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Fig. 1. Images captured during real-time simulation of viscous fluids.

We propose a novel discrete scheme for simulating viscous thin films at
real-time frame rates. Our scheme is based on a new formulation of the
gradient flow approach, that leads to a discretization based on local stencils
that are easily computable on the GPU. Our approach has physical fidelity, as
the total mass is guaranteed to be preserved, an appropriate discrete energy
is controlled, and the film height is guaranteed to be non-negative at all
times. In addition, and unlike all existing methods for thin films simulation,
it is fast enough to allow realtime interaction with the flow, for designing
initial conditions and controlling the forces during the simulation.
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1 INTRODUCTION

The intricate behavior of viscous thin films has fascinated physicists,
mathematicians and engineers for many years [Craster and Matar
2009; Oron et al. 1997]. With the advent of mobile devices with
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graphics hardware, it is a natural question whether such liquids
can be simulated in real time and controlled by the user, using the
mobile display as the substrate layer on top of which the liquid
flows.

The physics driving the evolution of the thin film is governed by a
fourth order partial differential equation, whose existing numerical
evolution schemes are not computationally efficient enough to run
at interactive rates [Vantzos et al. 2017]. Schemes that can run
at interactive rates [Goswami et al. 2010], cannot simulate highly
viscous fluids and their attendant intricate behavior.

We propose a novel numerical scheme for simulating the thin
film equation on a planar domain, with gravity and other forces.
Our scheme is based on a modification of the lubrication approxi-
mation [Oron et al. 1997], where the fluid is represented as a height
function over a planar domain. Our modification adds a quadratic
term to the governing equation, that stabilizes the flow while pre-
serving the visual fidelity of the simulation. Our time and space
discretization is based on the gradient flow approach [Otto 2001],
and guarantees exact conservation of mass, and non-negativity of
the height function. Finally, the numerical scheme is local, and thus
easily parallelizable on the GPU, without requiring costly memory
access. We implemented the approach using WebGL, and demon-
strate that it can run at interactive rates on mobile devices, allowing
the user to interact with the flow by adding liquid, obstacles, and
control the direction of gravity.

1.1 Related Work

Fluid simulation is a massive topic and the recent book by Brid-
son [2015] can serve as an excellent introduction. We are interested
in a specific regime of fluids, namely viscous thin films flowing due
to gravity and other external forces. As such, generic fluid solvers
that are based on simulating the full Navier-Stokes equations are
unnecessarily complex for this task. We thus focus on the simulation
of fluids in this regime, with specialized tools.
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Viscous thin films in Physics. The governing equations of viscous
thin films have been researched for many years, both experimentally
and numerically. Oron et al. cover in detail the earlier work [1997],
and Craster et al. provide a more recent review [2009]. The behavior
of the contact line between the fluid and the dewetted region has
also generated much research interest [Snoeijer and Andreotti 2013],
as has the behavior of a thin layer on an inclined plane [Kalliadasis
et al. 2011].

From a numerical perspective, thin films are often simulated
using the lubrication approximation, which is a reduced Navier-
Stokes model based on the assumption of the small thickness of the
film. This is a fourth order PDE, leading to time step size difficulties
for explicit schemes (see e.g. [Griin and Rumpf 2000; Zhornitskaya
and Bertozzi 1999]). Alternatively, a variational formulation can be
derived, by considering the film evolution as a gradient flow, on
an abstract Riemannian manifold, where the Riemannian metric
encodes the resistance of the film to move due to its viscosity (see
e.g. [Otto 2001]). Such schemes have a natural time discretization
that preserves the structure of the flow, such as its total mass, and
is stable and numerically robust. Our approach is based on a small
modification of the lubrication approximation, which is not meant to
be physically accurate, yet has a stabilizing effect on the flow while
remaining visually plausible. Furthermore, we provide a flux-based
gradient flow formulation that, in contrast with existing approaches,
leads to a completely local numerical scheme.

Viscous thin films in Computer Graphics. In the Graphics commu-
nity viscous fluids have been simulated as free surface flows, from
the pioneering work of Carlson et al. [2002], to the most recent
treatment by Larionov et al. [2017], that also includes an excellent
review of the topic. However, these methods do a full scale three
dimensional simulation, and do not take advantage of the lower
dimensional properties of thin films. Lagrangian methods that lever-
age the reduced dimension of viscous threads [Bergou et al. 2010]
and sheets [Batty et al. 2012] and Lagrangian co-dimensional meth-
ods that represent the fluid using a simplicial complex [Zhu et al.
2015, 2014] have better computational complexity, but still do not
run at interactive rates. Real time techniques for simulating the
shallow water equations can generate intricate wave effects (see
[Wang et al. 2007] and references within), however they are not
appropriate for very high viscosity liquids, such as honey.

