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Abstract. Finding appropriate low-dimensional representations of high-dimensional multimodal data can be
challenging, since each modality embodies unique deformations and interferences. In this paper, we
address the problem using manifold learning, where the data from each modality is assumed to lie
on some manifold. In this context, the goal is to characterize the relations between the different
modalities by studying their underlying manifolds. We propose two new diffusion operators that
allow us to isolate, enhance, and attenuate the hidden components of multimodal data in a data-
driven manner. Based on these new operators, efficient low-dimensional representations can be
constructed for such data, which characterize the common structures and the differences between
the manifolds underlying the different modalities. The capabilities of the proposed operators are
demonstrated on 3D shapes and on a fetal heart rate monitoring application.

Key words. manifold learning, diffusion maps, multimodal data, sensor fusion, common variable, shape differ-
ences
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1. Introduction. Recent technological progress has led to highly heterogeneous datasets
consisting of multimodal samples acquired by a multitude of sensors. Current research is
plagued by the problem of finding the ``appropriate,"" often low-dimensional representation
for such high-dimensional multimodal data. Indeed, obtaining meaningful representations
from multimodal data is truly challenging, since such data comprise many latent sources of
variability, each source embodying unique and possibly redundant information; while some of
these sources are important, some are completely superfluous. This naturally leads to such
problems as how to discover and isolate the different sources, how to identify and extract the
relevant information, and how to merge data from different modalities.

Various studies have addressed multimodal data analysis problems [27]. A few examples
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RECOVERING HIDDEN COMPONENTS IN MULTIMODAL DATA 589

include the classical Canonical Correlation Analysis (CCA) [22], which recovers highly corre-
lated linear projections from two datasets, and recent CCA extensions which involve kernels
to address nonlinearities [28, 3, 34]. Methods relying on kernels are of particular interest in
the context of the present work. For example, methods for spectral clustering of multimodal
data based on kernel manipulation are presented in [47, 24, 13, 32]. In [47], spectral clustering
is performed on the multimodal data by solving the generalized eigenvalue problem of a new
matrix, constructed based on a mixture of random walks defined on multiple graphs, each
representing a different view. In [24], multimodal spectral clustering is learned by iteratively
clustering each view separately and then modifying the graph structures accordingly. Two
other methods [13, 32] combine affinity matrices of two graphs, representing two different
views, by constructing a larger symmetric affinity matrix which is based on their multiplica-
tion. Other related work includes (i) the construction of a joint manifold by concatenating
samples from several sensors, each represented by a separate manifold [12]; (ii) metric fusion
obtained by combining similarity measures through kernel multiplication [45]; and (iii) a new
representation of multiview data learned by jointly diagonalizing Laplacians of different views
[15, 16]. In addition, [9] presents a method for mapping low-dimensional graph Laplacian rep-
resentations of different views (or times) into a common latent space, allowing for the analysis
of multimodal data in a low-dimensional intrinsic space.

Our specific focus here is on a manifold learning approach. Consider a single high-
dimensional dataset assumed to live on a single manifold. Analyzing this dataset with typical
manifold learning methods, such as Laplacian eigenmaps [5] or diffusion maps [7], simplifies to
computing a kernel based on an affinity suitable for the dataset at hand. Then, by employing
spectral analysis, the data are embedded in a new Euclidean space that captures their under-
lying manifold structure. A question then naturally arises: Are the required mathematical
properties for spectral analysis transferable to settings comprising several datasets? If this
can be achieved, the data analysis procedure could be naturally extended to analyze multiple
datasets, deforming the intrinsic space in different ways.

Apparently, manifold learning techniques almost exclusively address only a single manifold
structure. In a recent work [29], a data-driven method for recovering the common latent vari-
able underlying multiple multimodal sensor data based on alternating products of diffusion
operators was presented. This work was later extended in [44], showing that the alternating
products of diffusion operators recover a common manifold structure. In addition, as proven in
[44, 29], it ignores the components specific to each modality. However, the product of diffusion
operators does not necessarily have a real spectrum. Other recent works [18, 33] propose to an-
alyze dynamical systems based on products of diffusion operators, in a manner related to [29].
There, data from each time frame is modeled as samples from a manifold with a time-evolving
metric, and by revealing the common latent variables of several time frames, they recover
coherent sets (in [18]) or a representation of the common latent manifold in time (in [33]).

In this paper, we propose new diffusion operators defined on data arising from multiple
sensors, allowing for a nonlinear efficient data-driven way to isolate, enhance, and attenu-
ate various hidden components. More concretely, we propose two operators that reveal the
common structures and the differences between manifolds. We show that these two opera-
tors have a meaningful spectral decomposition, which we leverage to construct an efficient
low-dimensional representation.

D
ow

nl
oa

de
d 

10
/1

8/
19

 to
 1

32
.6

9.
24

2.
10

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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The capabilities of the presented operators in extracting hidden components are demon-
strated in simulations and on a real-world application for fetal heart rate (fHR) monitoring.
fHR monitoring is widely used for the assessment of the fetus's health during both pregnancy
and delivery. The most accurate method, relying on the placement of electrodes on the fetus's
scalp, is invasive and therefore carries many risks. Consequently, noninvasive measurements
are usually carried out by placing electrodes on the abdomen of the mother (see a compre-
hensive review in [39]). Naturally, the measured signal contains, in addition to the fetal
electrocardiogram (ECG), the maternal ECG, masking the desired information. In order to
suppress the maternal ECG and to extract the fetal ECG, common practice is to use another
(reference) electrode, placed on the mother's thorax, for the purpose of measuring only the
maternal ECG. Then the relation between the measured abdomen and thorax signals is ex-
tracted, using, for example, the adaptive least mean squares (LMS) algorithm [46]. In this
work, we detect the fetal ECG from two abdomen signals, which is considered a challenging
problem that currently has no definitive solution. We show that the proposed operators dis-
cover the relations between the signals acquired with multiple sensors in a data-driven manner,
revealing their hidden components.

2. Problem formulation. Consider two diffeomorphic manifolds, \scrM (1) and \scrM (2), with a
diffeomorphism \phi : \scrM (1) \mapsto \rightarrow \scrM (2), where each manifold \scrM (\ell ) is a compact Riemannian man-
ifold without a boundary of dimension d with a metric g(\ell ). In this work, we will distinguish
between the following two structures:

\Omega \alpha =
\Bigl\{ 
x \in \scrM (1) : \nabla \phi | x = \alpha I

\Bigr\} 
\subset \scrM (1),(2.1)

\Omega c
\alpha = \scrM (1)\setminus \r \Omega \alpha ,(2.2)

where \alpha > 0 is a scaling factor, I denotes a d\times d identity matrix, \nabla \phi | x is represented by a pair
of properly chosen orthonormal bases at Tx\scrM (1) and T\phi (x)\scrM (2), and \r \Omega \alpha denotes the maximal
open subset of the closed set \Omega \alpha . Therefore, \Omega \alpha denotes all structures which are similar, up
to a scaling \alpha > 0, in the two manifolds \scrM (1) and \scrM (2).

Our goal is to identify and isolate \Omega \alpha and \Omega c
\alpha in a data-driven manner, given pairs of

observation samples (x, y), such that x \in \scrM (1), y \in \scrM (2), and y = \phi (x). We will show
in what follows that the two structures \Omega \alpha and \Omega c

\alpha have great importance in data analysis
problems.

For example, consider the two geometric shapes presented in Figure 1. Figure 1(a) depicts
a 2-sphere, and Figure 1(b) depicts a scaled and deformed sphere, i.e., a scaled sphere with
a ``bump."" Denote these two shapes by \scrM (1) and \scrM (2), respectively. The deformation and
scaling of \scrM (2) can be represented by a diffeomorphism between the two shapes, \phi : \scrM (1) \rightarrow 
\scrM (2). In this example, by definition the undeformed sphere structure (up to scaling) is
represented by \Omega \alpha and the ``bump"" is represented by \Omega c

\alpha . Therefore, given the two shapes,
our goal is to recover a separate representation for \Omega \alpha and \Omega c

\alpha .
This problem formulation, describing common structures of two manifolds, i.e., \Omega \alpha , can

be seen as analogous to recent work [18, 19]. There, a framework for recovering coherent sets
in dynamical systems is proposed, where each time instance is represented by some underlying
manifold, \scrM , and the system dynamics are represented by a diffeomorphism, \phi . Since coherent

D
ow

nl
oa

de
d 

10
/1

8/
19

 to
 1

32
.6

9.
24

2.
10

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RECOVERING HIDDEN COMPONENTS IN MULTIMODAL DATA 591

(a) (b)

Figure 1. Two diffeomorphic geometric shapes: (a) a sphere, and (b) a scaled sphere with a deformation
(a ``bump"").

sets represent system behavior that changes slowly in time, they can be described by the
common structures, i.e., \Omega \alpha in our formulation.

3. Diffusion operators for multimodal data. In this section, we present the derivation of
the proposed operators, starting from a single manifold setting in subsection 3.1, similarly to
[7]. In subsection 3.2, we present an extension to two manifolds, as a variant of [44, 29], and
finally, in subsection 3.3, we present the proposed new operators for revealing the common
and difference structures of two manifolds.

