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Segment 0
=========
1: 8sc in a ring [8]
2: 6inc,sc,inc [15]
3: sc,(inc,sc)*2,(sc,inc)*5 [22]
4: sc,inc,2sc,(inc,sc)*2,(2sc,inc)*2,
 (2sc,inc,sc)*2 [29]
5: 2sc,inc,sc,(2sc,inc,3sc,inc)*2,
 2sc,(sc,inc,sc)*3 [37]
....
....

(a) (b) (c) (d)

Figure 1: Given an input 3D model and a seed point (a) we automatically generate a crochet graph (b) which is translated into
human-readable crochet instructions (c). When crocheted and stuffed, the output is a toy similar to the input shape (d).

ABSTRACT
We propose an approach for generating crochet instructions (pat-
terns) from an input 3D model. We focus on Amigurumi, which are

knitted stuffed toys. Given a closed triangle mesh, and a single point

specified by the user, we generate crochet instructions, which when

knitted and stuffed result in a toy similar to the input geometry.

Our approach relies on constructing the geometry and connectivity

of a Crochet Graph, which is then translated into a crochet pattern.

We segment the shape automatically into chrochetable components,

which are connected using the join-as-you-go method, requiring

no additional sewing. We demonstrate that our method is applica-

ble to a large variety of shapes and geometries, and yields easily

crochetable patterns.
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1 INTRODUCTION
Hand making toys is a popular and ancient craft. Knitting toys and

stuffing them is one of the most popular approaches, as it allows for

great flexibility in the color and texture of the final product, does not

require sophisticated tools, and the technique can be easily taught,

even to small children. Knitting approaches are mostly divided into

methods which use a single hook or needle, usually classified as

Crochet, and techniques which use two needles, which are generally
called Knitting. Despite some superficial similarities, crochet and

knitting yield very different fabrics, and the knitting patterns are

different as well.

Computational knitting has been recently investigated in the

graphics and fabrication communities [Yuksel et al. 2012], as knit-

ting machines became available and popular. Crochet, on the other

hand, cannot be as easily automated, and to-date there is no existing

crochet-machine [Seitz et al. 2021]. Furthermore, the research on

computational methods for generating crochet patterns is similarly
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lacking. On the other hand, the crochet community has increased

dramatically in recent years [Burns and Van Der Meer 2021], and

Amigurumi, or crochet stuffed toys, became very popular. As the

availability of computational techniques for pattern generation is

quite limited, most designers rely on trial and error methods which

are tedious and time consuming. Furthermore, novice crocheters

are limited to producing existing patterns, and cannot easily express

their creativity by generating patterns themselves.

Our goal in this paper is to address this gap, and suggest a com-

putational method for generating a crochet pattern from an input

3D model. Given a single point on the model chosen by the user,

denoted as the seed, and a user-selected stitch size, we automatically

generate a crochet graph. The graph is then used for generating a

crochet pattern, which after crocheting and stuffing, resembles the

input model. We additionally provide a visualization of the expected

crocheted shape, and thus the user can experiment with different

seeds and different yarn sizes. We demonstrate that our algorithm

is applicable to a large variety of shapes, and compares favorably

to prior work.

1.1 Related Work
Knitting. The literature on computational knitting (as opposed to

crochet) is quite large, and we mention some of it here for complete-

ness. Note that, in general, crochet and knitting are two related,

but very different, methods of fabric generation, and converting

knitting patterns to crochet and vice versa is very challenging, even

for human experts. Thus, a computational knitting pipeline cannot

be used "as-is" for crochet.

The Stitch Meshes line of work [Yuksel et al. 2012] deals with

representing 3D models at the yarn level using polygonal meshes

whose faces represent different types of stitches, and on top of that

considering knitability [Wu et al. 2019] and wearability [Wu et al.

2021]. Our crochet graph representation, on the other hand, is more

abstract, representing only stitch heads/bases and stems, instead

of the full yarn-level representation. However, for crochet this

is sufficient. Specifically, the crochetability constraint of coupled

rows, which directly translates into an algorithm for creating the

instructions, can be easily enforced on our crochet graph.

Our representation has some resemblance to the representation

of AutoKnit [2018], where the nodes represent two stacked stitches

and the edges represent the connectivity and stitch size. They build

the graph using a user specified time function and a set of constraints
that guarantee machine knittability. They additionally propose

tracing and scheduling algorithms to produce the machine knitting

instructions. Popescu et al. [2018] build a similar graph by manually

dividing the shape into patches and covering them with contours,

which are later sampled to produce the instructions. Kaspaer at

al. [2021] also generate machine-knitting instructions based on

a stitch graph. The graph is computed by sampling 2D garment

patterns according to a specified time function designed by the user.

Other approaches focus on knitting compilers [McCann et al. 2016],

interactive design of knit templates [Jones et al. 2021], and complex

knit structures and multi-yarn [Nader et al. 2021].

