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Appendices
A. Proof of Proposition 3.1 for the operator Qε. In this appendix we show that the

asymptotic expansion of the operator Qε, presented in Subsection 3.1, is given by

(A.1) Qεf (x) =

∫
kε(x, x

′)
f(x′)µ(x′)

d̂ε(x′)
dV (x′) = f(x)− m2

m0
ε2
(

∆f(x)− f∆µ

µ
(x)

)
+O(ε4),

where d̂ε(x′) =
∫
kε(x, x

′)µ(x)dV (x) and m0 and m2 are manifold related constants.

Proof. As shown in [SM1] (Appendix B, Lemma 8), the asymptotic expansion of an ap-
propriately scaled kernel kε(x, x′), defined similarly to (3.1), applied to any smooth function
g(x) onM, is given by

(A.2) Kεg(x) =

∫
kε(x, x

′)g(x′)dV (x′) = m0g(x)−m2ε
2 (∆g(x)− ω(x)g(x)) +O(ε4),

where ω(x) is a function that depends on the curvature.
Therefore, for Qε, consider g(x) = f(x)µ(x)/d̂ε(x), and its asymptotic expansion is given

by

(A.3) Qεf (x) = m0
f(x)µ(x)

d̂ε(x)
−m2ε

2

(
∆

(
fµ

d̂ε

)
(x)− ω(x)

f(x)µ(x)

d̂ε(x)

)
+O(ε4).

In addition, for d̂ε(x), consider g(x) = µ(x) and then d̂ε(x) = m0µ(x) −
m2ε

2 (∆µ(x)− ω(x)µ(x)) +O(ε4). When ε is sufficiently small, we have,

(A.4)
(
d̂ε

)−1
= (m0µ)−1

(
1 +

m2

m0
ε2
(

∆µ

µ
− ω

))
+O(ε4).
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By substituting d̂ε in (A.3) with (A.4), when ε is sufficiently small, we obtain the following
asymptotic expansion

Qεf (x) = f(x)− m2

m0
ε2
(

∆f(x)− ω(x)f(x) + ω(x)f(x)− f∆µ

µ
(x)

)
+O(ε4)

= f(x)− m2

m0
ε2
(

∆f(x)− f∆µ

µ
(x)

)
+O(ε4).(A.5)

B. Proof of Proposition 3.2. For simplicity, we present the proof of Proposition 3.2 for
ε2 = ε1 = ε. For ε2 6= ε1, the proof is similar up to some notation changes. The asymptotic
expansion of the operators Gε and Hε, defined in Subsection 3.2, is given by

Gεf(x) = f(x)− ε2
(

∆(1)f(x) + φ∗∆(2)(φ∗)−1f(x)
)

(B.1)

− ε2
(
φ∗

2∇(2)(φ∗)−1f · ∇(2)µ(2)

µ(2)
(x)− f∆(1)µ(1)

µ(1)
(x)

)
+O(ε4)(B.2)

Hεf(x) = f(x)− ε2
(
φ∗∆(2)(φ∗)−1f(x) + ∆(1)f(x)

)
(B.3)

− ε2
(

2∇(1)f · ∇(1)µ(1)

µ(1)
(x)− fφ∗∆(2)µ(2)

µ(2)
(x)

)
+O(ε4)(B.4)

Proof. From Proposition 3.1, for x ∈M(`), we have

P (`)
ε f (x) = f(x)− ε2

(
∆(`)f +

2∇(`)f · ∇(`)µ(`)

µ(`)

)
(x) +O(ε4)(B.5)

Q(`)
ε f (x) = f(x)− ε2

(
∆(`)f − f∆(`)µ(`)

µ(`)

)
(x) +O(ε4).(B.6)

For better readability, we assume without loss of generality that the kernel functions k(1)
ε and

k
(2)
ε are scaled such that the constants m(1)

0 , m(1)
2 , m(2)

0 and m
(2)
2 are equal to 1, similarly

to [SM1, Appendix B] and [SM3, Appendix A]. We omit these constants in the following
appendices as well.