3.1. Preliminaries---single manifold setting. Define the following symmetric kernel for a
manifold \scrM , based on its distance function, denoted by dg, corresponding to the metric g on
\scrM :

(3.1) k\epsilon 
\bigl( 
x, x\prime 

\bigr) 
= exp

\Biggl( 
 - dg (x, x

\prime )2

\epsilon 2

\Biggr) 
,

where x, x\prime \in \scrM and \epsilon > 0. The kernel is then normalized by

(3.2) p\epsilon 
\bigl( 
x, x\prime 

\bigr) 
=
k\epsilon (x, x

\prime )

d\epsilon (x)
,

where d\epsilon (x) =
\int 
k\epsilon (x, x

\prime )\mu (x\prime ) dV (x\prime ), V is the volume measure induced by g, and \mu (x\prime ) is
the density function of the points on \scrM . Similarly, define the following normalized kernel by

(3.3) q\epsilon 
\bigl( 
x, x\prime 

\bigr) 
=
k\epsilon (x, x

\prime )

d\epsilon (x\prime )
.

Based on q\epsilon (x, x
\prime ) and p\epsilon (x, x

\prime ), we define the following ``backward"" and ``forward"" diffu-
sion operators:

P\epsilon f (x) =

\int 
p\epsilon 
\bigl( 
x, x\prime 

\bigr) 
f
\bigl( 
x\prime 
\bigr) 
\mu 
\bigl( 
x\prime 
\bigr) 
dV (x\prime ),(3.4)

Q\epsilon f (x) =

\int 
q\epsilon 
\bigl( 
x, x\prime 

\bigr) 
f
\bigl( 
x\prime 
\bigr) 
\mu 
\bigl( 
x\prime 
\bigr) 
dV (x\prime )(3.5)

for any f \in C\infty (\scrM ).
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Proposition 3.1. Suppose \mu , f \in C4(\scrM ), where \scrM is a smooth Riemannian manifold with
a metric g. The asymptotic expansion of the operators P\epsilon and Q\epsilon , when \epsilon is sufficiently small,
is given by

P\epsilon f (x) = m0f(x) - m2\epsilon 
2

\biggl( 
\Delta f +

2\nabla f \cdot \nabla \mu 
\mu 

\biggr) 
(x) +O(\epsilon 4),(3.6)

Q\epsilon f (x) = f(x) - m2

m0
\epsilon 2
\biggl( 
\Delta f  - f\Delta \mu 

\mu 

\biggr) 
(x) +O(\epsilon 4),(3.7)

where \nabla denotes the covariant derivative on the manifold, \scrM , \Delta denotes the Laplace--Beltrami
operator, and m0,m2 are two manifold related constants.

For the sake of readability, in the following asymptotic expansions we assume without loss
of generality that the kernel function k\epsilon is scaled such that the constants m0 and m2 are equal
to 1, similarly to [7, Appendix B] and [35, Appendix A], since these constants are moments
of the Gaussian kernel. This derivation of the backward operator, P\epsilon , is shown in [7], and the
derivation of the forward operator, Q\epsilon , is shown in the supplementary material, Appendix A.

The operator Q\epsilon is the forward operator, similarly defined in [35], which can be interpreted
as an operator that propagates probability density functions on the manifold. Operator P\epsilon is
the backward operator, which can be interpreted as propagating averages of functions on the
manifold. These two operators are adjoint under the inner product with \mu [35, 7].

From the spectral decomposition of the operators P\epsilon and Q\epsilon , a new low-dimensional rep-
resentation for \scrM is typically obtained. In [7], it was shown that this low-dimensional rep-
resentation embeds the data in a Euclidean space, where the Euclidean distance between the
points in the new representation approximates the diffusion distance between data points,
x, x\prime \in \scrM , defined as follows:

(3.8) D\epsilon (x, x
\prime ) =

\int 
\scrM 

\bigl( 
p\epsilon (x, u) - p\epsilon (x

\prime , u)
\bigr) 2 \mu (u)
\pi (u)

dV (u),

where p\epsilon (x, u), defined in (3.2), can be interpreted as the probability of transitioning from x
to u in one propagation step of size \epsilon and \pi (u) = d\epsilon (u)/

\sum 
z\in \scrM d\epsilon (z) denotes the stationary

distribution of the data on \scrM .
The backward operator P\epsilon was previously used in numerous applications to recover a

meaningful representation of the data (e.g., [42, 43, 25]).

3.2. Modified alternating diffusion in a two manifold setting. Given two manifolds,
denoted by \scrM (1) and \scrM (2), consider the following C\infty (\scrM (1)) \rightarrow C\infty (\scrM (1)) operators:

G\epsilon 1,\epsilon 2f(x) = \phi \ast P (2)
\epsilon 2 (\phi \ast ) - 1Q(1)

\epsilon 1 f(x),(3.9)

H\epsilon 1,\epsilon 2f(x) = P (1)
\epsilon 1 \phi 

\ast Q(2)
\epsilon 2 (\phi \ast ) - 1f(x)(3.10)

for any function f \in C\infty (\scrM (1)), where \epsilon 1, \epsilon 2 > 0, \phi \ast : C\infty (\scrM (2)) \rightarrow C\infty (\scrM (1)) denotes the
operator corresponding to the pullback from \scrM (2) to \scrM (1), i.e., (\phi \ast g) (x) = (g) (\phi (x)) for
x \in \scrM (1), g \in C\infty (\scrM (2)), and (\phi \ast ) - 1 denotes the pushforward from \scrM (2) to \scrM (1), i.e., the
inverse of \phi \ast .
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Note that for such a composition of operators, the interpretation of the forward operator
as propagating probability density functions does not extend to the operators G\epsilon and H\epsilon .
In the following proposition, we present an analysis for the new operators, G\epsilon 1,\epsilon 2 and H\epsilon 1,\epsilon 2 ,

which are the composition of P
(\ell )
\epsilon \ell and Q

(\ell )
\epsilon \ell , \ell = 1, 2, based on their asymptotic expansions.

Proposition 3.2. When \epsilon 1, \epsilon 2 > 0 are sufficiently small and \mu (1) is smooth enough, the
asymptotic expansions of the operators G\epsilon 1,\epsilon 2 and H\epsilon 1,\epsilon 2 are given by

G\epsilon 1,\epsilon 2f(x) = f(x) - \epsilon 21\Delta 
(1)f(x) - \epsilon 22\phi 

\ast \Delta (2)(\phi \ast ) - 1f(x)(3.11)

 - \epsilon 22\phi 
\ast 2\nabla (2)(\phi \ast ) - 1f \cdot \nabla (2)\mu (2)

\mu (2)
(x) + \epsilon 21

f\Delta (1)\mu (1)

\mu (1)
(x) +O(\epsilon 41 + \epsilon 42),(3.12)

H\epsilon 1,\epsilon 2f(x) = f(x) - \epsilon 21\Delta 
(1)f(x) - \epsilon 22\phi 

\ast \Delta (2)(\phi \ast ) - 1f(x)(3.13)

 - \epsilon 21
2\nabla (1)f \cdot \nabla (1)\mu (1)

\mu (1)
(x) + \epsilon 22\phi 

\ast \Delta 
(2)\mu (2)

\mu (2)
(x) +O(\epsilon 41 + \epsilon 42).(3.14)

The derivations for both operators appear in the supplementary material, Appendix B.
Note that the asymptotic expansion of these operators can be described by a term which

depends on the geometry, the Laplace--Beltrami operators \Delta (1) and \Delta (2) in both (3.11) and
(3.13), and a term which depends on both the geometry and the densities, \mu (1), \mu (2), in both
(3.12) and (3.14).

In [29, 44], alternating diffusion operators are defined in a related manner. In [29], the

operator \phi \ast Q
(2)
\epsilon 2 (\phi \ast ) - 1Q

(1)
\epsilon 1 was introduced, and in [44] the operator \phi \ast P

(2)
\epsilon 2 (\phi \ast ) - 1P

(1)
\epsilon 1 was

studied. Both variants are compositions of two operators, each corresponding to a different
manifold. It was shown there that these operators reveal the common structure of the two
manifolds. Note that the alternating diffusion operators are different from the operators
proposed here, due to the use of two backward or forward operators in alternating diffusion,
instead of one backward and one forward operator, as proposed here. We will show that the
modification considered here not only is semantic but also leads to a different asymptotic
behavior than the one described in [44]. The difference between the asymptotic expansions
in (3.12) and (3.14) and the corresponding asymptotic expansion of the alternating diffusion
operator is described in detail in the supplementary material, Appendix D.