When compared to machine knitting algorithms our approach

is better tailored to hand-crocheting. First, the crocheted models

are in many cases very low resolution (e.g., if they are aimed for

beginners), and therefore we need to adapt our sampling rate ac-

cordingly (see Section 7.1.2). Furthermore, short rows are much less

common in crochet, and we avoid them to generate patterns which

appeal to beginner crocheters. The user only needs to supply an

input seed point, instead of constraints on the time function as in

AutoKnit, (e.g., two or more seed points), or a manual segmentation

as in Popescu et al. [2018]. Finally, our simpler approach and the

low resolution needed for crochet also leads to shorter processing

times, where generating the instructions takes a few minutes, when

compared to tens of minutes for AutoKnit. Hence opening the door

to interactive editing and design of patterns in future work.

Crochet. A recent technical report [Seitz et al. 2021] provides an

excellent background about the concept of computational crochet.

The authors discuss pattern representation, as well as differences

between crochet and knitting, and the lack of crochet machines.

One of the first approaches to computational crochet was presented

by Igarashi et al. [2008b], which provided an interactive tool for

sketching amodel and producing crochet instructions. Later, Nakjan

et al. [2018] suggested a method that allows the user to design dolls

using 2D sketches and generated from them crochet instructions.

Beyond sketching, Igarashi et al. [2008a] also allow the user

to start from a 3D model. There, the mesh is covered with evenly

spaced winding strips, which are then sampled at constant distances

to compute the pattern. Their method requires a manual segmenta-

tion of the input, and the resulting knitted models are often very

different visually from the input. More recently, Çapunaman et

al. [2017] suggested a method that infers the stitch directions and

connectivity from the (𝑢, 𝑣) parameterization of a given surface.

Thus, this approach requires a parameterized surface, whose pa-

rameter directions align with the required stitch directions. It is

unclear how to achieve such a parameterization for a general sur-

face. Finally, Guo et al. [2020] extended the Stitch Mesh framework

to crochet by defining new faces that represent crochet stitches

and new edge types that represent the current loop. They produce

crochet instructions for 3D models and simulate the expected ge-

ometry. However, the crocheted item can differ greatly from the

original model.

There are a few publicly available software projects that allow

users to generate instructions from very simple geometries. The

Crochet Sphere Calculator [Avtanski 2012b] generates instructions

for crocheting spheres with a given number of rows. The Crochet

Lathe [Avtanski 2012a] generates crochet instructions for surfaces

of revolution, by allowing the user to design the profile curve.

These are very basic, and do not allow the user to input a general

3D model.

1.2 Contribution
We propose an automatic method for generating crochet instruc-

tions (patterns) from a closed input 3D model, a seed point, and a

stitch size. The generated instructions are crochetable, use only sim-

ple crochet stitches, and are based on the "join-as-you-go" method,

and thus do not require any sewing. When crocheted and stuffed

the models are similar to the input 3D shape, much more so than

any previous approach for crochet instructions generation.
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1: 7sc in a ring [7]
2: (inc,sc)*2,3inc [12]
3: inc,sc,(inc,2sc)*2,(inc,sc)*2 [17]
4: 2sc,inc,3sc,inc,2sc,(2sc,inc,sc)*2 [21]
5: 4sc,inc,10sc,inc,5sc [23]
6: 12sc,inc,10sc [24]
7: 24sc [24]
8: 3sc,dec,6sc,dec,7sc,dec,2sc [21]
9: sc,dec,3sc,dec,sc,(3sc,dec)*2,2sc [17]
10: sc,dec,(sc,dec,sc)*2,(sc,dec)*2 [12]
11: dec,(dec,sc,dec)*2 [7]
Fasten off.

Figure 2: (left) TheCrochet Graph of a sphere, with row edgesR in red, and column edges C in blue. (middle) The corresponding
instructions (pattern) for crocheting the sphere. (right) The crocheted sphere.

Figure 3: (left) Crochet stitches inc,dec marked using
yarn on a crocheted patch. (right) The anatomy of crochet
stitches, marked are the top/bottom of the stitch in red and
the stem in green.

2 REPRESENTATION
2.1 Background and Notations
Given a closed manifold triangle mesh𝑀 = (V, E), a seed vertex

𝑠 ∈ 𝑉 , and a stitch width 𝑤 ∈ R, our goal is to generate human-

readable instructions 𝑃 (𝑀, 𝑠,𝑤) for crocheting𝑀 from the point 𝑠 ,

with the given stitch width𝑤 .

Crochet has a wide variety of stitches, and we focus here on

the simple stitch used for Amigurumi, named single crochet (sc).
This is an approximately square stitch, thus covering 𝑀 with sc
stitches is equivalent to constructing a quad re-mesh of𝑀 , where

each quad is a square, and all the edge lengths are constant. This

is of course not possible unless the surface is developable, i.e. has

zero Gaussian curvature. In practice, curved geometry is accom-

modated in crochet by introducing stitches which locally increase
(inc(x)) or decrease (dec(x)) the amount of stitches by 𝑥 . Figure 3

(left) shows an example of the inc and dec stitches on a crocheted

patch. Crochet instructions for Amigurumi typically include rows,
where each row is a series of sc, inc, dec stitches. Figure 2

(middle) shows the instructions (pattern) for crocheting the sphere

in Figure 2 (right).

2.2 The Crochet Graph
A crochet stitch is composed of a top, a base and a stem, where the

inc,dec stitches have multiple stems, see Figure 3 (right). The top

of one stitch is always the base of some stitch on the next row, and

similarly, each stitch has a base on the previous row. Therefore, a

natural abstraction of the stitch pattern is to consider the stitches

and their interconnections as a graph.

