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We propose using the Dirichlet-to-Neumann operator as an extrinsic alterna-

tive to the Laplacian for spectral geometry processing and shape analysis.

Intrinsic approaches, usually based on the Laplace–Beltrami operator, can-

not capture the spatial embedding of a shape up to rigid motion, and many

previous extrinsic methods lack theoretical justification. Instead, we consider

the Steklov eigenvalue problem, computing the spectrum of the Dirichlet-to-

Neumann operator of a surface bounding a volume. A remarkable property

of this operator is that it completely encodes volumetric geometry. We use

the boundary element method (BEM) to discretize the operator, accelerated

by hierarchical numerical schemes and preconditioning; this pipeline allows

us to solve eigenvalue and linear problems on large-scale meshes despite

the density of the Dirichlet-to-Neumann discretization. We further demon-

strate that our operators naturally fit into existing frameworks for geometry

processing, making a shift from intrinsic to extrinsic geometry as simple as

substituting the Laplace–Beltrami operator with the Dirichlet-to-Neumann

operator.
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1 INTRODUCTION
Geometry processing and shape analysis tools for computer graph-

ics typically draw from two complementary theories of geometry.

To distinguish these, consider a closed surface embedded in three

dimensions. From the viewpoint of extrinsic geometry, we might

examine the surface as the outer boundary of a volume. This ap-

proach relies on distances and other measurements taken from the

space surrounding the surface to understand its shape. Contrast-

ingly, many techniques in differential geometry decouple extrinsic

shape from intrinsic geometry, which is concerned with quantities

like geodesic distances that can be measured without leaving the

outer surface. A crowning achievement of classical differential ge-

ometry shows that certain quantities like Gaussian curvature can be

measured intrinsically; this basic observation inspired theoretical

exploration of purely intrinsic techniques. Computational geometry
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processing embraced the intrinsic perspective early on, leading to

numerous applications of intrinsic computations.

Fig. 1

Intrinsic geometry, however, is an in-

effective description of shape for many

applications. First, the spatial embedding

information is lost. The variability in em-

bedding can be essential. As an extreme

example, consider searching a database of origami models: From an

intrinsic perspective, all origami is equivalent to the same piece of

flat paper. Second, the intrinsic perspective is a counterintuitive way

to describe the shapes of many real-world objects, e.g. identifying

the inward and outward bumps on the cubes in Figure 1.

A naïve approach to extrinsic geometry could be to use the (x,y, z)
coordinates of the embedding. This incorporates information about

the embedding but is not invariant to rigid motion. Alternatively,

rotation-invariant shape descriptors (e.g., built from spherical har-

monic power spectra) usually involve extrinsic information about a

surface as a shell rather than as the boundary of a volume.

In this paper, we provide a practical and mathematically-justified

spectral approach to extrinsic geometry for geometry processing,

via an extrinsic alternative to the intrinsic Laplace–Beltrami op-

erator. The end result is a surface-only approach to volume-aware
shape analysis, using a boundary operator that takes the interaction

between non-adjacent vertices into consideration. In particular, we

consider the Dirichlet-to-Neumann (DtN) operator, also known as

the Poincaré-Steklov or simply the Steklov operator, and its spec-

trum (the Steklov spectrum). A physical interpretation of the DtN

operator is that it maps from a temperature distribution on the

surface to the resulting heat flux through the surface. As we will

prove, DtN and its spectrum completely encode extrinsic geometry

in the smooth case. We also show that DtN and some of its peers can

be applied efficiently using the boundary element method (BEM),

accelerated using preconditioning and hierarchical techniques that

scale linearly in the size of a boundary triangle mesh.

We generalize our method to additional geometric primitives, no-

tably including surfaces with open boundary. Since it is built using

the Laplace equation, our discretized Dirichlet-to-Neumann opera-

tor naturally fits into existing frameworks for geometry processing

and analysis. We show that in applications including compression,

measurement of shape differences, and spectral distance computa-

tion, shifting from intrinsic geometry to extrinsic geometry is as

simple as substituting the cotangent Laplacian with a discretized

Steklov operator. This simple change leads to qualitatively different

behavior for geometric algorithms.
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2 RELATED WORK

2.1 Intrinsic geometry
Intrinsic computations are ubiquitous in geometry processing, ap-

plied to problems including distance computation [Crane et al. 2013;

Lipman et al. 2010], segmentation [Reuter et al. 2009], shape descrip-

tion [Kokkinos et al. 2012], shape retrieval [Bronstein et al. 2011],

and correspondence [Ovsjanikov et al. 2012]; these citations are a

small sampling of the literature.

Many intrinsic algorithms use the Laplace–Beltrami operator,

which can be approximated e.g. with the celebrated cotangent for-

mula [Pinkall and Polthier 1993] or with convergent approximations

on simplicial complexes [Belkin et al. 2008] and point clouds [Belkin

et al. 2009; Liang et al. 2012]. Laplace–Beltrami eigenfunctions are

multiscale and can characterize shape up to isometry [Aubry et al.

2011; Sun et al. 2009]; truncation in this basis also provides favorable

approximation properties [Aflalo et al. 2015]. See the surveys by

Zhang et al. [2010], Sorkine [2005], and Patané [2016] for discussion

of this technique and applications.

Functional maps, proposed by Ovsjanikov et al. [2012], have in-

spired interest in a broader “operator-based” approach to geometry.

Operator-based geometry processing now includes intrinsic tech-

niques for shape exploration [Rustamov et al. 2013], vector field

processing [Azencot et al. 2013, 2015], interpolation [Azencot et al.

2016], simulation [Azencot et al. 2014], and deformation [Boscaini

et al. 2015]—among other tasks.

The intrinsic approach is desirable in many scenarios. Many real

world objects deform near-isometrically, that is, without affecting

intrinsic structure. Isometry invariance then creates an advantage:

An object can be bent to another pose, while still being considered

the same intrinsically. For example, intrinsic invariance can be fa-

vorable in shape retrieval since the same object in different poses

will be clustered together by design.

2.2 Extrinsic geometry
Extrinsic techniques appear in geometry processing, usually with-

out the multiscale and stability advantages of spectral geometry.

The most common expression of discrete extrinsic geometry is in

computation of mean curvature, the extrinsic counterpart of Gauss-

ian curvature. Extrinsic methods appear in computer vision, e.g. the

SHOT [Tombari et al. 2010] and D2 [Osada et al. 2002] descriptors,

typically without completeness guarantees.

A few methods attempt to extend operator-based methods to

incorporate extrinsic information. The volumetric heat kernel signa-

ture [Raviv et al. 2010] uses a meshing of the volume enclosed by a

surface, applied to segmentation by Litman et al. [2012]; Wang and

Wang [2015] present a similar construction on tetrahedral meshes.