For the operator Gεf(x) = φ∗P
(2)
ε (φ∗)−1Q

(1)
ε f(x), where x ∈ M(1), consider g(y) =(

(φ∗)−1Q
(1)
ε f

)
(y), where y = φ(x), and place the expansion of

(
(φ∗)−1Q

(1)
ε f

)
(y) into
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φ∗P

(2)
ε g

)
(x):

Gεf(x) =
(
φ∗P (2)

ε g
)

(x)(B.7)

=φ∗

[
g − ε2

(
∆(2)g +

2∇(2)g · ∇(2)µ(2)

µ(2)

)]
(x) +O(ε4)(B.8)

=f(x)− ε2
(

∆(1)f − f∆(1)µ(1)

µ(1)

)
(x)(B.9)

− ε2
(
φ∗∆(2)(φ∗)−1f + φ∗

2∇(2)(φ∗)−1f · ∇(2)µ(2)

µ(2)

)
(x) +O(ε4).(B.10)

Similarly, for Hε we get

Hεf(x) =f(x)−ε2
(

∆(1)f(x) + φ∗∆(2)(φ∗)−1f(x)
)

(B.11)

−ε2
(

2∇(1)f · ∇(1)µ(1)

µ(1)
(x)− fφ∗∆(2)µ(2)

µ(2)
(x)

)
+O(ε4).(B.12)

Remark B.1. The difference between the asymptotic expansions of the operators Gε and
Hε and the alternating diffusion operator shown in Appendix D, is in the term f ∆(`)µ(`)

µ(`)
, which

appears in Gε and Hε. In the alternating diffusion operator the expressions representing the
two manifolds are similar and given by 2∇(`)f ·∇(`)µ(`)

µ(`)
.

C. Proof of Proposition 3.3. For simplicity, we present the proof of Proposition 3.3 for
ε2 = ε1 = ε. For ε2 6= ε1, the proof is similar up to some notation changes. For the operators
Sε and Aε, defined in Subsection 3.3, we present the derivation of the asymptotic expansion
and prove Proposition 3.3.

Proof. For Sεf(x), place the asymptotic expansions of Gε and Hε, shown in Proposition
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3.2, into Sεf(x) = (Gεf(x) +Hεf(x))/2 to obtain:

Sεf(x) =
1

2
f(x)− ε2

2

(
∆(1)f(x) + φ∗∆(2)(φ∗)−1f(x)

)
(C.1)

− ε2

2

(
φ∗

2∇(2)(φ∗)−1f · ∇(2)µ(2)

µ(2)
(x)− f∆(1)µ(1)

µ(1)
(x)

)
(C.2)

+
1

2
f(x)− ε2

2

(
φ∗∆(2)(φ∗)−1f(x) + ∆(1)f(x)

)
(C.3)

− ε2

2

(
2∇(1)f · ∇(1)µ(1)

µ(1)
(x)− fφ∗∆(2)µ(2)

µ(2)
(x)

)
+O(ε4)(C.4)

=f(x)− ε2
(

∆(1)f(x) + φ∗∆(2)(φ∗)−1f(x)
)

(C.5)

− ε2

2

(
φ∗

2∇(2)(φ∗)−1f · ∇(2)µ(2)

µ(2)
(x)− fφ∗∆(2)µ(2)

µ(2)
(x)

)
(C.6)

− ε2

2

(
2∇(1)f · ∇(1)µ(1)

µ(1)
(x)− f∆(1)µ(1)

µ(1)
(x)

)
+O(ε4).(C.7)

For Aεf(x), place the asymptotic expansions of Gε and Hε, shown in Proposition 3.2, into
Aεf(x) = (Gεf(x)−Hεf(x))/2 to obtain:

Aεf(x) =
1

2
f(x)− ε2

2

(
∆(1)f(x) + φ∗∆(2)(φ∗)−1f(x)

)
(C.8)

− ε2

2

(
φ∗

2∇(2)(φ∗)−1f · ∇(2)µ(2)

µ(2)
(x)− f∆(1)µ(1)

µ(1)
(x)

)
(C.9)

− 1

2
f(x) +

ε2

2

(
φ∗∆(2)(φ∗)−1f(x) + ∆(1)f(x)

)
(C.10)

+
ε2

2

(
2∇(1)f · ∇(1)µ(1)

µ(1)
(x)− fφ∗∆(2)µ(2)

µ(2)
(x)

)
+O(ε4)(C.11)

=
ε2

2

(
2∇(1)f · ∇(1)µ(1)

µ(1)
(x) +

f∆(1)µ(1)

µ(1)
(x)

)
(C.12)

− ε2

2

(
φ∗

2∇(2)(φ∗)−1f · ∇(2)µ(2)

µ(2)
(x) + fφ∗

∆(2)µ(2)

µ(2)
(x)

)
+O(ε4).(C.13)

D. Comparison to Alternating diffusion. In this appendix, we review the asymptotic
expansion of the alternating diffusion operator from [SM5, SM2] and show that it is not self-
adjoint. For simplicity, we assume that ε2 = ε1 = ε. For ε2 6= ε1, the derivations are similar
up to some notation changes.

