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ABSTRACT
Sensor networks are emerging as a paradigm for future com-
puting, but pose a number of challenges in the fields of net-
working and distributed computation. One challenge is to
devise a greedy routing protocol – one that routes messages
through the network using only information available at a
node or its neighbors. Modeling the connectivity graph of a
sensor network as a 3-connected planar graph, we describe
how to compute on the network in a distributed and local
manner a special geometric embedding of the graph. This
embedding supports a geometric routing protocol based on
the ”virtual” coordinates of the nodes derived from the em-
bedding.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Geometrical problems and computations

General Terms
Algorithms

Keywords
distributed computing, greedy routing, virtual coordinates,
power diagrams, planar embedding

1. INTRODUCTION
Sensor networks are a collection of (usually miniature) de-

vices, each with limited computing and wireless communica-
tion capabilities, distributed over a physical area. The sen-
sor network collects data from its environment and should be
able to integrate it and answer queries related to this data.
Sensor networks are becoming more and more attractive in
many application domains.

The advent of sensor networks has posed a number of
research challenges to the networking and distributed com-
putation communities. Since each sensor can typically com-
municate only with a small number of other sensors within a
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short range, information generated at one sensor can reach
another sensor only by routing it through the network. Tra-
ditional routing algorithms rely only on the combinatorial
connectivity graph of the network, but the introduction of
so-called location-aware sensors, namely, those that also know
what their physical location is (e.g. by using a GPS re-
ceiver), permits more efficient geographic or geometric rout-
ing.

In geometric routing we consider the following problem: A
packet is to be routed across the network from a source sen-
sor to a destination sensor. The physical locations – the co-
ordinates – of the source and destination sensors are known.
When a sensor receives a packet, it must decide to which of
its neighbors it should forward the packet based on a local
decision. By local decision, we mean that the decision is
made based only on local information - the coordinates of
the current sensor, the destination, and the sensor’s neigh-
bors. Despite this restrictive locality, the routing algorithm
should guarantee that the packet will indeed arrive at the
destination.

One simple geometric routing scheme is greedy routing. In
greedy routing, when a sensor receives a packet, it forwards
the packet to the neighbor that is closest in some sense
to the destination sensor. The main problem with greedy
routing is that it may encounter local minima, also known
as routing voids or holes, when the current sensor has no
neighbor closer to the destination than itself. When such a
local minimum is encountered, the packet is ”stuck”, greedy
routing cannot continue, and the delivery fails. Known ways
of recovering from local minima usually make use of some
local planar embedding information such as the facial struc-
ture [2]. Examples of greedy routing are greedy Euclidean
routing, which is based on Euclidean distance to the des-
tination, or compass routing, based on angular distance to
the destination [13].

Greedy routing is based on the real (physical) coordinates
of the network (as reported by the GPS system), but there
is nothing special about these coordinates, in the sense that
any other coordinate system may be used. Thus, it may
be advantageous to endow the sensors with new ”virtual”
coordinates, which will behave better in the greedy routing
scenario. Algorithms that generate and use virtual coordi-
nates can be found in the literature [14, 15, 16]. Unfortu-
nately, very few of them can guarantee that routing using
the virtual coordinates will never fail in general settings.

Greedy routing on a connectivity graph of a sensor net-
work raises a number of interesting theoretical questions:
What are the virtual coordinates that will support greedy



routing? Is such a coordinate system even guaranteed to ex-
ist? What is the smallest dimension of space in which such
a coordinate system exists? We call such good embeddings
greedy embeddings. The dimension of the embedding space
dictates the amount of space that must be allocated per sen-
sor for storing the node coordinates. Ideally, this should be a
small constant, typically 2 or 3. Some theoretical questions
related to this type of low-dimensional embedding were par-
tially answered by Papadimitriou and Ratajczak [15]. They
conjectured that any 3-connected planar graph has a greedy
Euclidean embedding (i.e. an embedding which supports
greedy Euclidean routing) in R2. Should the conjecture be
true, this is an important result for sensor networks, since
most communication graphs will have a 3-connected planar
subgraph. A possible way to use these coordinates is to find
the relevant subgraph, compute the greedy coordinates, and
then discard the planar subgraph, retaining the virtual co-
ordinates. Greedy Euclidean routing on the full communi-
cation graph using the same virtual coordinates is still guar-
anteed to succeed. Papadimitriou and Ratajczak provided a
number of geometric characterizations of greedy Euclidean
embeddings in R2. A notable sufficient (but not necessary)
condition is that all angles of the straight-line plane drawing
are less than 120◦. It is also quite easy to show [15] that a
Delaunay triangulation is a greedy Euclidean embedding.

