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Abstract 
 
A space deformation is a mapping from a source region to a target 
region within Euclidean space, which best satisfies some user-
specified constraints. It can be used to deform shapes embedded 
in the ambient space and represented in various forms – polygon 
meshes, point clouds or volumetric data. For a space deformation 
method to be useful, it should possess some natural properties: 
e.g. detail preservation, smoothness and intuitive control. A har-
monic map from a domain Ω ⊂ Rd to Rd is a mapping whose d 
components are harmonic functions. Harmonic mappings are 
smooth and regular, and if their components are coupled in some 
special way, the mapping can be detail-preserving, making it a 
natural choice for space deformation applications. The challenge 
is to find a harmonic mapping of the domain, which will satisfy 
constraints specified by the user, yet also be detail-preserving, and 
intuitive to control. We generate harmonic mappings as a linear 
combination of a set of harmonic basis functions, which have a 
closed-form expression when the source region boundary is 
piecewise linear. This is done by defining an energy functional of 
the mapping, and minimizing it within the linear span of these 
basis functions. The resulting mapping is harmonic, and a natural 
"As-Rigid-As-Possible" deformation of the source region. Unlike 
other space deformation methods, our approach does not require 
an explicit discretization of the domain. It is shown to be much 
more efficient, yet generate comparable deformations to state-of-
the-art methods. We describe an optimization algorithm to mini-
mize the deformation energy, which is robust, provably conver-
gent, and easy to implement. 
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1  Introduction 
 
Space deformation methods deform the ambient space in which a 
shape is embedded, instead of explicitly deforming the shape 
itself. Such methods have become popular in recent years [Huang 
et al. 2006; Lipman et al. 2007b; Joshi et al. 2007, Lipman et al. 
2008; Sumner et al. 2007; Botsch et al. 2007], for several reasons. 
First, they are more general than explicit deformation – space 
deformation can be applied to any shape representation, whether it 
is a polygonal mesh, a point cloud or volumetric data. Second, by 
deforming the ambient space, the computational complexity of the 
deformation is decoupled from the complexity of the shape, hence 
even extremely complex shapes can be deformed at interactive 
rates.  
________________________ 
 
 
 
 
 
 
 
 
 

Figure 1: The Beast model enclosed in its cage (left) and its de-
formation using a variational harmonic map (right) 
 
Some space deformation methods [Lipman et al. 2007b; Joshi et 
al. 2007; Lipman et al. 2008] are "cage-based". In these methods, 
a given "source cage" is manipulated by the user to create a "tar-
get cage". Then, based on the source and target cages, a mapping 
of the source cage is defined. If the mapping function has a 
closed-form expression, the deformation method becomes accu-
rate and efficient. On the other hand, manipulating a cage is a 
tedious and time-consuming task. A more user-friendly and natu-
ral deformation method is direct manipulation – the user positions 
a small number of "control points" inside the domain, and ma-
nipulates them instead of the cage. Such methods [Huang et al. 
2006; Sumner et al. 2007; Botsch et al. 2007] define the space 
deformation on a domain which is coarser than the input shape, 
and solve an optimization problem to find the parameters of the 
deformation, given the user's constraints. As this optimization 
problem is generally non-linear, the robustness and efficiency of 
these algorithms depend critically on the formulation of the de-
formation, and the optimization method used.  
 
We propose to use harmonic maps of the source region as the 
underlying deformation model. Since harmonic functions are 
smooth and regular, they are used for a wide range of applica-
tions, from parameterization [Floater and Hormann 2005] and 
remeshing [Dong et al. 2005] to space deformations [Joshi et al. 
2007; Lipman et al. 2008]. We generate harmonic maps on the 
domain as a linear combination of harmonic basis functions. In 
the special case that the domain is a polyhedron, these basis func-
tions, and their first and second derivatives, will have closed-form 
expressions, as will the harmonic maps. Using these expressions, 
we allow the user to place position and orientation constraints at 
arbitrary locations inside the domain and define an energy func-
tional which depends also on these constraints. By defining addi-
tional "rigidity lines" in a semi-automatic way, the resulting de-
formation is a natural "As-Rigid-As-Possible" deformation of the 
shape, respecting the specified constraints. It is worth noting that 
our harmonic basis functions are a variant of the "Green coordi-
nates" of Lipman et al. [2008] (and Weber et al. [2009]), however, 
we give simpler expressions for them, and also provide their first 
and second derivatives.  
 
 
 



1.1  Contribution 
 
Our main contribution is a robust and very efficient space defor-
mation method, which provides some advantages over existing 
methods. First, the user manipulates a set of position and orienta-
tion constraints, instead of directly manipulating the "source 
cage", hence our method is more intuitive and easy to control. 
Second, we have a closed-form expression - a linear combination 
of basis functions - for the deformation of a continuous domain, 
thus do not require a voxelization of the input domain, as some 
other methods do. And finally, since we have closed-form expres-
sions also for the gradients of the deformation, our optimization 
procedure may be based on an alternating least-squares "lo-
cal/global" algorithm, which, until now, was applicable only in 
discrete mesh-based settings. This optimization method is ex-
tremely efficient, as its computational complexity is dominated by 
matrix-vector multiplications using pre-computed matrices, thus 
may also be easily implemented on the GPU. In addition, it is 
quite simple to implement, and guaranteed to converge.  
 
1.2  Previous Work 
 
Shape deformation is one of the most active research subjects in 
computer graphics, and a thorough review of all the recent work is 
outside the scope of this paper. We shall thus concentrate on the 
space deformation methods most relevant to our work. In general, 
these methods can be classified into two major groups – "cage-
based" deformation, and direct manipulation deformation.  
 
In "cage-based" deformation, the user specifies the boundary of a 
relevant region of space – the source "cage" – which contains the 
input shape. The cage is typically a piecewise-linear closed sur-
face. The user then manipulates the vertices of this cage to gener-
ate a target cage and the deformation is defined by the relationship 
between these two cages. Cage-based methods are closely related 
to barycentric coordinates, as typically the deformation is defined 
as a linear combination of the vertices of the target cage with a set 
of barycentric coordinate functions defined on the input cage. 
Since these barycentric coordinate functions depend only on the 
source cage, they can be pre-computed making for a very efficient 
method, as the deformation then requires only a matrix-vector 
multiplication. One of the first such methods [Huang et al. 2006] 
used mean-value coordinates [Floater et al. 2005; Ju et al. 2005] 
as the coordinate functions. Unfortunately, mean-value coordi-
nates are not guaranteed to be positive inside the domain unless it 
is convex. This causes severe artifacts in the resulting deforma-
tion. Later methods [Joshi et al. 2007] suggested using harmonic 
coordinates instead, as these are guaranteed to be positive inside 
the domain. However, harmonic coordinates are the solution of a 
Dirichlet problem on the boundary of the domain, and they do not 
have a closed form expression. Thus, computing these coordinates 
is not easy. Recently, Lipman et al. [2008] showed how to define 
two sets of coordinate functions – Green coordinates, which have 
closed-form expressions, and result in detail-preserving mappings. 
Later, Weber et al. [2009] showed that these coordinates in two-
dimensions are a special case of complex-valued barycentric co-
ordinates, and may be derived from the celebrated Cauchy inte-
gral theorem. They called them Cauchy-Green coordinates. All 
the cage-based methods have a common disadvantage – detailed 
deformations are possible only with relatively complex cages, and 
such cages – even with a few hundred faces – are extremely hard 
to manipulate in order to generate a satisfying result. To overcome 
this problem, Weber et al. [2009] proposed something similar in 
spirit to our method: use the complex Cauchy-Green coordinates 
as conformal basis functions, and find the new cage location by 
solving an optimization problem derived from position constraints 