The asymptotic expansion of the alternating diffusion operator can be derived similarly to
Appendix B and Appendix C. This operator is defined by PADε f(x) = φ∗P

(2)
ε (φ∗)−1P

(1)
ε f(x).
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By placing the asymptotic expansion of P (`)
ε from Proposition 3.1 in this definition we get

PADε f(x) = f(x)− ε2
(

∆(1)f +
2∇(1)f · ∇(1)µ(1)

µ(1)

)
(x)(D.1)

− ε2
(
φ∗∆(2)(φ∗)−1f + φ∗

2∇(2)(φ∗)−1f · ∇(2)µ(2)

µ(2)

)
(x) +O(ε4)(D.2)

= f(x)− ε2
(

∆(1)f + φ∗∆(2)(φ∗)−1f
)

(x)(D.3)

− ε2
(

2∇(1)f · ∇(1)µ(1)

µ(1)
+ φ∗

2∇(2)(φ∗)−1f · ∇(2)µ(2)

µ(2)

)
(x) +O(ε4).(D.4)

We now show that the limit operator of alternating diffusion, PAD = limε→0

(
I − PADε

)
/ε2,

where I denotes the identity operator, is not self-adjoint. We separate PAD into two additive
terms, the first, denoted by PAD(1), which contains elements related to the first manifold, i.e.
elements from (D.1), and the second, denoted by PAD(2), which contains elements related to
the second manifold, i.e. elements from (D.2). We will show that each of these operators is
not self-adjoint, and therefore, PAD is not self-adjoint, from the linearity of the inner product
and from the additivity of these operators.

For PAD(1), given f, g ∈ C∞
(
M(1)

)
,

〈
PAD(1)f, g

〉
M(1)

=

∫
M(1)

(
∆(1)f +

2∇(1)f · ∇(1)µ(1)

µ(1)

)
(x)g(x)µ(1)(x)dV (1)(x)

=

∫
M(1)

(
∆(1)f(x)

)
g(x)µ(1)(x)dV (1)(x)

+

∫
M(1)

(
2∇(1)f · ∇(1)µ(1)

)
(x)g(x)dV (1)(x)(D.5)

=

∫
M(1)

(
∆(1)g +

2∇(1)g · ∇(1)µ(1)

µ(1)

)
(x)µ(1)(x)f(x)dV (1)(x)

+

∫
M(1)

(
g

∆(1)µ(1)

µ(1)

)
(x)µ(1)(x)f(x)dV (1)(x)

−
∫
M(1)

(
2∇(1)g · ∇(1)µ(1)

µ(1)
+ 2g

∆(1)µ(1)

µ(1)

)
(x)µ(1)(x)f(x)dV (1)(x)(D.6)

=

∫
M(1)

(
∆(1)g − g∆(1)µ(1)

µ(1)

)
(x)µ(1)(x)f(x)dV (1)(x)(D.7)

6=
〈
f, PAD(1)g

〉
M(1)

,(D.8)

where the transition between (D.5) and (D.6), is based on Green’s first identity (for manifolds
without a boundary).
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Similarly, for PAD(2), given f, g ∈ C∞
(
M(1)

)
,〈

PAD(2)f, g
〉
M(1)

=

∫
M(1)

(
φ∗∆(2)(φ∗)−1f

)
(x)g(x)µ(1)(x)dV (1)(x)

+

∫
M(1)

φ∗
2∇(2)(φ∗)−1f · ∇(2)µ(2)

µ(2)
(x)g(x)µ(1)(x)dV (1)(x)(D.9)

=

∫
M(2)

(
(φ∗)−1gµ(2)∆(2)(φ∗)−1

)
(y)f(y)dV (2)(y)

+

∫
M(2)

(
2(φ∗)−1g∇(2)(φ∗)−1f · ∇(2)µ(2)

)
(y)dV (2)(y)(D.10)

=

∫
M(2)

(
µ(2)(φ∗)−1f∆(2)(φ∗)−1g

)
(y)dV (2)(y)

+

∫
M(2)

(
2(φ∗)−1f∇(2)(φ∗)−1g · ∇(2)µ(2)

)
(y)dV (2)(y)

+

∫
M(2)

(
(φ∗)−1f(φ∗)−1g∆(2)µ(2)

)
(y)dV (2)(y)

−
∫
M(2)

(
2(φ∗)−1f∇(2)(φ∗)−1g · ∇(2)µ(2)

)
(y)dV (2)(y)

+

∫
M(2)

(
2(φ∗)−1f(φ∗)−1g∆(2)µ(2)