3.3. Composite operators in a two manifold setting. The operators in subsection 3.2
and in [44, 29] suffer from several shortcomings. First, as presented in [44], the alternating
diffusion operator highly depends on the order of the kernel multiplication (in a realistic
discrete setting). Note that this is also true for operators G\epsilon 1,\epsilon 2 and H\epsilon 1,\epsilon 2 , which depend on
the kernel order even in the continuous setting, as portrayed by their asymptotic expansions.
Second, these operators are neither self-adjoint nor normal (see the supplementary material,
Appendix D), and therefore the spectral theorem does not hold. In this subsection, we address
these problems and propose two new operators: S\epsilon 1,\epsilon 2 , which will be shown to reveal common
structures, and A\epsilon 1,\epsilon 2 , which will be shown to reveal differences.
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Define

S\epsilon 1,\epsilon 2f(x) =
1

2
(G\epsilon 1,\epsilon 2f(x) +H\epsilon 1,\epsilon 2f(x)) ,(3.15)

A\epsilon 1,\epsilon 2f(x) =
1

2
(G\epsilon 1,\epsilon 2f(x) - H\epsilon 1,\epsilon 2f(x)) .(3.16)

Proposition 3.3. When \epsilon 1, \epsilon 2 > 0 are sufficiently small and \mu (1) is smooth enough, the
asymptotic expansions of the operators S\epsilon 1,\epsilon 2 and A\epsilon 1,\epsilon 2 are given by

S\epsilon 1,\epsilon 2f(x) = f(x) - \epsilon 21\Delta 
(1)f(x) - \epsilon 22\phi 

\ast \Delta (2)(\phi \ast ) - 1f(x)(3.17)

 - \epsilon 22
2

\Biggl( 
\phi \ast 

2\nabla (2)(\phi \ast ) - 1f \cdot \nabla (2)\mu (2)

\mu (2)
(x) - f\phi \ast 

\Delta (2)\mu (2)

\mu (2)
(x)

\Biggr) 
(3.18)

 - \epsilon 21
2

\Biggl( 
2\nabla (1)f \cdot \nabla (1)\mu (1)

\mu (1)
(x) - f\Delta (1)\mu (1)

\mu (1)
(x)

\Biggr) 
+O(\epsilon 41 + \epsilon 42),(3.19)

A\epsilon 1,\epsilon 2f(x) =
\epsilon 21
2

\Biggl( 
2\nabla (1)f \cdot \nabla (1)\mu (1)

\mu (1)
(x) +

f\Delta (1)\mu (1)

\mu (1)
(x)

\Biggr) 
(3.20)

 - \epsilon 22
2

\Biggl( 
\phi \ast 

2\nabla (2)(\phi \ast ) - 1f \cdot \nabla (2)\mu (2)

\mu (2)
(x) + f\phi \ast 

\Delta (2)\mu (2)

\mu (2)
(x)

\Biggr) 
+O(\epsilon 41 + \epsilon 42).(3.21)

The derivations for both operators appear in the supplementary material, Appendix C.

Note that since \phi is a diffeomorphism from \scrM (1) to \scrM (2), the probability density function
of the manifold \scrM (2), denoted by \mu (2), can be written as a function of \mu (1) and \phi :

(3.22) \mu (2)(y) =
\bigm| \bigm| det \bigl( \nabla \phi  - 1(y)

\bigr) \bigm| \bigm| \mu (1) \bigl( \phi  - 1(y)
\bigr) 
,

where y \in \scrM (2) and det() denotes the determinant.
The asymptotic expansion of S\epsilon 1,\epsilon 2 includes a summation of two Laplace--Beltrami opera-

tors (the right term in (3.17)), corresponding to the two considered manifolds, \scrM (1) and \scrM (2).
This term relates to the dynamic Laplacian, defined in [18, 19], which was shown to be equiv-
alent to the summation of two Laplace--Beltrami operators, from two different time-instances,
when assuming a uniform density. The dynamic Laplacian reveals coherent sets in dynamical
systems, representing common system behavior in different time-instances. Therefore, this
similarity strengthens the claim that the operator S\epsilon 1,\epsilon 2 reveals the common structure of the
two manifolds. Conversely, the asymptotic expansion of A\epsilon 1,\epsilon 2 is composed of the subtraction
between the term (3.20), which is based on \scrM (1), and the term (3.21), which is based on \scrM (2).
These two terms are functions of the probability densities, \mu (\ell ), and the diffeomorphism, \phi .
Importantly, in the asymptotic expansion of A\epsilon 1,\epsilon 2 , the two Laplace--Beltrami operators of
the two manifolds that are applied to f in (3.17) are absent (see the supplementary material,
Appendix C). Clearly, when \phi is the identity function, i.e., the two manifolds are identical,
then the expansion (3.17)--(3.19) of S\epsilon 1,\epsilon 2 recovers the result in [7] and A\epsilon 1,\epsilon 2 is zero.

In the following we will show that A\epsilon 1,\epsilon 2 characterizes the difference between the manifolds
based on differences in their density functions. In addition, we will show that the eigenfunc-
tions of A\epsilon 1,\epsilon 2 are supported on \Omega c

\alpha , the regions containing these differences. To complement
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the analysis, in section 4 we will support these claims in a discrete setting, and in sections 5
and 6 we will demonstrate them using both synthetic and real applications.

Consider a special case in which the density \mu (1) of manifold \scrM (1) is uniform. In this case,
the asymptotic expansions in Proposition 3.3 reduce to

S\epsilon 1,\epsilon 2f(x) = f(x) - \epsilon 21\Delta 
(1)f(x) - \epsilon 22\phi 

\ast \Delta (2)(\phi \ast ) - 1f(x)(3.23)

 - \epsilon 22
2

\Biggl( 
\phi \ast 

2\nabla (2)(\phi \ast ) - 1f \cdot \nabla (2)\mu (2)

\mu (2)
(x) - f\phi \ast 

\Delta (2)\mu (2)

\mu (2)
(x)

\Biggr) 
+O(\epsilon 41 + \epsilon 42),(3.24)

A\epsilon 1,\epsilon 2f(x) =  - \epsilon 
2
2

2

\Biggl( 
\phi \ast 

2\nabla (2)(\phi \ast ) - 1f \cdot \nabla (2)\mu (2)

\mu (2)
(x) + f\phi \ast 

\Delta (2)\mu (2)

\mu (2)
(x)

\Biggr) 
+O(\epsilon 41 + \epsilon 42),(3.25)

where \mu (2)(x) =
\bigm| \bigm| det \bigl( \nabla \phi  - 1(x)

\bigr) \bigm| \bigm| .
In addition, when considering a volume-preserving diffeomorphism, similarly to [18], \mu (2)(x)

is uniform as well. In such a case, the asymptotic expansion of the operator S\epsilon 1,\epsilon 2 is reduced
to the addition of the two Laplace--Beltrami operators in (3.23). Moreover, the second order
terms in the asymptotic expansion of A\epsilon 1,\epsilon 2 vanish. This special case emphasizes that the
operator S\epsilon 1,\epsilon 2 depends mostly on the geometry of the two manifolds, whereas A\epsilon 1,\epsilon 2 depends
on the diffeomorphism and the probability density functions of the two manifolds.

Proposition 3.4. Denote \epsilon 1 = \epsilon and suppose \epsilon 2 = \alpha \epsilon for some \alpha > 0. The operators
A\alpha : C\infty (\scrM (1)) \rightarrow C\infty (\scrM (1)) and S\alpha : C\infty (\scrM (1)) \rightarrow C\infty (\scrM (1)) are anti-self-adjoint and
self-adjoint, respectively, where A\alpha = lim\epsilon \rightarrow 0A\epsilon 1,\epsilon 2/\epsilon 

2 and S\alpha = lim\epsilon \rightarrow 0 S\epsilon 1,\epsilon 2/\epsilon 
2.

The proof is given in the supplementary material, Appendix E.
As presented in this section, the proposed operators, S\epsilon 1,\epsilon 2 and A\epsilon 1,\epsilon 2 , solve the two main

shortcomings of the alternating diffusion operator. First, from their asymptotic expansions,
it can be seen that there is no dependency on the order of the kernels (this will be revisited in
the discrete setting in section 4). Second, based on Proposition 3.4, they are self-adjoint and
anti-self-adjoint, respectively, and therefore, the spectral theorem holds for these operators.

Based on the latter property, we strengthen the claim that A\alpha represents the differences
between the two manifolds by showing that the eigenfunctions of A\alpha = lim\epsilon \rightarrow 0A\epsilon 1,\epsilon 2/\epsilon 

2,
\epsilon 2 = \alpha \epsilon 1 = \alpha \epsilon , are supported on \Omega c

\alpha .

Proposition 3.5. Given f \in C\infty \bigl( \scrM (1)
\bigr) 
, if suppf \subset \r \Omega \alpha , then A\alpha f(x) = 0.

The proof is given in the supplementary material, Appendix F. A direct consequence
of this proposition is that if A\alpha f = \lambda f , f \not = 0, then suppf \subset \scrM (1)\setminus \r \Omega \alpha = \Omega c

\alpha . Therefore,
the eigenfunctions of the difference operator A\alpha (when \epsilon 1, \epsilon 2 \rightarrow 0) are nonzero only in re-
gions where there are differences between the two manifolds, \scrM (1) and \scrM (2). Note that this
proposition does not guarantee the behavior of f on \Omega c

\alpha .