Specifically, we define the Crochet Graph G = (S,R ∪C), whose
vertices S are tops/bases of stitches, where a vertex (𝑖, 𝑗) ∈S is the

base of the 𝑗-th stitch in row 𝑖 , and the vertices in each row are

consecutively ordered. The column edges C are stems of stitches,

and the connectivity between the bases in each row is represented

by the row edges R. We denote the total number of rows by 𝑁 . Fig-

ure 2 (left) shows the crochet graph corresponding to the crocheted

sphere in Figure 2 (right).

A crochet graph is an intermediate representation between the

input triangle mesh𝑀 , and the output instructions 𝑃 . Our goal is

to generate a graph such that it is (1) translatable to valid crochet

instructions 𝑃 , and (2) when 𝑃 is crocheted and stuffed, the result

resembles the input mesh. Note that there exist multiple instruc-

tions 𝑃 for the same graph G, and within this space we aim for

instructions which are human-readable.
We base our algorithm on the following observations.

Definition 2.1. A coupling [Gold and Sharir 2018]𝐶 = (𝑐1, .., 𝑐𝑘 )
between two sequences 𝐴 = (𝑝1, .., 𝑝𝑛) and 𝐵 = (𝑞1, .., 𝑞𝑚) is an
ordered sequence of distinct pairs of points from 𝐴 × 𝐵, such that
𝑐1 = (𝑝1, 𝑞1), 𝑐𝑘 = (𝑝𝑛, 𝑞𝑚) and
𝑐𝑟 = (𝑝𝑠 , 𝑞𝑡 ) ⇒ 𝑐𝑟+1 ∈

{
(𝑝𝑠+1, 𝑞𝑡 ), (𝑝𝑠 , 𝑞𝑡+1), (𝑝𝑠+1, 𝑞𝑡+1)

}
, ∀𝑟 < 𝑘.

(1)

Definition 2.2. Let S𝑖 ,S𝑖+1, 1 ≤ 𝑖 < 𝑁 , be the vertices of two
consecutive rows of G = (S,R ∪ C), where S𝑖 =

(
(𝑖, 1), .., (𝑖, 𝑛𝑖 )

)
,

where (𝑖, 𝑗) ∈S, and𝑛𝑖 is the number of vertices in row 𝑖 . If there exists
a coupling 𝐶 between S𝑖 and S𝑖+1 such that for all 𝑝𝑠 ∈S𝑖 , 𝑞𝑡 ∈S𝑖+1
we have that (𝑝𝑠 , 𝑞𝑡 ) ∈𝐶 if and only if (𝑝𝑠 , 𝑞𝑡 ) ∈C, then the two rows
are coupled.

Observation 2.3. If all the pairs of consecutive rows of G are
coupled, then there exist valid crochet instructions 𝑃 (G) that use only
the instructions sc, inc(x) and dec(x).

Definition 2.4. Let𝑋G : S → 𝑀 be an embedding of the vertices
of G on 𝑀 . An embedded edge of G is a shortest geodesic between
the embedding of two vertices of G which share an edge, or between
the embedding of the first and last vertices on the same row.

Definition 2.5. Let (𝑝, 𝑞) ∈ 𝑀 be two points whose geodesic
distance is larger than some constant that depends on the stitch width
𝑤 , and let 𝛾𝑝,𝑞 be the shortest geodesic between them. If 𝛾𝑝,𝑞 intersects
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some embedded edge of an embedding 𝑋G , for any two such points,
then we say that 𝑋G covers𝑀 .

Observation 2.6. Let 𝑋G : S → 𝑀 be an embedding of the
vertices of G which covers𝑀 , and 𝑃 (G) valid crochet instructions for
G. If all the edge lengths induced by 𝑋G are equal to𝑤 , then when
𝑃 (G) will be crocheted and stuffed the result will be "similar" to𝑀 .

We discuss Observation 2.3 in section 5.1, where we show how

to translate the graph into valid instructions. The Observation 2.6

is in fact true only for a subset of meshes, as we discuss in the next

section.

2.3 Crochetable Models
Curvature. Crocheting the patterns yields an empty flexible shell

of fabric, which obtains its final shape by stuffing. Whether the

stuffed model obtains the intended shape depends on how the

model is stuffed (lightly, firmly, uniformly), as the yarn has some

flexibility and will extend to accommodate if the model is over-

stuffed. We will assume that the model is stuffed enough to attain

maximal volume, but not too much to cause the yarn to stretch and

generate gaps. Thus, we expect the resulting stitch size to be similar

to the edge lengths induced by the embedding of the crochet graph.

If for a given graph G its embedding in 3D with edge lengths𝑤 is

unique, we expect the crocheted and stuffed shape to be similar to

the input surface.

Importantly, unless the shape is convex, the edge lengths alone

(i.e., the metric) do not contain enough information to uniquely

determine the shape of a non-stuffed model. For example, a surface

that has a "crater" leads to edge lengths which can be realized

either as a crater or as a "hill". However, if we add the maximal

volume assumption, only the hill is possible. This in fact implies

that surfaces which have "craters", or more formally, regions of

negative mean curvature with positive Gaussian curvature, cannot

be realized by crocheting and stuffing alone. This is similar to the

observation made by Konakovich et al. [2018], that surfaces which

have negative mean curvature cannot be realized bymaximizing the

volume with a given conformal metric (i.e., only isotropic scaling

is allowed relative to the flat configuration). We handle this case

similarly, by preprocessing the model so that it does not contain

"craters" (Section 7.1.1).