)
(y)dV (2)(y)(D.11)

=

∫
M(2)

(
(φ∗)−1f∆(2)(φ∗)−1g

)
(y)µ(2)(y)dV (2)(y)

−
∫
M(2)

(
(φ∗)−1f(φ∗)−1g

∆(2)µ(2)

µ(2)

)
(y)µ(2)(y)dV (2)(y)(D.12)

=

∫
M(1)

(
φ∗∆(2)(φ∗)−1g − gφ∗∆(2)µ(2)

µ(2)

)
(x)f(x)µ(1)(x)dV (1)(x)(D.13)

6=
〈
f, PAD(2)g

〉
M(1)

,(D.14)

where the transitions from (D.9) to (D.10) and from (D.12) to (D.13) are based on
µ(1)(x)dV (1)(x) = µ(2)(y)dV (2)(y) and y = φ(x). In addition, the transition between (D.10)
and (D.11) is based on Green’s first identity.

Finally, due to linearity, we can combine both operators and conclude that PAD is not
self-adjoint (nor anti-self-adjoint).

Remark D.1. Note that based on a similar derivation, it can be shown that the limit
operators of Gε and Hε, i.e. G = limε→0 (Gε − I) /ε2 and H = limε→0 (Hε − I) /ε2 , are not
self-adjoint as well.

Remark D.2. When reversing the kernel order, i.e. P̃ADε f(x) = P
(1)
ε φ∗P

(2)
ε (φ∗)−1f(x),

the asymptotic expansion of the resulting alternating diffusion operator is given by a similar
expression, up to the forth order terms, O(ε4). Therefore, constructing the difference oper-
ator, Aε from Subsection 3.3, using two alternating diffusion operators with reversed order,
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i.e. AADε f(x) = 1
2(PADε − P̃ADε )f(x), will result in cancellation of all second order terms,

AADε f(x) = O(ε4).

E. Proof of Proposition 3.4. Define the limit operator of Aε1,ε2 , where ε2 = αε and
ε1 = ε, α > 0, by Aα = limε→0Aε1,ε2/ε

2. We show in this appendix that jAα is self-adjoint,
by equivalently showing that Aα is anti-self-adjoint.

The asymptotic expansion of Aα : C∞(M(1))→ C∞(M(1)) is given by:

Aαf(x) =
1

2

(
2∇(1)f · ∇(1)µ(1)

µ(1)
(x) +

f∆(1)µ(1)

µ(1)
(x)

)
(E.1)

−α
2

2

(
φ∗

2∇(2)(φ∗)−1f · ∇(2)µ(2)

µ(2)
(x) + fφ∗

∆(2)µ(2)

µ(2)
(x)

)
.(E.2)

This is obtained from Proposition 3.3, for Aε1,ε2/ε2 when ε→ 0 and ε2 = αε1 = αε.

Proof. Denote by A(1)
α the terms in the asymptotic expansion of Aα which are related to

the first manifold, i.e. (E.1). Similarly, denote by A
(2)
α the terms which are related to the

second manifold, i.e. (E.2). In order to show that Aα is anti-self-adjoint we will first show that
each of these partial operators are anti-self-adjoint and then, from the linearity of the inner
product and the additivity of these terms, this result naturally extends to Aα.

For A(1)
α , given f, g ∈ C∞(M(1)),

〈
A(1)
α f, g

〉
M(1)

=

∫
M(1)

(
f∆(1)µ(1)

2µ(1)
+
∇(1)f · ∇(1)µ(1)

µ(1)

)
(x)g(x)µ(1)(x)dV (1)(x)(E.3)

=

∫
M(1)

(
1

2
f∆(1)µ(1)

)
(x)g(x)dV (1)(x)(E.4)

+

∫
M(1)

(
∇(1)f · ∇(1)µ(1)

)
(x)g(x)dV (1)(x)(E.5)

=

∫
M(1)

(
1

2
fg∆(1)µ(1)

)
(x)dV (1)(x)(E.6)

−
∫
M(1)

(
∇(1) ·

(
g∇(1)µ(1)

))
(x)f(x)dV (1)(x)(E.7)

= −
∫
M(1)

(
1

2
g∆(1)µ(1) +∇(1)g∇(1)µ(1)

)
(x)f(x)dV (1)(x)(E.8)

=

∫
M(1)

(
g∆(1)µ(1)

2µ(1)
+
∇(1)g · ∇(1)µ(1)

µ(1)

)
(x)f(x)µ(1)(x)dV (1)(x)(E.9)

= −
〈
f,A(1)