supplied by the user. Although their method is quite effective, the 
complex conformal formulation applies only to planar deforma-
tion. Our method can be considered as a generalization of Weber 
et al. [2009] to three dimensions, and Rd in general. But there is a 
major difference between the two methods. We use harmonic 
mappings as basis functions instead of conformal functions, since 
complex holomorphic functions (which in two dimensions gener-
ate conformal maps) do not have a simple generalization to three 
dimensions. As a result, in order to achieve detail-preservation, 
we need to solve a non-linear minimization problem, whereas in 
Weber et al. [2009] the optimization required the solution of a 
linear system.  
 
It is worth noting that all previous methods [Joshi et al. 2007; 
Lipman et al. 2008; Weber et al. 2009] use harmonic maps of 
some sort as their underlying deformation function. Harmonic 
coordinates use independent harmonic functions for each coordi-
nate, thus are able to enforce an exact interpolation of the target 
cage. However, this is both hard to compute, and causes serious 
shearing effects. Cauchy-Green coordinates in two dimensions 
[Lipman et al. 2008; Weber et al. 2009] enforce conformal maps – 
harmonic maps, whose two components have orthogonal gradi-
ents with equal norm. Green coordinates in three dimensions use 
the vertices of the target cage and its normals as the coefficients 
of a linear combination of the harmonic basis functions. From this 
point of view, our framework is a generalization of all those coor-
dinates – we seek a harmonic map, but instead of predefining the 
relationship between its components, the relationship is derived 
implicitly by minimizing an energy functional. 
 
Two other recent space-deformation methods which solve a non-
linear optimization problem given positional constraints are those 
of Sumner et al. [2007] and Botsch et al. [2007]. In Sumner et al 
[2007], the deformation is defined using a deformation graph, 
which is automatically computed from the input shape. An affine 
transformation is associated with each node in the deformation 
graph, which describes the transformation this node undergoes. 
These transformations are the variables of an energy function – 
which forces them to be rigid and have a smooth behavior. Mini-
mizing this energy, combined with the position constraints im-
posed by the user, generates the deformation parameters of the 
deformation graph. The deformation of a point in the ambient 
space is then computed from the transformations of nodes in the 
deformation graph, which are close in Euclidean distance to this 
point. There are two disadvantages of this method compared to 
ours – first, the deformation graph is not a cage, in the sense that 
the deformation function is computed based on Euclidean dis-
tances. This causes artifacts when deforming a shape which has 
pieces which are close to each other in Euclidean distance, but far 
apart in geodesic distance, for example, fingers of a hand. In addi-
tion, the smoothness of the deformation is enforced discretely, by 
requiring neighboring faces of the deformation graph to have 
similar transformations. In our setting, we have a closed-form 
expression for the second derivatives of the deformation, and we 
require these to vanish on the boundary of the domain, hence the 
regularization term of the energy is more robust. A similar method 
is that of Botsch et al. [2007], where the deformation is defined on 
a voxelization of the input region. Here the deformation is also 
computed by solving a non-linear optimization problem using a 
multi-grid framework. This method suffers from some aliasing 
effects due to the discretization, and in addition its implementa-
tion is somewhat involved. Comparisons of the results of our 
method with the methods of Sumner et al. and Botsch et al. will 
be presented in the Section 4. Other direct surface manipulation 
techniques exist, such as such as those of Sorkine et al. [2004], 
Lipman et al. [2005] and Sorkine and Alexa [2007], to mention 



only a few. However, as these methods work directly on the sur-
face of a manifold mesh, they are somewhat limited, and cannot 
be applied to other shape representations, such as polygon soups 
or point clouds. 
 
Our formulation of the deformation mapping is based on Green's 
third identity, which relates the values of a harmonic function on 
the boundary of a region to its values inside the region. This is 
closely related both to the Green coordinates defined by Lipman 
et al. [2008], and to a common method for solving boundary-
value problems known as the “Boundary Element Method" or 
BEM [Kythe 1995]. BEM has been used, for example, by Martin 
et al. [2008] to discretize harmonic basis functions for polyhedral 
finite elements. Despite the common mathematical machinery, our 
approach is somewhat different from both these methods. In the 
BEM framework, one seeks a harmonic function on the domain 
having some given boundary values, whereas we seek a harmonic 
map which minimizes a given functional. In the Green coordi-
nates setting, the boundary mapping functions are set to be the 
"target cage" and its normal vectors, where as in our setting the 
boundary mapping functions are variables in an optimization 
problem. 
 
1.3  Method Overview 
 
Before diving into the underlying mathematics, we present a brief 
overview of our deformation method. The input is a polyhedral 
cage enclosing some region of interest, and a set of position and 
orientation constraints on a number of points within the cage. The 
output is a harmonic deformation mapping f, which maps every 
point in the input cage to some point in R3.  
 
As will be explained in the next section, the deformation mapping 
is uniquely defined by two functions, a and b, defined on the ver-
tices and faces of the cage, respectively. In order to find a and b, 
we pose an optimization problem where the discrete values of a 
and b are the variables. The goal of the optimization problem is to 
minimize an energy functional which requires detail preservation 
and smoothness, while enforcing the user's constraints.  
 
In the discrete setting, our method is somewhat similar to solving 
for the locations of the vertices of the target cage, using the Green 
coordinates [Lipman et al. 2008] deformation method. Thus, the 
function a is analogous to the vertex locations of the target cage, 
and b is analogous to the normals to the faces. However, there is 
an important difference – in our setup, the functions a and b are 
independent, whereas in the Green Coordinates setup, b (the nor-
mals to the faces of the target cage) are uniquely defined by a (the 
vertices of the target cage). Hence, we have more degrees of free-
dom, and a larger space of possible deformations. 
 
The rest of the paper is organized as follows. In the following 
section we define the deformation mapping, first considering a 
general (continuous) domain in Rd as the cage, and then specializ-
ing it to the case where the cage is a polyhedron. We proceed by 
defining the energy functional, and posing the optimization prob-
lem. In Section 3 we discuss our optimization procedure, and its 
convergence properties. Experimental results and comparisons 
with state-of-the-art methods are presented in Section 4. We con-
clude with a discussion and some future research directions in 
Section 5. 
 
2   Variational Harmonic Maps 
 
Given the input domain – the region of space in which our shape 
lies, we consider all possible harmonic mappings of this domain. 

