plane are 
defined on a basis of three points forming a triangle. These 
unique coordinates are just ratios between various areas. 
Real barycentric coordinates satisfy a number of important 
properties, such as non-negativity, constant precision, lin-
ear precision, interpolation and smoothness. The main chal-
lenge in developing new recipes for barycentric coordinates 
is to find coordinates which can be applied to a wider range 
of bases – such as convex polygons, general polygons, 
continuous contours, and complexes in higher dimensions 
– while maintaining the attractive properties of the simple 
barycentric coordinates on a triangle. Many generalizations 
have been developed in recent years, and we will mention 
only those most relevant to our work. 

One of the most commonly-used barycentric coordinates 
are the mean-value coordinates, first introduced by Floater 

[Flo03]. These coordinates have the nice property that they 
are positive on convex polygons, and can be generalized to 
R3 [JSW05, FKR05, LBS06] and to the exterior of poly-
gons [HF06]. In addition, they can also be generalized to be 
positive on non-convex polygons [LKCOL07]. Mean-value 
coordinates are derived from the mean-value theorem for 
harmonic functions, applied to a piecewise linear contour – 
a polygon. As we will show in the next sections, Green 
coordinates [LLCO08] can be derived by applying 
Cauchy's integral formula – which is the complex equiva-
lent of the mean-value theorem for holomorphic functions 
– to a polygon. In this sense, the Green coordinates are 
conceptually a generalization of mean-value coordinates to 
complex functions.  

Floater et al. [FHK06] have showed that mean-value co-
ordinates are members of a large family of barycentric 
coordinates, known as "three-point coordinates". We show 
how to derive in a similar way a family of complex three-
point coordinates, and show that the Green coordinates are 
a member of this family. 

In recent works [Bel06, WSHD07], barycentric coordi-
nates were developed for continuous planar contours. The 
main challenge here is to find a barycentric coordinate 
function – or kernel – such that the resulting transform will 
have linear precision. We show that the Green coordinates 
on a polygon originate in a simple kernel on a continuous 
contour, which easily achieves linear precision and con-
formality.  

One of the applications of planar barycentric coordinates 
is planar shape deformation, for example, for image warp-
ing. This is also a highly active research area, and we will 
only mention a few recent works, which are closest in spirit 
to ours. There are two major approaches to planar deforma-
tion – the first requires discretizing the shape into finite 
elements, so that the deformation is performed by solving 
an optimization problem on this discretization, see [BS08] 
for a survey of recent linear methods. The biggest disad-
vantage of this approach is that the computation time is 
dominated by the complexity of the discretization, and not 
by the intrinsic complexity of the shape itself. The second 
approach is more analytic and does not require a discretiza-
tion of the domain. An example of this approach is Moving 
Least Squares (MLS) [SMW06] which allows for affine, 
similar and rigid deformations. However, the MLS ap-
proach deforms the entire plane, and does not take into 
account the underlying shape of the deformed object.  

In order to allow shape-aware deformations, Ju et al. 
[JSW05] suggested to define a "cage" around the shape and 
control the deformation by manipulating the cage. Most of 
the cage-based deformations use barycentric coordinates, 
for example [LKCOL07, JMD*07]. A notable set of bary-
centric coordinates are the so-called harmonic coordinates 
[JMD*07]., named that way since they are the unique solu-
tion to the Laplace equation with Dirichlet boundary condi-
tions on the cage. In contrast to other barycentric coordi-
nates on polygons, no analytic expression is available for 
harmonic coordinates. They are quite difficult to compute, 
and are typically approximated using a discretization of the 
interior of the cage. Despite the usefulness of barycentric 
coordinates in data interpolation applications, Lipman et al. 
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[LLCO08] have observed that the affine invariance prop-
erty of barycentric coordinates is in fact harmful for shape 
deformation, as it introduces undesirable shears, see for 
example Fig. 1. This is probably inevitable if the source 
region is forced to deform to fit precisely to the target re-
gion. Relaxing this constraint, Lipman et al. propose to 
work with two sets of barycentric coordinates, one for the 
vertices of the cage, and the second for the normals of its 
edges. The resulting deformation is shown to be conformal, 
although not interpolating. We show how to derive these 
coordinates as simple complex barycentric coordinates, 
and, in addition, show how to improve them.  

   
              Harmonic                       Green 

Figure 1: Affine invariance of harmonic coordinates  causes 
shearing, whereas Green coordinates generate a conformal 
map, better preserving the details. 

In some scenarios, it is easier to control a deformation by 
using control points instead of a cage. The smaller number 
of control points leaves extra degrees of freedom, which 
may be used to impose constraints on the derivative of the 
deformation. We develop the derivatives of the Green co-
ordinates, and show how to exploit them in a more user-
friendly deformation setting. 

The rest of the paper is organized as follows. In the next 
section we introduce complex barycentric coordinates, and 
show examples of such coordinates – the discrete and con-
tinuous Cauchy-Green coordinates, and their generalization 
to a family of complex three-point coordinates. In Section 
3, we modify the Cauchy-Green coordinates to be varia-
tional in the sense that the deformation attempts to mini-
mize a given objective function, and introduce the Szegö 
and Point-to-Point Cauchy coordinates. Section 4 presents 
experimental results which show how these new coordi-
nates out-perform current state-of-the-art methods for pla-
nar deformation. We conclude with a discussion of open 
issues in Section 5. 