Furthermore, in our case, since we allow anisotropic scaling, neg-

ative mean curvature with negative Gaussian curvature is in fact

possible, but requires a modified sampling rate, which we discuss

in Section 7.1.2. To conclude, in terms of geometric obstructions

to crochetability, the four possible curvature situations are sum-

marized in Table 1. Note that, as with any sampling-dependent

method, if the sampling rate (namely, the number of rows 𝑁 ) is

too small compared to the feature size of the model, the crocheted

output will lose some of the geometric detail.

Branching. Observation 2.6 requires that the crochet graph em-

bedding 𝑋G covers the input surface 𝑀 . Because of the special

structure of this graph, this induces additional constraints on the

possible geometries. Intuitively, models that branch (see Figure 7)

cannot be covered in this way. Mathematically, this means that

the geodesic distance function on 𝑀 from the embedding of the

seed vertex 𝑠 cannot have saddles. This is solved by segmenting

Table 1: Curvature obstructions to crochetability, see the
text for details.

Mean

Curvature

Gaussian Positive Negative

Curvature

Positive Crochetable Preprocessing

Negative Crochetable Sampling modification

the shape, and crocheting the segments in an iterative manner. We

explain this in detail in Section 7.2.

We first explain the generation of the crochet pattern for a sim-

ple non-branching model with positive mean curvature, and then

discuss how we handle negative mean curvature and branching.

3 OVERVIEW
Given a 3D mesh 𝑀 , a seed point 𝑠 and a stitch width 𝑤 , we first

compute a crochet graph G and its embedding 𝑋G such that they

adhere to Observations 2.3 and 2.6 (Section 4). Then we compute

the crochet pattern 𝑃 (G) (Section 5).

To generate G and 𝑋G , we first compute the embedding of the

vertices S on𝑀 (Section 4.1), and then derive from that the connec-

tivity of G, i.e. the row edges R and column edges C (Section 4.2).

To compute the pattern 𝑃 (G), we first translate the graph into

a program using standard code synthesis tools (Section 5.1), and

then apply loop unrolling to make the pattern human-readable

(Section 5.2). See Algorithm 1.

4 MESH TO CROCHET GRAPH
4.1 Geometry
Observation 2.3 implies that the vertices S should be grouped into

ordered rows, where in each row the vertices have a well defined

order. We address this requirement by computing two non-negative

monotonically increasing, constant speed functions 𝑓 , 𝑔 : 𝑀 → R
which define the row-order and column-order of every point on

𝑀 . Furthermore, Observation 2.6 implies that the distance between

embedded rows, and between embedded vertices in the same row

should be𝑤 . We address this by sampling 𝑓 , 𝑔 appropriately.

Row order 𝑓 . Our models are closed (so they can be stuffed), and

therefore the first and last rows in the graph G contain a single

ALGORITHM 1: An outline of our algorithm

Input: A triangle mesh𝑀 , seed 𝑠 , stitch width𝑤

Output: Embedded crochet graph G = (S,R ∪ C), 𝑋G ,
crochet pattern 𝑃 (G)

Mesh to Graph ; // Section 4

Geometry S, 𝑋G ; // Section 4.1

Connectivity R, C ; // Section 4.2

Graph to pattern ; // Section 5

Graph to program ; // Section 5.1

Program to pattern 𝑃 (G) ; // Section 5.2
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(a) (b) (c) (d)

�ד

Figure 4: (a) The isolines of 𝑓 , with the seed (red), the maxima of 𝑓 (blue), and the cut (black) marked. (b) The 𝑓 , 𝑔 parameteri-
zation, and the sampled grid S, (c) The pushed forward points 𝑋G . (d) The output crochet graph G, with red row edges R and
blue column edges C.

vertex. The first row contains only the seed 𝑠 , and its function value

is 𝑓 (𝑠) = 0. We take 𝑓 (𝑣), 𝑣 ∈V to be 𝑓 (𝑣) = 𝑑 (𝑣, 𝑠), where 𝑑 is the

geodesic distance. Thus, the isolines of 𝑓 are rows, and two points

𝑝, 𝑞 ∈𝑀 are on the same row if 𝑓 (𝑝) = 𝑓 (𝑞). If 𝑓 has more than

one maximum, then we need to handle branching (see Section 7.2).

Otherwise, the vertex that attains the maximum of 𝑓 , denoted as

𝑓𝑀 will be the single vertex on the last row.

Column order 𝑔. We first cut 𝑀 along a geodesic from 𝑠 to 𝑓𝑀 ,

so that our model and the graph that we compute have the same

topology, and denote the cut model by𝑀𝐶 . The requirements are

that within each row the vertices of G have a well defined order. A

row is an isoline of 𝑓 , and therefore the rate of change along the

isoline is given by the directional derivative of 𝑔 in the direction of

the tangent to the isoline. Specifically, the tangent to the isoline of

𝑓 at a point 𝑝 ∈𝑀 is given by 𝐽∇𝑓 , where 𝐽 is the rotation by 𝜋/2
in the tangent plane of 𝑝 . Thus to find 𝑔, we solve an optimization

problem whose objective is to minimize

∫
𝑀𝐶

|⟨𝐽∇𝑓 ,∇𝑔⟩ − 1|2, s.t.
𝑔(B) = 0. Here, B ⊂ V is the longest connected path of boundary

vertices of𝑀𝐶 along which 𝑓 is strictly monotone.