This is computationally expensive and has the property that results

depend on the resolution of the interior mesh; note that methods

like [Patané 2015] may accelerate heat kernel evaluation but still

require meshing of the interior. Hildebrandt et al. [2010] consider

a family of deformation energies whose Hessian eigenmodes are

sensitive to extrinsic features. Rustamov [2011] proposes extending

surface-based Laplace–Beltrami eigenfunctions to the interior of

a domain using generalized barycentric coordinates. This extends

descriptors like the heat kernel signature (HKS) from the outer

surface to the interior but is still intrinsic in the sense that when

it is restricted to the outer surface it coincides with the surface-

based computation. Wu et al. [1997] exploit the correlation be-

tween the simulated charge density on a geometric domain and

local concavity for shape segmentation. Wang et al. [2014] modify

the Laplace–Beltrami operator to include concavity information,

aiding in applications like segmentation without distinguishing

between the interior and exterior of a closed surface. Similarly,

Corman et al. [2017] use the Laplacian of a meshed shell around

a triangulated surface, incorporating mean curvature but treating

the surface as a thin shell rather than the boundary of a volume.

Techniques like [Chuang et al. 2009] use extrinsic calculations to

approximate the Laplace–Beltrami operator; these methods aim to

capture intrinsic geometry.

We use the Dirichlet-to-Neumann (DtN) operator as an extrin-

sic analog to the Laplace–Beltrami operator. In graphics, Gao et

al. [2014] use DtN for skinning; it also appears in a recent pipeline

for parameterization [Sawhney and Crane 2017]. In simulation and

PDEs, it appears as a Schur complement eliminating interior degrees

of freedom [Bertoluzza 2003; Liu et al. 2016; Quarteroni and Valli

1999; Smith et al. 2004; Toselli and Widlund 2005].

Recent concurrent work proposes using the Dirac operator to

capture extrinsic shape [Liu et al. 2017]. This method is among the

first to extend spectral geometry processing to include extrinsic

information, but it still treats the surface as a shell rather than as the

boundary of a volume. While this work opens intriguing theoretical

questions regarding the informativeness of the Dirac operator (see

their §7), the Dirichlet-to-Neumann operator we propose for shape

analysis enjoys strong grounding in existing theory; this allows

us to prove in §3.1 that the Dirichlet-to-Neumann operator fully

captures extrinsic geometry up to rigid motion (Proposition 3.1). On

the other hand, unlike the operators we consider in this paper, their

Dirac operator benefits from the efficiency of sparse linear algebra.

See §7.7 for additional discussion and empirical comparison to this

technique.

2.3 Numerical PDE
Two typical numerical methods for approximating Dirichlet-to-

Neumann operators are the finite element method (FEM) and the

boundary element method (BEM). FEM yields a sparse linear system

on a discretization of the volume bounded by a surface, while BEM

yields a dense linear system on just the boundary. Efficiency-wise,

the added number of elements required for FEM makes the two

methods similar asymptotically. We use BEM to avoid dependence

on volumetric meshing.

Fast numerical methods can be used to accelerate BEM, including

the fast multipole method (FMM) and the hierarchical matrix (H-

matrix) method. FMM [Engheta et al. 1992; Rokhlin 1985] expands

the Green’s function using a multipole approximation, grouping

close points as a single source. TheH-matrixmethod represents BEM

operators hierarchically, reducing the cost of assembly and matrix-

vector products to O(n logn) time [Börm et al. 2003; Hackbusch

1999]. Either method reduces evaluation cost to O(n log 1/ϵ) time,

where ϵ is a prescribed accuracy, making it possible to solve large

problems on a single workstation.
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3 MATHEMATICAL PRELIMINARIES

3.1 Steklov eigenproblem

x

y

z

∂Ω

Ω\∂Ω

n(p)

pDenote a volumetric domain as Ω ⊆ R3
with

boundary surface Γ = ∂Ω. The Steklov eigen-
value problem is defined as:{

∆ψ (x) = 0 x ∈Ω

∇nψ (x) = λψ (x) x ∈Γ

where ∆ = ∂2/∂x 2 + ∂2/∂y2 + ∂2/∂z2
denotes the Laplacian operator

and ∇n the normal derivative at the boundary. The spectrum of the

Steklov problem is discrete and given by a sequence of eigenvalues

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · → ∞.

{λn }
∞
n=0

can be interpreted as the eigenvalues of the Dirichlet-

to-Neumann (DtN) operator S : H1/2(Γ) → H−1/2(Γ) defined
as S f := ∇n(E f ), where H s

denotes the Sobolev space of or-

der s (see e.g. [Steinbach 2007, §2.4] or [Brezis 2010] for more

details). E denotes the harmonic extension into the interior; de-

note ϕn = ψn |Γ : Γ → R as the corresponding eigenfunctions. S

is known as the Dirichlet-to-Neumann operator because it maps

the boundary Dirichlet data to the Neumann data (e.g. voltage-to-

current, or temperature-to-flux).

Just as the Laplace–Beltrami spectrum encodes intrinsic geometry,

the spectrum of S encodes extrinsic information. In particular, for

smooth domains inR3
, the Steklov heat kernel admits the asymptotic

expansion as t → 0
+
:

e−tS(x, x) =
∞∑
i=0

e−tλiψi (x)
2 ∼

∞∑
k=0

ak (x)t
k−2 +

∞∑
l=1

bl (x)t
l

log t,

(1)

where the coefficients ak (x) for k = 0, 1, 2 and bl (x) are local geo-
metric invariants, in the sense that they are determined by the local

geometry of Γ in a neighborhood of the point x ∈ Γ [Polterovich and
Sher 2015]. See [Duistermaat and Guillemin 1975] where such an

expansion is proved for a general elliptic pseudodifferential operator.

The following expressions were obtained by Polterovich and

Sher [2015]:

a0(x) ≡
1

2π
(2)

a1(x) =
H (x)

4π
(3)

a2(x) =
1

16π

(
H (x)2 +

K(x)

3

)
, (4)

where H (x) and K(x) are, respectively, the mean and the Gaussian

curvatures of Γ. While the heat expansion for the Laplace–Beltrami

operator on the boundary captures only intrinsic geometric invari-

ants of Γ, the first few terms of the Steklov heat expansion (1) con-

tain the mean curvature of the boundary, which is an extrinsic

geometric quantity. We refer to the recent survey by Girouard and

Polterovich [2017] for other results on spectral geometry of S.