4. Discrete setting for data analysis. We now present our proposed method in the dis-
crete setting. We begin by introducing the discrete counterparts of the operators presented
in section 3. In subsection 4.1, we present a discrete analysis of the operator A\epsilon 1,\epsilon 2 , and in
subsection 4.2, we present our construction of a new coordinate system for the data based on
these discrete operators.
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Let \{ xi\} Ni=1, xi \in \BbbR px , and \{ yi\} Ni=1, yi \in \BbbR py , be two datasets of N samples from \scrM (1)

and \scrM (2), respectively, such that yi = \phi (xi). Assume that the data are embedded in two
different high-dimensional ambient spaces, each corresponding to some measurement of \scrM (1)

or \scrM (2). Since we only have access to the ambient space, there is no direct access to the
geometric structure of \scrM (1) and \scrM (2), and identifying \Omega \alpha and \Omega c

\alpha is nontrivial.
The following are the discrete counterparts of the operators presented in section 3.
Let W(1) and W(2) be two N \times N affinity (kernel) matrices defined by

W
(1)
i,j = k(1)\epsilon 1 (xi, xj) = exp( - dX(xi, xj)

2/\epsilon 21),(4.1)

W
(2)
i,j = k(2)\epsilon 2 (yi, yj) = exp( - dY (yi, yj)2/\epsilon 22),(4.2)

where \epsilon 1, \epsilon 2 > 0 may be different, and let D(1) and D(2) be two N \times N diagonal matrices,
with diagonal elements given by

D
(1)
i,i =

N\sum 
j=1

k(1)\epsilon 1 (xi, xj),

D
(2)
i,i =

N\sum 
j=1

k(2)\epsilon 2 (yi, yj).(4.3)

In the construction of the kernels, k
(1)
\epsilon 1 (xi, xj) and k

(2)
\epsilon 2 (yi, yj), the distance functions, dX

and dY , can be chosen as any metric induced distance that best describes the datasets, e.g.,
Euclidean distance, geodesic distance, and Wasserstein distance [36, 37].

Note that a common choice for \epsilon 1 and \epsilon 2 in the construction of the kernel used in (4.1),
(4.2), and (4.3) is some scalar multiplication of the median of the distances between the dataset
samples, i.e., \epsilon 1 = cmedian\{ dX(xi, xj)\} and \epsilon 2 = cmedian\{ dY (yi, yj)\} , where c > 0 is some
scalar. By constructing the kernels in this manner, if the distance functions dX(xi, xj) and
dY (yi, yj) are induced by a metric, the resulting operators are scale invariant. Therefore, in
the discrete setting, \Omega \alpha is defined similarly to (2.1), by \Omega \alpha =

\bigl\{ 
x \in \scrM (1) : \nabla \phi | x = \alpha I

\bigr\} 
, where

\alpha > 0 denotes the scaling and I is the identity matrix.

Let P(\ell ),Q(\ell ) \in \BbbR N\times N be the discrete counterparts of the operators P
(\ell )
\epsilon \ell and Q

(\ell )
\epsilon \ell given

by

P(\ell ) =
\Bigl( 
D(\ell )

\Bigr)  - 1
W(\ell ),(4.4)

Q(\ell ) = W(\ell )
\Bigl( 
D(\ell )

\Bigr)  - 1
(4.5)

for \ell = 1, 2. It is clear that
\bigl( 
P(\ell )

\bigr) T
= Q(\ell ), where ()T denotes the transpose operator.

Note that Q(\ell ) is a column stochastic matrix and therefore can be interpreted as a Markov
transition matrix, defined on the data, which propagates probabilities, analogously to the

continuous-time forward operator Q
(\ell )
\epsilon \ell .

For any f \in C\infty (\scrM (1)), define v \in \BbbR N by v(j) = f(xj). Our formulations are based on
the assumption that the discrete matrix and kernel operations approximate the continuous
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operators, i.e.,

P (\ell )
\epsilon \ell 
f(xj) \approx 

\Bigl( 
P(\ell )v

\Bigr) 
(j),(4.6)

Q(\ell )
\epsilon \ell 
f(xj) \approx 

\Bigl( 
Q(\ell )v

\Bigr) 
(j).(4.7)

This approximation can be justified by a standard large deviation argument, similarly to [40],
which we omit for brevity.

Accordingly, the discrete counterparts of the operators G\epsilon 1,\epsilon 2 and H\epsilon 1,\epsilon 2 are

G = P(2)Q(1),(4.8)

H = P(1)Q(2),(4.9)

and those of the operators S\epsilon and A\epsilon are

S = G+H,(4.10)

A = G - H.(4.11)

Note that in this construction of the discrete operators, the probability density function
of each manifold, \mu (\ell ), is reflected in the sampling of the points in the dataset. In addition,
we assume that the diffeomorphism \phi , which appears explicitly in the continuous operators,
S\epsilon 1,\epsilon 2 and A\epsilon 1,\epsilon 2 , is implicitly contained in the discrete operators P and Q. However, if the two
datasets differ significantly in their densities or metrics, this assumption may be inaccurate.
We discuss this issue and propose two possible solutions in Appendix G.

Proposition 4.1. S is symmetric and A is antisymmetric.

Based on the definitions of S and A above, it is easy to show that ST = S and that
AT =  - A. Specifically, (jA)H = jA, where ()H denotes conjugate transpose and j =

\surd 
 - 1.

Note that both the discrete alternating diffusion operator [29] and the operators G and
H are not Hermitian, and therefore there is no spectral decomposition for them. Moreover,
by their definition, they depend on the order of the matrix multiplication, e.g., whether we
define G = P(2)Q(1) or G = P(1)Q(2).

The use of the symmetric and antisymmetric parts of an operator in the context of con-
structing a new representation was also presented in [17], where representations for directed
graphs were obtained based on the symmetric and antisymmetric parts of the nonsymmetric
weight matrix of the graph.

4.1. Discrete analysis of the operator A. In this subsection we present an analysis for the
discrete operator A, showing that it is supported on the locations of the differences between
the datasets, similarly to the continuous operator A\epsilon .

Consider two datasets \{ xi\} Ni=1 and \{ yi\} Ni=1, each consisting of N points, which are samples
of \scrM (1) and \scrM (2), respectively. The affinity matrices for the datasets \{ xi\} and \{ yi\} are
constructed according to (4.1) and (4.2) and are denoted by W(1) and W(2), respectively.

Define V\Omega \alpha = \{ i \in V | W (1)
i,j = W

(2)
i,j \forall j \in V \} , where V = \{ 1, . . . , N\} , and V\Omega c

\alpha 
= V \setminus V\Omega \alpha .

Assume that the correspondence between pairs of points in \{ xi\} and \{ yi\} is given and that the
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datasets differ in the affinities between the points, i.e., W
(1)
i,j \not =W

(2)
i,j if and only if i \in V\Omega c

\alpha 
and

j \in V\Omega c
\alpha 
. Note that since \scrM (1) and \scrM (2) are not isometric, the global distance profiles differ

between the two manifolds, i.e., for any pair in the undeformed structures, (xi, yi), i \in V\Omega \alpha ,
we can find a pair (xj , yj), j \in V\Omega c

\alpha 
, such that dX(xi, xj) \not = dY (yi, yj). However, due to the

construction of the affinity matrices using the Gaussian kernel, only the local distance profiles
are captured in W(1) and W(2), where the ``locality"" is induced by the kernel scales \epsilon 1 and
\epsilon 2 in (4.1) and (4.2). Therefore, for a proper choice of the kernel scales, the local distance

profiles of any pair (xi, yi), i \in V\Omega \alpha , will be similar for the two manifolds, i.e., W
(1)
i,j = W

(2)
i,j

\forall j \in V . Conversely, for any pair belonging to the difference structures, (x\ell , y\ell ), \ell \in V\Omega c
\alpha 
, the

local distance profiles will not be similar at any kernel scale, i.e., \exists j \in V s.t. W
(1)
\ell ,j \not = W

(2)
\ell ,j

for any choice of \epsilon 1 and \epsilon 2 (assuming the local neighborhoods induced by \epsilon 1 and \epsilon 2 include
at least 2 points). This desired property can be obtained by choosing small kernel scales,
such that the effect of the differences between the two manifolds is localized around them. In
addition, setting \epsilon 1 and \epsilon 2 to be some multiple of the median of the distances is important for

guaranteeing that W
(1)
i,j = W

(2)
i,j for i \in V\Omega \alpha . This indicates that the choice of \epsilon is important

in the construction of A and should be some small multiple of the median of the distances in
the data.

Proposition 4.2. Suppose | V\Omega c
\alpha 
| = m \leq N/2. The discrete operator A has the following

properties:
1. Ai,j \not = 0 only when i \in V\Omega c

\alpha 
or j \in V\Omega c

\alpha 
.

2. The rank of A is bounded by 2
\bigm| \bigm| V\Omega c

\alpha 

\bigm| \bigm| = 2m.

This proposition states that the discrete operator A is nonzero only in regions where the
two datasets differ and that its rank is related to the dimensionality of the differences. A direct
consequence of this proposition is that the eigenvectors of A encode information related to
the location of the nontrivial diffeomorphism, and hence A can be utilized for representing
the differences between the two datasets.

Proof. Based on the definition of the datasets and the assumptions stated above, the
difference between the affinity matrices W(1),W(2) \in \BbbR N\times N can be represented by

(4.12) W(2) = W(1) +BTB,

where B \in \BbbR N\times N , Bei = 0 if i \in V\Omega \alpha and ei are vectors which contain 1 at index i and
0 elsewhere, i.e., B is a matrix in which column i contains only 0 \forall i \in V\Omega \alpha . Note that
(BTB)i,j = 0 if i \in V\Omega \alpha or if j \in V\Omega \alpha .

Then, based on the definition of D(\ell ) in (4.3), D(2) = D(1) +diag
\bigl( 
BTB1

\bigr) 
, where 1 \in \BbbR N

is a vector containing only 1's and diag(z) denotes a diagonal matrix with the elements of z
on its diagonal. Note that diag

\bigl( 
BTB1

\bigr) 
is a diagonal matrix with nonzero diagonal entries

only for i \in V\Omega c
\alpha 
.