Sampling. The functions 𝑓 , 𝑔 define a parameterization of 𝑀𝐶

to the plane. We conjecture that this parameterization is bijective

(as it was in all of our experiments), but leave the proof to future

work. The parameterization may have a large metric distortion,

however, if 𝑓 (𝑝) = 𝑓 (𝑞) = 𝑓0 for some two points 𝑝, 𝑞 ∈𝑀 , then

|𝑔(𝑝) − 𝑔(𝑞) | is equal to the length of the isoline of 𝑓0 between 𝑝

and 𝑞. Therefore, we uniformly sample 𝑓 , 𝑔 on a 2𝐷 grid of width𝑤 ,

yielding the vertices ofS with indices (𝑓 /𝑤,𝑔/𝑤). Pushing forward
the sampled points to the mesh𝑀𝐶 yields the embedding of S on

𝑀𝐶 (and therefore𝑀), namely 𝑋G .

4.2 Connectivity
Row edges R. Each two consecutive vertices of S on the same

row are connected by a row edge. Namely, R =
⋃𝑁

𝑖=1 R𝑖 , and R𝑖 ={(
(𝑖, 𝑗), (𝑖, 𝑗 +1)

)
| 𝑗 ∈ {1, .., 𝑛𝑖 −1}

}
. Here 𝑛𝑖 =

��S𝑖 �� = ��{(𝑖, 𝑗) ∈ S}
��
,

namely the number of vertices in the 𝑖-th row.

Let 𝑥,𝑦 ∈ S be two consecutive vertices on the 𝑖-th row. Then

we have that 𝑓 (𝑥) = 𝑓 (𝑦) = 𝑓0 and |𝑔(𝑥) − 𝑔(𝑦) | = 𝑤 . Therefore,

𝑑𝛾 (𝑓0)
(
𝑋G (𝑥), 𝑋G (𝑦)

)
= 𝑤 , where 𝛾 (𝑓0) is the isoline of 𝑓0 on 𝑀 ,

and 𝑑𝛾 (𝑓0) is the distance along the isoline. Hence, the Euclidean

distance between the embedded vertices | |𝑋G (𝑥) − 𝑋G (𝑦) | | ≤ 𝑤 ,

and the distance tends to𝑤 for a "small enough" stitch size. Here,

"small enough", means on the order of the square root of the ra-

dius of curvature of 𝛾 (𝑓0), which is given in terms of the normal

curvature in direction 𝐽∇𝑓 .

Column edges C. First, Observation 2.3 requires that all pairs of

consecutive rows are coupled. Let 𝐶𝑖 be the coupling correspond-

ing to rows S𝑖 ,S𝑖+1, and let (𝑝𝑠 , 𝑞𝑡 ) ∈𝐶𝑖 . Since 𝑝𝑠 and 𝑞𝑡 are on

consecutive rows, and therefore embedded on isolines of 𝑓 which

differ by 𝑤 , the minimal distance | |𝑋G (𝑝𝑠 ) − 𝑋G (𝑞𝑡 ) | | is close to
𝑤 . Therefore, if among all couplings we seek the minimizer of:

min

𝐶𝑖 :𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔

∑︁
(𝑝𝑠 ,𝑞𝑡 ) ∈𝐶𝑖

| |𝑋G (𝑝𝑠 ) − 𝑋G (𝑞𝑡 ) | |, (2)

then the length of the column edges will be close to𝑤 .

A minimal coupling between every pair of consecutive rows is

found by Dynamic Time Warping (DTW) [Gold and Sharir 2018;

Sakoe and Chiba 1978].

5 CROCHET GRAPH TO INSTRUCTIONS
5.1 Graph to Program
In order to turn the crochet graph into instructions, we rely on the

following observation: crochet instructions (patterns) constitute

an instruction set, and as such, crocheting is an execution and the

finished object is an execution result. Moreover, because of the

nature of a crocheted object, it is not only a result but a step-by-

step execution trace.
Therefore, given a crochet object, or in this case its graph repre-

sentation G, deriving instructions constitutes a form of execution
reconstruction [Zuo et al. 2021], a method for reconstructing the set

of instructions that lead to an execution trace. While reconstruct-

ing an execution trace generally requires searching an exponential

space of possible instruction sequences, the crochet instruction set
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Figure 5: The state of the transducer before (top) and after (bottom) producing a stitch. Vertices at the head of the rows are
marked in green, unconsumed vertices in purple, and consumed vertices in yellow. See the text for details.

is limited enough that reconstituting a trace is done in linear time

using a transducer.

In order to reconstruct the trace, the degree of the graph vertices

in both the current row S𝑖 and next row S𝑖+1 must be considered.