Within this large space of possible deformations, we will choose 
the harmonic map which both satisfies the user's constraints, and 
preserves detail as much as possible. We begin by describing our 
deformation mapping, first for a general domain, and then for a 
domain with a piecewise-linear (polyhedral) boundary. Once the 
deformation mapping is established, we will discuss the energy 
functional. 
 
2.1 Harmonic Maps from Boundary Functions 
 
Let Ω be an open region of Rd with a smooth boundary S, and let f 
be a continuous function from Ω to Rd. For example, for d = 3, f = 
(u(x,y,z), v(x,y,z), w(x,y,z)). We say that f is a harmonic map if 
each of its d components are harmonic functions from Ω to R. 
Specifically, in three dimensions, f is a harmonic map if: 

2 2 2( , , ) ,     ( ) 0, ( ) 0, ( ) 0p x y z u p v p w p∀ = ∈ ∇ = ∇ = ∇ =Ω  

where ∇2 is the Laplacian operator:  
2 2 2

2
2 2 2( , , ) u u uu x y z

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

 

Since the Laplacian is a linear operator, harmonic mappings form 
a linear subspace of functions from Rd to Rd. We would like to 
select a mapping from this linear space, which both satisfies the 
user's constraints and is detail-preserving. However, using the 
current formulation, it is not obvious how to find such a mapping. 
Fortunately, all harmonic maps on Ω can be generated by inte-
grating two smooth maps defined on S=∂Ω, (the boundary of Ω) 
with two special functions. This is formalized in the following 
theorem. 
Theorem: The mapping f : Ω → Rd is a harmonic mapping if and 
only if there exist two C2 mappings a and b: a,b: S → Rd such that 

      ˆ( ) ( )( ( , ) ( )) ( ) ( , )
q S q S

f p a q G q p n q dA b q G q p dA
∈ ∈

= ∇ ⋅ −∫ ∫         (1) 

where G(p,q) is the fundamental solution of the Laplace equation 
in Rd and ˆ( )n q is the unit normal direction to the surface S=∂Ω at 
the point q.  
 
Proof: Let us concentrate on the case d = 3. Then G(p,q) = 
1/(4π|p-q|). It is straightforward to see that f as defined in (1) is a 
harmonic mapping by taking the derivative relative to p under the 
integral sign. Let us consider the second integral – the mapping b 
is defined on S, hence does not depend on p. So: 

( )2 2( ) ( , ) ( ) ( , )b q G q p b q G q p∇ = ∇  

G is a solution to the Laplace equation, hence harmonic: 
( )2 ( ) ( , ) 0b q G q p∇ = . Similarly, for the first integral – a is de-

fined on the boundary and does not depend on p. So, we have: 

( ) ( )
( )

2 2

2

ˆ ˆ( )( ( , ) ( )) ( ) ( , ) ( )

( ) x x y y z z

a q G q p n q a q G q p n q

a q G n G n G n

∇ ∇ ⋅ = ∇ ∇ ⋅

= ∇ + +
 

where Gx = ∂G/∂x, and so on, and ˆ( )n q =(nx,ny,nz). Since G is 
harmonic, all its partial derivatives Gx, Gy and Gz are harmonic 
functions. In addition, the normal to the surface does not depend 
on p, so its dot product with ∇G is just a linear combination of 
harmonic functions, which is again a harmonic function. 
 
The opposite direction is due to Green's third identity, which 
guarantees that any harmonic scalar function u satisfies:  

ˆ ˆ( ) ( )( ( , ) ( )) ( ( ) ( )) ( , )
q S q S

u p u q G q p n q dA u q n q G q p dA
∈ ∈

= ∇ ⋅ − ∇ ⋅∫ ∫   (2) 



for any point p ∈ Ω. This is true for all the d components of f. 
Hence, taking  

ˆ( ) ( )               ( ) ( ) ( )fa q f q b q J q n q= = ⋅  
where Jf(q) is the Jacobian of f at q, completes the proof. ♦ 
 
We will now use Eq. (1) to define our deformation mapping. 
 
The continuous deformation mapping.  The fundamental 
solution G(q,p) to the Laplace equation has a closed-form expres-
sion for any dimension d. We define the following two scalar 
kernel functions: ˆ ˆ, : ( )S Rψ ϕ × →Ω   

ˆ ˆ ˆ( , ) ( , )          ( , ) ( , ) ( )q p G q p q p G q p n qψ = ϕ = ∇ ⋅  

Given two smooth mappings a,b : S → Rd, we define the deforma-
tion mapping  f: Ω → Rd to be 

, ˆ ˆ( ) ( ) ( , ) ( ) ( , )a b
q S q S

f p a q q p dA b q q p dA
∈ ∈

= ϕ − ψ∫ ∫  

In this way we are able to represent fa,b at any point of the domain 
as boundary integrals of the kernel functions with a and b. By the 
Theorem, the deformation mapping spans the linear space of all 
harmonic mappings on Ω, through the mappings a and b on S. 
Since a and b do not depend on p, we can also obtain expressions 
for the partial derivatives of the mapping. For example: 

, ( ) ˆ ˆ( , ) ( , )( ) ( )a b

q S q S

f p q p q pa q dA b q dA
x x x∈ ∈

∂ ∂ϕ ∂ψ
= −

∂ ∂ ∂∫ ∫  

Similar expressions may be derived for any partial or higher order 
derivatives of f. Note that both the deformation mapping, and its 
derivatives, are linear in a and b. Using the deformation mapping 
and its derivatives, we will later define an energy functional E(fa,b) 
and the final deformation of a point p ∈ Ω will be ', ' ( )a bf p  where 

,( ', ') arg min( ( ))a ba b E f=  
Before defining the energy functional, we first show how the de-
formation mapping can be simplified in the special case that the 
source region is polyhedral.  
 
The discrete deformation mapping.  In the most general 
setup, the domain Ω, and the boundary mappings a and b, can be 
arbitrary. However, deformation applications usually bound Ω 
with a piecewise linear surface – meaning the deformed shape is 
contained in a d-dimensional polyhedron. In addition, we would 
like to restrict a and b to be of specific types, so that we can find 
closed expressions for the integrals of ϕ̂ and ψ̂ on the faces of the 
cage, and for their derivatives. 
 
Note, that if a and b are restricted to a specific family of func-
tions, one direction of the Theorem is not true anymore, and we 
cannot generate all harmonic mappings on Ω using (1) anymore. 
When choosing the families that a and b belong to, we have to 
make sure the identity mapping f(p) = p, and, more generally, any 
affine mapping f(p) = Ap + T (where A is an d×d matrix, and T is a 
vector), are still obtainable by (1). In this case we should use: 

ˆ ( )        ( ) ( )a q Aq T b q A n q= + = ⋅  
Hence, for a piecewise-linear cage, a can be restricted to be piece-
wise-linear on S. Since a piecewise-linear surface has piecewise-
constant normals, b can be restricted to be piecewise-constant. 
These are the simplest families for a and b. Of course, one could 
use higher degree polynomials, but then the expressions for the 
integrals of ϕ̂ and ψ̂ will be more complicated. 
 