2. Complex barycentric coordinates 

2.1 Definitions 
Let S = {v1, v2, ... , vn} ⊂ R2 be the vertices of a simply 
connected planar polygon, oriented in the counter clock-
wise direction, vj = (xj, yj). Let zj = xj + iyj be the represen-
tation of the vertices as complex numbers, with i = √-1 , zj 
∈ . Denote by Ω the interior of S. Given a point v = (x,y) 
∈ Ω, define z = x + iy and consider the following complex 
linear combination: 

1

( )
n

j j
j

k z z
=

∑  

where kj(z):Ω→ .  

We say that the functions kj(z) are complex barycentric 
coordinates with respect to S if the following two proper-
ties hold for all z∈Ω: 
Constant precision: 

1

( ) 1
n

j
j

k z
=

=∑             (1) 

Note that this implies that the real part of the coordinates 
sums to 1, and the imaginary part sums to 0. 
Linear precision: 

1
( )

n

j j
j

k z z z
=

=∑             (2) 

Constant precision is sometimes called “reproduction of 
unity”, and linear precision called “reproduction of the 
identity”. Given complex barycentric coordinates kj(z) for 
S, we may consider the complex function gS,F(z) which 
results from applying the complex barycentric coordinates 
to the vertices of a target polygon F = {f1, f2, ... , fn} ⊂ , as 
in Fig. 2: 

,
1

( ) ( )
n

S F j j
j

g z k z f
=

= ∑                           (3) 

 
Figure 2: Planar mapping from Ω - the interior of the polygon 
S, to gS,F(Ω) using complex barycentric coordinates kj(Ω). 

Note that F should also be simply connected and ori-
ented counter-clockwise. The complex function g can be 
viewed as a planar mapping from Ω - the interior of S - to 
its image g(Ω). Note that g(Ω) will usually not be the inte-
rior of the polygon F. However, since the coordinates re-
produce unity and the identity, they will reproduce any 
linear function of z. Recalling that a linear function of a 
single complex variable is equivalent to a similarity 2D 
transformation in the plane, we have:  
Theorem 1: Complex barycentric coordinates reproduce 
similarity transformations. 
This means that if fj = f(zj) for some similarity transforma-
tion f, then gS,F = f. 
Note that although all complex barycentric coordinates 
reproduce similarity transformations, not all reproduce 
affine transformations. It is quite straightforward to see 
that: 
Theorem 2 Complex barycentric coordinates kj(z) repro-
duce affine transformations if and only if the complex con-
jugates of the coordinates kj(z) also have linear precision: 

1
( )

n

j j
j

k z z z
=

=∑  

In particular, all real barycentric coordinates reproduce 
affine transformations. Somewhat counter-intuitively, the 

S

Ω 

zj 

zj+1

F 

fj 

fj+1 

gS,F(Ω) 
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fact that most complex barycentric coordinates do not re-
produce affine transformations is an advantage, as, in many 
applications, non-uniform scale is undesirable.  

On top of not reproducing affine transformations, we de-
part from another standard property of real barycentric 
coordinates: we do not require the barycentric coordinates 
to be interpolating (sometimes called the Lagrange prop-
erty of the coordinates). We expect the image g(Ω) to be 
close in some sense to the target polygon F, but do not 
impose the strict interpolation requirement: g(zj)=fj. In 
many case this allows for more natural mappings.  

Complex barycentric coordinates can be easily general-
ized to continuous contours in the following way. Let Ω be 
a simply connected open planar region with a smooth 
boundary S. Given z ∈ Ω and w ∈ S, consider the complex 
function k(w,z):S×Ω→ . Analogously to the discrete 
case, we say that k(w,z) is a barycentric coordinate function 
if it satisfies the following properties for all z∈Ω: 
Constant precision: 

( , ) 1
S

k w z dw =∫             (4) 

Linear precision: 
( , )

S

k w z wdw z=∫             (5) 

The function k(w,z) is sometimes called a kernel func-
tion. The main difference between this and the continuous 
definition of real barycentric coordinates [Bel06, 
WSHD07] is that here the integral over S is a complex inte-
gral, where dw = T(w)ds. T(w) is the unit-length tangent 
vector to S at w, and ds is the usual arc-length differential 
element. See Fig. 3. 

 
Figure 3: Continuous planar mapping from Ω - the interior of 
the closed curve S - to gS,f(Ω) using the complex barycentric 
kernel k(S×Ω). 

Analogously to (3), given a continuous complex function 
f(S): S → , we can define a planar mapping gS,f(Ω) as 
follows: 

, ( ) ( , ) ( )S f
S

g z k w z f w dw= ∫  

As in the case of real barycentric coordinates, the main 
challenge is to find kernels k(w,z), or, in the discrete case, 
coordinate functions kj(z), which satisfy the required prop-
erties. Next we will show how a simple complex kernel can 
be used both in the continuous and discrete settings to ob-
tain useful barycentric coordinates, and how to generalize 
this kernel to a family of discrete complex three-point-
coordinates.  

2.2 Continuous Cauchy coordinates 
Consider the complex function:  

1 1( , )
2

C w z
i w z

=
π −

 

C is well known from complex analysis, where it is called 
the Cauchy kernel [Bel92]. C satisfies the two properties 
(4) and (5), namely: 

1 1 11; ;
2 2S S

wdw dw z z
i w z i w z

= = ∈
π − π −∫ ∫ Ω  

because these two identities are special cases (h(w)=1 
and h(w)=w) of Cauchy's integral formula [Ahl79], which 
asserts that the values of a function on the boundary of a 
simply-connected region determine its value at every point 
inside the region: 

1 ( ) ( )
2 S

h w dw h z
i w z

=
π −∫

                          (6) 

Cauchy's integral formula holds for the class of complex 
functions known as holomorphic functions. Such functions 
are the linear subspace of "well behaved" complex func-
tions, and also have a geometric interpretation – a holo-
morphic function whose first derivative does not vanish is a 
conformal mapping. See Ahlfors [Ahl79] for a detailed 
introduction to holomorphic functions. So, in fact, the 
Cauchy kernel reproduces all holomorphic functions. We 
call the resulting coordinates Cauchy coordinates.  