The operator P(2) is then given by

(4.13) P(2) =
\Bigl( 
D(2)

\Bigr)  - 1
W(2) =

\Bigl( 
D(1) + diag

\bigl( 
BTB1

\bigr) \Bigr)  - 1 \Bigl( 
W(1) +BTB

\Bigr) 
.
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Denote the inverse of the sum
\bigl( 
D(1) + diag

\bigl( 
BTB1

\bigr) \bigr) 
by
\bigl( \bigl( 

D(1)
\bigr)  - 1  - J

\bigr) 
, where

(4.14) J =
\Bigl( 
D(1) + diag

\bigl( 
BTB1

\bigr) \Bigr)  - 1
diag

\bigl( 
BTB1

\bigr) \Bigl( 
D(1)

\Bigr)  - 1
.

Based on the expression in (4.14), J is a diagonal matrix with nonzero values only for
i \in V\Omega c

\alpha 
, i.e., Ji,i = 0 \forall i \not \in V\Omega c

\alpha 
.

Substituting these derivations into the definition of A, we get

A = P(1)
\Bigl( 
P(2)

\Bigr) T
 - P(2)

\Bigl( 
P(1)

\Bigr) T
(4.15)

= P(1)

\biggl( 
BTB

\Bigl( 
D(1)

\Bigr)  - 1
 - W(1)J - BTBJ

\biggr) 
(4.16)

 - 
\biggl( \Bigl( 

D(1)
\Bigr)  - 1

BTB - JW(1)  - JBTB

\biggr) \Bigl( 
P(1)

\Bigr) T
.(4.17)

Since all the elements in this expression are multiplied by either J or BTB, which contain
nonzero values only for rows and columns corresponding to i \in V\Omega c

\alpha 
, the value of the discrete

operator are Ai,j \not = 0 only when i \in V\Omega c
\alpha 
or j \in V\Omega c

\alpha 
. In addition, this indicates that the rank

of A is bounded by 2| V\Omega c
\alpha 
| = 2m, i.e., twice the number of elements in V\Omega c

\alpha 
.

4.2. New representations of the data based on S and A. Our goal is to obtain new rep-
resentations for multimodal data based on the operators S and A, analogous to the diffusion
maps coordinates [7] that represent the diffusion distances in the data. Specifically, we seek
nonlinear mappings of the data to new coordinate systems, which describe the common struc-
tures or the differences between the modalities (manifolds). In addition, to obtain a compact
representation, we require the constructed coordinates to be orthogonal. In this subsection,
we present one option for obtaining such representations.

Since S is a symmetric matrix, it has real eigenvalues and eigenvectors. The eigenvectors
are orthogonal, and hence we can construct a new low-dimensional representation for the
common structures in the datasets based on S by taking its eigenvectors corresponding to the
largest eigenvalues. Moreover, if the matrices P(\ell ) and Q(\ell ), \ell = 1, 2, are constructed such
that they are doubly stochastic [8, 41], an analogous diffusion distance can be defined based
on the operator S and its eigenvectors.

The operator A is antisymmetric and therefore has purely imaginary eigenvalues, in con-
jugate pairs, and complex eigenvectors. We propose to construct a new low-dimensional rep-
resentation of the differences between the datasets based on the eigenvectors of A. Consider
the following embedding:

(4.18) \~\Psi (\bfA )(i) =
\Bigl[ 
\mu 
(\bfA )
1 \psi 

(\bfA )
1 (i), . . . , \mu 

(\bfA )
N \psi 

(\bfA )
N (i)

\Bigr] 
,

where A\psi 
(\bfA )
k = \mu 

(\bfA )
k \psi 

(\bfA )
k , k = 1, . . . , N and i = 1, . . . , N . Assume that the eigenvalues, \mu 

(\bfA )
k ,

and corresponding eigenvectors, \psi 
(\bfA )
k , are ordered such that | \mu (\bfA )

1 | \geq | \mu (\bfA )
2 | \geq \cdot \cdot \cdot \geq | \mu (\bfA )

N | .
The low-dimensional representation can then be defined by taking the elements corresponding
to the M < N largest eigenvalues (in absolute value) as follows:

(4.19) \Psi (\bfA )(i) =
\Bigl[ 
\mu 
(\bfA )
1 \psi 

(\bfA )
1 (i), . . . , \mu 

(\bfA )
M \psi 

(\bfA )
M (i)

\Bigr] 
.
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(a) (b) (c)

Figure 2. The deformed sphere colored according to (a) \| Ai,:\| 22, (b)
\bigm\| \bigm\| \bfPsi (\bfA )(i)

\bigm\| \bigm\| 2

2
with M = 6, and (c)

2
\bigm\| \bigm\| \bfPsi (\bfA )

nc (i)
\bigm\| \bigm\| 2

2
with M = 6.

To explain the motivation for this choice, consider the following sum of squares of a row in A:

\| Ai,:\| 22 =
N\sum 
r=1

N\sum 
k=1

\bigm| \bigm| \bigm| \mu (\bfA )
k

\bigm| \bigm| \bigm| 2 \bigm| \bigm| \bigm| \psi (\bfA )
k (r)

\bigm| \bigm| \bigm| 2 \bigm| \bigm| \bigm| \psi (\bfA )
k (i)

\bigm| \bigm| \bigm| 2
=

N\sum 
k=1

\bigm| \bigm| \bigm| \mu (\bfA )
k

\bigm| \bigm| \bigm| 2 \bigm| \bigm| \bigm| \psi (\bfA )
k (i)

\bigm| \bigm| \bigm| 2 = \bigm\| \bigm\| \bigm\| \Psi (\bfA )(i)
\bigm\| \bigm\| \bigm\| 2
2
+O

\biggl( \bigm| \bigm| \bigm| \mu (\bfA )
M+1

\bigm| \bigm| \bigm| 2\biggr) ,(4.20)

where we assume that the eigenvectors are normalized such that
\sum N

r=1 | \psi 
(\bfA )
k (r)| 2 = 1 \forall k. Note

that since the eigenvalues typically decay fast, the error term in (4.20) is small.
In subsection 4.1, we proved that Ai,j \not = 0 if and only if xi \in \Omega c

\alpha or xj \in \Omega c
\alpha . Therefore,

the squared row sum of the operator A is related to the differences between the datasets,
where \| Ai,:\| 22 is higher for xi \in \Omega c

\alpha . Furthermore, based on the relationship in (4.20), the low-
dimensional embedding of the points in (4.19) establishes a new space, where the Euclidean
norm provides a measure for the difference between the datasets at each point i. This result
shows that the eigenvectors ofA can be used as a new representation of the differences between
the datasets and that the eigenvectors corresponding to smaller eigenvalues in absolute value
can be disregarded.

An illustration of this relationship between the sum of squares of the rows of A and the
location of the differences is presented in Figure 2, where the operator A was constructed
based on the sphere and the deformed sphere presented in Figure 1. Plots (a) and (b) in

Figure 2 present the deformed sphere, colored according to (a) \| Ai,:\| 22 and (b)
\bigm\| \bigm\| \Psi (\bfA )(i)

\bigm\| \bigm\| 2
2

with M = 6. This figure depicts that \| Ai,:\| 22 is roughly supported on the location of the

differences and that the first six eigenvectors provide a good approximation of \| Ai,:\| 22.
Note that the proposed embedding in (4.19) is still lacking, since it ignores the complex na-

ture of the eigenvectors. Therefore, in the following, we propose a modified embedding, which
takes into account the complex values by taking the real and imaginary parts of nonconjugate
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eigenvalues and concatenating them as follows:

(4.21) \{ xi, yi\} \mapsto \rightarrow \Psi (\bfA )
nc (i) = \{ real\{ \psi (\bfA )

k (i)\} ; imag\{ \psi (\bfA )
k (i)\} \} k=2r, r = 1, . . . ,M/2.

In the remainder of this subsection, we will explain the motivation for this choice by show-

ing that (i) the eigenvectors corresponding to conjugate eigenvalues---i.e., \psi 
(\bfA )
k and \psi 

(\bfA )
\ell s.t.

\mu 
(\bfA )
k = \=\mu 

(\bfA )
\ell , where \=a denotes the complex conjugate of a---contain redundant information,

and therefore it is sufficient to take only the eigenvectors corresponding to nonconjugate eigen-
values as described in (4.21); (ii) the real and imaginary parts of these eigenvectors form a
set of orthogonal vectors. Figure 2(c) demonstrates this redundancy of the eigenvectors corre-
sponding to conjugate eigenvalues. This plot presents the deformed sphere, colored according

to 2
\bigm\| \bigm\| \Psi (\bfA )

nc (i)
\bigm\| \bigm\| 2
2
with M = 6, i.e., the Euclidean norm of the first 3 complex eigenvectors, cor-

responding to the largest nonconjugate eigenvalues (multiplied by 2). The norm is multiplied
by 2 since we use here only 3 eigenvectors (of nonconjugate eigenvalues) and compare their
norm to the norm calculated based on 6 eigenvectors (of conjugate eigenvalues). Note that
plot (c) in this figure is identical to plot (b), which presents the Euclidean norm of the first 6
complex eigenvectors corresponding to the largest eigenvalues (including the conjugate pairs).