We will discuss now specifically the three-dimensional case for a 
region Ω bounded by a triangle mesh S = (V, F), V are the vertices 
of S and F are its faces. As mentioned, a and b are not arbitrary 
mappings anymore – a is the piecewise-linear map on S defined 

by values at the vertices {av ∈ R3 | v ∈ V}, and b is the piecewise 
constant map defined by values at the faces {bt∈ R3 | t ∈ F}. 
In this case, our deformation map becomes: 

, ˆ ˆ( ) ( ) ( , ) ( , )a b t
t F t Fq t q t

f p a q q p dA b q p dA
∈ ∈∈ ∈

= ϕ − ψ∑ ∑∫ ∫  

Here, a(q) is the piecewise linear interpolation of the values ai, aj, 
ak on the vertices of the triangle t = (i,j,k) ∈ F.  
 
Precisely this equation was considered by Lipman et al [2008], 
and the analytic solutions of the integrals were given. However, 
we prefer to use different expressions, which were developed in 
the context of boundary element methods by Urago [2000]. These 
expressions have a somewhat geometric interpretation, and their 
derivatives are easier to compute. The analytic solutions of the 
integrals allow us to express f using two sets of scalar functions 
{ ( ) :v p Rϕ →Ω | v ∈ V}, and { ( ) :t p Rψ →Ω | t ∈ F}. Using these 
functions, the deformation map can be expressed as:  

, ( ) ( ) ( )a b v v t t
v V t F

f p a p b p
∈ ∈

= ϕ + ψ∑ ∑  

The expressions for ϕv and ψt, their gradient vectors and Hessian 
matrices are given in Appendix A. Figure 2 shows an example of 
such a deformation, given specific mappings a and b on S. 
 

 
Figure 2: Deformation of a range-scanned model (polygon soup) 
using our harmonic mapping. (Right) Source model enclosed in 
its cage. (Left) Deformed model.  
 
Given a point p, we can write its deformation mapping in matrix 
notation as follows: 

                         ( ) ( ) 3
, 1 11 3

3

( ) n
n m

m

f p ×
× ××

×

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
a b

a
b

ϕ ψ                       (3) 

where n is the number of vertices, m is the number of faces, ϕ is 
the row vector whose entries are ϕi(p), ψ is the row vector whose 
entries are ψi(p), a is the matrix whose i-th row is ai, and similarly 
for b.  
The transpose of the Jacobian of the deformation at the point p is: 

                   ( ) ( ) ( )( ) 3

3 33 3
3

( )
T n

f n m
m

p ×
ϕ ψ× ××

×

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

a
J G G

b
                 (4) 

where Gϕ is a matrix whose i-th column is the gradient of ϕi(p), 
and similarly for Gψ. 
The Hessian of the deformation at the point p is: 

                   ( ) ( ) ( )( ) 3

5 55 3
3

( ) n
f n m

m

p ×
ϕ ψ× ××

×

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

a
H H H

b
               (5) 

If p = (x,y,z), and fa,b(p) = (u(x,y,z),v(x,y,z),w(x,y,z)), then the Hes-
sian of u contains 9 values, of which only 6 are independent, due 
to the symmetry of the Hessian. In addition, since u is harmonic, 
uzz=-uxx-uyy so there are actually only 5 linearly independent val-
ues in the Hessian. These five values are present in the first col-
umn of Hf(p). The second and third columns hold the relevant 



Hessian values of v and w. Hϕ is a matrix whose i-th column holds 
the respective five values from the Hessian of ϕi(p), and similarly 
for Hψ.   
 
In many cases, the shape to be deformed is accompanied by nor-
mal vectors. For example, a point cloud which has a normal asso-
ciated with every point, or a triangulated mesh which contains the 
normals of the original surface. In these cases, we would like to 
deform the normals as well as the shape. We can do this by de-
forming the plane which is orthogonal to the normal vector at the 
point p ∈ Ω. Given two vectors n1(p) and n2(p), which span the 
plane orthogonal to ˆ( )n p , we have: 

( )( ) ( ) ( )( ) ( ) ( )( ), 1 2 1 2ˆ f ff n p n n p n p p n p= × = ×a b J J  

where 1n and 2n span the deformed plane. Plugging this back into 
the expression for the Jacobian matrix in (4): 

( ) ( )( )1 1
T Tn p n p ϕ ψ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

a
G G

b
 

and similarly for n2. Hence, we can pre-compute the relevant ma-
trices: 

     ( ) ( )( ) 31
2 2

32 2 3

( )
( )

T
n

T n m
m

n p
n p

×
ϕ ψ× ×

××

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

a
N N

b
              (6) 

where Nϕ is a matrix whose i-th column holds the dot product of 
∇ϕi(p) with n1(p) and n2(p), and the same for Nψ. 
 
Equipped with the deformation mapping and its first and second 
derivatives, we can proceed to define our energy functional, and 
show how to use it to find the mappings a and b. 
 
2.2 The Energy Functional 
 
Our energy functional is similar to functionals which were used 
previously in “As-Rigid-As-Possible” deformation applications 
[Sorkine and Alexa 2007; Sumner et al 2007; Botsch et al 2007]. 
It attempts to satisfy the constraints specified by the user and, in 
addition, balance detail preservation with smoothness. 
 

 
Figure 3: Generating a realistic muscle "bulge" effect by placing 
a single Jacobian constraint near the marked area, and requiring 
it to scale. In addition to the Jacobian constraints, we have also 
placed position constraints causing the hand to rotate. 
 
User constraints.  As our deformation mapping f is defined 
everywhere in Ω, the user can choose a set of r points qi ∈ Ω, and 
a set of s points ti ∈ Ω, and specify their target positions f(qi) = fi, 
and their Jacobians Jf(ti) = gi. The Jacobian constraints can be 
used to prescribe the orientation of the points ti, or any other af-
fine transform on these points. For example, in Figure 3 we have 
prescribed a set of position constraints, and a Jacobian constraint 
in the marked location, requiring its affine transform to be a small 
scale. This allowed us to easily generate the muscle "bulge" effect 
seen in the figure. The position and Jacobian constraints are hard 
constraints in our optimization process. 
 
Detail vs. volume preservation.  It is well known that the 
details of a shape at a point in space are preserved during a de-
formation if the local transformation that point undergoes is close 

to rigid. This fact has been used in many As-Rigid-As-Possible 
deformation methods [Botsch et al. 2007; Sumner et al. 2007; 
Sorkine and Alexa 2007]. However, recently Lipman et al. 
[2007a], have shown that detail preservation might come at the 
expense of volume preservation. In fact, in order to preserve the 
volume, Lipman et al. [2007a] scaled the transformations, accord-
ing to local curvature information. Hence, requiring the Jacobians 
of all the points in the domain to be rotations, will not necessarily 
give the desired effect, and might result in volume loss.  
 