Applying the Cauchy coordinates to a target contour f(S) 
defines the following mapping: 

     
,

1 ( )( )
2S f

S

f wg z dw
i w z

=
π −∫                 (7) 

Note, that equations (6) and (7) are very different, as h in 
(6) is a holomorphic function defined on S and on Ω , and f 
in (7) is a function defined only on S.  

The mapping g(Ω) in (7) is sometimes called the Cauchy 
transform of f [Bel92]. It has various interesting properties, 
one of which being that if f is continuous on S, then g is 
always holomorphic on Ω [Bel92, Theorem 3.1]. Hence, if 
we apply these coordinates in the context of planar shape 
deformation, the deformation is guaranteed to be conformal 
(if the derivatives do not vanish). In addition, since holo-
morphic functions are infinitely differentiable, the mapping 
will be smooth.  

2.3 Discrete Cauchy-Green coordinates 
In a practical shape deformation scenario, the contour S is 
usually a polygon (sometimes called “cage”) which the 
user deforms to a new polygon F, as in Fig. 2. Let us now 
consider what (7) reduces to when S is a polygon S = {z1, 
z2, ... , zn}. Although S does not have a tangent vector at zi 
,(6) is still valid, by applying it to each edge ej = (zj-1, zj) 
separately: 

,
1

1 ( )( )
2

j

n

S f
j e

f wg z dw
i w z=

=
π −∑ ∫  

Since F is also a polygon, f maps each edge of S linearly to 
an edge of F. Hence, for w ∈ (zj-1, zj): 

S 

Ω 

w dw 

z 

f(w) 

gS,f(Ω) 
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( ) ( )
( )

1 1
1

1

( ) j j j
j

j j

f f w z
f w f

z z
− −

−
−

− −
= +

−

 

Computing the integral on a single edge ej:  

1
1 1

1

( ) ( ) ( )( ) log
( )

j

j j j
j j j j

j j je

B z B z B zf w dw f f f f
w z B z A A

−
− −

−

⎛ ⎞
= − + −⎜ ⎟⎜ ⎟− ⎝ ⎠

∫
 

where Bj(z) = zj – z and Aj = zj – zj-1, as in Fig 4. Summing 
over all edges, and rearranging the terms yields: 

 
Figure 4: Notations for the Cauchy-Green coordinates. 

We call Cj(z) discrete Cauchy coordinates and g the dis-
crete Cauchy transform of f. Note that we have defined 
Cj(z) only on the interior of the polygon, since on the 
boundary the expression may be singular. See Fig. 5 for an 
example of a mapping of a polygon generated by discrete 
Cauchy coordinates. Note that the image of the polygon is 
not a polygon. The mapping is just a linear combination of 
the n holomorphic coordinate functions Cj(z), one of which 
is visualized in the figure. 

 
Figure 5: Example of a mapping of source polygon S, guided 
by target polygon F, using the discrete Cauchy coordinates. 
The results is the region gS,F. The real part of C1(z) is visual-
ized using color-coding both on the source polygon and on 
g(Ω).  

The discrete Cauchy transform has a number of desirable 
properties. First, like the continuous Cauchy transform, the 
resulting function g is holomorphic, and infinitely differen-
tiable. Hence, the mapping from Ω to g(Ω) is conformal. In 
addition, as any complex barycentric coordinate function, it 
reproduces similarity transformations (see Theorem 1).  

As it turns out, the discrete Cauchy coordinates have al-
ready been discovered, albeit in a different guise. 

Theorem 3: Lipman's 2D Green coordinates [LLCO08] are 
identical to discrete Cauchy coordinates. 
Proof: The 2D Green coordinates are defined in the fol-
lowing way: 

( ) ( ) ( ) ( )k k j j
k V j V

g v n t
∈ ∈

η = φ η + ψ η∑ ∑  

where vk and tj  are the vertices and edges of the cage, re-
spectively, and n(tj) are the un-normalized normals to the 
edges. The coordinate functions φk and ψj are the closed 
form integrals present in Green's third identity, and have 
somewhat complicated expressions. Denoting by zk the 
complex representation of the cage vertices vk, we get: 

1( ) ( ) ( ) ( )k k j j j
k V j V

g z i z z+
∈ ∈

η = φ η + ψ η −∑ ∑  

since the un-normalized normal to an edge is just the edge 
rotated by π/2, which is equivalent to multiplication by i in 
the complex plane. Rearranging terms we have: 

( )( )1( ) ( ) ( ) ( )j j j j
j V

g i z−
∈

η = φ η + ψ η − ψ η∑  

At this point, we can plug in the formulas for φj and ψj 
given in [LLCO08] and simplify the resulting expression. 
The derivation is extremely technical, but following it 
through results in (8) – the discrete Cauchy coordinates. ♦ 

It should actually not come as a surprise that the discrete 
Cauchy coordinates and the Green coordinates are equiva-
lent. One is derived from Cauchy's integral formula, and 
the second from Green's third identity. Since these are 
known to be equivalent (in the sense that one can be de-
rived from the other [Ahl79]), the connection between the 
two is inevitable. Thus, in the sequel, we will refer to these 
coordinates as the Cauchy-Green coordinates. 