Recent work by Ben Chen, Gotsman and Gortler [3] also
considered greedy routing on 3-connected planar graphs.
Their most interesting result may be thought of as midway
between the easy observation that a Delaunay triangulation
is a greedy Euclidean embedding of a triangulated graph (if
such an embedding is possible [6, 9]), and the conjecture
of Papadimitriou and Ratajczak [15] that every 3-connected
planar graph has a greedy Euclidean embedding. Recall
that the Delaunay triangulation is the orthogonal dual of
the Voronoi diagram. Instead of using Voronoi diagrams,
Ben Chen et al. proposed to use power diagrams. These are
generalizations of the Voronoi diagram, where each site is
endowed with a radius, and the distance to a site is mea-
sured using the power distance – which takes the radii into
account (a Voronoi diagram is a special case of the power
diagram where all radii are equal). Power diagrams where
each cell contains its site are called contained power dia-
grams, and Ben Chen et al. showed that the duals of these
embeddings support greedy power routing – greedy routing
using the (non-Euclidean) power distance. The resulting
challenge is to compute planar coordinates and a radius for
each of the vertices of a given 3-connected planar graph,
such that resulting power diagram is contained and its com-
binatorial dual is isomorphic to the given graph. A special
case of such an embedding is that obtained from the so-
called coin-graph embedding [18, 20] (where the radii are
those of the coins). It is easy to see that the edges of the
dual are tangent to the coins at their intersection points.
It can be shown (see Appendix) that greedy power routing
is equivalent to routing in three dimensions on a polytope,
the two frameworks being related by the stereographic pro-
jection, which maps the distance functions monotonously to
each other.

The focus of this paper is the computation of a greedy
power embedding in a local manner. Just as the actual rout-
ing of a message should be done locally, so the embedding
on which the routing is based should be computed in a dis-
tributed manner by the sensors in the network, each commu-

nicating only with its neighbors in the network connectiv-
ity graph. Our starting point is the algorithm proposed by
Thurston in 1985 [20, 19] for computing coin-graph embed-
dings (see Collins and Stephenson [5] for a practical imple-
mentation): it is an iterative process that computes a set of
radii that converge to the desired values. The radius associ-
ated with a node is modified at each step based on a certain
sum of angles around the node, a value depending only on
the node and its immediate neighbors, thus locally com-
putable. The algorithm terminates when this sum reaches
2π (up to some numerical tolerance) at all nodes. Once the
radii have been computed, the embedding may be computed
easily by an incremental layout process. Thus these special
embeddings may be computed locally by a sensor network.
They are however, quite restrictive, and we address here the
question of how to compute an embedding corresponding to
a member of the broader class of contained power diagrams.

Towards this end, we adopt the Thurston embedding algo-
rithm, but replace its termination conditions by geometric
and local ones. We demonstrate that these new termina-
tion conditions allow us to stop the iterations as soon as
we can guarantee that the routing will deliver, minimizing
the amount of computations. By minimizing the number of
computations and distributing the computation among the
vertices of the graph, this algorithm is especially suitable
for a distributed implementation over a sensor network with
limited computation resources, allowing it to compute its
virtual coordinates by itself.

2. PREVIOUS WORK
As mentioned in the Introduction, any Delaunay triangu-

lation is a greedy Euclidean embedding. Thus the following
natural question arises: Given a triangulated planar sub-
graph of the communication graph of a sensor network, can
we embed the subgraph in the plane such that the result-
ing triangulation will be Delaunay? Such a process is called
Delaunay realization. Moreover, can it be done in a local
manner by computing at the nodes of the graph? Dillen-
court and Smith [6] showed that not all triangulated planar
graphs are Delaunay-realizable, and the class of Delaunay-
realizable graphs is essentially equivalent to the class of in-
scribable graphs – ones that may be embedded as a convex
polyhedron in R3 with vertices on the sphere. Complete
characterizations of the Delaunay realizability of a planar
triangulated graph have been given by Hodgson et al.[10]
and Hiroshima et al.[9]. This involves defining a so-called
coherent angle system for the edges. Experiments run by
Hiroshima et al.[9] showed that the vast majority of the set
of planar triangle graphs are Delaunay realizable. Despite
this, an algorithm to actually compute the embedding is
quite difficult. It is related to another difficult embedding
problem, that of generating a coin-graph embedding. The
latter was solved using an iterative algorithm by Thurston
[20], and solved in a more general setting, where the circles
have prescribed intersection angles, as a global optimization
problem by Bobenko and Springborn [1]. Both algorithms
solve for the radii of the circles. The same algorithm of
Bobenko and Springborn may be used to perform Delaunay
realization by solving for the radii of the circumcircles of
the Delaunay triangles, using a previously computed coher-
ent angle system [11].

Papadimitriou and Ratajczak [15] studied the problem
of generating greedy Euclidean embeddings for 3-connected



planar graphs. They show that realizing the graph as a 3-
polytope with all edges tangent to the unit sphere allows for
a special type of greedy routing, using a non-Euclidean met-
ric. More recent work by Kleinberg [12] shows how to con-
struct a greedy embedding in the hyperbolic plane. While
unable to prove the existence of greedy Euclidean embed-
dings in the Euclidean plane, Papadimitriou and Ratajczak
[15] showed that the following two conditions are equivalent.

1. An embedding p : V → R2 is a greedy Euclidean embed-
ding.

2. Denote by CellG(v) the cell associated with site p(v) in
the ”local” Voronoi diagram of just the sites {p(v)} ∪
{p(w) : w ∈ NG(v)}, where NG denotes the neighbors of
v in G. Then ∀v ∈ V, p(w) ∈ CellG(v) iff w = v.

Note that one direction of the equivalence in condition 2,
namely p(v) ∈ CellG(v) is trivial. The challenge is that
CellG(v) contains only p(v), and is void of other sites. Note
also that although CellG(v) may be computed locally (based
only on the positions of v’s neighbors), checking this condi-
tion cannot be done locally by v, since v must check that all
other nodes are not in its cell.