Recall that the Laplace–Beltrami operator is invariant under

isometries. For example, the bumpy cubes in Figure 1 have isometric

boundaries, and therefore their boundary Laplacians coincide. At

the same time, the boundaries of the bumpy cubes have different

extrinsic geometries, and one could check that the DtN operators

on these cubes are also different. Moreover, in striking contrast with

the boundary Laplacian, under some assumptions the only maps

preserving the DtN operator for domains in R3
are rigid motions:

Proposition 3.1. Suppose Ω1,Ω2 ⊆ R3 are compact domains with
C∞ boundaries Γ1, Γ2 and Dirichlet-to-Neumann operators S1 and S2,
respectively. Let α : Ω1 → Ω2 be a bijection which is C∞ up to the
boundary, and let α̃ : Γ1 → Γ2 be the induced mapping between
the boundaries. Suppose that the operators S1 and S2 coincide up to
composition with α̃ , i.e. S2 f = α̃∗S1α̃

∗ f , for any f ∈ C∞(Γ2), where
α̃∗ f = f ◦ α̃ , α̃∗д = д ◦ α̃−1 denote the pull-backs by α̃ and α̃−1,
respectively. Then α is a rigid motion.

Proof. The following argument was communicated to us by M.

Karpukhin: By Proposition 1.3 and the discussion above it in [Lee

and Uhlmann 1989], the Dirichlet-to-Neumann map of a smooth

surface determines the full Taylor series of the metricд at the bound-
ary in the boundary normal coordinates. In particular, it determines

the metric itself—which in our case is the first fundamental form of

the boundary surface—and its first derivative, which gives us the

second fundamental form (see e.g., [Kachalov et al. 2001, §2.1.18]).

At the same time, it follows from Bonnet’s theorem that the first

and second fundamental forms determine a surface in R3
up to rigid

motions. �

Proving an analogous result for non-smooth boundaries remains a

significant challenge for future work.

3.2 Boundary representation and operators
To derive a boundary representation of the DtN operator, first con-

sider the Laplace equation with Dirichlet boundary conditions:{
∆u(x) = 0 x ∈Ω

u(x) = д(x) x ∈Γ
(5)

where д(Γ) is Dirichlet data on the boundary. A basic fact from

elliptic PDE is that (5) uniquely determines u(Ω) and hence its Neu-

mann data дn =
∂
∂nu(Γ). By definition, the Dirichlet-to-Neumann

operator S is the map д 7→ дn .
To avoid discretizing the interior of the domain Ω, we use inte-

gral operators to bypass solving the Laplace equation (5). Here, we

introduce relevant boundary operators and notation that will be

used throughout the paper. We refer readers to [Steinbach 2007] for

a comprehensive introduction to these operators in the context of

the boundary element method.

Single layer potential. The single layer potentialV : H−1/2(Γ) →

H1/2(Γ) is defined via

[Vϕ](x) :=

∫
Γ
G(x, y)ϕ(y) dΓ(y),

whereG(x, y) := 1

4π
1

|x−y | is the fundamental solution of the Laplace

equation. Physically,V maps an input electric charge distribution

ϕ to the resulting electric potential distribution.

Double layer potential. The double layer potentialK : H1/2(Γ) →

H1/2(Γ) is defined via

[Kϕ](x) :=

∫
Γ

∂G(x, y)
∂n(y)

ϕ(y) dΓ(y),
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where the integral is understood in the sense of the Cauchy principal

value [Kanwal 2013]. Physically, K maps an input electric dipole

density distribution ϕ to the resulting electric potential distribution.

Adjoint double layer potential. The adjoint double layer potential
T : H−1/2(Γ) → H−1/2(Γ) is defined as the conormal derivative of

V:

[Tϕ](x) :=

∫
Γ

∂G(x, y)
∂n(x)

ϕ(y) dΓ(y),

where the integral is understood in the sense of the Cauchy prin-

cipal value. Physically, T maps an input electric charge density

distribution ϕ to the normal derivatives of the resulting electric

potential distribution.

Hypersingular operator. The hypersingular operatorH : H1/2(Γ) →

H−1/2(Γ) is defined as minus the conormal derivative of K :

(Hϕ)(x) := −

∫
Γ

∂2G(x, y)
∂n(x)∂n(y)

ϕ(y) dΓ(y).

Physically,H maps an input electric dipole density distribution ϕ
to normal derivatives of the resulting electric potential distribution.

Operator properties. V andH are self-adjoint operators, i.e.

⟨v,Vu⟩Γ ≡ ⟨Vv,u⟩Γ and ⟨v,Hu⟩Γ ≡ ⟨Hv,u⟩Γ,

where the inner product ⟨·, ·⟩Γ is given by

⟨ϕ,ψ ⟩Γ :=

∫
Γ
ϕ(y)ψ (y) dΓ(y).

K , T are adjoint to each other, i.e. ⟨v,Ku⟩Γ ≡ ⟨Tv,u⟩Γ . Further-
more,V is positive definite, andH is positive semidefinite.

3.3 Calderón projection & Dirichlet-to-Neumann operator
The Calderón projection relates д and дn through the relationship(

д
дn

)
=

(
1

2
I − K V

H 1

2
I + T

) (
д
дn

)
where I is the identity operator [Grubb 2009]. From the first row of

this expression, we can derive the Dirichlet-to-Neumann operator

S : д 7→ дn as the composition

S = V−1

(
1

2

I +K

)
. (6)

Combining both rows, however, reveals an alternative symmetric

expression for the same operator:

S = H +

(
1

2

I + T

)
V−1

(
1

2

I +K

)
. (7)

Since H is self-adjoint and positive semidefinite, V is positive

definite, and (K,T) are an adjoint pair, this alternative form sym-

bolically shows that S is self-adjoint and positive semidefinite, with

⟨u,Su⟩Γ = 0 if and only if u is a constant function. In our discretiza-

tion, we work with this second formula because its discretization

will become symmetric and positive semidefinite by construction.

Note that interior Steklov eigenfunctions are known in closed form

by the representation formula

u(x) =
∫
Γ

[
G(x, y)дn (y) −

∂G(x, y)
∂n(y)

д(y)
]

dΓ(y)

for any x ∈ Ω. Here, u(· ) is the ith eigenfunction in the interior

when we let д(· ) and дn (· ) to be the i
th
eigenfunction on the surface

and its normal derivative, respectively; later in equation (15) they

are denoted as u and t. Our algorithm will compute both u and t, so
interior eigenfunctions can be easily evaluated if needed.

4 DISCRETE DIRICHLET-TO-NEUMANN OPERATOR

4.1 Weak form boundary operators
We discretize all operators discussed above. Each corresponds to a

weak-form discretized operator matrix:

V 7→ V, K 7→ K, T 7→ T, H 7→ H, and I 7→ M.