The spectral decomposition of a real antisymmetric matrix is given by

(4.22) A = V\Lambda VT ,

where V is a matrix containing the eigenvectors of A in its columns and \Lambda is a diagonal
matrix, containing the eigenvalues in conjugate pairs, i.e.,

(4.23)

\left[        
j\lambda 1 0 0 . . .
0  - j\lambda 1 0 . . .
0 0 j\lambda 2 . . .
...

...
...

...

0 0 0
. . .

\right]        ,

where \lambda k, k = 1, . . . , \lceil N/2\rceil , are real and positive and j denotes
\surd 
 - 1. Note that when N is

odd, \lambda \lceil N/2\rceil = 0. In relation to the notation in (4.19), \mu 
(\bfA )
r = ( - 1)r+1j\lambda \lfloor (r+1)/2\rfloor , r = 1, . . . , N .

This spectral decomposition is related to a real orthogonal decomposition of the form

(4.24) A = U\Sigma UT ,

where U is orthogonal and real, and \Sigma is a block diagonal matrix, with kth 2 \times 2 diagonal
blocks of the form

(4.25)

\biggl[ 
0 \lambda k

 - \lambda k 0

\biggr] 
,

where k = 1, . . . , \lfloor N/2\rfloor [20]. By comparing this form to the spectral decomposition of the
antisymmetric matrix, A, it can be shown that the real and imaginary parts of eigenvectors
corresponding to nonconjugate nonzero eigenvalues of A are equal to different orthogonal
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vectors in U , i.e., real\{ \psi (\bfA )
\ell \} = uk, imag\{ \psi (\bfA )

\ell \} = un, where \psi 
(\bfA )
\ell is the \ell th eigenvector of A

and uk and un are the kth and nth columns of U (n \not = k). From the orthogonality of U, we

obtain
\bigl\langle 
real\{ \psi (\bfA )

\ell \} , imag\{ \psi (\bfA )
r \} 

\bigr\rangle 
= 0 \forall \lambda \ell \not = \lambda r as well as for the real and imaginary parts of

the same eigenvector (\ell = r). The real and imaginary parts of these eigenvectors can then be
used for the construction of a new orthogonal representation for the differences between the
datasets.

Algorithm 4.1 summarizes the procedure for obtaining the new representations for the
data based on S and A.

Algorithm 4.1. Representation of the common structures and the differences between
datasets.

1. Construct the affinity matrices for the two datasets

W
(1)
i,j = exp

\biggl( 
 - dX(xi, xj)

2

\epsilon 21

\biggr) 
, W

(2)
i,j = exp

\biggl( 
 - dY (yi, yj)

2

\epsilon 22

\biggr) 
,(4.26)

where dX , dY are some suitable notion of distance, defined on the data (e.g., the
Euclidean distance if the data are in an ambient Euclidean space), and \epsilon 1, \epsilon 2 are the
kernel scales, commonly taken as some multiple of the median of the distances.

2. Create the row stochastic and column stochastic matrices

P(1) =
\Bigl( 
D(1)

\Bigr)  - 1
W(1), Q(1) = W(1)

\Bigl( 
D(1)

\Bigr)  - 1
,

P(2) =
\Bigl( 
D(2)

\Bigr)  - 1
W(2), Q(2) = W(2)

\Bigl( 
D(2)

\Bigr)  - 1
,(4.27)

where D(\ell ) is a diagonal matrix with D
(\ell )
i,i =

\sum N
j=1W

(\ell )
i,j and \ell = 1, 2.

3. Construct the symmetric and antisymmetric matrices

S = P(2)Q(1) +P(1)Q(2), A = P(2)Q(1)  - P(1)Q(2).(4.28)

4. To obtain a new representation of dimension M for the common structures in the two

datasets, calculate the eigenvalue decomposition of S, S\psi 
(\bfS )
k = \mu 

(\bfS )
k \psi 

(\bfS )
k , and take the

firstM eigenvectors, corresponding to the largest eigenvalues, \{ xi, yi\} \mapsto \rightarrow \{ \psi (\bfS )
k (i)\} Mk=1.

5. To obtain a representation for the differences between the datasets, calculate the ei-

genvalue decomposition of A, A\psi 
(\bfA )
k = \mu 

(\bfA )
k \psi 

(\bfA )
k and take the real and imaginary

parts of the first M/2 eigenvectors, corresponding to the largest (in absolute value)

nonconjugate eigenvalues, \{ xi, yi\} \mapsto \rightarrow \{ real\{ \psi (\bfA )
k (i)\} ; imag\{ \psi (\bfA )

k (i)\} \} M/2
k=1 .

5. Nonisometric shapes analysis. In this section, we demonstrate the properties of the
proposed operators S and A using a toy example composed of two manifolds with a noniso-
metric diffeomorphism. We show that operator S recovers the common manifold, whereas
operator A captures the ``difference"" between the two manifolds.

Consider two manifolds, \scrM (1), which is a sphere, and \scrM (2), which is a sphere with scaling
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and a nonisometric deformation, which we will refer to as a ``bump."" The two manifolds
(shapes) are depicted in Figure 1. In this example, \Omega \alpha , defined in (2.1), represents the part
of the sphere that does not undergo deformation, and \Omega c

\alpha , defined in (2.2), represents the
deformed part. In order to construct the operators S and A, we first construct the two
diffusion operators, P(\ell ) and Q(\ell ), for each manifold \ell = 1, 2, as described in (4.27). Here, dX
and dY are the geodesic distances on the shapes, calculated based on the heat flow constructed
for the triangulated meshes [10]. Note that the geodesic distance captures the geometry of
the shape better than the Euclidean distance. However, in this simple example, using the
Euclidean distances between the 3D points leads to comparable results. We then construct
the symmetric and antisymmetric discrete operators, S and A, respectively, according to
(4.10) and (4.11). Finally, the eigenvalue decompositions of S and A are calculated, and the
eigenvectors are sorted according to the imaginary part of the eigenvalues in descending order.
The kernel scales, \epsilon 1 and \epsilon 2 in (4.26), were set to be the median of the distances, dX(xi, xj)
and dY (yi, yj), respectively, divided by some scalar. In the construction of S, \epsilon 1 was set to
median(dX(xi, xj))/2 and \epsilon 2 to median(dY (yi, yj))/2, and in the construction of A, \epsilon 1 was set
to median(dX(xi, xj))/5 and \epsilon 2 to median(dY (yi, yj))/5. In this example and in the examples
in section 6, the values of the kernel scales, \epsilon 1 and \epsilon 2, were set to median(dX(xi, xj)) and
median(dY (yi, yj)), respectively, times a scale factor c > 0, which was chosen by trial and
error. On the one hand, the choice of c was motivated by the discrete analysis presented in
subsection 4.1, which showed that for small kernel scales, i.e., a small factor c, the operator
A will be supported on V\Omega c

\alpha 
. On the other hand, if the kernel scales are too small, the

obtained embedding may contain significant outliers or degenerate to a line. Therefore, in our
simulations, we decreased the parameter c up to the point in which the embedding started to
degenerate.

Figure 3 presents the sphere (top plots) and the bump (bottom plots), colored by the
eigenvectors of the operators S and A. Plots (a) and (d) are colored by the first 4 eigenvectors
of S. Plots (b) and (e) are colored by the real part of the first 4 eigenvectors of A, and plots
(c) and (f) are colored by the imaginary part of the first 4 eigenvectors of A. Note that in both
S and A, the eigenvector corresponding to the largest eigenvalue (top plot) separates between
the location of the deformation and the similar parts of the sphere. The other 3 eigenvectors
of S and A exhibit different properties. The eigenvectors of S are supported on the entire
sphere and take the form of standard spherical harmonics. Conversely, the eigenvectors of A
(both real and imaginary parts) are supported on the deformed part \Omega c

\alpha and take the form of
local standard spherical harmonics there. Namely, the eigenvectors of A are supported on the
regions where the diffeomorphism is nonisometric, and within their support, the ``standard""
(yet local) harmonic oscillations are obtained.

6. Fetal ECG. In this section, we demonstrate the properties of the proposed operators
in a fetal heart activity identification problem from two transabdominal maternal ECG (ta-
mECG) contacts. This problem consists of two oscillatory signals: one is the undesired
maternal ECG signal, and the other is the desired fetal ECG signal. The two signals are
observed by two ECG contacts located on the maternal abdomen. In each contact, a mixture
of the two oscillatory signals is captured. Based on the physiological properties, we assume
that both observations capture the same view of the maternal ECG signal, since the source
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(a) (b) (c)

(d) (e) (f)

Figure 3. Application of operators \bfS and \bfA to two diffeomorphic manifolds: a sphere (plots (a)--(c)) and
a deformed sphere (plots (d)--(f)). The plots in the first row depict the sphere colored by (a) the eigenvectors
of the symmetric operator \bfS , (b) the real part of the eigenvectors of the antisymmetric operator \bfA , and (c) the
imaginary part of the eigenvectors of the antisymmetric operator. The coloring of the plots in the second row,
(d)--(f), corresponds to the coloring of plots (a)--(c).
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of the maternal ECG is located remotely from the two abdominal contacts. Conversely, we
assume that the two observations capture different views of the fetal ECG signal, since its
source is located close to each of the contacts.