Ben Chen et al.[3] described how to perform greedy power
routing using duals of contained power diagrams. A power
diagram associates with each site p(v) a radius r(v), and
the distance of a point q ∈ R2 from p(v) is defined as
d(q, p(v))2 = e(q, p(v))2−r(v)2, where e(·, ·) is the Euclidean
metric. The power cell Cell(v) is the (convex) region of
points q such that d(q, p(v)) ≤ d(q, p(w)) for all w 6= v. A
contained power diagram is one where p(v) ∈ Cell(v) for all
v. Note that, in contrast to the cell defined by Papadim-
itriou and Ratajcazk, this cell may not be constructed lo-
cally, since it may depend on sites not neighboring v in the
connectivity graph. However, once it is constructed, the
containedness property may be easily checked locally. Thus
a key objective of this paper is to formulate a local condi-
tion for checking that the adjacency graph of the power dia-
gram is indeed G (or not much different from it, in the non-
triangulation case) and checking containedness. This, when
applied as a local termination condition to the Thurston al-
gorithm, allows to generate greedy power embeddings in a
distributed manner on a sensor network.

As proven in the Appendix, the polyhedral routing on a
polytope edge-tangent to the sphere presented in [15] is in
fact equivalent to greedy power routing on a circle-packing.
This is generalized to show that greedy power routing on a
contained power diagram is equivalent to routing in three
dimensions on a polytope such that the supporting hyper-
plane at a vertex V may be chosen orthogonal to (OV). It
follows that our method may also be applied to compute
greedy polyhedral embeddings in a distributed way.

3. TRIANGULATED GRAPHS
Let G(V, E) be a combinatorial triangulation. We assume

that G is planar and we denote by B its boundary, which is
a cycle. In the following, we study a map φ : V → D2 × R,
which associates to each vertex v a point p(v) in the unit
disk and a scalar weight r(v). We present local properties
on φ which are sufficient for greedy power routing to deliver.
We denote by Conv(p(V )) the convex hull of the associated
points.

Definition 3.1. A power diagram is said to be contained
if each site is inside its cell (see Figure 1).

v

w

Cell(v)

Figure 1: As the radius of the circle around w grows, Cell(w) also
grows and the power diagram becomes uncontained when v is not in
Cell(v) anymore.

Let us now recall a slightly stronger version of the result
of Ben Chen et al.[3] that we will use to provide a sufficient
condition for the greedy power routing to deliver.

Theorem 3.2 (Ben Chen et al.). If the restriction of
the power diagram of φ(V ) to Conv(p(V )) is contained and
if its adjacency graph (i.e. the combinatorial dual) is a sub-
graph of G, then greedy power routing delivers on φ.

Proof. See the proof by Ben Chen et al.[3]. Just take
into account that the only edges of the power diagram that
matter in the proof are the ones that are inside the convex
hull of the points, and that the proof does not change if only
a subgraph of G is obtained as the adjacency graph of the
power diagram.

Definition 3.3. If w1, . . . , wn are the neighbors of v in
G, the local cell of v in G, denoted by CellG(v), is the cell
of v in the power diagram of {φ(v), φ(w1), . . . , φ(wn)} (see
Figure 2).

In the following definition, when we refer to the order of
vertices around another vertex, we mean the cyclic order of
vertices, which is independent of the embedding in the case
of a triangulation (except that we can reverse all orienta-
tions).
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Figure 2: The local cell CellG(v) (solid lines) contains the power
diagram cell (dashed lines) and contains another vertex w. Theo-
rem 4.2 implies that the greedy power routing does not deliver on
this embedding.

Definition 3.4. For any vertex v ∈ V , we say that prop-
erty LPD(v, φ) (Local Power Diagram) is satisfied if and
only if

• if w1, . . . , wn are the neighbors of v in G (in this or-
der), then the cell CellG(v) contains p(v) and the cells
adjacent to it are exactly the ones of w1, . . . , wn (in
this order, see Figure 3);

• Let v ∈ B. Denote by w1 and wn the two neigh-
bors of v that belong to B and that are linked to v
by boundary edges. Then in the power diagram of
{φ(v), φ(w1), . . . , φ(wn)}, Cell(v)∩Cell(w1)∩Cell(wn)
is either empty (which means that Cell(v) is unbounded)
or it is a point outside the unit disk D2.

w1

w2

w3

w4

w5

v

Figure 3: As w4 moves away from v, LPD(v, φ) is not satisfied
anymore, because CellG(v) and CellG(w4) are not adjacent anymore,
whereas edge [vw4] exists in G.

Note that the condition about the order of neighbor cells
around a given cell is equivalent to requiring that the graph
is properly embedded (this follows from the convexity of the
power diagram cells). Thus, if G is known to be embedded,
specifying the order of neighbor cells is not necessary.

Theorem 3.5. If

∀v ∈ V, LPD(v, φ),

then the restriction of the power diagram of φ(V ) to the
convex hull Conv(p(V )) is contained and its adjacency graph
is G.

Proof. From now on, we denote by Cell(w) the cell of
φ(w) in the power diagram of φ(V ), and by Cell∗v(w) the
cell of w in the power diagram of {φ(v), φ(w1), . . . , φ(wn)},
where w1, . . . , wn are the neighbors of v in G. Let ρ be the
restriction to Conv(p(V )).

We now prove that ρ(Cell∗v(v)) = ρ(Cell(v)) for all v ∈ V .
First note that Cell(v) ⊂ Cell∗v(v) for all v ∈ V implies that
∪v∈V ρ(Cell∗v(v)) = Conv(p(V )).