Take the single layer integral as an example. Assume u(Γ) is a solu-
tion to the single layer integral equationVu(x) = f (x). Then, for
any test function v : Γ → R we have the weak form ⟨v,Vu⟩Γ =
⟨v, f ⟩Γ . Restricting u,v, f to the piecewise-linear subspace S1

h (Γ)

(the “hat functions” on a triangulated surface) leads to the finite-

dimensional linear system Vu = Mf , where V,M are Galerkin ma-

trices

V ∈ Rn×n : (V)i j = ⟨ϕi ,Vϕ j ⟩Γ (8)

M ∈ Rn×n : (M)i j = ⟨ϕi ,ϕ j ⟩Γ . (9)

In this linear system, u, f contain the coefficients of u and f in the

piecewise-linear basis, resp.

Similarly, we have

K ∈ Rn×n : (K)i j = ⟨ϕi ,Kϕ j ⟩Γ (10)

T ∈ Rn×n : (T)i j = ⟨ϕi ,Tϕ j ⟩Γ (11)

H ∈ Rn×n : (H)i j = ⟨ϕi ,Hϕ j ⟩Γ . (12)

It follows directly from properties in §3.2 that V = Vᵀ
, H = Hᵀ

,

T = Kᵀ
, V ≻ 0, andH ≽ 0. We refer interested readers to [Steinbach

2007, §2,3,4,5,6,7,10,12] for detailed discussion of these discretized

operators.

Putting definitions together yields:

Vi j =
∑

T1∈A(i)
T2∈A(j)

∬
T1×T2

1

4π

1

|x − y|
ϕi (x)ϕ j (y) dΓ1(x) dΓ2(y),

Mi j =
∑

T1∈A(i)

∫
T1

ϕi (x)ϕ j (x) dΓ1(x).

where A(i) denotes the set of triangles adjacent to vertex i , and ϕi
denotes the piecewise-linear “hat” basis function centered at vertex

i . Note Mi j is same as the mass matrix used in FEM. To simplify

notation for the remaining operators, define the following generic

boundary operator P[p(·, ·)] ∈ Rn×n w.r.t. kernel p(x, y):

Pi j [p(·, ·)]=
∑

T1∈A(i)
T2∈A(j)

∬
T1×T2

1

4π
p(x, y)ϕi (x)ϕ j (y) dΓ1(x) dΓ2(y). (13)

Then, the discretized operators can be expressed as:

Vi j = Pi j [v], Ki j = Pi j [k], Ti j = Pi j [t], Hi j = Pi j [h].
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where

v(x, y) :=
1

|x − y|
,

k(x, y) :=
(x − y) · n(y)

|x − y|3
, t(x, y) :=

(y − x) · n(x)
|x − y|3

= k(y, x),

h(x, y) := −
n(x)·n(y)
|x − y|3

−
3 [(x−y)·n(y)] [(y−x)·n(x)]

|x − y|5
,

and n(x),n(y) denote the normal directions at points x, y on the

surface, resp.

The matrix entries are evaluated using the Gaussian quadrature

method implemented in [Śmigaj et al. 2015], which ensures quad-

rature points never coincide, even if the triangle T1 is adjacent to

or same as the triangle T2 (these can happen, e.g., when evaluating

diagonal entries that i= j).

4.2 Discretized Dirichlet-to-Neumann operator
We approximate the DtN operator by substituting the continuous

operators with corresponding strong-form operators:

V → M−1V, K → M−1K, T → M−1T, and I → I,

which leads to

S ❀ M−1[H + (0.5M + T)V−1(0.5M + K)].

Define the (symmetric) weak form of this operator as

S := H + (0.5M + T)V−1(0.5M + K). (14)

5 MATRIX-FREE FORMULATION
Many applications require solving the linear system Su = Mf or
the generalized eigenvalue problem Sx = λMx. A naïve approach

is to assemble all the operators as dense matrices via (14). With-

out acceleration, however, assembling these dense matrices would

take O(n3) time, and matrix-vector products would require O(n2)

operations. Furthermore, formula (14) involves inverting the dense

matrix V, which is expensive. Instead we apply a reformulation that

avoids explicit matrix inversion.

5.1 Expansion
Define an auxiliary variable t as t := V−1(0.5M + K)u. Notice that t
represents the Neumann data, i.e. the normal derivative at boundary.

The linear system Su = Mf then can be expanded as a saddle point

system [
V −Q
Qᵀ H

] [
t
u

]
=

[
0

Mf

]
,

where Q := 0.5M + K.
The same technique also applies to reformulating the eigenvalue

problem Su = λMu as the system[
V −Q
Qᵀ H

] [
t
u

]
= λ

[
0

M

] [
t
u

]
. (15)

The left-hand sides of these expressions do not contain matrix in-

verses, allowing us to use iterative linear system/eigenvalue solvers

that only require matrix-vector products. See §5.4 for details of our

solver and §5.6 for how we use the hierarchical techniques to apply
V, Q, and other matrices without storing their elements.

5.2 Symmetrization
Numerical solution to saddle point systems like the ones in the

previous subsection is a basic task in numerical PDE; see e.g. [Benzi

et al. 2005]. To use the conjugate gradient (CG) algorithm and other

techniques requiring positive definiteness, we apply a Bramble–

Pasciak transformation [1988]:[
αVP−1

V − I 0
−αQᵀP−1

V I

] [
V −Q
Qᵀ H

] [
t
u

]
=

[
0

Mf

]
.

where PV is a symmetric preconditioner for the single layer po-

tential (our choice is defined in §5.3). The constant α = 1/γ is

chosen to ensure the positive-definiteness of the system matrix

as γ = 0.9σmin(P−1

V V) ≤ 0.9 < 1, where σmin(·) denotes the smallest

singular value. The matrix of this system is symmetric and positive

semidefinite:

A =
[
αVP−1

V V − V (I − αVP−1

V )Q
Qᵀ(I − αP−1

V V) H + αQᵀP−1

V Q

]
= Aᵀ. (16)

Under the Bramble–Pasciak transformation, the eigenvalue prob-

lem can be written as

A
[
t
u

]
= λ

[
0

M

] [
t
u

]
, or more simply Ax = λM̃x.

Although A and M are positive semidefinite, αA + βM̃ is strictly

positive definite, for any α, β > 0. So it can be solved by a shifted

generalized eigenvalue method.

5.3 Preconditioning
Steinbach andWendland [1998] prove that a modified hypersingular

operator is a good preconditioner for the single layer potential

and that the single layer potential is a good preconditioner for the

Dirichlet-to-Neumann operator (14). In particular, they show that

the spectral condition numbers of these two preconditioners are

O(1), in the sense that the condition number remains the same when

the domain is upsampled. Their choices of preconditioners for S and
V are:

P−1

V := 4M−1
(
H + β

4
11ᵀ

)
M−1

P−1

S := M−1VM−1
(17)

where β = 1/(1ᵀM1)3/2
is chosen to ensure scale invariance. Since

M is sparse and diagonally dominant, Jacobi iteration could com-

pute M−1x in O(n) time. In our implementation, however, we use a

diagonal lumped mass matrix that can be inverted in closed form.