However, in an As-Rigid-As-Possible deformation, it is reason-
able to assume that the points on the medial axis of the domain, 
which is a very sparse subset of the domain itself, undergo only 
rotations. For example, consider Figure 4. The figure illustrates 
the character of the deformation of a bar to an upside-down "U" 
shape, similar to the deformations in Figure 8. This deformation is 
almost volume preserving, as its relative change in volume is 
0.04. The figure color-codes the determinant and condition num-
ber of the Jacobian of the deformation on a vertical slice through 
the shape. The determinant indicates the local change in volume, 
and the condition number (σmax/σmin) indicates the amount of non-
uniform scale. As evident in the figure, the volume on the top of 
the bar increases, the volume on the bottom the bar decreases, but 
the medial axis of the bar is only bent – the volume near it re-
mains constant. In addition, the condition number is closest to 1 
near the medial axis, which indicates that the transformations in 
this area are close to rotations. 

 
Figure 4: The character of the Jacobian of the deformation within 
one slice through a vertical bar model, bent to a "U" shape. (left) 
Color-coding of the condition number. (right) Color-coding of the 
determinant.  
 
In our setting, the local transformation of a point p is simply the 
Jacobian matrix of fa,b at p. Since we can prescribe the Jacobians 
of the deformation in any location we choose, we prescribe the 
Jacobians of the medial axis to be as close as possible to rotations. 
This way we don't need to compute the desired transformations on 
the boundary of the domain, as they will be implied from the 
smoothness of the deformation. The values of these rotations are 
not known in advance, and will be computed as part of the opti-
mization process.  
 
Hence, we would like to minimize the following rigidity energy: 

 
where M(Ω) is the medial axis of the domain and the norm is the 
Frobenius matrix norm. The Jacobian is linear in the variables a 
and b, hence if we knew which rotations R(p) each point should 
undergo, minimizing ERigid would be a simple matter of minimiz-
ing a quadratic energy. Of course, R(p) are not known in advance, 
hence the optimization process is non-linear. 
 
Smoothness.  The local transformation of a point p ∈ Ω is gov-
erned by the Jacobian of the mapping f at p. A smooth deforma-
tion will have similar transformations for nearby points, and 
hence a small second derivative. So, to enforce smoothness, we 
require the Frobenius norm of the Hessian matrix of each of the 
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deformation mapping components to be as small as possible, by 
minimizing the following energy: 
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This energy can be simplified using the following observation. 
Our mapping is harmonic, and hence all the partial and higher 
derivatives of all its components are also harmonic. According to 
the maximum principle, a harmonic function on a domain 
achieves its extremum on the boundary of the domain. Hence, if 
we minimize the second derivatives on the boundary of the do-
main, they will also be bounded inside the domain. As a result, we 
may use the following smoothness energy: 

 
 
The energy.  Given the points qi and ti chosen by the user, and 
their target positions fi and target Jacobians gi respectively, we 
would like to solve the following optimization problem: 

 
where the norms are Frobenius norms, and R(p) are unknown 3×3 
matrices defined on every point p on the medial axis of Ω.  
 
The discrete energy.  Minimizing the energy functional in its 
current form is difficult, because of the non-linearity of the rota-
tion constraints, and because we do not have closed-form expres-
sions neither for the medial axis, nor for the integrals. Instead, we 
convert the integrals to a sum of finite samples, as follows. For 
the smoothness energy, we sample the boundary surface S at k 
points wi. For the rigidity energy we approximate the medial axis, 
by sample points on a set of rigidity lines. These lines can be ac-
quired from a skeleton of the deformed shape if it is available, can 
be prescribed manually by the user, or can be computed using a 
skeleton extraction algorithm, such as that of Au et al. [2008]. 
Once l such lines are given, we sample them at d anchor points 
mi, by sampling d/l points on each rigidity line.  
 
Since we require smoothness, it is sufficient for the anchor points 
to be sparsely distributed, so d can be relatively small. The as-
sumption that a sparse set of rigidity constraints is enough when 
the deformation is smooth has been used successfully in other 
deformation methods [Weber et al. 2007; Sorkine and Cohen-Or 
2004]. Consequently, we only have d unknown rotation matrices 
Ri to solve for. In this setting the optimization problem becomes: 

 
 
Figure 5 shows a comparison of results using a different number 
of anchor points for the rigidity constraints. The locations of the 
anchor points were computed using the skeleton extraction algo-
rithm by Au et al. [2008]. As is evident from the figure, increasing 
the number of anchors beyond a given point does not significantly 
improve the results.  

 
Figure 5: Deformation using a different number of anchor points. 
The leg of the armadillo model (left) was deformed to a bent posi-
tion, using the specified number of anchor points. The top and 
bottom rows show different views of the same deformed shape. 
The source pose shows the five user constraints – red spheres are 
positional constraints, and black cylinders are orientation con-
straints. 
 
Figure 6 shows two deformations of the "Armadillo" model. In 
addition, the figure shows the setup for the deformation – the 
cage, the original pose, the anchor points and the constraints. 

 Figure 6: Deformations of the Armadillo model (a) Cage and 
anchor locations (b) Original pose and constraints (c) Deformed 
pose (d,e) Another deformed pose from two different viewpoints 
 
In the following section we describe our optimization scheme for 
minimizing the deformation energy. 
 
3  Optimization 
 
To solve the optimization problem (P1) we use the following 
observation. If the variables Ri are known, then (P1) is a simple 
linear least-squares problem with linear equality constraints, 
which has a closed-form global minimum. On the other hand, if a 
and b are known, then the optimal rotation matrices Ri – those 
which are closest in Frobenius norm to the Jacobians of the de-
formation map at mi - also have a closed-form solution. This solu-
tion is a variant of the well-known “Procrustes problem”, obtained 
using Singular Value Decomposition (SVD). Hence, we can solve 
(P1) using the alternating least squares method, or "local/global" 
algorithm [Liu et al 2008; Sorkine and Alexa 2007]. In the "local" 
step, we keep a and b fixed, and solve many small and independ-
ent local problems for the Ri, while in the "global" step, we keep 
Ri fixed and solve one global linear system for a and b. We repeat 
these two steps until convergence. 
 
Convergence and robustness.  As was pointed out in previ-
ous works [Liu et al 2008; Sorkine and Alexa 2007], the "lo-
cal/global" algorithm is guaranteed to converge, because each step 
must reduce the energy. In general, the convergence rate depends 
on the initial configuration. However, since the number of vari-
ables is relatively small – the number of anchors for the Jacobian 
computation is usually smaller than the complexity of the cage – 
the "local/global" algorithm is robust enough to converge to a 
good solution from an arbitrary initial configuration. By “arbi-
trary” - we mean that the Jacobians are initialized to be random 
3×3 matrices. 
 