For each vertex v ∈ V , we consider the usual lifting `v :
x 7→ 2(x|v)−φ(v)+r(v)2 to the paraboloid. The power dia-
gram of φ(V ) is the projection of the upper envelope of the
hyperplanes `v(R2). We now show that the `v(ρ(Cell(v)))
can be glued into a convex terrain over the convex domain
Conv(p(V )).

If v and w are neighbors in G and v 6∈ B, let p and q be
the two vertices incident to the edge (v, w). Let α be the
power diagram vertex defined by v, w and p, and let β be the
power diagram vertex defined by v, w and q. The hypotheses
LPD(v, φ) and LPD(w, φ) imply that the segment [αβ] is an
edge common to Cell∗v(v) and Cell∗w(w) because the four
vertices v, w, p and q will all appear in the computations of
the border of both cells.

This implies that `v(Cell∗v(v)) and `w(Cell∗w(w)) can be
glued together along their common edge which is [AB] =
`v([αβ]) = `w([αβ]). Furthermore, by looking at the local
diagram of v and its neighbors, one can see that the angle
between `v(Cell∗v(v)) and `v(Cell∗w(w)) along [AB] is convex.

Let us now consider the case where both v and w are
boundary vertices. Let p be the incident vertex to (v, w) in G
and consider the edge e(v, w) = Cell∗v(v)∩Cell∗v(w). Hypoth-
esis LPD(v, φ) implies that this edge e(v, w), whether infi-
nite or not, has only one vertex inside the unit disk D2, which
is the power diagram vertex defined by v, w and p. We also
know that e(v, w) is perpendicular to the line (p(v)p(w)) and
that e reaches the boundary of D2. By symmetry, e(w, v) has
the same properties. It follows that ρ(e(v, w)) = ρ(e(w, v)).
This proves again that `v(Cell∗v(v)) and `w(Cell∗w(w)) can
be glued together along this convex edge.

Finally, we obtain that the `v(Cell∗v(v)) can be glued to-
gether into a locally convex polyhedral terrain P over the
convex domain Conv(p(V )). It follows that P is globally
convex and is in fact the restriction of a convex polytope
and that the projection of its edges onto Conv(p(V )) is a
restricted power diagram, whose sites happen to be the ele-
ments of φ(V ), by construction. The way the patches have
been glued together shows that the adjacency graph of this
restricted power diagram is exactly G.

We can now state the following corollary of Theorems 3.2
and 3.5:



Corollary 3.6. If

∀v ∈ V, LPD(v, φ),

then greedy power routing delivers on φ.

4. GENERAL DISTANCES
Papadimitriou and Ratajczak [15] have provided geomet-

ric conditions on embeddings of 3-connected planar graphs
which characterize greedy Euclidean embeddings. We now
present this result in the more general context of arbitrary
distance functions, and explain how it relates to Section 3.
We will need this for the extension of the results of Section 3
to more general planar graphs.

Given a field d of distance functions {dx : R2 → R, x ∈ R2}
(these functions are arbitrary real functions) and a set of
sites V ⊂ R2, we can define two kinds of distance diagrams:

• the usual one, where the cell of a site v is defined as

Cell(v) = {x ∈ R2, dv(x) ≤ dw(x),∀w ∈ V }

• the reciprocal one, where the cell of a site v, called the
reciprocal cell is defined as

Cell◦(v) = {x ∈ R2, dx(v) ≤ dx(w),∀w ∈ V }

Note that in the first case, the computation of a cell depends
only on the distance functions of the sites. In contrast, in
the second case, it depends on the distance functions at each
point in the plane. Thus, the reciprocal diagram is usually
impossible to compute (locally) if the distance functions are
too general.

Just as we defined the local cell CellG(v), we can define
the local reciprocal cell Cell◦G(v) and state a generalized ver-
sion of the result of Papadimitriou and Ratajczak stated in
Section 2.

Theorem 4.1. Given a field d of distance functions {dx :
R2 → R, x ∈ R2}, greedy routing on a graph G(V, E) with
respect to d delivers if and only if for each vertex v ∈ V , the
local reciprocal cell Cell◦G(v) contains no vertex other than
v.

Proof. The proof is exactly the same as the one given
by Papadimitriou and Ratajczak [15].

This is not a practical result. However, in the case of sym-
metrical distance functions, i.e. distance functions such that
∀x, y ∈ R2, dx(y) = dy(x), the usual cell and the reciprocal
cell are identical, namely Cell = Cell◦ and CellG = Cell◦G.
This is the case not only for the Euclidean distance, but also
for the power distance: each point x in the plane is endowed
with an arbitrary radius rx, and the distance between two
points x and y is defined as dx(y) = dy(x) = ‖x−y‖2−r2

x−r2
y

(if x is not a site, we may choose rx = 0 or any arbitrary real
value). Thus, we can now make use of the following version
of the theorem:

Theorem 4.2. Greedy power routing delivers if and only
if for each vertex v ∈ V , the local cell CellG(v) for the power
distance contains no vertex other than p(v) (see Figure 2).

We summarize our results so far in the following dia-
gram, which details the links between the various conditions.

These hold for both Euclidean and power distances:

Theorem 3.5

∀v ∈ V, ⇐⇒ ∀v ∈ V,
LPD(v, φ) v ∈ CellG(v) = Cell(v)

Theorem 3.2 ⇓

Greedy routing ⇐⇒ ∀v ∈ V,
delivers on φ(G) Theorem 4.2 CellG(v) contains only v

Note that the upper right condition may also be stated as
“G is the dual graph of the contained distance (power or
Voronoi) diagram of φ(V ).” Theorem 3.5 proves the left-to-
right implication, and the right-to-left one is easy to check.