In the next section, we will consider a general family of 
complex barycentric coordinates analogous to the "three-
point coordinates" family defined in [FHK06]. 

2.4 Complex three-point coordinates 
Floater et al. [FHK06] described a family of barycentric 
coordinates such that the coordinate kj depends only on the 
points vj-1, vj, vj+1, and showed that known planar barycen-
tric coordinates, such as the mean-value, Wachpress and 
discrete harmonic coordinates are all members of this fam-
ily. It turns out that a similar classification can be made for 
complex barycentric coordinates, and that the Cauchy-
Green coordinates are a member of this family. 

Theorem 4: Let mj(z):Ω→ , j = 1,..,n be complex func-
tions, and let Bj(z) = zj – z and Aj = zj – zj-1, as in Fig. 4. 
Then the functions:  

1 1
1

1

( ) ( )
( ) ( ) ( )j j

j j j
j j

B z B z
k z m z m z

A A
+ −

−
+

= −  

satisfy: 
 

1
( )( ) 0

n

j j
j

k z z z
=

− =∑  

Proof: The key to the proof, and one of the differences 
between complex and real coordinates, is the fact that an 
arbitrary complex number z can be expressed uniquely 
using a complex affine combination of only two other 

S 

Ω 

z1 

F 

gS,F(Ω) 

f1 
g(z1) 

Cauchy-Green complex barycentric coordinates

,
1

1 1 1

1 1

( ) ( )

( ) ( ) ( ) ( )1( ) log log (8)
2 ( ) ( )

n

S f j j
j

j j j j
j

j j j j

g z C z f

B z B z B z B z
C z

i A B z A B z

=

+ + −

+ −

=

⎛ ⎞⎛ ⎞ ⎛ ⎞
= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟π ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑

zj

zj+1 

z 

Bj 

zj-1 
Bj+1 Bj-1 

Aj 
Aj+1 
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points, while an arbitrary 2D vector requires an affine 
combination of three points. Specifically, given a complex 
number z, and two other complex numbers zj and zj+1, there 
exist complex numbers αj(z) and βj(z) such that: 

1( ) ( )

( ) ( ) 1
j j j j

j j

z z z z z

z z
+= β + α

α + β =
 

Finding αj(z) and βj(z) is a matter of solving these two lin-
ear complex equations in two variables. 
It is easy to check that the solutions are: 

1

1 1

( ) , ( )j j
j j

j j j j

z z z z
z z

z z z z
+

+ +

− −
α = β =

− −
 

Following Floater et al., [FHK06], we can write: 

1( ) ( )( ) ( )( ) 0j j j j jD z z z z z z z+= β − + α − ≡  

Now, any linear combination of Dj(z) vanishes, hence: 

1
( ) ( ) 0

n

j j
j

m z D z
=

=∑  

Plugging back αj(z) and βj(z), and rearranging the terms: 

           1 1
1

1 1

( ) ( )
( ) ( ) ( ) 0

n
j j

j j j
j j j

B z B z
m z m z z z

A A
+ −

−
= +

⎛ ⎞
− − =⎜ ⎟⎜ ⎟

⎝ ⎠
∑     (9) 

which concludes the proof. 
Given a set of functions kj(z) as in Theorem 4, whose 

sum is non-zero for all z, it is straightforward to see that the 
functions wj(z) = kj(z)/∑kj(z) have the constant precision 
and linear precision properties, and hence are by definition 
complex barycentric coordinates. 

In fact, using a proof which is almost identical to the one 
in [FHK06], we can show that the converse of Theorem 4 
is also true: 
Theorem 5: Any set of complex functions kj(z) which sat-
isfy  

1

( )( ) 0
n

j j
j

k z z z
=

− =∑  

can be expressed in the form (9).  
The family of complex three point coordinates is gener-

ated by restricting mj(z) to be a complex function of only 
Bj(z) and Bj+1(z). 

Comparing the expression for the discrete Cauchy-Green 
coordinates from (8) to the expression in (9), we can see 
that the discrete Cauchy-Green coordinates are members of 
the complex three-point coordinate family, with: 

1
1( )1 1 1( ) log

2 ( ) 2

j

j

z
j

j
j z

B z
m z dw

i B z i w z

+

+= =
π π −∫  

So far, we have introduced complex barycentric coordi-
nates, and showed how to easily derive the planar Cauchy-
Green coordinates in this context. In the next section, we 
will demonstrate that the complex point of view not only 
gives insight into existing barycentric coordinates, but also 
allows us to generate new coordinates which perform better 
than state-of-the-art algorithms for planar shape deforma-
tion. 

3. Cauchy-type coordinates and shape deformation 
In planar shape deformation applications, the user deforms 
a shape, which is usually a planar mesh or an image. In 
cage-based applications, the user draws a "cage" around the 
shape of interest, and modifies the shape by deforming the 
cage. Two main requirements must be met for an algorithm 
to be practical – the mapping should preserve as much as 
possible the details of the shape or image, and the deforma-
tion should be fast enough to be run interactively. 

Since conformal maps preserve angles and the shape of 
small details, they are good candidates for detail-preserving 
deformations. Barycentric coordinates are extremely fast to 
compute – the complexity of the computation for a single 
point in the deformed domain depends only on the com-
plexity of the cage, which is usually significantly smaller 
than the complexity of the deformed shape. Thus complex 
barycentric coordinates which produce conformal maps 
could provide the best of both worlds and be a very useful 
tool for planar shape deformation.  