Closer to our approach, Eulerian gradient flow formulations
for thin films on curved surfaces have been proposed, using flux-
based [Rumpf and Vantzos 2013] and velocity-based [Vantzos et al.
2017] approaches. These lead to a sparse linear solve per iteration,
and are therefore not amenable to real-time computation on highly
resolved meshes. Furthermore, these schemes cannot guarantee the
non-negativity of the height field during the simulation, leading to
potential instabilities. An interactive simulation of the Hele-Shaw
flow, that can be seen as a special case of a thin film flow, was pro-
posed by Segall and co-authors [2016]. That approach simulates
the contact curve of the fluid using complex-valued functions and
conformal maps, does not incorporate gravity, and cannot handle
more than one connected component of fluid.
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Interactive fluid simulation. Fluid simulation is traditionally a
heavy computational task, leading to various challenges for control-
ling the initial conditions and the forces during the simulation, es-
pecially in Computer Graphics applications where the fluids should
be easily directable by an artist. In recent years, GPUs have become
an important tool for more efficient computations in many appli-
cations, including in fluid simulation [Goswami et al. 2010; Harris
2005; Navarro-Hinojosa et al. 2018]. Furthermore, such interactive
fluid simulations can now run on mobile devices [Harwood and
Revell 2018], enabling the user to control the simulation in real-time,
for instance via the touch interface, [Chen et al. 2015; Stuyck et al.
2017]. Nevertheless, and to the best of our knowledge, there do
not currently exist real time fluid simulators that are capable of
generating the viscous thin film effects that we demonstrate. Even
more so, as our approach is based on a variational model, and thus
guarantees fluid mass preservation and the reduction of a discrete
energy.

1.2 Contributions

Our main contribution is a numerical scheme for viscous thin film
simulation that

e is defined via local operations, and is thus highly efficient and
easy to implement as a shader,

e is derived using a local gradient flow formulation that guaran-
tees important theoretical properties, namely mass preserva-
tion, non-negativity of the solution and control of a suitable
discrete energy,

e it can be implemented on mobile devices with responsive
user interaction via accelerometer (to change the direction of
gravity) or a touch interface (to add fluid or place obstacles).

2 METHOD
2.1 Physics
Consider the classic thin film equation [Oron et al. 1997]

3

9 _ dv(M@)Vw), M) = ”? w=W-ehu (1)

ot

which describes the evolution of the mass-per-surface-area u(x, t)
of a viscous liquid thin film of typical thickness € (so that the local
thickness of the film is ~ eu), driven by variations in the potential w
due to the influence of surface tension (the e Au term) and external
forces such as gravity (the external potential W (x, t)). The motion
of the fluid is also non-linearly dependent on the local mass con-
centration through the mobility M(u), which reflects the retarding
effect that viscous friction inside the fluid has on the flow of the film.
For the rest of the paper, it is useful to rewrite (a slightly modified
version of) equation (1) in terms of the flux f:

ou . B

T +div f =0,

f=-MuV(W - eAu + nu), @)
u=0
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The extra term is a stabilising anisotropic second-order (as opposed
to the 4th-order diffusion eAu term) diffusion term, that is quite use-
ful in practice. We have also made explicit the, physically necessary,
condition that the density u can not be negative.

The thin film equation (1) has the following properties: a) it pre-
serves the total mass f u dx and b) the Dirichlet energy % fquIz dx
(which is a measure of the smoothness of the solution) is controlled;
in particular, in the absence of external potential W = 0 it is non-
increasing. Regarding the non-negativity of the solutions of the
thin film equation, there has been a lot of theoretical [Bertozzi et al.
2001] and numerical [Griin and Rumpf 2000] work, and it has indeed
proven to be quite a challenge from the computational point of view.
It is important to preserve these properties in the discrete setting,
as they play an important role in both the numerical stability and
physical fidelity of the simulation.