Therefore, an execution reconstruction transducer accepts two con-

secutive rows and their connecting edges, and advances on the

rows based on the vertex degrees in either row. For example, if at

S𝑖+1, the transducer is at a vertex with one edge connecting it to

the previous row S𝑖 , and at the current head of S𝑖 there is only a

connection to the current head of S𝑖+1, the transducer will yield a

sc. If there are 𝑥 > 1 connected vertices in S𝑖 to the head of S𝑖+1,
the transducer will advance on S𝑖 to consume them all, advance

on a single vertex on S𝑖+1, and produce a dec(x). Analogously, for
𝑥 > 1 connected vertices in S𝑖+1 to the head of S𝑖 , the transducer
will advance on S𝑖+1 to consume them, advance on a single vertex

on S𝑖 and then produce a inc(x). Figure 5 (left, middle) shows an

illustration of the different situations. This is entirely analogous to

the way crocheting the row is done.

Because the transducer chooses its transition based on which

vertex at the current heads of the rows has a degree larger than 1,

it is not technically deterministic. However, for a non-deterministic

choice to exist, both the head of S𝑖 should be connected to multiple

vertices in S𝑖+1 and vice versa. This is impossible, since all the pairs

of consecutive rows of G are coupled (see Figure 5(right)). Thus,

under the constraints of the input, i.e. a valid crochet graph G, all
the transitions are mutually exclusive, rendering the transducer’s

behavior essentially deterministic.

5.2 Program to Human-readable Pattern
The instructions in a reconstituted trace can get quite repetitive.

The raw output can contain the following rows:

row 2: sc, inc, sc, sc, sc, inc, sc, sc, sc, inc, sc, sc
row 3: sc, inc, sc, sc, sc, inc, sc, sc, sc, inc, sc, sc

indicating that row 2 is constructed via an sc instruction followed

by an inc then another two sc, repeating three times, then row 3 is
constructed the same way. To make the instructions both succinct

and more human-readable, it is customary to convert this code to:

rows 2-3: (sc, inc, 2sc)*3

In order to do this, we employ a disassembly technique called loop
folding [Lee et al. 1994], which finds maximal repetitions of in-

structions and turns them into loops. Loop folding of crochet in-

structions occurs at three different levels: repeating rows, repeating

sequences of stitches, and repeating stitches. In order to find maxi-

mal repeating sequences, the order in which loops are folded must

be: sequences first, and then repeating stitches. In the above exam-

ple, if repeating stitches were folded first, row 2 after this initial

folding would be sc, inc, 3sc, inc, 3sc, inc, 2sc, which
means the repetition that can be identified within the row would

have been smaller. Instead it is first folded to find the repeating

sequence (sc, inc, sc, sc)*3, which is maximal, and then the

internal sequence is re-folded to identify the 2sc. Finally, identical
rows are folded together.

6 CROCHET GRAPH TO 3D EMBEDDING
We generate a 3D embedding 𝑌G of the crochet graph G using

ShapeUp [Bouaziz et al. 2012], in order to obtain a visualization

of the expected result. Interestingly, using purely geometric condi-

tions the expected result is quite similar to the crocheted model in

practice. We use the following constraints for ShapeUp: (1) The col-

umn edges which represent sc stitches, as well as the row edges are

constrained to have length𝑤 , (2) the embedding of the seed point

𝑠 is fixed to the position of the seed vertex, and (3) smoothness. We

initialize 𝑌G using the sampled points 𝑋G . Some of the figures (see

for example Figure 6) show in addition to the embedded crochet

graph 𝑋G the ShapeUp result 𝑌G .

7 OBSTRUCTIONS TO CROCHETABILITY
7.1 Negative mean curvature
As curvature computations are not scale invariant, all the models

are normalized to have surface area equal to 1, so that we can use

the same parameters across all the models.

7.1.1 Positive Gaussian curvature. Crocheting and stuffing a model

which has "craters", i.e. regions of positive Gaussian curvature

and negative mean curvature, will not yield a geometry that is

similar to the input mesh. Thus, we apply a pre-processing step

(similarly to Konakovic et al. [2018]) to smooth out the craters.

Specifically, we apply Conformal Mean Curvature Flow [Kazhdan
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(a) (b) (c) (d) (e) (f)

Figure 6: Amodel with negativemean curvature (a) and negative Gaussian curvature (b) in the same region. The corresponding
embeddings 𝑌G (c,d) and knitted objects (e,f), with curvature-adapted (c,e) and uniform (d,f) sampling rate of 𝑔. Note that the
uniform sampling rate does not lead to a model that is similar to the input, whereas curvature-adapted sampling yields a
better result.

(a) (b) (c) (d) (e)

Figure 7: (a) The isolines of 𝑓 for the marked red seed point, and the saddles (cyan) and maxima (blue) of 𝑓 . (b) The resulting
segments. (c) The crochet graph G, 𝑋G . (d) The embedding 𝑌G of the crochet graph. (e) The final knitted model. Different
segments were crocheted in different colors for better visualization.

et al. 2012] localized to these areas until the mean curvature is

positive everywhere.