5. 3-CONNECTED PLANAR GRAPHS
Let us now consider the more general case of a 3-connected

planar graph. As in section 3 for triangulated graphs, we
present local sufficient conditions for greedy power routing
to deliver on general 3-connected planar graphs. The local-
ity of the conditions is discussed in section 7.3.

In the previous section, we proved that satisfying LPD
at every vertex implied that the power diagram of φ(V )
admitted G as its adjacency graph. This cannot be the
case if G is not a triangulation: such graph can only be the
dual graph of a degenerate power diagram, which would be
unstable under perturbation of the vertices, whereas LPD is
stable.

In order to state the next definition, we need to recall the
following result:

Lemma 5.1. If a set of points {p1, . . . , pn} is in convex
position, for any radii (ri)1≤i≤n, the adjacency graph of the
power diagram of the circles C(pi, ri) is a triangulation of
Conv({p1, . . . , pn}).

Proof. The dual of a power diagram is known to be
an embedded triangulation, called the regular triangulation.
However, in order to have a triangulation of the convex hull
Conv({p1, . . . , pn}), each point pi has to appear as a ver-
tex of this triangulation. In other words, it has to have a
non-empty cell, which is guaranteed by the convexity as-
sumption.

Definition 5.2. If p is a convex embedding of G, the φ-
triangulation of G is defined in the following way: if f is
a non-triangle face, p(f) is convex and we glue along f the
dual graph of the power diagram of the vertices of f , which
is indeed a triangulation of f , thanks to Lemma 5.1. The
resulting triangulation of G is called the φ-triangulation of
G and is denoted by G(φ) (see Figure 4).

In case we are in a degenerate configuration, we choose a
triangulation obtained after some infinitesimal perturbation.



Figure 4: A face (solid edges) with 6 vertices with the regular tri-
angulation of its vertices.

We are now able to present the generalized version of the
condition that we proved sufficient in the triangulated case:

Definition 5.3. For any vertex v ∈ V , we say that prop-
erty GLPD(v, φ) (Generalized Local Power Diagram) is sat-
isfied if and only if the faces incident to v are convex, prop-
erty LPD(v, φ) is satisfied in G(φ) and for each non-triangle
face f = (v, w1, . . . , wn) incident to v, the local cell CellG(v)
of v in G intersects f only along segments [wnv] and [vw1]
(see Figure 5).

Note that, in the last condition, the local cell is computed
in G, and not in G(φ): otherwise, the condition is trivially
satisfied.

Theorem 5.4. If p is a convex embedding and

∀v ∈ V, GLPD(v, φ),

then each local cell CellG(v) contains only its site p(v).

Proof. From the proof of Theorem 3.5, we know that
LPD being satisfied for G(φ) at every vertex implies that
the local cell CellG(φ)(v) computed in G(φ) is exactly the
cell of the power diagram of φ(V ), and that this diagram is
a contained embedding of G(φ).

We need the local cell CellG(v) computed in G to be empty
of other vertices. We know that CellG(φ)(v) ⊂ CellG(v).
We now prove that the difference CellG(v) \ CellG(φ)(v) is
contained in the union of the faces incident to v. Note that
CellG(φ)(v) is not itself contained in this union.

Let us consider now a non-triangle face f = (v, w1, . . . , wn)
incident to v. We denote by Wf = {wi1 , . . . , wik} the set
of vertices of f that belong to W = NG(φ)(v) \ NG(v).
Denote by Cellf (v) the cell of v in the power diagram of
{v} ∪NG(v) ∪Wf .

By convexity of f , and using the fact the the local cells
of the wi are not allowed to cross f along the segments
[wnv] and [vw1], one can easily see that CellG(v) \ Cellf (v)
is contained in f . Since CellG(φ)(v) = ∩f Cellf (v), where the
intersection is taken over all non-triangle faces f incident to
v, the result follows.

v

w1

w2
w3

w4

Figure 5: A face (solid edges) with 5 vertices, with GLPD(v, φ) not
satisfied: the local cell of v (dashed lines) crosses the boundary of
the face not only on [w1v] and [vw4] but also on [w2w3], which is
forbidden.

One could wonder why we do not impose the stronger con-
dition that triangle faces should satisfy the same property as
non-triangle faces. The reason is that this condition is not
equivalent to LPD in the triangulated case, whereas GLPD
is. Since we want a condition as weak as possible, we avoid
this.

The following corollary is a consequence of Theorems 4.2
and 5.4:

Corollary 5.5. If p is a convex embedding and if

∀v ∈ V, GLPD(v, φ),

then greedy power routing delivers on φ.

6. CIRCLE PACKINGS
Ultimately, we would like to use the LPD and GLPD con-

ditions as a local termination condition for generating em-
beddings whose duals are contained power diagrams, using
the Thurston algorithm, which was originally designed for
generating coin-graph embeddings. Towards this end, we
first prove that coin-graph embeddings of G satisfy LPD or
GLPD.

Definition 6.1. Given a planar triangulation G(V, E),
a G-circle packing is a set C of circles in the plane with a
bijection γ : V → C such that γ(v) and γ(w) are externally
tangent if and only if {v, w} is an edge of G.

Definition 6.2. A G-circle packing is said to be locally
univalent if for any vertex v ∈ V , the circles correspond-
ing to v and to its neighbors in G have mutually disjoint
interiors.