α g
〉
M(1)

,(E.10)

where the transition between (E.5) and (E.7) is based on Green’s first identity (for manifolds
without a boundary).
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Similarly, for A(2)
α , given f, g ∈ C∞(M(1)),〈

A(2)
α f, g

〉
M(1)

= −
∫
M(1)

α2

(
fφ∗

∆(2)µ(2)

2µ(2)

)
(x)g(x)µ(1)(x)dV (1)(x)

−
∫
M(1)

α2

(
φ∗
∇(2)(φ∗)−1f · ∇(2)µ(2)

µ(2)

)
(x)g(x)µ(1)(x)dV (1)(x)(E.11)

= −
∫
M(2)

α2

(
(φ∗)−1f

∆(2)µ(2)

2µ(2)
(φ∗)−1g

)
(y)µ(2)(y)dV (2)(y)

−
∫
M(2)

α2

(
∇(2)(φ∗)−1f · ∇(2)µ(2)

µ(2)
(φ∗)−1g

)
(y)µ(2)(y)dV (2)(y)(E.12)

= −
∫
M(2)

α2

(
1

2
(φ∗)−1g(φ∗)−1f∆(2)µ(2)

)
(y)dV (2)(y)

+

∫
M(2)

α2
(

(φ∗)−1g∆(2)µ(2)(φ∗)−1f
)

(y)dV (2)(y)

+

∫
M(2)

α2
(
∇(2)(φ∗)−1g · ∇(2)µ(2)(φ∗)−1f

)
(y)dV (2)(y)(E.13)

=

∫
M(2)

α2

(
(φ∗)−1g

∆(2)µ(2)

2µ(2)
(φ∗)−1f

)
(y)µ(2)(y)dV (2)(y)

+

∫
M(2)

α2

(
∇(2)(φ∗)−1g · ∇(2)µ(2)

µ(2)
(φ∗)−1f

)
(y)µ(2)(y)dV (2)(y)(E.14)

=

∫
M(1)

α2

(
gφ∗

∆(2)µ(2)

2µ(2)

)
(x)f(x)µ(1)(x)dV (1)(x)

+

∫
M(1)

α2

(
φ∗
∇(2)(φ∗)−1g · ∇(2)µ(2)

µ(2)

)
(x)f(x)µ(1)(x)dV (1)(x)(E.15)

= −
〈
f,A(2)

α g
〉
M(1)

,(E.16)

where the transitions from (E.11) to (E.12) and from (E.14) to (E.15) are based on
µ(1)(x)dV (1)(x) = µ(2)(y)dV (2)(y) and y = φ(x). In addition, the transition between (E.12)
and (E.13) is based on Green’s first identity.

Finally, combining these results for A(1)
α and A(2)

α we get:

〈jAαf, g〉M(1) =
〈
j
(
A(1)
α +A(2)

α

)
f, g
〉
M(1)

(E.17)

= j
〈
A(1)
α f, g

〉
M(1)

+ j
〈
A(2)
α f, g

〉
M(1)

(E.18)

= −j
〈
f,−A(1)

α g
〉
M(1)

− j
〈
f,A(2)

α g
〉
M(1)

(E.19)

= −j
〈
f,
(
A(1)
α +A(2)

α

)
g
〉
M(1)

= 〈f, jAαg〉M(1) .(E.20)
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Remark E.1. By performing a similar derivation for the operator Sε, it can be shown to
be self-adjoint as well.

F. Proof of Proposition 3.5. We prove here that ∀f ∈ C∞
(
M(1)

)
, if suppf ⊂ Ω̊α, then

Aαf(x) = 0, where, as defined in Section 2, Ωα =
{
x ∈M(1) : ∇φ|x = αI

}
, α > 0.

Proof. As presented in Proposition 3.3 and in Appendix E, the asymptotic expansion of
the operator Aα is given by

Aαf(x) =
1

2

(
2∇(1)f · ∇(1)µ(1)

µ(1)
(x) +

f∆(1)µ(1)

µ(1)
(x)

)
(F.1)

−α
2

2

(
φ∗

2∇(2)(φ∗)−1f · ∇(2)µ(2)

µ(2)
(x) + fφ∗

∆(2)µ(2)

µ(2)
(x)

)
.(F.2)

Consider x ∈ M(1), y = φ(x) ∈ M(2) and f ∈ C∞
(
M(1)

)
. With the chosen coordinates

around x and y, we calculate the following gradient of f :

(F.3)
(
∇(2)(φ∗)−1f

)∣∣∣
y

=
(
∇(2)f ◦ φ−1

)∣∣∣
y

= ∇(1)f |x∇(2)φ−1|y.