Fetal heart rate (fHR) provides significant information about fetal health. For example,
fetal distress monitoring can be obtained through fHR analysis [23]. In recent years, analyz-
ing how fHR fluctuates has attracted increasing attention due to its potential to enhance our
understanding of the dynamics of various physiological systems, as well as to contribute to
clinical procedures, e.g., inflammation detection [14]. Obtaining intrapartum fHR noninva-
sively is not an easy task. Traditionally, cardiotocogram is the standard tool to obtain the
fHR. However, it is well known that the cardiotocogram does not have a sufficiently high sam-
pling rate for fHR fluctuation analysis. In the past decades, studies have focused on obtaining
the fHR through the ta-mECG, due to the high sampling rate of the ECG. See, for example,
[1, 30] and references therein. However, to date, while many algorithms and products based
on multiple channels (more than 4) have been proposed, there is no gold standard that works
in all situations when there are only one or two channels. While we do not presume to pro-
vide a state-of-the-art algorithm, in this section, we show the potential of the operator A in
extracting the fHR from two ta-mECG signals.

The section is structured as follows. In subsection 6.1, we present our basic geometric
model of the problem to justify the application of the operator A. Results on simulation data
are presented in subsection 6.2 and on real measured data in subsection 6.3.

6.1. Model. Let s(\ell )(t), \ell = 1, 2, be the measured signal at the first and second ta-mECG
leads, given by

s(\ell )(t) = m(\ell )(t) + f (\ell )(t),

where f (\ell )(t) and m(\ell )(t) denote the fetal and maternal ECG signals, respectively. The signal
f (\ell )(t) (resp., m(\ell )(t)) consists of a (quasi-)periodic oscillation representing the fetal (resp., the
maternal) heart beat. ``Quasi"" here indicates that the heart rate and ECG morphology change
occasionally. To simplify the discussion, we assume that the relationship between the two
(separate) cardio systems entails that the maternal and fetal ECG signals are approximately
perpendicular in short time periods, i.e.,

(6.1)

\int 
I
m(\ell )(t)f (\ell )(t)dt \approx 0,

for all time intervals I of length 1 second. Note that this is an oversimplified model motivated
by the fact that the maternal heart rate is about 1Hz and the fetal and maternal heart beats
are not synchronized. Indeed, when the QRS complexes of the maternal and fetal ECG
overlap, this assumption may not hold.

Using lag map embedding, the measured signals can be written as

s(\ell )(t) = m(\ell )(t) + f (\ell )(t) \in \BbbR p,

where s(\ell )(t) =
\bigl[ 
s(\ell )(t), T s(\ell )(t), . . . , T p - 1s(\ell )(t)

\bigr] 
, T denotes an operator that propagates s(\ell )(t)

one time step forward, and p is the number of time steps in the lag map embedding of each
time interval I.
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Let \scrE (1) \subset \BbbR p and \scrE (2) \subset \BbbR p be the embedding of s(1)(t) and s(2)(t) in I, respectively. By
assumption (6.1), we can write

\scrE (1) = \scrM (1) \oplus \scrF (1),

where \scrF (1) and \scrM (1) are the manifolds underlying f (1)(t) and m(1)(t) in I, respectively.
Similarly, let \scrF (2) and \scrM (2) be the manifolds underlying f (2)(t) and m(2)(t) in I, respectively.

As described at the beginning of section 6, the locations of the two abdominal leads entail
that m(1)(t) \approx m(2)(t), while f (1)(t) and f (2)(t) are different. As a result, \scrM (1) \approx \scrM (2) and
the diffeomorphism between \scrE (1) and \scrE (2) can be modeled as

\scrE (2) = \phi (\scrE (1)) = \phi (\scrM (1) \oplus \scrF (1)) = \scrM (1) \oplus \~\phi (\scrF (1)),

where \~\phi : \scrF (1) \rightarrow \scrF (2) is a smooth diffeomorphism.

Define \mu (\ell ) as the probability density on \scrE (\ell ), \mu 
(\ell )
m as the marginal density of \mu (\ell ) on \scrM (\ell ),

and \mu 
(\ell )
f as the marginal density of \mu (\ell ) on \scrF (\ell ).

Corollary 6.1. Define A\alpha = lim\epsilon \rightarrow 0A\epsilon 1,\epsilon 2/\epsilon 
2, where \epsilon 2 = \alpha \epsilon and \epsilon 1 = \epsilon , \alpha > 0. For all

g \in C\infty (\scrE (1)), if suppg \subset \scrM (1) \oplus \r \Omega f,\alpha , then A\alpha g = 0. Hence, if A\alpha g = \lambda g, g \not = 0, then
suppg \subset \scrM (1) \oplus \Omega c

f,\alpha .

According to this corollary, the eigenfunctions of the operator A\alpha are supported on the
differences. We assume that the differences in the measured fetal ECG signals are manifested
mainly during heart activity, i.e., depolarization (QRS complex and P wave) and repolarization
(T wave). Therefore, based on the model presented in this subsection, the eigenfunctions of
A\alpha can serve as indicators for fetal heart activity. In addition, the common component in this
model, i.e., the maternal heart activity, m(1)(t) and m(2)(t), represents an almost periodic
oscillation. By the Takens embedding theorem, the manifolds underlying such signals can
be well recovered, up to a diffeomorphism, by a 1D manifold that is diffeomorphic to \scrS 1.
Therefore, we expect that the eigenfunctions of the operator S\alpha will represent \scrS 1.

6.2. Fetal heart rate detection---synthetic example. In this subsection, we begin with
a synthetic problem setting of fetal ECG detection to demonstrate the main properties of our
composite operators for such data.

Following the model described in subsection 6.1, we create synthetic data of two ta-mECG

leads from three different ECG recordings, denoted by z
(1)
i , z

(2)
i , and z

(3)
i , where i = 1, . . . , N

andN = 4\times 104 is the number of samples. These recordings are taken from the QT database in
Physionet [26, 21], which contains annotated 2-lead ECG recordings, sampled at 250Hz. The

signals z
(2)
i and z

(3)
i are taken from the same recording, i.e., taken from two corresponding

ECG leads which were recorded simultaneously. These recordings were filtered by a notch
filter to remove the 60Hz net noise and by a median filter (with a window size of 100 samples)
to remove the baseline drift. In order to obtain more samples per heart cycle, we increased

the number of samples in these recordings using interpolation. One recording, z
(1)
i , represents

the maternal ECG and is upsampled by a factor of 4. The other two recordings, z
(2)
i and

z
(3)
i , represent the fetal ECG, which commonly has a higher heart rate, and therefore they
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Figure 4. Two simulated ECG leads representing two ta-mECG recordings.

are upsampled by a factor of 2. The simulated ta-mECG signals s
(1)
i and s

(2)
i are generated

according to

s
(1)
i = 2z

(1)
i  - z

(2)
i ,(6.2)

s
(2)
i = z

(1)
i  - 0.5z

(3)
i ,(6.3)

where the common maternal ECG z
(1)
i is identical up to a scaling factor. In these simulated

signals, z
(1)
i , which is denoted by m(\ell )(t) in subsection 6.1, is assumed to be part of the

common structure, whereas the fetal ECG signals z
(2)
i and z

(3)
i are captured differently by

the two abdominal leads. With regard to the model described in subsection 6.1, the fetal

ECG signals z
(2)
i and z

(3)
i , denoted there by f (\ell )(t), undergo a diffeomorphism, which mainly

distorts the higher values in the signal---the QRS complexes. Therefore, in this example, \Omega c
f,\alpha 

describes these QRS complexes, and we expect the eigenvectors of operator A to be supported
there. Figure 4 presents an example for the resulting simulated ta-mECG leads.

Using the simulated signals described above, we illustrate some of the properties of oper-
ators S and A. We construct these operators according to Algorithm 4.1. First, a lag map

is constructed from each signal, s
(\ell )
i , \ell = 1, 2, in windows of 12 samples and with an overlap

of 6 samples, in order to obtain a better representation of the data. Denote the lag map

of signal \ell by s
(\ell )
i, lag. Second, an affinity matrix is constructed for each signal according to

(4.26) by treating each time frame (lag) as one sample, denoted by xi or yi in (4.26). The
affinity matrices were constructed using the Euclidean distances between the samples, i.e.,
d(xi, xj) = \| xi  - xj\| 2, and the kernel scales, \epsilon 1, \epsilon 2, were set to be the median of the distances,

which is common practice. Third, operators Q(\ell ) and P(\ell ), \ell = 1, 2, are constructed for both

s
(1)
i, lag and s

(2)
i, lag according to (4.27). Finally, the operators S and A are constructed as in

(4.28).
In Figure 5, scatter plots of the second and third eigenvectors of operators S and A

are presented and compared to the eigenvectors of diffusion maps applied to each channel
separately. Note that the choice to present the second and third eigenvectors of S and A is
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Figure 5. Synthetic fHR detection example. Presenting the second and third eigenvectors of operator \bfS 
(plots (b) and (f)), the imaginary parts of the second and third eigenvectors of operator \bfA (plots (c) and (g)),
and the real parts of the second and third eigenvectors of operator \bfA (plots (d) and (h)), compared with the
first and second (nontrivial) eigenvectors of diffusion maps for ECG lead 1 (plots (a) and (e)). The plots are
colored according to the maternal ECG in the top row, and according to the fetal ECG in the bottom row.

motivated by the result in section 5, where the respective first eigenvectors of S and A are
similar and only represent the support of the nonisometric parts between the two manifolds.
In this figure, plots (a) and (e) depict 2 eigenvectors (corresponding to the largest nontrivial

eigenvalues) of diffusion maps, constructed based on the ECG lead s
(1)
i, lag. Plots (b) and

(f) depict the second and third eigenvectors of the operator S, plots (c) and (g) depict the
imaginary part of the second and third eigenvectors of the operator A, and plots (d) and (h)
depict the real part of the second and third eigenvectors of the operator A. The plots in the

first row (plots (a), (b), (c), and (d)) are colored according to the maternal ECG z
(1)
i , and the

plots in the second row (plots (e), (f), (g), and (h)) are colored according to one of the fetal

ECG signals z
(3)
i .