Figure 7 shows the resulting deformation after various numbers of 
iterations, starting from an arbitrary configuration. In addition, it 

(a)

(b) (c) (d) (e) 

00  66  2255  4422  

2 22
,, , 1 1

,

min ( ) ( ) ( )

. .   1.. ,    ( )     ,   1.. ,    ( )

       1.. ,    

d k

f i i f iF F
i i

a b i i f i i

T
i i

E f m w

s t i r f q f i s t

i d

= =

= − + λ

∀ = = ∀ = =

∀ = =

∑ ∑
i

a ba b R
J R H

J g

R R I
(P1): The Discrete Optimization Problem 

The Continuous Optimization Problem 

2 22
,, , ( )

( )

,

min ( ) ( ) ( ) ( )

. .   1.. ,    ( )    ,    1.. ,    ( )

       ( ),       ( ) ( )

f fF Fp
p M p S

a b i i f i i

T

E f p p d p ds

s t i r f q f i s t

p M p p I

∈ ∈

= − ω + λ

∀ = = ∀ = =

∀ ∈ =

∫ ∫
Ω

Ω

a ba b R
J R H

J g

R R

The Smoothness Energy  

2

,,
min ( ) ( )Smooth f F

p S

E f p ds
∈

= ∫a ba b
H



shows graphs of the value of the energy functional vs. the itera-
tion number using different initial configurations. As can be seen 
from the graph, our method always converged to the same solu-
tion, no matter which initial configuration was used. 
 

 
Figure 7: The "local/global" optimization scheme is robust 
enough to converge to a good solution from any arbitrary initial 
configuration. (Left to right) the deformed shape after 1, 3, 17 and 
200 iterations, starting from an arbitrary initial configuration. 
The graphs show the value of the energy functional vs. the number 
of iterations, starting from different random starting points. 
 
In an interactive modeling environment, the initial configuration 
can be taken from the values of a,b and Ri in the previous frame. 
In this case, a small number of iterations of the "local/global" 
algorithm are usually enough to achieve convergence. This is the 
initial configuration we used for all the examples in the paper, 
except the ones in Figure 7. In Section 4 we provide some more 
deformation examples, with the timings required to generate 
them. 
 
Let us now turn to a more detailed description of the minimization 
process. 
 
Implementation details.  Using the "local/global" approach, 
the deformation algorithm is relatively simple to implement, and 
boils down to three steps – the preprocessing step, during which 
some matrices are pre-computed for later use, the optimization 
step, where we iterate the "local/global" steps to find the values of 
Ri, and, finally, the deformation step, during which the values of 
Ri are combined with the user's constraints to generate the final 
mapping of the input shape. These steps are implemented as a 
series of matrix operations, on matrices which are "stacked" ma-
trices of ϕ, ψ and their derivatives. To avoid clutter in the nota-
tion, we redefine (3), (4) and (5) in terms of single matrices as 
follows: 

( ), ( )     ,          ,    ( )p f p f pf p p p= = =a b D z J J z H H z  
where each matrix represents a concatenation of matrices from 
(3), (4) and (5) respectively: Dp = [ϕ, ψ], Jp = [Gϕ, Gψ], Hp = [Hϕ, 
Hψ]. In addition, a is a matrix of size n×3, and b is a matrix of 
size m×3 (where n and m are the number of vertices and faces 
respectively). z is the matrix whose first n rows are a, and last m 
rows are b. 
 
Now we can convert the optimization problem to matrix notation 
using these expressions: 
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are stacks of deformation, Jacobian and Hessian matrices for the 
respective points (r position constraints, s orientation constraints, 
d anchor points and k Hessian sample points on the boundary of 
the domain), and: 
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are the right hand sides of the linear equations – the user's position 
and orientation constraints, and the unknown rotation matrices Ri 
at the anchor points. The energy can now be written as: 
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The constant λ determines the relative weight of the smoothness 
constraints vs. the rigidity constraints. In our experiments, we 
took λ to be: ˆ ˆ| | | |dλ α ∞ ∞= J H . The matrix norms are infinity 
norms – the maximal L1 norms of the rows of the matrix, and α is 
a user specified parameter, which can be used to control the stiff-
ness of the deformation. We took α to be 0.01 in all of our ex-
periments. 
 
Returning to the optimization problem, if R̂ is known, then the 
minimum of E is given by: 
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Since most of the columns of A+ are multiplied by zero on the 
right hand side, we can truncate its last 5k columns as follows: 

    ( ) 1ˆ        ,         T T
opt trunc trunc trunc

−+ += =z A R A A A A  

where AT
trunc includes only the first 3d columns of AT. 

 
We enforce the user's constraints by removing r+3s variables 
from the problem, and computing their value from the remaining 
variables using the equations: 
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This can be done, of course, only if the number of hard constraints 
is less than the number of degrees of freedom in the problem – 
n+m. However, relatively complicated deformations can be gen-
erated with a small number of position and orientation constraints. 
The resulting system is of the type: 
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where B is computed from partial matrices of A. During the opti-
mization procedure, we need to re-compute the current Jacobian 
matrices. Hence, we get: 
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In addition, once the non-linear iteration has converged, we need 
to compute the new location of the deformed shape. The new 
location of the points x1,x2,...,xa are given by: 
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The matrices C and F are pre-computed before the interactive 
deformation begins. Thus, we have laid out all the building blocks 
for our algorithm, which can be stated as follows: 
 
Pre-processing. Compute the matrices C and F, given the loca-
tions of the user's constraints, the anchor points, the Hessian sam-
ples on the boundary and the input shape. 
 

# Iterations

( )zE f
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Optimization. Select an initial solution z, R̂ , and set ˆ ˆGlobal =R R . 
Repeat until convergence the following two steps: 

1. ˆ
LocalR = normalize( ˆ

GlobalR ) 

2. 
ˆˆ  ˆGlobal

Local

⎛ ⎞= ⎜ ⎟
⎝ ⎠

hR C R                                       (7) 

In the local step, the "normalization" of the matrices ˆGlobalR is done 
by computing the SVD for each matrix Ri=USVT, and replacing it 
with UVT, up to a change of sign in the last column of U, if it has 
a negative determinant. An additional benefit of this local step, is 
that since Jacobians with negative determinant are not allowed, 
the optimization process tends to find a minimum which doesn't 
contain foldovers. Of course, since this might be overridden by 
the global step, the occurrence of foldovers depends on the user's 
constraints. In our experience, for a reasonable set of constraints, 
foldovers are not likely to appear. 
 
We detect convergence by measuring the amount of change in 
ˆGlobalR between two consecutive iterations, which is equivalent to 

the change in the rigidity energy. It would be better to measure the 
change in the total energy, however this is more computationally 
expensive. The computational complexity of each iteration is the 
complexity of computing d SVD operations, and a matrix-vector 
multiplication which is O(d(r+3s+d)). Detailed performance tim-
ings are provided in the next section. Note that the computational 
complexity of both the local and the global shape do not depend 
on the complexity of the deformed shape, nor on the complexity 
of the cage.  
 
Deformation. If ˆoptR is the last ˆGlobalR computed in the optimiza-
tion step, then the deformed locations are given by: 
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The algorithm can be summed up in a few lines of pseudo-code, 
outlined in Algorithm 1. The pre-process step requires only vector 
and matrix operations to set up the matrices, and multiply them. 
Hence, using any efficient linear algebra package, the implemen-
tation is relatively straightforward. We provide runtimes of all the 
steps of the algorithm, for various 3D models, in the next section. 