2.2 Time Discretization with Gradient Flows

One approach to deriving discrete schemes for a wide range of
evolution equations, that include the thin film equation (1), is to
take advantage of their gradient flow structure [Otto 2001], i.e. the
fact that they can be seen in a certain sense as a steepest gradient
descent for a suitable energy functional. This point of view leads
to variational discrete schemes of the minimizing movement type
[Giorgi and Ambrosio 2006], where a (constrained) minimization
problem of the (abstract) form

W = argmin {i dist? (u, u") + 8(u)} (3)
ueR(un)cx 47

needs to be solved at each time step. This equation is to be un-
derstood as follows: the (approximate) solution u™**! € X at time
"+l = ¢ 4 7 where X is a suitable space, is the minimizer of a
combination of the free energy & : X — R and the distance (in
X) from u", over a subset R(u"") C X of states that are "reachable"
from u". For thin film-type equations, the set of reachable states is
associated with an evolution law of the form % + Dy¢ = 0, where
Dy, is a differential operator and ¢ € Y is an auxiliary variable (in a
separate space Y), so that u € R(u") iff there exists ¢ € Y so that
u—u" +17Dyn¢d = 0. We can use this connection to rewrite the
distance between u" and any (reachable) u as a function of the ¢
that takes us from u” to u, leading to schemes of the form:

Lan@orew) @

(un+1’¢n+1) — argmin

ueX,pey

u—u"+7 Dyn $=0
In the language of differential geometry, one can think of X as a
manifold and Y as the tangent space around u”, with the equation u—
u™ + 7 Dyn¢ = 0 serving as the exponential map that maps tangent
vectors ¢ to nearby points u, so that the distance distx (u, u") is
naturally connected to the metric g,» (¢, ¢) at u™. As stated before
then, this can indeed be seen as an attempt to flow in the direction

of steepest descent of &, but in a generalized manifold setting.
There are various ways to apply the abstract framework de-
scribed above to the problem (2); one can choose the flux f as the
auxiliary variable, so that u — u™ + tdiv f = 0 and gy~ (f, f) =
fM(u")_1|f|2 dx, or use a velocity v instead so that u — u” +
rdiv(uv) = 0 with a suitably modified metric. Both approaches
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have been used, the flux-based in [Rumpf and Vantzos 2013] and
the velocity-based in [Vantzos et al. 2017] for instance. Our scheme
is based on the flux formulation of the gradient flow for a suitable
energy &(u):

@™, f1*1) = argmin {ffM(u")—1|f|2dx+6(u)}
(u.f)er(um) 2

E(u) :f§|Vu|2+W(x)u+ g|u|2dx ®)
RW™) ={(u, f)lu—u" +7 divf =0, u > 0}

Schemes that are based on direct discretizations of this type of con-
strained optimization problem have important advantages, such
as guaranteed mass conservation and energy reduction, and con-
sequently unconditional stability. On the other hand, especially
in the context of real-time GPU-based simulation, they also suffer
from certain disadvantages, namely the need for inverting large
sparse matrices at each time-step and the question of how to repre-
sent vector based quantities, such as the flux and the velocity, in a
GPU-friendly format.

We work around these issues by combining the gradient-flow
approach with the fractional step method. We assume that the flux f
is a linear combination of a number of fixed locally-supported fluxes
fi.ie. f = Zlk(: 1 Ak fi- According to the fractional step method, the
effect of applying the flux f to u for a time interval 7, which we can
denote in operator form as T; ru, can be approximated by applying
the partial fluxes f; sequentially: To ¢ ~ T;), £, - - Tra, ;- A single
time-step of the scheme can then be written as

20— yn
u®) = =D _ 3 @Y ) div fi ©)
w1 = (K

The gradient flow scheme (5) can be used then to determine the
magnitude of each (predetermined) partial flux individually.

2.3 Discrete Local Fluxes

To derive a fully discrete scheme for the problem (2), we consider
a uniform Cartesian grid of Ng X Mg cells, with uniform size h in
both dimensions, and periodic boundary conditions. The discrete
fluid density uj, € RNG*Ma s represented by a rectangular array
with values u;;, and likewise for the discrete potential W}, whose
entries are Wj; = W (x;j), x;j being the center of the (i, j) cell. In
the spirit of the finite volumes method, we discretize the fluxes over
the edges p — g between neighboring cells p = (i, ) and g = (i’, ),
representing flow in the i-direction f{; j)_(j+1, j) or in the j-direction
fi.p-a.j+v-