For saddle point system Ax = λM̃x, Bramble and Pasciak [1988]

recommend the following preconditioner to (16), which is spectrally

equivalent to A:

P(1)A :=

[
V − γPV

PS

]
.

The upper left block of this matrix cannot be inverted efficiently, so

it has to be combined with a modified Bramble-Pasciak CG solver.

See [Stoll and Wathen 2007] for a survey on other preconditioning

options for saddle point system. In practice, we use the following

simpler alternative that is easier to invert:

P(2)A :=

[
1

α−1
PV

PS

]
.
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P(2)A is a valid preconditioner as well, that is, P(2)A is spectrally equiv-

alent to A, since P(2)A is spectrally equivalent to P(1)A and P(1)A is

spectrally equivalent to A. 1 We find this choice suffices for our

solver; investigating the most efficient preconditioning strategy is a

potential topic for future work.

5.4 Iterative solvers
We use the preconditioned conjugate gradient (CG) algorithm to

solve linear systems of equations involving our positive definite

operators. As noted above, PCG requires matrix-vector products

rather than storing our operators explicitly, as would be required

by Gaussian elimination.

We employ the locally optimal block preconditioned conjugate

gradient (LOBPCG) solver [Knyazev 2001] to compute the spec-

trum efficiently. The convergence speed of this method depends on

the condition number cond(P−1

A A). LOBPCG allows for an initial

guess of the eigenvectors. We apply a multi-scale approach, com-

puting “progressive spectra” from progressively simplified meshes

obtained using [Hoppe 1996]. We first compute eigenvalues and

eigenfunctions on a low-resolution mesh and then upsample the

low-resolution eigenfunctions as initialization for high-resolution

meshes. Typically we use 2–3 levels of progressively simplified

meshes, where at each level the mesh is simplified by a factor of 1/4;

we use the nearest neighborhood rule to upsample eigenfunctions.

Note Vaxman et al. [2010] use a related approach to evaluate the

heat kernel.

5.5 Generalization
We have introduced the Dirichlet-to-Neumann operator for compact

manifolds with closed boundaries. As long as we are given a normal

vector field at every point, however, the integral-based definitions

of inner products ⟨v,Vu⟩Γ , ⟨v,Ku⟩Γ , ⟨v,Hu⟩Γ , and ⟨v,Tu⟩Γ as

well as the resulting operator S remain valid even if Γ does not

bound some region inR3
. Given this observation, to process oriented

surfaces with boundary we simply use the same operator defined

via boundary integral (7); for related work see [Bruno and Lintner

2013; Lintner and Bruno 2015] and references therein. Justifying

this generalization for open surfaces theoreticallyis a challenging

question for future work.

We experimentally verify that this natural generalization demon-

strates reasonable and robust behavior. Figure 2 illustrates our “gen-

eralized Steklov” eigenfunctions computed on a hemisphere from

these integral operators. Figure 3 demonstrates that the resulting

spectrum blends smoothly as the shape changes from a sphere to a

hemisphere by moving the cutting plane linearly.

1
More precisely, by the definition of preconditioners we have:

σmin(P
(1)

A
−1

A)⟨x, x⟩
P(1)A

≤ ⟨x, x⟩A ≤ σmax(P
(1)

A
−1

A)⟨x, x⟩
P(1)A

σmin(PV−1V)⟨x, x⟩PV ≤ ⟨x, x⟩V ≤ σmax(PV−1V)⟨x, x⟩PV

where ⟨x, x⟩B := xᵀBx, ∀B. These lead to σ1 ⟨x, x⟩P(2)A
≤ ⟨x, x⟩A ≤ σ2 ⟨x, x⟩P(2)A

,

where σ1 := min

{
1, 1

9

(
1 − γ

)}
and σ2 := max

{
1, (1 − γ )

[
σmax(P−1

V V)
γ − 1

]}
.

Fig. 2. Generalized Steklov eigenfunctions of a hemisphere.
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Fig. 3. Generalized Steklov eigenvalues of a sphere cut with a moving plane.

5.6 Implementation details
Our rephrasing of the DtN operator in terms of boundary inte-

grals is an example of the boundary element method (BEM) from

numerical PDE. Hence, our implementation uses the BEM++ li-

brary [Śmigaj et al. 2015] to evaluate the matrices above, whose

elements are obtained using numerical quadrature. BEM++ uses

hierarchical matrices (“H-matrices”) to compute matrix-vector prod-

ucts efficiently, approximating the integrals with hierarchical ex-

pressions that group together small contributions from far-away

vertices [Börm et al. 2003]. σmin(P−1

V V) can be approximated by

solving the minimum eigenvalue of the squared system, without

the need for a preconditioner.

6 VALIDATION

6.1 Robustness to topological change
In addition to the hemisphere test in Figure 2, Figure 4 gives an

example of robustness of our operator to topological change. Here,

we compare the Steklov eigenvalues and eigenfunctions of a torus

with zero, one, and two rings cut out. When triangles on the cut

are removed, these topological changes—which drastically affect

the Laplace–Beltrami operator—have little effect on the Steklov
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Fig. 4. The Steklov spectra of the donuts. These measurements remain stable as the donut undergoes topological change and even becomes disconnected. In
the last row, the two open holes on the cut donut are closed with disks, in which case the Steklov spectrum considers the donut as two disconnected pieces.
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Fig. 5. The Steklov spectrum is robust when removing random triangles
progressively from the mesh, tested on the sphere and armadillo meshes.

spectrum. When we close the holes with flat disk patches, however,

the Steklov spectrum detects a topological change, since the donut

is clearly divided into two volumetric pieces.

Figure 5 shows an example of robustness to “topological noise.”

Here, we remove triangles from the mesh with uniform probability

and show the resulting Steklov spectrum. Once again, our operator

is remarkably stable to these changes, yielding a stable spectrum

even when 50% of the triangles are removed.

6.2 Robustness to surface sampling
Figure 6 shows an example of robustness to downsampling and

unbalanced sampling. Here we simplify the dense dragon mesh

and observe that the resulting Steklov spectrum does not change

significantly. Although geometric details at the belly and scales

of the dragon are lost during downsampling, the eigenvalues are

almost unaffected.

Since the low-order Steklov eigenvalues are robust to downsam-

pling and in most applications we are interested in only the first ∼50

eigenfunctions, the experiment suggests it is not necessary to use a

highly-detailed mesh. We find a mesh with 7k − 15k triangles is usu-

ally sufficient to accurately approximate the top 50 eigenfunctions;

in this regime, computation finishes in 4−10 minutes.