7.1.2 Negative Gaussian curvature. The sampling rate of the iso-

lines of 𝑓 is determined by the directional derivative of 𝑔 w.r.t. the

tangent to the isoline, namely by ⟨∇𝑔, 𝐽∇𝑓 ⟩. If the curvature in the

direction of the isoline 𝑘 𝐽 ∇𝑓 is large compared to the stitch width𝑤 ,

a uniform sampling rate is inadequate, and does not result in a simi-

lar geometry. We therefore adjust the sampling rate in these regions

by setting ⟨∇𝑔, 𝐽∇𝑓 ⟩ = ℎ(𝑘 𝐽 ∇𝑓 ). We take ℎ(𝑥) = tanh(−𝑥/𝛼)/2+ 1,
to avoid degenerate sampling rates, with 𝛼 = 10. Figure 6 shows

an example of such a model. In the central region, the model has

negative mean and Gaussian curvature (a,b). Using a uniform sam-

pling rate does not fully reconstruct the negative curvature (d,f),

whereas a curvature adapted sampling does (c,e).

7.2 Branching
If for a given seed 𝑠 , the geodesic function 𝑓 (𝑥) = 𝑑 (𝑠, 𝑥) has
multiply-connected isolines, the graph G cannot cover the model.

In these cases, the model is automatically decomposed into multiple

segments, each of which can be crocheted using the approach de-

scribed in Sections 4 and 5. The segments are attached by a method

called "join-as-you-go" [Bennett 2020], meaning each segment is

crocheted onto the last row of the previous segment, and therefore

no additional sewing is required. Furthermore, the segment bound-

aries are not visible in the crocheted object. The more common

method, in contrast, involves sewing together closed segments,

which requires accuracy to achieve geometric details such as sym-

metry. In this section we describe the modifications required to

accommodate such objects.

7.2.1 Mesh to Graph. Given a seed 𝑠 let 𝑓 (𝑥) = 𝑑 (𝑠, 𝑥). Let Π =

(𝜎1, .., 𝜎𝑚) be the saddle points of 𝑓 , sorted by 𝑓𝑖 = 𝑓 (𝜎𝑖 ). Namely

𝑓1 ≤ 𝑓2 ≤ ... ≤ 𝑓𝑚 . For each 𝜎𝑖 in order, we compute the isoline of

𝑓𝑖 , denoted by 𝛾𝑖 , and slice a new segment for each connected com-

ponent of 𝛾𝑖 . Meaning, the segments are obtained by slicing along

the isolines of the saddle points, ordered by increasing geodesic

distance to the seed. Figure 7(a) shows the isolines of 𝑓 for the seed



SCF ’22, October 26–28, 2022, Seattle, WA, USA Michal Edelstein, Hila Peleg, Shachar Itzhaky, and Mirela Ben-Chen

(a) (b)

Figure 8: (a) The cut location (brown) on a segmented model. (b) The crocheted model with the cut marked using a piece of
yarn.

point 𝑠 marked in red, as well as the saddles (cyan), and maxima

(blue).

In addition to the segmentation, we generate a directed graph

𝐺𝜎 , whose vertices are the segments, and where an edge (𝑠, 𝑡)
exists if the segments 𝑀𝑠 and 𝑀𝑡 share a boundary, and 𝑓 values

on 𝑀𝑠 are smaller than 𝑓 values on 𝑀𝑡 . The crocheting order of

the segments is determined by a topological sort of 𝐺𝜎 . Figure 7(b)

shows the resulting segments. Very thin segments might not be

sampled (marked in black in Figure 7(b) and other figures), and are

skipped and not crocheted.

Geometry. Any resulting segment𝑀𝑙 is either a half sphere or a

cylinder, and thus can be covered by a crochet graph G𝑙 . While 𝑓 is

computed for the whole model before segmentation, 𝑔 is computed

for each segment separately. The cut for 𝑔 is made from the maxima

of 𝑓 in the segment to the closest point on the segment’s boundary.

If 𝑓 attains its maximum on one of the boundaries of the segment

(there are at most two boundaries), then cut is computed to the

closest point on the other boundary.

Figure 8 shows an example of the location of the cut, where we

show the front and the back of the model. We show the location

of the cut in brown on the segmented model (a), as well as the

location of the cut in the crocheted model (b). To mark the location

of the cut during crocheting a piece of yarn was used to mark the

beginning/end of the row.

Connectivity. For every two segments 𝑀𝑠 , 𝑀𝑡 which share an

edge (𝑠, 𝑡) in𝐺𝜎 , we add an additional condition that the last row of

𝑀𝑠 is coupled to the first row of𝑀𝑡 . Figure 7(c) shows the crochet

graph for all the segments of the Homer model. Finally, (e) shows

the crocheted model, where each segment was crocheted with a

different color for better visualization.

7.2.2 Graph to instructions. The same simulation of the crochet

operations is applied to the first row of a new segment, but the

sequence of stitches that is used as its previous row is no longer a

full row. Instead, the last rows of all attached segments are arranged

and filtered to include only vertices that have a connecting edge

to the new segment’s row, constituting a “joint” previous row. The

transducer then takes stock of when its consumption of the previ-

ous row skips stitches, splits segments, skips segments, or spans

multiple parent segments, and includes this information in the row

instructions.

8 LIMITATIONS
Our method only handles closed surfaces, since we aim for Amigu-

rumi models, which are stuffed. The segmentation approach may

generate thin segments, which are harder to crochet. While we

filter out very thin segments, we believe that small modifications

to the singularity locations can yield a better segmentation without

considerably affecting the shape. Our approach does not take the

symmetry of the model into account, and thus discretization errors

for low resolution patterns may lead to non-symmetric crocheted

models. Our current setup also has limited design freedom. While

using a single seed is simple, it does not give the user control of the

knitting direction throughout the shape.