Our scheme is designed to reduce the following discrete energy:

Epluy) = % Z|Up—uq|2+ZWpup+gZ|up|2 (7)
p—q P P

The first term is a discrete Dirichlet energy, and is a measure of

how smooth the solution is. Controlling it is therefore important

for stability. The second term drives the movement of the fluid to

areas of low external potential W, for instance from high altitude

to low altitude for gravity. Finally, the last term penalizes high
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concentrations of mass and also acts as a slope limiter; it provides
extra stabilisation and improves the visual effect, especially in the
presence of very high gradients of W or large time-steps.
Following the minimizing movements time discretization (5), we
minimize the sum of a suitable norm of the flux f and the discrete
energy (7). As per the fractional step scheme (6), instead of perform-
ing this minimization for the flux field over the entire domain, we
do it locally for each flux f = f,4 between two adjacent cells p
and q. Using @ to denote the updated densities after the flow, and
writing only the relevant terms of the energy in the immediate
neighbourhood of the cells, we get the following:
. | fI? € L9
min{ ———— + — |y — tg|
feR{ZM(up,uq) 2h? pZ:q’ P
+ (Wyitp + Wyiq) + 2 (lp|? + ligl?)}
2
ip =tp— 2 f. ilp 20

. T
uqzuq+zf, ug 20

The sum in the middle term is over all the edges between p and q
and their neighbours (and each other) (see Fig. 2).

Plugging the updated densities into the objective function, we
eventually get a constrained quadratic optimization problem of the
form:

. 1 5 }
= -Bf +
min, {gof* =01 +y
with
B T 2(5¢ + ph?)7?
M (up, ugq) h4

B =+ {e(@nu)g - (Bpulp) + (Wg = Wp) + n(ug — up)

(v is not needed)
h h

a=—--ug, b=-u
1 r P

[24

010
with the discrete 5-point Laplacian Ay, = # [ 141 ] The non-
negativity of the discrete mobility ensures that @ > 0 and therefore
the quadratic indeed has the unique minimum f = g. Finally, recall
that when the global minimum of a (convex) quadratic function
is outside of the range [a, b], then the minimum over the range is

simply whichever of the bounds of the interval is closest.

Up! Uq’

Fig. 2. Flux fp—4 between two adjacent cells p and g. The flux depends on
the values in the (5-cell) neighborhood of the two cells. See also Fig. 4a.
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This leads to the following numerical flux fj—q between two
neighbouring cells:

M(up, uq)

f= —T{Wq ~ Wy — e ((Apu)g = (Apwlp) +1 (ug - up)}

h . h
fp—q = max(=Tug, min(f, Fup))

(8)
with the following action, over a time interval of duration 7, on the
density of the cells:

T
up < Up ~ 5 fpg ©)
uq < ug = 4 fqop = uq + 3 fp—q
This is a rather straightforward discretization of (2), except for the

clamping of the flux (to ensure non-negativity) and the regularizing

27 M(up,ug)(5e+nh? D
parameter 0 := 1 + M, which is necessary for the

proper energetic behaviour of the scheme.

The discrete mobility M(-, -) can be defined in many ways, as long
as it is symmetric, M(uj,u2) > 0 for any positive u; # ug, and
M(u,u) = ”?3 There are good theoretical arguments [Griin and

2utul
3(ur+uy)’
but we have explored other options too, such as M(u1, up) = %(ul_3 +
112_3)_1 (see Fig. 3).
The local update (8)-(9) has the following important properties:

Rumpf 2000] in favour of the discrete mobility M(uy, u2) =

o Mass preservation: Since the same amount of fluid is removed
from one cell and added to the other, the total mass ZP up
always remains constant.

o Non-negativity: Follows immediately from the min-maxing

operation in (8). It is important to note that, given uy,ug >

0 before the update, —%uq <0< %up and fp_,q is well-

defined.

Energy reduction: By construction, the flux f,—4 and the cor-

T 2

Tyt

Ep (@), over any other flux f” € [—%uq, %up] and its asso-

ciated density 11;‘. The key observation is that the null flux

f’ =0, which corresponds to the non-updated density u, is

indeed within that range, and so the update does not increase

the energy:

tlf1?
2 M(up,uq)

responding updated density @, minimize the sum

+ Ep(ay) <0+ Ep(up)
= Ep(tp) < Eplup).