6.3 Robustness to vertex noise
Figure 7 illustrates stability of our BEM discretization when noise

is added to the boundary surface. Although they are defined in §3.1

via a second-order differential equation, we observed that the lower

Steklov eigenfunctions are particularly robust to noise, similarly to

those of the Laplace–Beltrami operator. Both Laplacian and Steklov

spectra scale down globally, since adding noise increases the edge

lengths and thus the surface area of the mesh.
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Fig. 6. The Steklov spectrum is robust to downsampling as well as un-
balanced sampling. Dragons represented with 14k (blue), 54k (red), 220k
(yellow), and 117k (green) triangles have very similar Steklov eigenvalues.
The dragon with 117k triangles are obtained by downsampling only the left
side of the 220k dragon.

When noise is applied, the mesh is no longer watertight: There

are intersecting triangles, flipped triangles, and so on caused by

random vertex perturbations. For these challenging meshes, the

BEM++ library—not designed to handle these cases—occasionally

fails because the quadrature points can coincide.

To avoid this issue, we first apply a simple repair procedure to

the mesh: Cut intersecting triangles into multiple non-intersecting

ones, merge vertices that are closer than δ to each other, and re-

move duplicated triangles (if there are any). δ = 10
−2L̄ is chosen,

where L̄ is the average edge length in the original input mesh. This

repair procedure leads to almost no visual difference to the mesh. In

addition, for these extremely noisy tests we find using a regularized

kernel 1/(r + ϵ) instead of the original kernel 1/r helps to improve

solver’s robustness, where ϵ = 10
−4

is chosen, assuming the mesh

has been normalized to the unit scale. This simple repair proce-

dure and regularization are only necessary for meshes with largest

amount of noise in Fig. 7 (rightmost column), to avoid overlapping

quadrature points. Generalizing the DtN operator to surfaces with

self-intersections is a challenging problem and it may deserve care-

ful numerical treatments. Our current mesh fixing procedure is a
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Fig. 7. Robustness test by adding noise to the vertex positions. Blue, red and yellow curves corresponds to the original and noisy meshes, respectively. After
noise is applied, the mesh may not be exactly watertight due to self-intersections as well as many flipped triangles, and hence the smallest “Steklov eigenvalue”
could be slightly positive. A decrease of eigenvalues after adding noise is expected since surface area increases. Both eigenvalues are normalized by its largest
eigenvalue.

practical workaround, leaving the theoretical question for future

research.

Our Steklov solver remains robust even with a significant amount

of noise. Large noise may cause partial occlusions (like the patched

disks in Fig. 4), which the Steklov spectrum considers as partial

topological change. In this case, the smallest computed eigenvalue

could be slightly positive, depending on the size of the occlusion.

As a point of contrast, no volumetric (tet-based) method can be

applied before fixing the mesh to be watertight; this more complex

repair procedure is challenging and may lose geometric information.

In a sense, it is not surprising that our BEM-based approach is

robust to noise and triangle soup; the state-of-the-art mesh robust

repair technique [Jacobson et al. 2013] in essence is also a boundary

element method.

6.4 Stability test for volume isometries
The Steklov spectrum is invariant to volumetric isometry, and our

experiments demonstrate that it remains stable when the volume

enclosed by the outer surface deforms near-isometrically. In the

first row of Figure 8, when the rectangular prisms are deformed

using a near-volume-isometric bending map, the Steklov and Lapla-

cian eigenvalues and eigenfunctions remain almost unchanged. In

the second row, however, the thin box is deformed subject to a

near-surface-isometry but non-volume-isometry, by shearing the

interior of the box. Only the Steklov spectrum captures the volu-

metric change as the shear increases. This example illustrates how

the Steklov spectrum discriminates nuanced non-isometric volume

changes, while the Laplacian spectrum fails to capture the difference.
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(a) Both Steklov and Laplacian spectra are robust to (near)-volume-isometry.
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(b) Steklov spectrum captures shearing, to which Laplacian is insensitive.

Fig. 8. Stability tests for volume-isometries and non-volume-isometries.
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# vertices # faces cond(P−1

V V)
258 512 3.91

1026 2048 3.96

4098 8192 4.00

16386 32768 4.00

65538 131072 3.94

262146 524288 3.95

Fig. 9. Conditioning on different meshings of the unit sphere.

6.5 Conditioning
Convergence of our iterative linear and eigenvalue solvers depends

on the conditioning of the matrices involved. Since our operators

and preconditioners are constructed using integrals that make sense

in the continuum, we expect that conditioning is O(1) in mesh

size, i.e., it does not depend significantly on the number of vertices

or triangles. Figure 9 verifies this relationship for the single layer

potential operator on different meshings of the unit sphere; we

observe similar behavior on other meshes.

6.6 Convergence to analytical eigenvalues
The analytical Steklov eigenvalues and eigenfunctions are known

for the sphere. We compare the numerical solution of our method

on the sphere for verification purposes. Figure 10 verifies that our

discretized operators are faithful to these ground-truth quantities.
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Fig. 10. Relative error measured in between spherical harmonics and the
eigenspaces of our Steklov operator. Relative error decreases as the mesh
resolution increases. The error is measure for a fixed number of 25 iterations,
computed from random initialization.

6.7 Timing
For the cube with 6146 vertices and 12288 triangles, BEM++ takes 60

seconds to assemble all boundary element operators, one LOBPCG

iteration takes 24 seconds on average, and 20 iterations are usually

sufficient for random initialization. Usually less than 10 iterations

are needed for initialization from low-resolution eigenfunctions. We

observed that all the timings roughly scale linearly with size of the

mesh. Our implementation is in Python, and results are collected

on an Alienware laptop with an Intel i7 4800MQ CPU and Linux

operating system. As many graphics applications do not require a

very high precision, we believe that there is large room for future

work to improve the computational efficiency (see §8).

6.8 Comparison with FEM
An alternative approach for extrinsic spectral geometry uses the

volumetric Laplacian. Spectral computations with this operator do

not have a boundary integral formulation, and hence we would need

a volumetric mesh of the interior of the domain. This limits applica-

bility, since tet meshing typically requires a watertight surface as

input, and the results depend on the algorithm used for generating

a tet mesh. Furthermore, map-based applications such as compu-

tation of shape differences (§7.5) would require correspondence of

not just the outer surface but the interior as well, which may not

be available. As we will show in §7.2, we do not observe a case in

which an explicit mesh of the interior leads to significantly better

results for geometry processing tasks.

These high-level concerns aside, one could reasonably discretize

the DtN operator using the finite element method (FEM) on a tet

mesh. In particular, the DtN operator can be derived as the Schur

complement of the positive semidefinite volumetric Laplacianmatrix

L(vol), i.e. the FEM discretization of the interior Laplace equation

with the Neumann boundary conditions. With piecewise linear

bases, L(vol) is assembled by the familar cotangent weights (of the

dihedral angle opposite to an edge); see e.g. [Jacobson 2013, §2.1] for

an explicit formula . On a tetrahedral mesh with volumetric FEM-

based Laplacian L(vol) andmass matrixM(vol)
, divide this matrix into

blocks corresponding to boundary vertices b and interior vertices i:

L(vol) =
[
Lbb Lbi
Lib Lii

]
.