Unfortunately, in general, given two arbitrary polygons 
with corresponding vertices, there does not exist a confor-
mal mapping which maps the corresponding edges linearly 
to each other. Thus, to achieve conformality we must relax 
the interpolation requirement. Luckily, the space of con-
formal mappings from a given source polygon to the region 
close to another given target polygon is quite large, so we 
can add an additional requirement – find the complex bary-
centric coordinate functions which give a conformal map-
ping and minimize a functional of our choice.  

As described in Section 2.2, the Cauchy transform takes 
as input a continuous function f on a contour S, and outputs 
g, a function holomorphic on the interior of S, see Fig. 3. 
Thus the Cauchy transform can also be interpreted as a 
projection from the linear subspace of continuous functions 
on S, to the linear subspace of holomorphic functions on Ω. 
It is a projection because of its holomorphic function re-
production property – if f is holomorphic on S∪Ω, then g=f 
on Ω. An interesting question is whether the Cauchy trans-
form is an orthogonal projection, meaning that the result-
ing holomorphic function g is the closest holomorphic 
function, in some metric, to the given function f. For the 
metric derived from the following inner product of two 
complex functions of a complex variable: 

, ( )
S

f g f g ds< >= ⋅∫  

namely, the metric that measures goodness of fit of the 
image of the source contour g(S) to the target contour F = 
f(S), the answer to this question is negative – the Cauchy 
projection is an oblique projection, and given an arbitrary 
function f there exists a holomorphic function whose boun-
dary values are closer to f than g=Cf. This, in general, is not 
good news – it means the mapping generated by the 
Cauchy transform is indeed conformal, but it is not as close 
as it could be to the user’s specification. But there are also 
good news: the orthogonal projection of f, also known as 
the Szegö projection [Bel92], onto the space of holomor-
phic functions, is relatively well-known, and computable. 

Since we have the closed form (8) for the discrete 
Cauchy-Green coordinates, we would like to stay within 
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the n-dimensional subspace of holomorphic functions 
spanned by these coordinate functions, which we call the 
Cauchy-Green subspace, yet produce a better-quality de-
formation. More formally: 
Problem 1: Given a source polygon S with n vertices and 
interior Ω, and a functional ES(g) defined on holomorphic 
functions g: Ω∪S → , find complex numbers u1,..,un such 
that: 

1
( ) ( )

n

u j j
j

g z C z u
=

= ∑  

minimizes ES(g) among all possible choices of u. 
We can think of solving Problem 1 as finding a virtual 

target polygon u, whose discrete Cauchy transform mini-
mizes ES(g).  

Next, we describe two choices for such a functional E, 
that can be applied to achieve useful effects in the context 
of planar shape deformation.  

3.1 Szegö coordinates 
As mentioned in the previous section, the main disadvan-
tage of the Cauchy-Green coordinates is that the resulting 
deformation might be far from the target cage, see for ex-
ample Fig. 5. An obvious improvement would result if we 
could find a better fit to the target cage within the Cauchy-
Green subspace. Inspired by the Szegö projection, we de-
fine the following functional, which will help us generate a 
better fit.  

Let f be a continuous complex function on the source po-
lygon S. Define: 

                   2( ) ( ) ( )Szegö
S

S

E g g w f w ds= −∫               (10) 

We would like to minimize (10) within the Cauchy-Green 
subspace, which means, in other words, finding the virtual 
polygon u of Problem 1. However, so far we have only 
defined the Cauchy-Green coordinate functions on the 
interior of S, and not on S itself, where they are singular. 
Since we are now interested in the boundary values of the 
transformation image, we define the values of the coordi-
nate functions on S to be their limit when approaching the 
boundary from the interior Ω: 

( ) lim ( ), ,
in

in in
j j

z z
C z C z z z S

→
= ∈Ω ∈  

These limits always exist. We refer to Appendix A for the 
resulting formulae. 
Having defined Cj also on S, we may now rewrite (10) as 

2
2

1
( ) ( ) ( ) ( ) ( )

n
Szegö
S j j

jS S

E g g w f w ds C w u f w ds
=

= − = −∑∫ ∫
 

To solve the problem in practice, we approximate the in-
tegral as a sum over a k-sampling of S. This sample may be 
expressed as a product of the n-vector z of the vertices of S 
with a k×n sampling matrix H, such that w = Hz is a com-
plex k-vector of points sampled on the polygon S. Now 
Cj(w), f(w) are also complex k-vectors (by evaluating the 
respective function at the entries of w), and we can express 
the functional in matrix form: 

2

2
( )Szegö

S sE g Cu f= −  

C is the complex k×n matrix whose columns are Cj(w), 
namely, the values of the Cauchy-Green coordinate func-
tion on the sampled boundary, u is a complex n-vector and 
fs a complex k-vector whose entries are f(w). This is a sim-
ple linear least-squares problem over the complex numbers, 
and its solution is known to be [Bjö96]: 

* 1 *( )Szegö
s su C f C C C f+ −= =        (11) 

where C+ is the pseudo-inverse of C and C* is the conjugate 
transpose of C. Note that the size of the matrix C*C is n×n, 
where n is the number of the vertices of the polygon S, 
hence this computation involves the inversion of a very 
modest sized matrix. Now that we have the virtual polygon 
uSzegö, we define the deformation of an interior point z ∈ Ω 
to be: 

      
1

( ) ( )
n

Szegö Szegö
j j

j

g z C z u
=

= ∑          (12) 

Fig. 6 shows an example of applying the Szegö coordi-
nates for image deformation. As is evident from the image, 
the mapping is detail preserving (conformal), and the de-
formed shape remains close to the target cage.  

 
        Source        Szegö 

Figure 6: Deformation of a bird using Szegö coordinates. The 
cage has 21 vertices. 