2.4  Fully Discrete Parallel Scheme

To fully utilize the GPU’s parallel computing power, we apply the
local updates to sets of edges in parallel. To avoid race conditions
we must first break the set of edges into passes, where each pass
contains edges whose updates do not depend on cells adjacent to
other edges in the pass. This induces a domino relaxation pattern at
each pass, as illustrated in Fig. 4a. The horizontal edges are divided
into 4 sets, and likewise for the vertical, for a total of 8 passes. Fig. 4b
shows how the passes cover the entire set of edges. See algorithm 1
for a pseudocode of this scheme.

To coordinate the threads that act on the various cells in parallel,
each pass is identified via a direction vector (d;, dj), which is (1, 0)
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(a) Mobility myq, t ~ 0.4

(d) Mobility ma, ¢ =~ 0.3

Fig. 3. Flow for different discrete mobilities, mj(u1, uz) = Z(ul_3 + 142_3)_1 and my(uy, uz) =

3

(e) Mobility my, t = 1.2
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(c) Mobility my, t ~ 2.1

(f) Mobility mg, t = 2.1

2,2
Zul uy

i) Although both mobilities approximate the same

continuous mobility M(u) = %u_3, they result in different flow rates between empty and full cells, and so produce advancing droplets with distinct shapes.

for horizontal and (0, 1) for vertical passes, and a parity index p €
{0, 1, 2, 3}. From these we calculate for each cell (i, j) the parity

pij = ((dj +1)i+ (d; + 1)j + p) mod 4 € {0,1,2,3},

which is illustrated in Fig. 4a. During a given pass, cells with parity 0
and 1 are paired, and likewise for cells with parity 2 and 3; cells with
even parity are paired with cells in the direction (d;, d;), whereas
cells with odd parity are paired with cells in the opposite direction
(=d;, —dj) (lines 4-9 in alg. 1). This ensures that both cells in a pair
calculate the same flux in magnitude, but with opposite signs (since
ij and i’j’ are effectively exchanged in line 14 of the alg.). Finally,
only the cell pairs with parity 2 or 3 are allowed to update their
values (see again Fig. 4a). As the parity index p goes from 0 to 3,
the parity of each cell also changes, giving it the opportunity to
exchange mass with each of its neighbors (when its parity is 2 or 3).
The process is then repeated in the other direction by flipping the
direction vector (d;, dj). The careful partitioning of the local edge
updates into passes ensures that the global scheme has the same
properties that we proved for the local scheme, i.e. it is also mass
and non-negativity preserving and energy reducing.

3 IMPLEMENTATION
3.1 WebGL Implementation

We based our implementation on WebGL [Jackson and Gilbert 2018],
a browser-based version of the OpenGL API it allowed us to use
the same code on various devices, from mobile phones to desk-
top computers with powerful dedicated GPUs. Moreover, this gave
us native access to the touch screen and orientation hardware on
mobile devices via the built-in Javascript APL

Our numerical scheme is implemented as a fragment shader, and
the fluid density u is stored as a floating point texture. We maintain
two such textures, using one as input to the shader and rendering to
the other, switching between the two for each pass (double buffering).

2018-09-15 11:01. Page 5 of 1-10.

The external potential W is made available to the shader as an
additional texture, whereas the various parameters are passed as
uniforms. After the final simulation pass, the fluid density texture
is passed through a visualisation fragment shader and rendered to
the screen.

3.2 Dynamic Time Stepping

Although from a theoretical point of view the speed of flow of the
fluid is regulated by the time step parameter 7, in the real-time
setting the perceived speed of flow also depends on the number of
scheme iterations, i.e. performing more iterations per frame makes
the fluid appear to advance at a faster rate. It follows that the actual
frame rate also affects the apparent speed of the simulation, meaning
devices with more GPU power would display faster simulations. To
compensate for these factors, we determine the time step at each
frame (denoted 7) dynamically.

The basic idea behind the dynamic time stepping is that each full
(visiting edges of all parities and directions) relaxation pass of the
algorithm does a certain amount of work towards propagating the

1 2 3 0 1 2 3

3 0 1 2 3 0 1 |

1 2 3 0 1 2 3

3 0 1 2 3 0 1 [

(a) Cell parities. Updated cells in
orange, cells being read in blue.
Note that two edges in the same
pass may read (but not write) the
same cell.

(b) Red, blue, green and yel-
low mark the 8 different
passes (4 vertical, 4 horizon-
tal). Horizontal edges are
marked with dotted lines.