It approximates ∆ in the interior and ∇n at the boundary[
∇nub
∆ui

]
= −M(vol)−1

L(vol)u.

Setting the second row ∆ui = 0 to eliminate the interior vertices as

ui = −L−1

ii Libub , the Dirichlet energy takes the form

E = uᵀL(vol)u = uᵀb S
(FEM)ub ,

giving rise to a FEM-based Dirichlet-to-Neumann operator

S(FEM) = Lbb − LbiL
−1

ii Lib ≽ 0.

Figure 11 illustrates a drawback of using the tet-based DtN oper-

ator. Here, we compute Steklov eigenvalues on two different tetra-

hedral meshes of the same unit sphere using first-order FEM. This

figure shows that Steklov eigenvalues depend on the choice of tetra-

hedral meshing of the boundary. In particular, faster sparse com-

putations on coarse FEM meshes come at the cost of inaccurate

Steklov approximation. Contrastingly, BEM faithfully approximates

Steklov eigenvalues for the sphere beyond the range tested in this

experiment.

We further observe that BEM with the correct full mass matrix

(our method) yields the closest spectrum to ground truth by a sig-

nificant margin; even BEM with a lumped diagonal mass matrix

does not yield accurate results. Hence, our implementation always

uses the full mass matrix in the generalized eigenvalue problem. We

do use lumped mass matrices to construct preconditioners for the

iterative solvers, since they can be inverted quickly; this affects only

the number of iterations for the solver rather than the quality of

the final output.
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(d) Plot of eigenvalues computed using different methods.
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(e) Plot of absolute errors of eigenvalues (numerical solutions minus
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Fig. 11. Steklov spectrum of unit sphere, computed using BEM and FEM
with different mesh resolutions. For FEM, we compute the Steklov spectrum
using either fine-grained tets or coarse-grained tets, and using either a full
mass matrix or a lumped mass matrix. For BEM, we experiment with full
and lumped mass matrices.

7 EXPERIMENTS AND APPLICATIONS
We highlight two properties of the DtN operator S distinguishing

it from the Laplace–Beltrami operator, motivated in the theoretical

discussion in §3:

• S captures the volumetric structure of the interior.

• S incorporates the mean curvature of the outer surface.

Accordingly, the algorithmswe derive based on the Steklov spectrum

enjoy these properties.

Many existing frameworks for intrinsic geometry processing

can be extended to take extrinsic geometry into consideration by

substituting the Laplacian operator with the DtN operator. There

are many ways to justify this simple substitution:

• Many intrinsic geometry tasks involve the surface-based Laplace–

Beltrami operator, whose weak form corresponds to a Dirichlet

energy on the surface:

⟨∇Γu,∇Γu⟩Γ = uᵀLu.

The weak form of the DtN operator provides the closely-related

volumetric Dirichlet energy of the harmonic extension E of a

surface-based function:

⟨∇Eu,∇Eu⟩Ω = uᵀSu.

• Both operators’ associated eigenproblems involve Rayleigh quo-

tientswith similar numerators and identical denominators [Girouard

and Polterovich 2017].

• Forn disconnected/closed pieces, both operators haven-dimensional

null spaces.

• Laplace–Beltrami and DtN operators both can be understood as

subtracting the value of a function at a point from its average over

a neighborhood. The DtN operator first interpolates the function

harmonically to the volume, while Laplace–Beltrami restricts to

the surface.

The close analogies above hint that shifting from intrinsic geome-

try to extrinsic geometry can be accomplished by substituting the

cotangent Laplacian operator with a discretized DtN operator.

We demonstrate this substitution in a few contexts. In particular,

we experiment and study properties of Steklov-based kernel sig-

natures, distances, and shape differences, which are fundamental

components of many high-level geometry processing and shape

analysis algorithms.

7.1 Steklov spectrum
Figures 12 and 13 illustrate Steklov eigenfunctions on more complex

models; surface-based Laplace–Beltrami eigenfunctions are shown

for comparison. Both models have more vertices than can be fea-

sibly handled using dense matrix computations, highlighting the

necessity for iterative solvers introduced in §5.4.

A few qualitative differences between the intrinsic and extrinsic

eigenfunctions are worth pointing out. On the gargoyle model, the

Steklov eigenfunctions exhibit more localization on the wings; the

wings are distinctive volumetric features, whereas the outer surface

blends the wings into the body/base. On the dragon model, eigen-

functions of the two operators look completely different: Steklov

eigenfunctions are localized in individual folds of the dragon, while

the Laplace–Beltrami eigenfunctions extend along the entire surface.

This effect is reflective of the fact that intrinsically the dragon model

is a long tube in which the 180
◦
fold of the body between the front

and hind legs is insignificant; volumetrically, however, the up/down

bending of the dragon is a prominent geometric feature.

Figure 14 shows an experiment similar to the ones in [Vallet and

Lévy 2008], in which the eigenfunctions of the DtN operator are

used to compress and subsequently reconstruct the xyz coordinate
functions of a triangle mesh. Interestingly, fewer Steklov eigenfunc-

tions are needed to capture key geometric features relative to the

Laplace–Beltrami eigenfunctions. That is, low-frequencies in DtN

space appear to better capture geometric variation.
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Steklov
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Fig. 12. Selected Steklov eigenfunctions on the dragon model, with comparison to Laplacian eigenfunctions. Although the Steklov eigenfunctions are computed
using the boundary geometry, these eigenfunctions are aware of the geometry of the volume enclosed by the dragon surface, in particular the S-shaped bend
of its body.

Steklov

Lapla-
cian

Fig. 13. The Steklov eigenfunctions corresponding to the smallest 12 eigenvalues, compared to the surface Laplacian eigenfunctions; this model contains 50k
triangles and 25k vertices.

Steklov
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Fig. 14. Reconstruction with increasing number of bases; color encodes
relative error in position.

7.2 Kernel-based descriptors
The heat equation associated to the DtN operator is given by

du

dt
= −Su, (18)

whose solution can be written

u(x, t) =

∫
Γ
kt (x,y)f (y) dy. (19)

Here, kt (x,y) is the heat kernel

kt (x,y) =
∞∑
i=0

e−λi tϕi (x)ϕ j (y), (20)

where λi and ϕi are the i
th

eigenvalue and eigenfunction of S, resp.