In addition, calculating the gradient of the density function of the manifold M(2), given by
µ(2)(y) = J(y)µ(1)

(
φ−1(y)

)
, where J(y) =

∣∣det (∇(2)φ−1(y)
)∣∣, leads to:

∇(2)µ(2)|y = ∇(2)
(
Jµ(1) ◦ φ−1

)∣∣∣
y

(F.4)

= ∇(2)J |y
(
µ(1) ◦ φ−1

)∣∣∣
y

+ J |y∇(1)µ(1)|x∇(2)φ−1|y.(F.5)

By substituting these derivations in expression (F.2), we get:

Aαf(x) =
1

2

(
2∇(1)f · ∇(1)µ(1)

µ(1)
(x) +

f∆(1)µ(1)

µ(1)
(x)

)
(F.6)

−α
2

2

2∇(1)f |x∇(2)φ−1|φ(x) · ∇(2)J |φ(x)µ
(1)

J |φ(x)µ(1)|x
(F.7)

−α
2

2

2∇(1)f |x∇(2)φ−1|φ(x) · ∇(1)µ(1)|x∇(2)φ−1|φ(x)

µ(1)|x
(F.8)

−α
2

2
f

∆(2)µ(2)|φ(x)

µ(2)|φ(x)

.(F.9)

Then, if suppf ⊂ Ω̊α, for x ∈ Ω̊α we have ∇(2)φ−1|φ(x) = 1
α I, where I denotes the d × d

identity matrix, and J |φ(x) = α−d. In addition, for such x, we have µ(2)(φ(x)) = α−dµ(1)(x).
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We are then left with:

Aαf(x) =
1

2

(
2∇(1)f · ∇(1)µ(1)

µ(1)
(x) +

f∆(1)µ(1)

µ(1)
(x)

)
(F.10)

−α
2

2

(
2∇(1)fα−1 · ∇(1)µ(1)α−1

µ(1)
(x) + f

∆(2)µ(2)

µ(2)
(φ(x))

)
(F.11)

=
1

2

(
f∆(1)µ(1)

µ(1)
(x)− α2f

∆(2)µ(2)

µ(2)
(φ(x))

)
(F.12)

=
1

2

(
f∆(1)µ(1)

µ(1)
(x)− α2f

α−d−2∆(1)µ(1)

α−dµ(1)
(x)

)
(F.13)

= 0,(F.14)

where we use the fact that for x ∈ Ω̊α, ∆(2)µ(2) (φ(x)) = α−d−2∆(1)µ(1)(x).
Therefore, we showed that if suppf ⊂ Ω̊α, then Aαf(x) = 0.

G. Interpretation of the operators and diffeomorphism in the discrete setting. Note
that in the current definition of the discrete operators S and A, we apply operators defined
on M(1) and operators defined on M(2) to the same functions. Specifically, applying H to
v(1), a discretization of f ∈ C∞

(
M(1)

)
, implies that the function f is first pushed forward to

M(2) and then discretized. Namely, the discrete operators, G and H, embody both the con-
tinuous operators, P (`)

ε` and Q(`)
ε` , and the diffeomorphism, φ, i.e. G is the discrete counterpart

of φ∗P (2)
ε2 (φ∗)−1Q

(1)
ε1 and H is the discrete counterpart of P (1)

ε1 φ
∗Q

(2)
ε2 (φ∗)−1. When the two

datasets significantly differ in their densities or metrics, the discrete operators do not neces-
sarily embody the diffeomorphism. In this case, when the operator A is applied to the vector
v(1), explicitly given by Av(1) = P(2)Q(1)v(1) −P(1)Q(2)v(1), the subtracted expressions may
be in different domains, i.e. P(2)Q(1)v(1) ∈ M(2) and P(1)Q(2)v(1) ∈ M(1). Moreover, the
application of Q(2) to v(1) may be erroneous as well. One option to resolve this is by defining
the following operators

S̃ = Q(1)SP(1)(G.1)
Ã = Q(1)AP(1).(G.2)

Using these definitions, by applying the operator Ã to v(1), for example, we obtain Ãv(1) =
Q(1)P(2)Q(1)P(1)v(1) −Q(1)P(1)Q(2)P(1)v(1). Therefore, the two subtracted terms now begin
and end with kernels representing the density and metric properties ofM(1).