Fig. 4. Partitioning of edges into passes
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fluid proportional to the time step, i.e. 7 ~ work/pass. A uniform
movement rate then corresponds to a fixed total amount of work
per second:

T * #passes/frame * #frames/sec work/sec = const (10)

We generally strive to have an adequate number of passes/frame
while maintaining a high framerate, leaving 7 as the free parameter
that is used to maintain a uniform rate of motion. See Fig. 5 for
an illustration of the effect that different time step and pass/frame
combinations have on the simulation. Due to hardware constraints,
one might end up affording only a small number of passes/frame
while maintaining a minimum framerate; one can then attempt to
"drive’ the fluid harder by increasing the external potential W. It is
in this case where increasing the diffusion (dampening) parameter
n is particularly helpful (Fig. 6).

3.3 Driving the Flow via the External Potential

As the fluid tends to flow against the gradient of the external po-
tential, i.e. from areas of high W to areas of low W, the external
potential can be used to drive the fluid around the domain. The basic
setting is a simple linear gradient, which corresponds to constant
gravity. Its effect can be seen in all the figures in the paper, and
the accompanying video. On mobile phones we can even dynami-
cally align the direction and strength of the gradient based on the
orientation of the device.

Another factor that can be added to W is the geometry of the
underlying surface. The physically proper way to do this is by sub-
tracting the mean curvature H of the underlying surface from W, as
surface tension causes the fluid to concentrate in areas of positive

ALGORITHM 1: Parallel update scheme

input :Current fluid density u,
parameters (h, 7, €, 17), external potential W

output: Updated u with u > 0.
foreach edge direction (d;, d;) € (1, 0), (0, 1) do
foreach parity p € {0, 1, 2, 3} do
parallel foreach thread assigned to pixel (i, j) do
pij « ((dj +1)i + (d; +1)j + p) mod 4
if pij € {o, 2} then

| ("))« (i+d;j+dj)
else

| () « (i—dij—d))
end

Ajj = (“dugj + uisnj + wim1,j + i ja1 + g jo1)/ h°
Aprjr = (4w + gy j + Uy + Uy + 1)/ B2
m — M(ujj, uyjr)
0 «— 1+ 2tm(5€ + nh?)/h*
fe-a ((Wi'j' - Wij) — €Dy — Aij) + nuyy - uij))
Su « max(~uy j, min(f f, uij)
if pij € {2, 3} then
‘ ujj <« ujj —ou
end

end

end
end
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mean curvature such as grooves or holes. The full interaction be-
tween the thin film and the geometry is quite complicated [Vantzos
et al. 2017], but this first-order approximation is adequate in this
context. In fact, if the relief of the underlying surface is available as
a height-map R, one can get visually convincing results by simply
taking W <= W + AR, so that the fluid tends to accumulate in areas
of low relief (such as cracks). See Fig. 8b for an example of this.

3.4 Other Parameters

Apart from the time step 7, the behaviour of the scheme is also in-
fluenced by the other parameters. Stronger gradients in the external
potential W (such as a very steep gravity gradient) make for a faster
motion of the fluid, but they also act in a (physically) destabilising
manner, so that oscillations can appear. This is particularly true
when the time step is large and/or the number of iterations per
frame is low. The parameters € and 5 are both stabilising, and can
therefore be increased to counter the aforementioned instability.
The parameter € serves as a typical length scale for the various
features of the viscous flow, such as droplets or fronts. The diffu-
sion parameter 1 on the other hand stabilises the flow (Fig. 6) by
penalising large concentrations of fluid. Intuitively, both parameters
make the fluid appear more viscous ("thick"), although they are not
equivalent; Fig. 7 illustrates the effect of these parameters.

3.5 Rendering

Our algorithm outputs a height map representing the fluid mass
at each pixel. In our demonstration application we implemented
a basic refraction shader with normals calculated from the height
map, along with illumination based on caustics using the algorithm
presented by [Yuksel and Keyser 2009].

3.6 Boundary Conditions

By using OpenGL we get automatic support for periodic boundary
conditions by using textures with 'repeat’ configurations. Neumann
boundary conditions, which are also useful in many applications,
can be implemented by enforcing zero flux across the boundary
edges. Note that for the discrete mobility functions that we use,
up = 0orupz = 0 = M(ug,uz2) = 0, meaning that no mass can
flow in/out of pixels where u = 0 (dewetting). We use this fact to
implement the desired boundary conditions by simply setting the
values of u of pixels on the boundary to 0 explicitly. We also take
advantage of the dewetting effect to let the user draw obstacles
interactively (see sec. 4.3).