When working with deformation applications, time com-
plexity is an issue, and we would like to avoid computing 
the virtual polygon uSzegö every time the user modifies the 
target function f. Fortunately, if the target function f is itself 
a polygon F, the deformation (12) can be made more com-
pact by formulating it with barycentric coordinates applied 
to F.  

Let F = {f1, f2, ... , fn} be the target polygon, then its 
sampled version fs can also be obtained using the sampling 
matrix H:  fs=HF. Then:  

Szegöu C HF+=  
Thus the deformation gS,f  is defined in terms of the dis-

crete Szegö coordinates Gj(z) of an interior point z ∈ Ω: 

 
M is an n×n matrix, called the Szegö correction matrix. It 

depends only on the source polygon S, thus may be com-
puted once. Fig. 7 shows the color coding of the real and 
imaginary parts of the one of the Szegö coordinates from 
Fig. 6.  

Szegö complex barycentric coordinates 
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,
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It is relatively easy to see that M has a number of useful 
properties, such as its rows sum to unity and Mz=z (where 
z is a complex n-vector of the vertices of S), which imply 
that the Szegö coordinates also have constant and linear 
precision. Note that each Szegö coordinate function is a 
linear combination of all the Cauchy-Green coordinate 
functions. Thus they depend on all the vertices of the poly-
gon S, so cannot be local three-point coordinates like the 
Cauchy-Green coordinates.  

 
        Absolute                     Real                      Imaginary 

Figure 7: Absolute, real and imaginary component values of 
the Szegö coordinate function of the marked point. Note that 
the real part is centered at the vertex and the imaginary part at 
the two adjacent edges. 

Next, we consider a different deformation paradigm 
which leads to another easily-minimized functional E. 

3.2 Point-to-point Cauchy coordinates 
The complex barycentric coordinates that we have dis-
cussed so far are "cage-based" deformations. The user 
modifies the location of the target cage vertices and thus 
controls the deformation. Unfortunately, in practice, the 
cage of a complicated shape can contain hundreds of verti-
ces, and modifying each vertex independently to form the 
new cage is a time-consuming and unintuitive operation.  

A much more intuitive user interface for the modeler will 
be manipulating a small number of positional constraints – 
control points - not necessarily on the shape boundary. This 
way the tedious task of manually positioning the cage ver-
tices can be replaced by an efficient optimization process 
which derives suitable cage vertex positions automatically. 

We now show how to easily adopt such an interface, 
while maintaining all the nice deformation properties that 
the Cauchy-Green coordinates provide. As the number of 
control points is typically much smaller than the number of 
cage vertices, it is possible to use the extra degrees of free-
dom to regularize the deformation. This means minimizing 
some aggregate differential quantity. Luckily, the Cauchy-
Green coordinates have very simple derivatives and, like 
the transform itself, will also be a complex linear combina-
tion of the cage vertices. Hence we can easily minimize a 
functional combining both positional constraints inside the 
cage, and derivatives on the boundary of the cage.  

Let f be a mapping from a set of p points r1,r2, ... ,rp ∈ Ω, 
to the complex plane C, such that f(rk) = fk, and let: 

2 2

1
( ) ''( )     ,    ( ) ( )

p
Smooth Pts
S S k k

kS

E g g w ds E g g r f
=

= = −∑∫
Minimizing the first functional requires the mapping g to 
be as smooth as possible on the boundary of the cage. Mi-
nimizing the second functional imposes a finite set of posi-
tional constraints on the deformation in the interior of S.  

Define the following combined weighted functional: 
2( ) ( ) ( )PtoP Pts Smooth

S S SE g E g E g= + λ  

for some real λ. We will now attempt to solve Problem 1 
for this functional.  

Using the usual rules of linearity, the second derivative 
of the discrete Cauchy-Green transform (8) is: 

1
''( ) ( )

n

j j
j

g z d z z
=

= ∑     

where 
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       (13) 

As was the case for the discrete Szegö coordinates,  
ES

Smooth is defined on the boundary of Ω, where dj is singu-
lar when z is on the edge ej = (zj-1, zj), or on the edge ej+1 = 
(zj, zj+1). So here too, we need to use the limits of dj for 
these cases: 

( ) lim ( ), ,
in

in in
j j

z z
d z d z z z S

→
= ∈Ω ∈  

It turns out that the limits everywhere except at the vertices 
are equal to dj(z), hence we can use (13) as is: 

2
2

1
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n
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S j j

jS S

E g g w ds d w u ds
=

= = ∑∫ ∫
 

As with the Szegö coordinates, we can rewrite the com-
bined functional in matrix form: 

2 22
2 2

( )PtoP
SE g Cu f Du= − + λ  

where D is a complex k×n matrix whose columns are dj(w). 
As in Section 3.1, C is the p×n matrix whose (i,j) entry is 
Cj(ri), u is a complex n-vector and f a complex k-vector 
whose entries are the positional constraints fk. Some alge-
bra leads to the Point-to-Point Cauchy-Green barycentric 
coordinates: 

 
We now have only p barycentric coordinate functions - 

Pj. A*A is an n×n matrix which can be easily inverted. N is 
the n×p matrix consisting of the first p columns of A+. Us-
ing properties of N, it is relatively easy to show that the 
point-to-point Cauchy-Green coordinates have constant and 
linear precision. 

Fig. 8 shows an example of a deformation produced by 
the P2P Cauchy-Green coordinates. As promised, the de-
formation is conformal, yet much easier to control since the 
user needs to manipulate only a small number of control 
points.  