The operators S̃ and Ã are symmetric and anti-symmetric, respectively, and preserve the
same asymptotic behavior. A second option is to use concepts from [SM4], which presents a
method for recovering a functional map between two shapes, and include such a functional
map, between the two manifolds, in the construction of the operators S and A. We note that
in the experimental results, presented in Section 5 and Section 6, both operator forms S̃, Ã,
and S, A, led to comparable results. This is due to the similarity of the two manifolds in these
applications.
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H. Proof of Corollary 6.1. In this appendix we prove Corollary 6.1. For simplicity, we
assume here that ε2 = ε1 = ε (α = 1). For ε2 6= ε1, the derivations are similar up to some
notation changes, as in Appendix F.

Consider E(1) ⊂ Rp and E(2) ⊂ Rp such that E(`) = M(`) ⊕ F (`), where M(`) ⊂ Rp1 ,
F (`) ⊂ Rp2 , p = p1 +p2, ` = 1, 2, and φ : E(1) → E(2) satisfies φ(M(1)⊕F (1)) =M(1)⊕φ̃(F (1)),
where φ̃ : F (1) → F (2) is a smooth diffeomorphism. In addition, assume that µ(`)(s(`)) =

µ
(`)
m (m(`))µ

(`)
f (f (`)), where µ(`) is the probability density on E(`), µ(`)

m is the marginal density of

µ(`) onM(`), µ(`)
f is the marginal density of µ(`) on F (`) and s(`)(t) = m(`)(t) + f (`)(t), where

s(`) ∈ E(`), m(`) ∈M(`) and f (`) ∈ F (`).
Denote Ωf =

{
f (1)(t) ∈ F (1) : ∇φ̃|f (1) = I

}
⊂ F (1), where I denotes a p2 × p2 identity

matrix, and define A = limε→0Aε/ε
2.

Corollary 6.1 states that for all g ∈ C∞
(
E(1)

)
, if suppg ⊂M(1)⊕ Ω̊f , then Ag = 0. Hence,

if Ag = λg, g 6= 0, then, suppg ⊂M(1) ⊕ Ωc
f .

Proof. We first note that since E(1) = M(1) ⊕ F (1), the eigenfunctions of A|F(1) , i.e. the
restriction of A to F (1), multiplied by a non-zero function defined onM(1), are eigenfunctions
of A. Second, note that ∇(1)φ 6= I when ∇(1)φ̃ 6= I, since

(H.1) ∇(1)φp×p =

[
Ip1×p1 0p1×p2
0p2×p1 ∇(1)φ̃p2×p2

]
where 0d1×d2 denotes a zero matrix of size d1 × d2. Third, from the relation between the
probability density functions on the two manifolds, we have µ(2)

m (m(2)) = µ
(1)
m (m(1)) and

µ
(2)
f (f (2)) = Jφ̃

∣∣∣
f (2)

µ
(1)
f (f (1)), where Jφ̃

∣∣∣
f (2)

=
∣∣∣det

(
∇(2)φ̃−1(f (2))

)∣∣∣, since Jφ|s(2) = Jφ̃

∣∣∣
f (2)

and µ(2)(s(2)) = Jφ|s(2) µ
(1)(s(1)), s(2) = φ(s(1)).

Therefore, we can derive the following expressions for g ∈ C∞
(
E(1)

)
, φ−1 and µ(`):

∇(1)g|s(1) =

∇(1)
m g
∣∣∣
m(1)

∇(1)
f g
∣∣∣
f (1)

 ∇(2)φ−1
∣∣∣
φ(s(1))

=

[
Ip1×p1 0p1×p2

0p2×p1 ∇(2)φ̃−1
∣∣∣
φ(f (1))

]
(H.2)

∇(`)µ(`)
∣∣∣
s(1)

=

µ(`)
f (f (`)) ∇(`)

m µ
(`)
m

∣∣∣
m(`)

∇(`)
f µ

(`)
f

∣∣∣
f (`)

µ
(`)
m (m(`))

(H.3)

∆(`)µ(`)
∣∣∣
s(`)

= µ
(`)
f (f (`)) ∆(`)

m µ(`)
m

∣∣∣
m(`)

+ ∆
(`)
f µ

(`)
f

∣∣∣
f (`)

µ(`)
m (m(`))(H.4)

∇(1)g|s(1)∇
(2)φ−1|φ(s(1)) =

 ∇(1)
m g|m(1)

∇(1)
f g|f (1) ∇(2)φ̃−1

∣∣∣
φ̃(f (1))

(H.5)

∇(1)µ(1)|s(1)∇
(2)φ−1|φ(s(1)) =

 µ
(1)
f (f (1)) ∇(1)

m µ
(1)
m

∣∣∣
m(1)