Let us present a few important results about these cir-
cle packings. A detailed presentation of the subject can be
found in Stephenson [18].

Theorem 6.3 ([18], p. 18). Given any assignment of
positive radii to the boundary vertices of G, there exists (in
the Euclidean and in the hyperbolic plane) an essentially
unique locally univalent circle packing for G whose boundary
circles have these numbers as their radii.

Essentially unique is to be understood as up to isometry.



Definition 6.4. A G-circle packing is said to be univa-
lent if its circles have mutually disjoint interiors.

In the sequel, we will need circle packings that are univalent.
Thus, we will use the following result:

Theorem 6.5 ([18], page 62). Let G be a combinato-
rial closed disc (that is, simply connected, finite, and with
nonempty boundary). Then there exists an essentially unique
univalent circle packing PG included in the unit disc such
that any boundary circle is internally tangent to the unit
disc.

We will refer to this kind of packing as a G-circle packing of
the unit disc.

Note that the previous results are stated for a triangulated
graph. However, these two theorems are still true for 3-
connected planar graphs, if a rigidity condition is added to
the definition of circle packing:

Definition 6.6. Given a 3-connected planar graph G(V, E),
a G-circle packing is a set C of circles in the plane with a
bijection γ : V → C such that γ(v) and γ(w) are externally
tangent if and only if {v, w} is an edge of G, and such that
for each face f = (w1, . . . , wn) of G, there exists a circle
c(f) which is orthogonal to all circles γ(wi), 1 ≤ i ≤ n.

This last definition allows to state the following result for
general 3-connected planar graphs.

Theorem 6.7. If G is a planar triangulation and if φ(G)
is a G-circle packing of the unit disc, then

∀v ∈ V, LPD(v, φ)

Proof. Since the bisector between two tangent circles
is their common tangent line, the local cell of a circle is
the intersection of the halfspaces delimited by some tangent
lines. The result follows.

Theorem 6.8. If G is a 3-connected planar graph and if
φ(G) is a G-circle packing of the unit disc, then

∀v ∈ V, GLPD(v, φ)

Proof. Let f be a face of G. By definition of the G-circle
packing, there exists a circle c(f) which is orthogonal to the
circles of the vertices of f . It follows that cf is inscribed in
f , thus p is a convex embedding. We are in fact in the most
degenerate case, and the faces can be triangulated arbitrar-
ily to obtain a φ-triangulation of G. However, whichever
triangulation we choose, the power diagram face of v is the
polygon whose vertices are the centers of circles cf , for the
faces f incident to v. The result easily follows.

7. THE ALGORITHM
We now derive from Sections 3 and 5 a distributed algo-

rithm for the computation of virtual coordinates that allow
the greedy power routing to deliver. The algorithm con-
sists simply of applying Thurston’s packing algorithm (see
section 7.1) with the conditions LPD (or GLPD) as termi-
nation conditions. Note that the Thurston algorithm has
in fact no concrete termination condition: it is an iterative
process which is guaranteed to converge, and that in prac-
tice is run as many times as needed until some condition
measuring convergence is met. Typically, some threshold on
the angular error is used as a termination condition.

The correctness of the algorithm follows from Section 6,
since, in the worst case, the conditions LPD (or GLPD) will
be satisfied when the algorithm converges to a coin-graph
embedding, which is guaranteed. We detail the algorithm
and discuss its correctness in section 7.2.

7.1 The Thurston Algorithm
We present in this section the algorithm that Thurston

designed for the numerical computation of coin-graph em-
beddings (so called circle packings).

The Thurston algorithm consists of setting the value of
the boundary radii and updating all internal radii in order
to satisfy local univalence. This step is repeated until some
error bound on the local univalence error (measured as an
angular error) is reached. At this point, a layout process is
required to translate the radii values into planar coordinates
of the centers. The convergence of this process to a locally
univalent circle packing, in the Euclidean and hyperbolic
case, is proved in [4]. See Collins and Stephenson [5] for a
practical and efficient implementation of this algorithm. In
order to guarantee that LPD or GLPD is satisfied by the cir-
cle packing obtained by such process, we perform the com-
putations in the hyperbolic plane, with infinite boundary
radii. This will give us a globally univalent circle packing of
the unit disc, thanks to Theorem 6.5. Theorems 6.7 and 6.8
then show that LPD or GLPD are satisfied.

Note that this algorithm works for triangulations only.
However, it can be generalized to more general 3-connected
planar graphs, with the additional constraint specified in
Definition 6.6.

In the following, we represent the Thurston algorithm by a
sequence of so-called circle mapping functions (φn)n∈N that
map vertices of V to circles in the plane. The distance be-
tween two such functions is measured as the Euclidean dis-
tance d on R3|V |. We denote by ΦG the function that maps
the vertices to the limit circle packing ΦG, which is unique
up to some Möbius transformation.

7.2 Termination
Our algorithm consists of starting the Thurston algorithm

to compute a circle packing in the Poincaré model of the hy-
perbolic plane, with infinite radius for all boundary circles.
This amounts to requiring that the boundary circles are in-
ternally tangent to the unit circle. Theorem 6.3 implies that
the locally univalent circle packing that we would obtain
upon convergence is essentially unique. Since Theorem 6.5
states that there exists a univalent circle packing satisfying
such boundary conditions, we know that the circle packing
the algorithm is converging to is not only locally univalent,
but also globally univalent.