The number of coordinate functions Pj is now p - the 
number of control points, rather than n - the number of 
cage vertices (even though an n-vertex cage implicitly par-
ticipates in the process). These functions are centered 
around the control points. Fig 9 shows the color-coded 
values of one of the coordinates functions of the shape of 
Fig. 8. As with the Szegö coordinates, the influence of a 

P2P Cauchy-Green complex barycentric coordinates

,
1

,
1

1..

( ) ( )

( ) ( )     ,     

p

S f j j
j

n

j k k j
k

p

g z P z f

C
P z C z N N A

D

=

+

+

=

=

⎛ ⎞⎛ ⎞
⎜ ⎟= = = ⎜ ⎟⎜ ⎟λ⎝ ⎠⎝ ⎠

∑

∑



O. Weber, M. Ben-Chen & C. Gotsman / Complex Barycentric Coordinates with Applications to Planar Shape Deformation 
 

© 2008 The Author(s) 
Journal compilation © 2008 The Eurographics Association and Blackwell Publishing Ltd. 

coordinate function associated with a specific control 
points is local, in the sense that it affects only the areas of 
the cage which are geodesically close to it. This property 
guarantees that modifying one part of the shape will not 
affect another part, even if the Euclidean distance between 
them is small.  

 
   Source   P2P Cauchy-Green 

Figure 8: A giraffe, and its deformation using Point-to-point 
Cauchy-Green coordinates, with 16 control points. The cage 
has 113 vertices. 

 
       Absolute                 Real                Imaginary 

Figure 9: P2P coordinate function of the marked point. 

4. Experimental Results 
We have implemented an image deformation system using 
the discrete Szegö coordinates and the point-to-point 
Cauchy-Green coordinates as plugins to the Maya® com-
mercial modeling and animation system. We compared 
their performance to that of existing state of the art planar 
deformation algorithms – the original cage-based Cauchy-
Green coordinates [LLCO08] and control-point-based MLS 
[SMW06]. The image was represented as a texture map on 
a triangulation of the 2D domain, containing m vertices. 
Each of the n barycentric coordinates were pre-computed 
on these m vertices and stored in a dense complex m×n  
matrix B. A typical cage contains about n=150 vertices and 
m=15,000 interior vertices. The pre-process time to com-
pute B is less than 10 seconds. The serial runtime complex-
ity of a subsequent deformation operation is O(mn) – the 
time required to multiply B by a complex n-vector. How-
ever, this multiplication was implemented in the GPU us-
ing  Nvidia's CUDA programming language on an Nvidia 
Geforce 8800 GTX graphics card, resulting in a very 
significant speedup. For example, a single deformation of 
the "lady with whip" image (Fig. 12), which has m=12,000, 
n=272 and p=26 control points, takes approximately 0.05 
milliseconds. Moreover, the pre-process time can be sig-
nificantly reduced by implementing it also on the GPU, but 
we have not yet done this. 

Before starting our qualitative comparison, we state up-
front a few downsides of our coordinates. First and fore-
most, we currently do not have an extension to 3D defor-

mations, as the original Green coordinates have. In addi-
tion, our coordinates generate only conformal deforma-
tions, and we do not currently support "as rigid as possi-
ble"-type deformations, as the MLS method does. Despite 
these shortcomings, we believe that our coordinates are 
useful in many 2D deformation scenarios, as we will now 
demonstrate. 

4.1 Szegö vs. Cauchy-Green  
As was already mentioned in previous sections, the main 
disadvantage of the Cauchy-Green coordinates is that the 
image of the domain, g(Ω), might be quite far from the 
target contour F. On the other hand, the Szegö coordinates 
produce (by definition) the conformal map in the Cauchy-
Green subspace, whose boundary values are closest to the 
target polygon.  

 
      Source        Cauchy-Green     Szegö 

 
         Cauchy-Green           Szegö 
Figure 10: Comparison of the Cauchy-Green coordinates and 
the Szegö coordinates. The Szegö coordinates better fit the 
cage, preventing an undesirable bend of the candle, and an 
undesirable movement of the rose leaves. 

Fig. 10 compares the deformation of some images using 
the Cauchy-Green coordinates and the Szegö coordinates. 
It can easily be seen that the Szegö coordinates provide a 
better match to the target contour. See, in addition, the 
accompanying video for a live demo of interactive defor-
mations using both methods. There the Szegö coordinates 
can also be seen to be more stable during deformation.  

 
                         Szegö         Cauchy-Green 

Figure 11: Absolute value of the Szegö and Cauchy-Green  
coordinates. The Cauchy-Green coordinate ”spills” into the 
leaf near it, whereas the Szegö coordinate does not. 

In addition to better fitting the contour, the Szegö coor-
dinates have another important property – they are local 
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within the cage. Fig. 11 shows an example of the absolute 
value of the discrete Cauchy coordinates vs. the discrete 
Szegö coordinates on a given polygon. As is obvious from 
the image, the effect of the Szegö coordinates is more local 
in comparison to that of the Cauchy coordinates, for which 
deformation of one part of the shape may influence other 
parts which are geodesically far away.  

The computation of the correction matrix M is done in 
the preprocess step, after the source cage is defined but 
before the actual deformation. Thus the runtime complexity 
of the preprocess step depends on k – the source contour 
sample density, but the runtime complexity of the actual 
deformation is exactly the same as that of the Cauchy-
Green coordinates.  

4.2 Point to point Cauchy-Green vs. MLS 
In some scenarios cage deformations are not very useful. If 
the cage is complicated, as is usually the case for real-life 
shapes, cage-controlled deformations are less intuitive than 
a small number of simple control points strategically placed 
in the domain. This interface was also used by Igarashi et 
al. [IMH05] and the MLS system [SMW06].  