3.7 Limitations

One limitation intrinsic to the local nature of the updates of the
scheme, is that information can only travel a limited number of
cells per iteration. Methods that involve a non-local step, such as
inverting a matrix for instance, do not suffer from this as every cell is
potentially coupled to every other cell within a single time-step. At
low iteration-per-frame counts this can artificially limit the effective
flow rate of the fluid. In practice most visually interesting features of
the flow, such as droplets, are local in nature and the scheme allows
for adequate iterations per frame even on low powered devices such
as mobile phones.
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(d) 3 passes/frame, 7 = 107}, t ~ 3

(e) 10 passes/frame, 7 = 1072, ¢t ~ 2.6

) 100 passes/frame, 7 = 1073, ¢ ~ 3.7
( p

Fig. 5. Flow for different time steps and number of passes/frame. The three columns illustrate the behaviour of the scheme (with comparable visual flow rate)
for different hardware capabilities; low-end mobile device (left), high-end mobile/typical laptop (middle), and high-end desktop (right). Dewetting and droplet

break-up is visible with the low-end settings, but the scheme remains stable.

(d)n =20,¢~0.3

(e)np=20,t=~1.2

(c)np=0,t~4.3

fyy=20,¢~2.3

Fig. 6. Stabilising effect of the parameter 7. Flow under strong gravity gradient G = 100. For very low 7 (top row), we observe dewetting and propagation of
single-pixel droplets ("matrix effect"); due to its non-negativity and mass preservation properties the scheme remains stable regardless. Increasing n (bottom

row) leads to a smoother flow even for a strong gravity gradient G.

A second limitation is that, although underlying surface features
can be included by embedding their curvature into the external
potential W (see Fig. 8b for an example), the scheme can not be
applied as is on truly curved three-dimensional surfaces, as they
can not be parametrised by a Cartesian grid. Furthermore, despite
the three-dimensional appearance of the viscous fluid, especially
when our scheme is coupled with a realistic rendering shader, it is
fundamentally just a height-field attached to the surface. One could
not use it to simulate fluid dripping off the surface for instance;
some form of coupling with a particle system or a full-blown Navier-
Stokes solver might be necessary for that.
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4 RESULTS
4.1 Simulations

The results in Fig. 9 - 12 present typical flow cases. The simulations
were run in real time (at 10 iterations/frame, see sec. 4.2) on a
512x512 resolution, with the following parameters: 7 = 2 - 1072,
€ =10, G = 10 and 5 = 2, the gravity external potential W(x,y) =
Gy (for (x,y) € [0,1]?) and the mobility M(uy, uz) = % and
periodic boundary conditions. We rendered the fluid density with a
colormap for clarity.

ACM Trans. Graph., Vol. 37, No. 6, Article 281. Publication date: November 2018.
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dn=5¢€=5

(e)n=5€=10

(f)y=5¢€=20

Fig. 7. Flow under different values of the parameters € and 7. Images captured at comparable times. Fixing r and varying € (bottom row) leads to different
typical size of local features (droplets, fronts), whereas fixing € and varying 1 (top row) leads to an overall smoothening effect as 7 increases.

(a) Honey on a honeycomb. The fluid flows
around the hexagonal dewetted areas.

(b) Wine flowing on bricks. The fluid concentrates
in the spaces between the bricks.

(c) Rain on a window. Low viscosity and strong
gravity liquids tend to form small droplets.

Fig. 8. Images rendered with a realistic refraction shader, showcasing various features of the interactive application (obstacles, interaction with the surface

geometry, small scale features of the flow).

In Fig. 9, Gaussian concentrations of liquid of different sizes are
placed in various positions and allowed to flow under the influence
of gravity. There is residual fluid spread along the path of each
Gaussian. This subsequently affects other Gaussians in its wake,
as it is easier to flow along the path of higher concentration. In
particular, the path of each Gaussian becomes biased in the direction
of the preceding one. Note also the breaking up of the advancing
concentrations by gravity into smaller waves - this effect becomes
more prominent with stronger gravity and less so with higher values
of € and/or n (higher "viscosity"). This type of droplet interaction
can lead to droplets merging, as can be seen in Fig. 10. The larger
drop descends faster due to increased mobility of the fluid in the

ACM Trans. Graph., Vol. 37, No. 6, Article 281. Publication date: November 2018.

presence of more fluid. Eventually it catches up to the second drop
and flows into it.