We stop the Thurston algorithm as soon as the LPD
condition is satisfied (or the GLPD condition, in case the
graph is not a triangulation but a general 3-connected pla-
nar graph).

More precisely, the steps of the algorithm are as follows
(with some integer parameter N > 0):

1) set all boundary radii to infinity and all internal radii
to 1;

2) update all internal radii by applying N steps of Thurston’s
algorithm in the hyperbolic plane;

3) fix the positions of two neighbor disks and sweep the
network to compute the Euclidean layout of the circles



in the Poincaré unit disk representation of the hyperbolic
plane;

4) if LPD (or GLPD in the non triangulated case) is not
satisfied, go to step 2. Otherwise, return the current
layout.

Note that in the non-triangulated case, steps 2, 3 and 4
will require the network to emulate a triangulation of the
graph.

The following lemma proves the correctness of this algo-
rithm:

Lemma 7.1. Conditions LPD and GLPD are open con-
ditions in the neighborhood of circle packings in the sense
that for all G and limit circle packing ΦG, there exist a dis-
tance ε > 0 such that for all circle mapping function φ, we
have d(φ, ΦG) < ε ⇒ ∀v ∈ V, LPD(v, φ) if G is a triangu-
lation, and d(φ, ΦG) < ε ⇒ ∀v ∈ V, GLPD(v, φ) if G is a
3-connected planar graph.

Proof. Using Theorems 6.7 and 6.8, it suffices to observe
that, in the case of circle packings, two neighbor circles have
a common power diagram edge of positive length, and that
the corresponding embedding of the centers is always strictly
convex.

7.3 Locality
Let us now examine the locality of the computations in-

volved in the algorithm. In the triangulated case, the Thurston
algorithm requires each node of the triangulation to know
the radii associated with its neighbors in order to update its
own radius. This is the most local level of communication
possible. We call it G-locality. In the case of 3-connected
planar graphs, the Thurston algorithm needs to be general-
ized to require each vertex to know the radii of the vertices
it shares a face with. This level of communication, which is
less local, is called Gface-locality.

The Thurston algorithm generates a set of radii, but in
order to check the LPD or GLPD conditions, we need an
actual embedding of the node and its neighbors. Such a
layout of circles may be obtained by positioning the circles
in a breadth-first order: once two neighbor vertices have
their positions set, all other positions can be computed in
this order. As for the computation of radii, this step is G-
local in the case of a triangulation, but Gface-local in the
case of 3-connected planar graphs. Similarly, one can see
that checking LPD is G-local, whereas checking GLPD is
Gface-local.

7.4 Experimental Results
We have implemented a simulation of this algorithm in

MATLAB and tested it on random triangulations and 3-
connected planar graphs containing around 50 vertices each,
generated by E. Fusy’s software [8]. We obtained greedy em-
beddings after a few hundred iterations (in general, less than
100 for triangulations, and between 100 and 500 for general
3-connected graphs). If we define an exact packing as a cir-
cle packing such that circles which should be tangent are
indeed tangent, with an error on the distance between their
centers within 1% of the smallest of the two radii, we can
compare the number of iterations required to obtain a greedy
power embedding with the number of iterations needed to
obtain an exact packing: in the case of triangle graphs, we
needed, on the average, a factor of 3.8 less iterations. In

the case of general 3-connected planar graphs, we needed,
on the average, a factor of 1.8 less iterations. Figures 6, 7,
8, and 9 show two intermediary steps, the greedy power em-
bedding and coin-graph embedding generated for the same
input graph.

Note that the high non-uniformity of these random graphs,
i.e. the fact that a short loop of edges may bound a region
containing a large number of vertices (i.e. the graph con-
tains small cuts), is a reason for the relatively low efficiency
of the algorithm. This kind of setting is not realistic in the
case of sensor networks, where one would expect the planar
graph to be a subgraph of a realistic communication graph
such as a unit disk graph.

We did not implement the heuristic acceleration schemes
proposed by Collins and Stephenson [5] because these heuris-
tics rely on the global evaluation of the so-called error re-
duction factor. It would however be interesting to check
whether a much more local evaluation of this parameter
could still speed up the process significantly.

8. CONCLUSION AND FUTURE WORK
We have described a modification of the Thurston algo-

rithm for generating coin-graph embeddings, so that it is
able to generate the embeddings required to support greedy
power routing on a sensor network. The algorithm is sim-
ple and Gface-local, thus may easily be implemented in a
distributed manner on the sensor network. However, our
algorithm is not practical in case the domain contains big
holes, which would be considered as big non-triangulated
faces. A natural way of dealing with this problem would be
to analyze the topology of the underlying domain in order to
split it into simply connected parts which could be treated
separately (see [7]).

Our current implementation uses a breadth-first traversal
to locally compute the position of a vertex at each iteration
once the radii have been adjusted. This involves simple and
local computations, but may accumulate error in large net-
works. An optimized layout process that would spread the
error evenly among the vertices could improve our results
by triggering the termination conditions earlier. One way
to do this is using the triangle layout method of ABF++
(Angle Based Flattening) [17], which involves solving a lin-
ear system for the vertex coordinates. Since this type of
computation may be distributed among the vertices, it is
a promising direction for future research. Alternatively, it
might be possible to devise a way of checking LPD or GLPD
from the radii only, without explicitly computing the vertex
positions.