 
Algorithm 1: Pseudo-code of the deformation algorithm 

 
4   Experimental Results 
 
We implemented our “Variational Harmonic Map” (VHM) de-
formation system as a plugin to the Maya® commercial modeling 
and animation system. The optimization and deformation step of 
VHM include two building blocks – SVD computations of 3×3 
matrices, and dense matrix-vector multiply. Dense matrix-vector 
multiply operations are "embarrassingly parallel" in the sense 
that they are composed of many independent operations (multi-
plying one row by one column), which can be performed in paral-
lel. We have exploited this by implementing the computation of 
Equations (7) and (8) on the GPU. We used Nvidia’s CUDA pro-
gramming language with the BLAS library, on an Nvidia Quadro 
FX 5800 graphics card. Figures 1-3, 6-14 and the accompanying 

video demonstrate the application of VHM to different deforma-
tion scenarios. In this section we will first compare VHM to two 
other state-of-the-art deformation methods, and then discuss some 
of its properties. 
 
Comparison.  We compared the performance of VHM to two 
state-of-the-art deformation methods: "Embedded Deformation" 
(ED) of Sumner et al. [2007] and "Adaptive Rigid Cells" (ARC) 
of Botsch et al. [2007]. We compared these methods on three 
deformation scenarios of a synthetic model, and on one deforma-
tion of the beast model – measured by the overall appearance of 
the deformed shape, the detail preservation and the change in the 
total volume of the shape. Software was kindly provided by the 
respective authors.  
 
Before starting the comparison we should state upfront some dis-
advantages of VHM. Its biggest downside, compared to ED and 
ARC, is that in additional to the shape to be deformed, the user 
must also supply a cage bounding the domain, and a set of "rigid-
ity lines". Although generating the rigidity lines is relatively 
painless (e.g. using a skeleton extraction algorithm such as [Au et 
al. 2008]), creating a cage is not a trivial problem, and this is 
mostly understated in existing cage-based deformation methods. 
In this respect, methods which automatically generate the underly-
ing space representation – the deformation graph for ED and the 
voxelization for ARC, have an advantage. On the other hand, we 
believe the benefits of having a cage – a closed form expression 
for the deformation, faster optimization and separation of unre-
lated parts of the shape – outweigh the hassle of generating such a 
cage.  
 
Figure 8 shows a comparison between VHM, ED and ARC for the 
"bar" shape, with three different deformations. For VHM and ED 
methods, we used the same constraints. For ARC, we achieved the 
deformation through interactive manipulation. The results shown 
for ARC are after the final RBF interpolation step. 
 

 
Figure 8: Comparison of our deformation method – VHM - with 
ARC and ED on three deformations of the "bar" model. 

 

 
Figure 9: The setup used for the comparisons in Figure 8. (top, 
from left to right) VHM cage and anchors, ARC cells (320) and 
ED deformation graph (187 vertices). (bottom) The VHM, ARC 
and ED constraints. 
 
Figure 9 shows the setup we used for the deformations in Figure 
8. Figure 10 shows the comparison and setup for the deformation 

Precompute C,F 
While (err > threshold) do 
 Js_prev = Js 
 Js = normalize_jacobians(Js) 
 Js = C*[constraints;Js] 
 err = norm(Js_prev – Js) 
end 
new_positions = F*[constraints;Js] 
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of the beast model. The models were interactively deformed to 
reach the required pose. 

 
Figure 10: Comparison of our method (VHM) with ARC and ED 
on a deformation of the "Beast" model, and the setup used for the 
deformation. Small images: (top) VHM cage and anchors, ARC 
cells (2148) and ED deformation graph (300 vertices), (bottom) 
the VHM, ARC and ED constraints. 
 

 
Figure 11: Deformation of a tetrahedral mesh model of a hand. 
One finger is easily moved without influencing the nearby finger, 
even though it is close in Euclidean distance. 
 
To compare the detail preservation of the different models, we 
computed the rigidity distortion of the triangles of the deformed 
mesh, which is defined similarly to Liu et al. [2008] as:  
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where At is the area of the source triangle, and σ1,t  and σ2,t are 
the singular values of the Jacobian of the 2×2 transformation, that 
transforms the source planar triangle to the deformed planar trian-
gle. Ideally, we would like to compare the singular values of the 
Jacobian of the 3D transformation, but since for the other two 
methods we do not have access to the actual deformation function, 
rather only the end result, this is, unfortunately, not easily done. In 
addition, we compared the change in the total volume of the de-
formed shape as: 

volume new orig origE vol vol vol= −  

The comparison of these errors is given in Table 1. 
 

 Erigid Evolume 
Model VHM ARC ED VHM ARC ED 

A 0.050 0.035 0.049 0.086 0.078 0.143 
B 0.069 0.070 0.078 0.177 0.116 0.226 
C 0.046 0.043 0.053 0.069 0.082 0.118 

Beast 0.022 0.013 0.018 0.063 0.025 0.119 
Table 1: Comparison of the rigidity error and volume change of 
the deformation methods. 
 
As can be seen from Figures 8 and 10, and Table 1, the results of 
VHM are comparable to those of ARC, however VHM is consid-
erably more efficient (as is shown in Table 2), and also simpler to 
implement. When compared to ED, our method is somewhat bet-
ter, both in the visual quality of the results – Figure 8 shows that 

the ED method has some noise issues - and in volume preserva-
tion. 
 
Locality of the deformation.  Figure 11 demonstrates that 
VHM has a local effect, and only regions geodesically close to the 
manipulated regions are modified, as opposed to unrelated regions 
which happen to be close in Euclidean distance – the index finger 
of the hand may be moved without influencing the other fingers. 
  

 
Figure 12: (left) Two As-Similar-As-Possible deformations of the 
Beast model. Note the exaggerated hands and feet.(right) Another 
ASAP deformation, and the color coding of the condition number 
of the Jacobian of the deformation, sampled on the input cage. 
The graph shows the histogram of these values. 
 
As-Similar-As-Possible deformations. One of the benefits 
of our "local/global" optimization scheme is that the constraints 
on the Jacobian matrices of the anchor points can be easily 
changed from rigidity constraints to other types of constraints, 
simply by modifying the local step in the optimization algorithm. 
For example, as was done in previous "local/global" based meth-
ods, such as [Liu et al. 2008], we can replace the rigidity con-
straints with similarity constraints by requiring the Jacobian ma-
trices of the anchor points to be similarity transforms. The local 
step is modified by replacing the "normalization" step of the 
Jacobian matrices with the following procedure: Compute the 
SVD for each matrix Ri=USVT, and replace it with USnewVT , 
where Snew is a diagonal matrix, whose entries are the average of 
the diagonal entries of S. Such a deformation will not be As-
Rigid-As-Possible anymore, as it introduces uniform scale. How-
ever, as can be seen in Figure 12 and in the accompanying video, 
interesting exaggeration effects can be generated this way.  
 