If we replace DtN with the Laplace–Beltrami operator, the heat
kernel signature (HKS) of a point x ∈ Γ is defined as ht (x) =
kt (x, x) [Sun et al. 2009], the diagonal of the heat kernel. Consid-

ered as a function of t , ht (x) provides a multi-scale characterization

of intrinsic geometry near x ; it is a basic descriptor used in many

shape matching and correspondence algorithms. The wave kernel

signature (WKS) [Aubry et al. 2011], also defined using the Laplace–

Beltrami operator, outperforms the heat kernel signature for shape

matching tasks using a related eigenvalue formula.

The heat and wave kernel signatures can be naturally general-

ized to the DtN operator by replacing the Laplace–Beltrami spec-

trum/eigenfunctions with Steklov spectrum/eigenfunctions. A simi-

lar construction is considered by Raviv et al. [2010], who construct

a volumetric HKS via a coarse discretization of the Laplacian in

the interior of a volume bounded by a watertight surface. Without

this interior meshing, our DtN-based HKS and WKS capture similar

extrinsic shape properties.

Figure 15 compares the Laplace–Beltrami, DtN, and volumetric

HKS functions on a triangulated surface; the volumetric HKS is

approximated using a tetrahedral mesh of the interior, as explained

in §6.8. Following Sun et al. [2009], we consider the time interval

[ 4 ln 10

λ300

, 4 ln 10

λ2

] in all of our examples, and Figure 15 shows typical

patterns of the signature using either a small or large time from the

range. The DtN and volumetric kernel signatures capture the mean

curvature in the palm of the hand, ignored by the intrinsic HKS.

Similarly, Figure 16 illustrates the point signatures at the apexes of

the bumps in Figure 1. Since the two cubes are isometric, Laplace–

Beltrami-based signatures does not discriminate the two points,

while the DtN-based signature distinguishes the two models.

Figure 17 illustrates how DtN-derived descriptors can be more

discriminative than their Laplace–Beltrami counterparts. Here, we

mark a point on the foot of a humanmodel and show the distance be-

tween its descriptor and those of other surface points. Fewer points

have descriptors close to the descriptor of the foot, showing that
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Laplacian Steklov Volumetric

Short time

Laplacian Steklov Volumetric

Long time

Fig. 15. Visualization of Laplacian and Steklov heat kernel function ht (x ),
respectively, in log scale. Note that the minima correspond to most negative
Gaussian and mean curvatures, respectively.
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Fig. 16. Steklov-based scaled heat kernel signature and wave kernel signa-
ture on the cubes with inward (red) and outward (blue) bumps. In contrast,
the two cubes have identical Laplacian-based signatures. Feature points are
chosen as centers of the bumps.

the DtN WKS embedding is less ambiguous. In the second example,

DtN WKS is better aware of the left-right symmetry breaking, and

tends to discriminate left and right feet. This property may or may

not be desirable depending on application, but it shows that DtN

operators are pose-aware and can be used to navigate databases of

near-isometric models like articulated humans.

7.3 Spectral distance
Several spectral distances are defined between points on a surface

in terms of the spectrum of the Laplace–Beltrami operator. These

distances enjoy certain stability and smoothness properties not

satisfied by the geodesic distance and are computable using lin-

ear algebra machinery. These distances naturally generalize to the

Steklov spectrum, providing spectral volume-aware distances that

require computation only on the boundary.

Working in analogy to previous work [Coifman and Lafon 2006;

Lipman et al. 2010], we define the Steklov diffusion distance and the

Laplacian Steklov Laplacian Steklov

Fig. 17. Color encodes the similarity between the signatures across the
shape with signature at the marker (blue dot), which sits in the center of
shoe bottom. Darker color corresponds to more similarity. Left : Steklov WKS
is aware of regions with a large mean curvature (wrinkles on the cloth) and
avoids matchinig them with the marker, which is on a plateau with zero
mean curvature. Right : Steklov WKS is a more restrictive signature, while
Laplacian WKS tends to confuse left and right feet.

bi-Steklov distance as follows

dD (x,y)
2 =

∞∑
i=1

e−2tλi (ϕi (x) − ϕi (y))
2

dB (x,y)
2 =

∞∑
i=1

1

λ2

i
(ϕi (x) − ϕi (y))

2 .

These distances are aware of relationships between points that reach

across the volume.

Figures 18, 19, and 20 show several examples of these distances

on meshed surfaces. A few key examples point out the special prop-

erties of our distance compared to its intrinsic and/or more naïve

extrinsic counterparts:

• Flat disk (Figure 18): The DtN distance is small between points

at the center of the top and the bottom of the disk, which are

close if you cut through the interior of the disk and far along the

surface.

• Mouse (Figure 19): This example shows the opposite effect. The

two hands of the mouse are close in Euclidean distance, but in

Steklov distance they are far. This is because our distances are

interior-aware; unlike the disk, the shortest path between the two

hands through the interior is large.

Note that computation of shortest-path distances in restricted to

the interior of a non-convex triangulated surface is NP-hard [Canny

and Reif 1987]. Though the Steklov family of distances is computed

without interior discretization, it behaves similarly to distances

computed using the volumetric Laplacian.
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Bi-Laplacian Bi-Steklov Bi-Volumetric D-Laplacian D-Steklov D-Volumetric

Fig. 18. Spectral and diffusion distances computed using the Laplacian, Steklov, and volumetric Laplacian spectra; colors range from blue (zero distance) to red
(large distance). The first and second rows show the top and bottom of the surface, respectively. Source point is placed at the center of the top surface (visible
in the first row). The Steklov (boundary-based) and volumetric (tet mesh-based) distances are small between the center of the top and bottom of the pancake
shape, while they are far using the intrinsic Laplacian distances.

Bi-Laplacian Bi-Steklov Bi-Volumetric D-Laplacian D-Steklov D-Volumetric

Fig. 19. Spectral and diffusion distances computed using the Laplacian, Steklov, and volumetric Laplacian spectra, illustrated using the same color scheme as
Figure 18. In contrast to the example in Figure 18, while the two hands of the mouse are close in ambient space R3, the Steklov/volumetric distances between
the hands are large because they are constrained to use paths through the interior of the volume.

7.4 Volume-aware segmentation
Equation 2 suggests that Steklov eigenfunctions encode point-

wise mean curvature, providing geometric clues for surface seg-

mentation useful in descriptor-based algorithms [Chen et al. 2009];

see Figure 21 for an example. To demonstrate, in Figure 22 we ap-

ply a naïve strategy for segmentation. For the input mesh, we first

compute the Steklov spectrum embedding as(
ϕ1(x)
√
λ1

,
ϕ2(x)
√
λ2

, · · · ,
ϕk (x)√
λk

)
,

where x ∈ Ω. Then, we apply the k-means clustering to this em-

bedding with a user-specified number of clusters; to avoid local

optima, we restart k-means ten times with random initialization

and keep the clustering with lowest objective value. This simple
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