Most algorithms for greedy routing rely on the input be-
ing a planar 3-connected graph, which is not very realistic.
The simplest remedy is to extract a spanning subgraph of
this type from the input and embed this. It is easy to see
that adding back the non-planar edges after the embedding
process does not harm the greedyness of the embedding.
However, extracting such a subgraph is in itself a difficult
problem. Thus an important problem is to devise a greedy
embedding algorithm for general graphs.



Figure 6: After 6 iterations, the colored circles are the ones that
already satisfy LPD.

Figure 7: After 29 iterations, only 2 circles still do not satisfy LPD.

Figure 8: After 32 iterations, LPD is satisfied everywhere: the em-
bedding is greedy.

Figure 9: After 128 iterations, the circles are in a coin graph con-
figuration.

Appendix
We present here in details the exact equivalence between
greedy power routing [3] and greedy polyhedral routing [15].
This equivalence explains why our algorithm also allows to
compute a greedy polyhedron.

Polarity
Denote by S2 the unit sphere of R3. Given a point P outside
S2, we denote by π(P ) its polar hyperplane with respect to
S2, and by C(P ) the intersection π(P )∩ S2. In other words,
the circle C(P ) is the locus of points X such that (PX) is
tangent to S2, and π(P ) is the plane containing C(P ) (see
Figure 10). Note that by symmetry π(P ) is orthogonal to
(OP ), where O is the center of S2. Let us now recall the
following lemma.

Lemma 8.1. For any two points P and Q outside of S2,

P ∈ π(Q) ⇔ Q ∈ π(P ) ⇔ C(P ) ⊥ C(Q)

where ⊥ denotes the orthogonality.

Q

P

π(Q) C(Q)

C(P )

A

B

Figure 10: Points P and Q and their polar planes.

Recall that the stereographic projection σ : R2 → S2 maps
circles to circles and preserves the angles of intersection. Let
D, C1 and C2 be three circles in the plane, with disjoint
centers and such that Pow(D, C1) < Pow(D, C2). Denote
by P , Q1 and Q2 the points such that σ(D) = C(P ), σ(C1) =
C(Q1) and σ(C2) = C(Q2). Using the fact that two circles
are orthogonal if and only if their power with respect to each
other is zero, it easily follows from the previous lemma that
the projections prP (Q1) and prP (Q2) of Q1 and Q2 onto
the line (OP ) oriented in the direction O −→ P satisfy the
inequality prP (Q1) > prP (Q2).

This implies the following lemma:

Lemma 8.2. If X is some set of circles, and Y is another
circle such that no circle of X has the same center as Y , the
extrema

min
X∈X

Pow(Y, X) and max
X∈X

prC−1(σ(Y ))(C
−1(σ(X)))

are reached for the same X0 ∈ X .

One can prove that these two quantities, the power and the
projection, are in fact mapped to each other by a homogra-
phy. This fact explains why a restriction (on the centers) is
needed in order to have a monotonous function.

Routing Equivalence
Given some set of circles X such that the centers are dis-
joints, the previous lemma shows that greedy polyhedral



routing on C−1(σ(X)) (i.e. greedy routing for the dot prod-
uct metric in dimension 3) provides exactly the same paths
as greedy power routing on X :

Lemma 8.3. Greedy power routing among circles with dis-
joint centers in the plane is equivalent to greedy routing for
the dot-product distance among points of R3 outside S2 such
that no two of them are aligned with O.

The transport map from one setting to the other is φ =
C−1 ◦ σ which associate to a circle the polar point of its
stereographic projection onto S2.

In order to better understand this relationship between
equivalent frameworks, let us now analyze how the sufficient
conditions for greedy routing to deliver relate to each other
in both frameworks.

In the case of greedy power routing among a set of cir-
cles X , Ben Chen et al.[3] proved that having a contained
diagram with the same adjacency relations as the communi-
cation graph was a sufficient condition for the greedy power
routing to deliver.

Given a set of circles, how does the condition of having
the right adjacency relations translate into a condition on
the images of the circles by φ? It is a well known fact that
the dual of the power diagram of X is combinatorially the
convex hull of φ(X ). It follows that the adjacency condition
is satisfied if and only if G is embedded by φ as a convex
polyhedron (we leave to the reader the details about the non
triangulated case).

Similarly, how does the containment condition translate
into a condition on the images of the circles by φ? Let C
be a given circle in X , and denote by HC the hyperplane
passing through φ(C) and orthogonal to the line (O φ(C)).
Let H−

C be the halfspace delimited by HC which contains
O. Using the convexity property presented above, it easily
follows that the center of C is inside its cell if and only if
φ(X ) ⊂ H−

C . In other words, the containment property is
satisfied if and only if all HC are supporting hyperplanes
of the polyhedron. This is exactly the condition stated as
sufficient by Papadimitriou and Ratajczak [15].

Hence, these answers show that the greedy routing meth-
ods are equivalent and that the sufficient conditions that
have been considered for the greedy routing to deliver are
equivalent too.

Let us conclude this parallel presentation by noting that
the kissing graph configurations proposed as greedy configu-
rations by Ben Chen et al.[3] are mapped by φ to the Koebe-
Andreiev embeddings proposed by Papadimitriou and Rata-
jczak [15] as greedy configurations.

Computation of a greedy polyhedron
It follows immediately from the previous section that our
algorithm, composed with the mapping φ = C−1◦σ provides
a polyhedron on which greedy polyhedral routing delivers.
Hence, we have a method for computing greedy polyhedra.
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