 
         P2P Cauchy-Green    MLS 

 
         P2P Cauchy-Green     MLS 
Figure 12: Comparison of the P2P Cauchy-Green coordinates 
and the MLS coordinates. The P2P coordinates better handle 
control points whose Euclidean distance is small, yet their 
geodesic distance within the cage is large. 

Specifically, the MLS approach allows to define a set of 
control points and finds a local as-similar-as-possible or as-
rigid as-possible deformation which satisfies the positional 
constraints imposed by the control points. As the point-to-

point Cauchy-Green approach produces a conformal map 
by definition, the most relevant comparison is to the simi-
larity version of MLS. Close examination of the MLS equ-
ations reveals that there exist complex barycentric coordi-
nates which are equivalent to the similarity version.  

Fig. 12 and the accompanying video compare some de-
formations generated by both methods with exactly the 
same constraints. The results show that point-to-point 
Cauchy-Green coordinates do much better at preserving the 
geometry of the shape. Using the additional information – 
the cage – this method is better at separating the extremities 
– e.g the hand of the frog from its leg. Since the MLS me-
thod deforms the entire plane, ignoring the geometry of the 
shape, separating the hand of the frog from its foot results 
in serious artifacts. On the other hand, as opposed to the 
MLS method, the point-to-point Cauchy-Green coordinates 
do not satisfy the positional constraints imposed by the 
control points precisely, rather treat them as soft con-
straints. This can be alleviated, if needed, by reducing the 
value of λ in the optimization problem of Section 3.2, al-
beit at the expense of the mapping smoothness. 

As stated above, the MLS deformation can also be for-
mulated as complex barycentric coordinates centered 
around the control points. Obviously, since the MLS has no 
knowledge of the cage, the coordinates' effect depends on 
Euclidean distances. This is clearly seen in Fig. 13 which 
compares the absolute values of the MLS coordinates and 
the point-to-point Cauchy-Green coordinates. Of course, it 
might be possible to modify MLS to use geodesic distances 
instead of Euclidean distances, but this would require dis-
cretization of the interior of the cage, which we wish to 
avoid. 

 
                                P2P Cauchy-Green             MLS 
Figure 13: Absolute value of the P2P and MLS coordinates of 
the point on the left hand. The MLS coordinate ”spills” into 
the leg near it, whereas the P2P coordinate does not. 

The time complexity of deformation using P2P Cauchy-
Green coordinates is very similar to that of the Szegö coor-
dinates, as most of the computation is done in the pre-
process step. Here, however, we have an additional benefit 
– the complexity of the deformation during user interaction 
is proportional to p - the number of control points, as op-
posed to n - the number of cage vertices, which is typically 
much larger. 

5. Conclusions and Discussion 
We have generalized the concept of barycentric coordinates 
from real numbers to complex numbers, and provided a 
few examples of known and new coordinates which can be 
expressed quite simply in this framework. In addition, we 
have shown how the new coordinates can be used in the 
context of planar shape deformations to produce results 

Source 

Source 
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superior to state-of-the-art methods, at a small extra cost in 
computational complexity, in pre-process time only.  

We believe there is still much research to be done on the 
theory and applications of complex barycentric coordi-
nates. Their most obvious drawback is the fact that they are 
only defined for planar domains, which would seem to rule 
out the possibility of using them for 3D shape deformation. 
However, this should still be possible if the complex num-
bers are interpreted geometrically and analogs found in 
higher dimensions.  

Another important research direction is relaxing the con-
formality requirement. As real barycentric coordinates are a 
special case of complex coordinates, obviously non-
conformal complex coordinates exist. We have seen that 
the MLS coordinates are such. An interesting challenge is 
to find non-conformal complex coordinates which will 
generate the more useful quasi-conformal or "as rigid as 
possible"-type deformations. 

There are some connections between our method and 
other deformation methods. First, the formulation of the 
Green Coordinates is a special case of the Boundary Ele-
ment Method formulation, where constant boundary ele-
ments are used. Second, the functional minimized for the 
P2P coordinates has some resemblance to functionals used 
with Radial Basis Functions. As both methods were previ-
ously used for shape warping and deformation 
[JP99,Boo89], it would be interesting to explore the rela-
tionship between these methods and ours.   

One theoretical issue which we haven't addressed at all, 
is the connection between complex barycentric coordinates 
and the so-called "primal/dual ratio". As Mercat [Mer08] 
pointed out, complex primal/dual ratios will arise when the 
primal and dual edges are not orthogonal. We believe more 
insight into complex barycentric coordinates can be gained 
by studying more these concepts.  

Discrete conformal maps have been used for many years 
for 3D mesh parameterization, where the domain is a dis-
crete set of triangles. In fact, many of the most common 
recipes for real barycentric coordinates were motivated by 
this problem. The Least Squares Conformal Mapping 
(LSCM) method [LPRM02] for free-boundary mesh para-
meterization is based on a discretization of the Cauchy-
Riemann equations on triangles, achieving an “As-Similar-
As-Possible” effect. Adding soft positional constraints to 
some of the boundary vertices in the linear LSCM system 
allows extra control so that the deformed mesh is close in 
some way to some target geometry. The advantage of the 
Szegö coordinates proposed here is that they achieve a 
similar effect without any discretization of the plane. It 
would be interesting to develop the connection between 
LSCM and Szegö coordinates. 
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Appendix A: Limits of the discrete Cauchy-Green coordinates 
The discrete Cauchy coordinates on the polygon S are: 
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