∇(1)
f µ

(1)
f

∣∣∣
f (1)
∇(2)φ̃−1

∣∣∣
φ̃(f (1))

µ
(1)
m (m(1))

 .(H.6)
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According to Appendix F the operator A = limε→0Aε/ε
2 is given by

Ag(x) =
1

2

(
2∇(1)g · ∇(1)µ(1)

µ(1)
(x) +

g∆(1)µ(1)

µ(1)
(x)

)

−1

2

2∇(1)g|x∇(2)φ−1|φ(x) · ∇(2)J |φ(x)µ
(1)

J |φ(x)µ(1)|x

−1

2

2∇(1)g|x∇(2)φ−1|φ(x) · ∇(1)µ(1)|x∇(2)φ−1|φ(x)

µ(1)|x

−1

2
g

∆(2)µ(2)|φ(x)

µ(2)|φ(x)

.(H.7)

By substituting expressions (H.2) - (H.6) and µ(`)(s(1)) = µ
(`)
m (m(1))µ

(`)
f (f (1)) into (H.7), we
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get:

Ag(s(1)) =
1

2

(
2∇(1)

m g|m(1) · ∇(1)
m µ

(1)
m |m(1)

µ
(1)
m |m(1)

+
g∆

(1)
m µ

(1)
m |m(1)

µ
(1)
m |m(1)

)

+
1

2

2∇(1)
f g|f (1) · ∇

(1)
f µ

(1)
f |f (1)

µ
(1)
f |f (1)

+
g∆

(1)
f µ

(1)
f |f (1)

µ
(1)
f |f (1)


−1

2

2∇(1)
f g|f (1)∇(2)φ̃−1|φ̃(f (1)) · ∇

(2)Jφ̃|φ̃(f (1))µ
(1)
f |f (1)

Jφ̃|φ̃(f (1))µ
(1)
f |f (1)

−1

2

2∇(1)
m g|m(1) · ∇(1)

m µ
(1)
m |m(1)

µ
(1)
m |m(1)

−1

2

2∇(1)
f g|f (1)∇(2)φ̃−1|φ̃(f (1)) · ∇

(1)
f µ

(1)
f |f (1)∇

(2)φ̃−1|φ̃(f (1))

µ
(1)
f |f (1)

−1

2

g∆
(2)
f µ

(2)
f |φ̃(f (1))

µ
(2)
f |φ̃(f (1))

− 1

2

g∆
(1)
m µ

(1)
m |m(1)

µ
(1)
m |m(1)

(H.8)

=
1

2

2∇(1)
f g|f (1) · ∇

(1)
f µ

(1)
f |f (1)

µ
(1)
f |f (1)

+
g∆

(1)
f µ

(1)
f |f (1)

µ
(1)
f |f (1)


−1

2

2∇(1)
f g|f (1)∇(2)φ̃−1|φ̃(f (1)) · ∇

(2)Jφ̃|φ̃(f (1))µ
(1)
f |f (1)

Jφ̃|φ̃(f (1))µ
(1)
f |f (1)

−1

2

2∇(1)
f g|f (1)∇(2)φ̃−1|φ̃(f (1)) · ∇

(1)
f µ

(1)
f |f (1)∇

(2)φ̃−1|φ̃(f (1))

µ
(1)
f |f (1)

−1

2

g∆
(2)
f µ

(2)
f |φ̃(f (1))

µ
(2)
f |φ̃(f (1))

(H.9)

=A|F(1)g(f (1)),(H.10)

where we used µ(2)
m |φ(m(1)) = µ

(1)
m |m(1) and ∆

(2)
m µ

(2)
m |φ(m(1)) = ∆

(1)
m µ

(1)
m |m(1) to obtain the last

term in (H.8).
This derivation states that Ag(s(1)) = A|F(1)g(f (1)). Therefore, under the assumptions

stated in the beginning of this appendix, the considered setting is equivalent to the setting in
Proposition 3.5, with the manifolds F (`), ` = 1, 2, the smooth diffeomorphism φ̃ : F (1) → F (2)

and g ∈ C∞
(
F (1)

)
. We can now apply Proposition 3.5 to (H.10) and obtain that for all

g ∈ C∞
(
F (1)

)
, if suppg ⊂ Ω̊f , then A|F(1)g(f (1)) = 0. Due to the definition of E(`) as a direct

sum ofM(`) and F (`), we can define g ∈ C∞
(
E(1)

)
and obtain that for all g ∈ C∞

(
E(1)

)
, if

suppg ⊂M(1) ⊕ Ω̊f , then Ag(s(1)) = 0, which concludes the proof.
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