For some applications, one might require the deformation to be 
quasi-conformal, meaning that the condition number of the Jaco-
bian of the deformation is bounded. In these cases, the As-
Similar-As-Possible approach is more appropriate than the As-
Rigid-As-Possible approach. Figure 12 shows the color-coding of 
the condition number of the Jacobian, for sampled points inside 
the cage of the Beast model, for the shown deformation. In addi-
tion, the figure shows the histogram of these values. As is evident 
from the figure, the condition numbers are smaller than 3.5, which 
indicates that this deformation is quasi-conformal, with a quasi-
conformal factor similar to the that of the Green coordinates [Lip-
man et al. 2008]. 
 
The cage.  As opposed to direct manipulation methods [Botsch 
et al. 2007, Sumner et al. 2007], which build the underlying repre-
sentation automatically, cage based methods such as [Lipman et 
al. 2008] usually rely on a manually modeled cage. We also use 
manually modeled cages, but since in our approach the cages are 
only a mathematical tool, and are not visible to the user, it is im-
portant to check how sensitive the deformation is to the cage used. 
Specifically, we would like to verify that two reasonable cages 
result in similar deformations, when the user constraints are iden-
tical. To investigate this, we implemented a straightforward algo-
rithm to generate a simple cage by uniform decomposition of 
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space, followed by merging neighboring co-planar faces. Such 
cages would be somewhat hard to manipulate manually, but since 
in our method the user does not manipulate the cage directly, this 
is not an issue. We applied this algorithm to the "Beast" model 
from Figure 1, and using the manually built and automatic cages, 
we deformed the model interactively. Figure 13 shows the two 
cages, and the deformations resulting from them. As is evident 
from the figure, the deformations induced by the two cages are 
very similar, indicating that our method is not very sensitive to the 
precise cage used.  

 
Figure 13: Two deformations using a manually built cage (left), 
and an automatic cage (right) 
 
Non-articulated shapes.  Some objects, such as plate-like 
objects, do not have an obvious skeleton. In these cases, our 
method can still be applied by placing the anchors on the medial 
surface instead of on the medial axis. Figure 14 shows two de-
formation of a "Bumpy plane" model, using different anchors 
configurations. In both cases, the anchors were placed on the me-
dial surface of the model, but their exact placement was different. 
As the figure shows, the resulting deformations are very similar, 
indicating that our method is not very sensitive to the exact loca-
tions of the anchors on the medial surface. The figure also shows 
the comparison of the results to the deformation of the same 
model using the ARC method.  

 
Figure 14: Deformation of a plate like object, using two different 
anchor configurations on the medial surface (left and middle). 
Deformation using ARC of the same model (right) 
 
Efficiency. Table 2 provides the model statistics and the defor-
mation times in milliseconds for our examples. The deformation 
timing is broken down into the time for one optimization iteration 
(labeled "Solve") and the time for the matrix-vector multiply 
which generates the deformation (labeled "Def"). The pre-
processing time for all the models was less than a minute. It is 
clear from the table that our solve times are considerably faster 
than those reported for ARC [Botsch et al. 2007] and ED [Sumner 
et al. 2007], which were run on machines with spec similar to 
ours. For example, the solve step of ED for the Giraffe model 
requires 120 msecs, using six Gauss-Newton iterations. Using the 
ARC method, the solve step for a model with 50,000 vertices 
requires 330 msecs for a single Newton iteration. For a larger 
model of 79,000 vertices, the solve step of VHM requires only 12 
msecs. The VHM solve includes GPU optimization (for the global 
part of the "local/global" algorithm), whereas the other methods 
are implemented on the CPU. However, the ARC and ED optimi-
zation algorithms are based on Gauss-Newton iterations using a 
large sparse matrix. Such algorithms are considerably harder to 

parallelize than dense matrix-vector multiplies, which can be im-
plemented using off-the-shelf CUDA code. Hence, if one is to 
compare the best possible implementation of the methods, ours 
has a distinct advantage. The deformation times are also very fast, 
with 10 msecs for the 170,000 vertex Armadillo model.  
 
Model Verts Cage 

faces 
Ancrs Iters Solve 

(ms) 
Def 
(ms) 

Tot 
(ms)

Bar 32,908 208 6 15 0.27 1.84 5.89
Tet 
Hand 

28,796 288 28 9 0.43 2.27 6.14

Giraffe 79,226 204 27 33 0.37 3.08 15.29
Beast 32,311 226 50 10 0.53 2.60 7.90
Arma 
leg 

28,829 68 6 26 0.27 1.87 8.89

Arma 173,101 250 88 13 0.69 10.60 19.57
Table 2: Performance measured in msecs on an Intel 2.67GHz i7 
machine (using a single thread) with 4GB of RAM. "Solve" - time 
for one optimization iteration, "Def" - time for the matrix multiply 
in the deformation step. "Iters" - average number of iterations a 
typical deformation requires to converge.  
 
5   Conclusions and Discussion 
 
We have proposed a new space deformation method (“Variational 
Harmonic Mapping” – VHM) whose underlying mathematical 
model is a harmonic mapping. Using this mapping and its deriva-
tives, we defined an energy function whose minimization allows 
the user to deform the shape using a small number of position and 
orientation constraints. We showed how to minimize the energy 
using a very efficient iterative "local/global" algorithm and dem-
onstrated that the resulting deformation is close to an As-Rigid-
As-Possible deformation. Its quality is comparable to state-of-the-
art space deformation methods, while being considerably faster. 
In the future we hope to further explore variational harmonic 
mappings in settings other than deformation. Due to the similarity 
to boundary element methods (BEM) [Kythe 1995], our method 
might also be effective in finding solutions to different interpola-
tion problems. Moreover, we would like to investigate the theo-
retical properties of our deformation, and its relation to quater-
nionic analytic functions.  
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Appendix A 
 
The mappings ϕ and ψ.  The mappings ϕ and ψ are defined on 
the vertices and faces of the mesh, respectively, so we must pro-
vide for each face a scalar value ψt and for each vertex a scalar 
value ϕv. The values of ϕv are determined as a sum of values on 
the faces neighboring v. Given a point p ∈ Ω, and a face t = 
(u,v,w) ∈F, we define a tetrahedron T spanned by these four 
points, as in Figure 15. 

 
Figure 15: Notations for the definitions of ϕv(p), ψt(p) and their 
derivatives. 
 
On this tetrahedron, 4πωt is the signed solid angle at the point p, 
subtended by the face t, and volt is its signed volume. Nt is the 
normalized outward pointing normal of t, and At is the area of the 
face t. Following Urago [2000] we obtain: 
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The gradients.  Again following Urago [2000], and taking the 
derivative of ϕv: 
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The Hessians.  To derive the Hessian matrices for ψt and ϕv we 
need the Jacobian matrix of Pt, and the gradient vector of ωt. 
These are: 
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where, given a vector v , [v]× is the skew symmetric matrix, such 
that for any vector w, [v]×w = v×w. Finally the Hessian matrices of 
ϕv and ψt are: 
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