9 RESULTS
9.1 Implementation Details
We implemented our algorithm in Matlab and C++. We use Heat

Geodesics [Crane et al. 2017] for computing geodesic distances,

where we took the recommended time parameter 𝑡 , namely the

average edge length squared. In some cases, the mesh has too many

geometric details, leading to neighboring saddles/extrema of the

distance function. In this case, we take advantage of the tunability

of heat geodesics, and repeated multiply 𝑡 by an increasing power of

2 until there are no more neighboring saddles/extrema. For comput-

ing geodesic paths we use [Sharp and Crane 2020]. Table 2 provides

the statistics for all the models. Algorithm running times were

measured on a desktop machine with an Intel Core i7.
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Table 2: Statistics for the crocheted models.

Model Rows Segments Stitches Time (min)

Teddy, Fig 1, Fig 10 60 6 3670 2.5

Teddy, Fig 10 30 6 880 2.1

Homer, Fig 7 50 6 1605 2.0

Mushroom, Fig 9 30 1 365 0.2

Man, Fig 8 45 6 1643 1.5

C, Fig 10 40 1 1118 0.3

Fish, Fig 10 40 1 1020 0.3

Bob, Fig 10 30 4 854 1.0

Bunny, Fig 10 45 5 2470 0.8

Moomoo, Fig 10 60 8 2491 6.9

Pretzel, Fig 10 30 7 586 1.5

9.2 Gallery
Figures 1, 7, 6 demonstrate our results. Figure 10 shows additional

models, where we show the (a) segmented shape and seed, (b) the

crochet graph G and its embedding 𝑋G on the input mesh, (c) the

embedding 𝑌G generated from the edge lengths, and (d) the final

crocheted object. The sixth row of Figure 10 shows an example of a

pretzel model, which cannot be scheduled for machine-knitting as

discussed at AutoKnit [Narayanan et al. 2018] (see Figure 25 there).

Our method, on the other hand, generates crochetable instructions.

The last two rows of Figure 10 show the results for the same model,

seed point, yarn type and hook but using different stitch width𝑤 .

Note that while manually adapting the pattern to different sizes is a

difficult task, our algorithm preforms it automatically. Note that the

shapes are similar to the input, and the segment boundaries are not

visible in the output crocheted models. Therefore, we can achieve

varied geometries without visibly segmenting the shape, leading

to more visually pleasing results than the approach by Igarashi et

al. [2008a] (see Figure 11 there). Furthermore, our results have a

closer resemblance to the input, compared to the method by Guo

et al. [2020] (see Figure 12 there).

9.3 Creases
Since stuffed items tend to be smooth, there exist crochet shaping

techniques that allow the generation of creases. Specifically, instead

of inserting the hook under both loops of the stitch, the hook is

inserted only in the front loop (denoted Front Loop Only FLO), or
only in the back loop (denoted Back Loop Only BLO). The BLO (resp.

FLO) stitch allows creases which are positively (resp. negatively)

curved with respect to the columns direction (i.e. orthogonal to the

knitting direction).

We define crease vertices as vertices that have large maximum ab-

solute curvature, and their maximum absolute curvature direction

is orthogonal to the knitting direction. For any two consecutive

crease vertices on the same row, we mark all the stitches based on

these vertices as BLO or FLO, depending on the sign of the curvature.

We allow the user to choose whether to enable this option or not.

Figure 9 shows an example of a model where this shaping technique

was used. The BLO (resp. FLO) edges are marked in green (resp. cyan)

in (b). Note the corresponding sharp crease in the knitted object (c).

We note that creases have also been used in knitting. For example,

[Wu et al. 2019] allow for creases, but they use a different technique.

(a) (b) (c)

Figure 9: (a) The isolines of 𝑓 for the marked red seed point,
and the maxima of 𝑓 (marked blue). (b) The crochet graph
with BLO edges (green) and FLO edges (cyan) (c) The final knit-
ted model.

10 CONCLUSIONS AND FUTUREWORK
We presented a novel automatic approach for generating crochet

knitting instructions for Amigurumi from an input triangle mesh.

Given a single seed point and a stitch size, we generate human-

readable instructions that use only simple crochet stitches (sc, inc,
dec). Our method is applicable to a variety of geometries, and leads

to crocheted models which are visually similar to the input shape. In

the future we plan to incorporate our method within an interactive

framework that allows the user to move the seed point, change

the yarn and the gauge and see the expected shape of the output.

Furthermore, we plan to add colors and texture, as well as support

for additional types of stitches.

With the wide popularity of Amigurumi, and crochet in general,

in recent years, we believe that tools that allow novice users, as

well as pattern designers, to generate crochet instructions from 3D

models would be quickly adopted and built upon by the crocheters

and makers communities. Our approach provides an important

stepping stone in this direction, and we expect that it will sow the

seeds for further research in comptuational crochet.
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(a) (b) (c) (d)

Figure 10: A gallery of our results. (a) The segmentation. (b) The crochet graph G, 𝑋G (c) The embedding 𝑌G of the crochet
graph. (d) The crocheted model. Note that the locations of the segments is not visible in the final output.
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