Another important feature of the model is that the fluid can not
flow through dewetted areas, where the cells have zero density,
which act as obstacles. As can be seen in Fig. 11, this leads to a
concentration of the fluid at the top of the obstacles, until a way
around them can be found. A sequence of obstacles, as in Fig. 12,
can lead to a cascade of waterfall-like flows.

The images in Fig. 8 are representative of what a user might see
while using the scheme in an interactive manner, with the output
rendered with the refraction/caustics shader described in sec. 3.5.
In the left-most image (Fig. 8a), the fluid has to flow around a set
of hexagonal obstacles. Relatively high values of € = 10, compared
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to the gravity G = 10, assisted by high refractive indices in the
refraction shader, give the appearance of a viscous fluid, such as
honey. In the middle image (Fig. 8b), we have incorporated the
effect that the shape of the underlying surface has on the fluid (see
sec. 3.3). In this case, the fluid tends to accumulate and flow through
the gaps between the bricks. Moreover, the fluid appears less viscous
compared to Fig. 8a, since the ratio between € and G is smaller (¢ = 5
and G = 20). In the final image (Fig. 8c), the viscosity is even weaker
compared to the gravity (¢ = 5 and G = 50) which leads to the
formation of very fine droplets.

(b) ¢ = 0.28s

(c)t =1.13s

(d) t = 2.45s

Fig. 9. A collection of Gaussians of various sizes. As they flow, they interact
with each other’s trail.

4.2 Performance

Our demo implementation using WebGL has demonstrated 60-120
fps performance with simulation resolutions of up to 512x512 (with
Full HD rendering resolution) running around 10-20 iterations of the
algorithm per time step on a PC with a dedicated Nvidia 1050 GTX
graphics card. On various contemporary phones, none particularly
high-end, we have seen 30 fps performance running around 10
iterations per time step with simulation and rendering resolutions of
256x256 pixels. It should be noted that one can improve performance,
while maintaining reasonable visual effects, by simulating at a lower
resolution than the rendering one. For reference, all the results
shown in our paper and in the accompanying video do not exceed
512x512 simulation resolution.

4.3 User Interaction

Our demo application presents an interactive webpage, which imple-
ments our algorithm using WebGL. The webpage allows interactive
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(b) t = 2.52s

(c)t =3.76s (d) t = 4.64s
Fig. 10. Two droplets merging. As the larger droplet descends faster, it
catches up to the lighter one and flows into it.

’spraying’ of additional fluid using click/touch controls, and, on
phones and tablets, control of the strength and direction of the grav-
ity exerted on the fluid using the accelerometer. The application
dynamically adjusts the number of iterations per frame to allow for
a solid frame-rate on the device it is running on.

As mentioned in 3.6, fluid can not flow into regions where u = 0,
meaning we can implement obstacles with no modifications to the
algorithm. Our demo application allows the user to interactively
dewet regions of the image, which the fluid then has to flow around
(see Fig. 8a for example).

5 CONCLUSIONS AND FUTURE WORK

We described a scheme for the real-time simulation of viscous thin
films on planar domains, that is efficient without compromising
important theoretical properties. We also presented its implemen-
tation on parallel architectures, which allows for responsive user
interaction together with realistic rendering, even on mobile devices.

Concerning potential future work, we would like to apply a simi-
lar scheme on non-Cartesian meshes. This would potentially allow
us to simulate thin films on three-dimensional surface models with
higher polygon count than possible with previous methods which
require solving linear systems. Another possible extension is to
include other physical effects in the simulation, such as evapora-
tion or the inclusion of solubles, or other kinds of visual effects in
the rendering, such as iridescence due to thin film interference. Fi-
nally, given the favorable practical and theoretical properties of the
scheme, it would be interesting to see whether the same disciplined

ACM Trans. Graph., Vol. 37, No. 6, Article 281. Publication date: November 2018.
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(b) t = 0.28s

(c)t =1.13s (d) t = 2.45s

Fig. 11. A droplet is blocked by obstacles. The fluid accumulates, until it
finds a way to flow around them.

approach could work on other problems of interest to the simulation
community.
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