These plots show that in the eigenvectors of A the fetal ECG is significantly emphasized,
compared with the eigenvectors of S and the diffusion maps embedding of the two channels.

Furthermore, both the ECG lead s
(1)
i, lag and the operator S, which mainly describe the (more

dominant) maternal ECG signal, lead to an embedding that corresponds to an embedding of
\scrS 1, as can be seen in plots (a), (b), (e), and (f). This strengthens the model described in

subsection 6.1, in which the underlying manifolds \scrE (1)
m and \scrE (2)

m are diffeomorphic to \scrS 1. In
contrast, the eigenvectors of A describe a different structure, since the difference between the

ECG leads, \Omega c
f,\alpha , is only a subset of \scrE (1)

f and \scrE (2)
f . We note that the second ECG lead, s

(2)
i, lag,

led to plots that are similar to plots (a) and (e) in Figure 5 depicting the first ECG lead and
were omitted for brevity.

Figure 6 presents a short simulated ta-mECG segment from lead s
(1)
i , containing both fetal

and maternal components. Plots (a) and (b) are colored by an index vector, containing ones
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13 14 15 16 17 18 19 20 21 22

t [sec]

(a)

13 14 15 16 17 18 19 20 21 22

t [sec]

(b)

Figure 6. ta-mECG segment from lead s
(1)
i , colored by (a) the second eigenvector of operator \bfS , (b) the

imaginary part of the second eigenvector of operator \bfA . The vertical dotted lines in plot (a) mark the locations
of the true maternal heart beats and the vertical dashed lines in plot (b) mark the locations of the true fetal
heart beats.

(colored in black) where the absolute value of the considered eigenvector exceeds a certain
threshold and zeros (colored in gray) elsewhere. In plot (a), the segment is colored according
to the second eigenvector of S with a threshold of 10 - 2; i.e., locations in which the eigenvector
exceeds the threshold are colored in black. In plot (b), the segment is colored according to the
imaginary part of the second eigenvector of A with a threshold of 3\times 10 - 2. The dotted vertical
gray lines in plot (a) mark the locations of the true maternal beats, and the dashed vertical gray
lines in plot (b) mark the locations of the true fetal beats. These plots further demonstrate that
A reveals the fetal beat locations, as the fetal heart beat morphologies are captured differently
by the two synthetic leads. In addition, the eigenvectors of A are supported mainly on the
fetal QRS complexes, as assumed in the model presented in subsection 6.1.

The MATLAB code of this synthetic example is available on GitHub.

6.3. Fetal heart rate detection---real data. Following the synthetic example in subsec-
tion 6.2, we address fHR detection from real ta-mECG recordings and propose to extract the
fHR by constructing the operator A based on two ta-mECG leads. Similarly to the synthetic
example, we expect that the operator A will provide a new representation of the signals that
emphasizes the fetal beats.

We validate our approach using the publicly available database of ta-mECG signals, 2013
PhysioNet/Computing in Cardiology Challenge, abbreviated as CinC2013. We focus on the
set A, which consists of 75 recordings, each of length 1 minute with R peak annotation
and with reference to a ground-truth fetal ECG signal, acquired from an invasive fetal scalp
electrode. Each recording includes four noninvasive ta-mECG channels recorded from multiple
positions using different electrodes (with possibly different configuration). The recordings are
resampled at 1000Hz. The lead placements on the maternal abdomen and the fetal/maternal
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health status are unknown. We disregard recording number 54 since it was excluded by the
Challenge organizers [2]. In addition, we disregard recordings 33, 38, 47, 52, 71, and 74,
since they contain inaccurate reference fetal annotations, as identified by [4]. We focus on the
remaining 68 recordings.

We first perform a preprocessing stage for each signal, which includes a low-pass filter
(below 100Hz), trend removal (median filtering with a window size of 101 samples), and
computation of a lag map with a window of 8 samples and a 7-sample overlap. After the
preprocessing step, in the first stage of the proposed algorithm, we construct the forward and
backward diffusion operators, P(\ell ),Q(\ell ), \ell = 1, 2, from the lag map of the two ta-mECG leads,
and we compute the operator A based on (4.11). In this application, the two kernel scales, \epsilon 1
and \epsilon 2, were set to 3 times the medians of the distances, where the factor c = 3 was chosen
by trial and error. This example required larger kernel scales due to noise and due to the
structural properties of the ECG signals. Taking smaller kernel scales in this example led to
significant outliers for some of the subjects in the database.

The eigenvectors of the operatorA are computed and sorted as described in subsection 6.2.
The deshape Short Time Fourier Transform (dsSTFT) [31] is then applied to the real and
imaginary parts of each of the first 20 eigenvectors ofA, resulting in 40 spectrograms, depicting
the dominant frequencies in each eigenvector. The median (pixelwise) over all of the dsSTFT
spectrograms is taken as a new spectrogram for each subject, depicting both the fetal and
maternal instantaneous heart rates. This can be viewed as a variation of the recently developed
generalized multitaper approach for time-frequency analysis, called concentration of frequency
and time [11]. Here, we use the eigenvectors of A, which capture the oscillatory behavior of
the signal, instead of the multiple windows in [11]. An example for such a spectrogram is
presented in Figure 7. In plots (a) and (b), the dsSTFT of the two ta-mECG leads are
presented. The thick black line in these two plots represents the maternal heart rate. In plot
(c), the median spectrogram of the eigenvectors of A is presented. In this plot, the red arrow
marks the location of the maternal heart rate line and the blue arrow marks the location of
the fHR line. Plot (d) depicts the same spectrogram as plot (c), along with the ground truth
of the fetal heart rate, marked by a dotted blue line. Plots (c) and (d) demonstrate that the
operator A leads to a result which significantly emphasizes the true fHR, compared with the
original ta-mECG signals.

In the next stage of the algorithm, the fHR is extracted from the spectrogram, presented in
Figure 7(c). This is performed by first obtaining the maternal heart rate from the dsSTFT of
the original ta-mECG signals (plots (a) and (b)) and removing its curve from the spectrogram
of the operatorA. Second, the most dominant curve in the remaining spectrogram is extracted
using the algorithm described in [30]. This curve is assumed to represent the fHR. In order
to extract the fetal ECG and the beat locations, we continue the analysis as described in [30],
after the dsSTFT stage.

The algorithm we applied to the ta-mECG leads is summarized in Algorithm 6.1.
For performance evaluation we consider the F1 score, which is the harmonic mean of the

sensitivity (SE) and the positive predictive value (PPV), similarly to [30]. The true positive
(TP), false positive (FP), and false negative (FN) measures, used in the calculation of SE
and PPV, were defined using a window of 50ms; i.e., a true positive classification means
that an estimated beat is located within a window of 50ms around a true beat from the

D
ow

nl
oa

de
d 

10
/1

8/
19

 to
 1

32
.6

9.
24

2.
10

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RECOVERING HIDDEN COMPONENTS IN MULTIMODAL DATA 611

50 100 150 200 250 300

Time frame

0

1

2

3

4

F
re

q 
[H

z]

0

0.05

0.1

0.15

0.2

0.25

(a)

50 100 150 200 250 300

Time frame

0

1

2

3

4

F
re

q 
[H

z]

0

0.05

0.1

0.15

0.2

0.25

(b)

50 100 150 200 250

Time frame

0

1

2

3

4

F
re

q 
[H

z]

0

0.05

0.1

0.15

0.2

0.25

(c)

50 100 150 200 250

Time frame

0

1

2

3

4

F
re

q 
[H

z]

0

0.05

0.1

0.15

0.2

0.25

(d)

Figure 7. Plots (a) and (b) present the spectrograms (after dsSTFT) of the ECG signal from two abdomen
leads. The visually dominant frequency is the maternal ECG. Plot (c) presents the spectrogram extracted from
the antisymmetric diffusion operator \bfA (applied to the two abdomen signals). In this plot, the hidden fetal ECG
(marked by a blue arrow) is significantly enhanced. Plot (d) depicts the same spectrogram as plot (c), as well
as the ground-truth fHR (marked by a dotted blue line).

provided annotations. We report the results of ta-mECG lead pair 1 and 4, which provided
the best performance, out of the 6 possible pairs, for all algorithms. In addition, in the above
performance measures, to avoid the boundary effect, the first and last 2 seconds in every
recording are not evaluated.

Table 1 presents the F1 results obtained by the operators A and S using Algorithm 6.1,
as well as reference results obtained based on the ta-mECG leads by applying the filtering
in the preprocessing stage and principal component analysis (PCA). The application of PCA
includes the extraction of the first two principal components, i.e., obtaining a rotation of the

channels, denoted by s
(1)
PCA and s

(2)
PCA. The state-of-the-art results of [30] are also presented

in Table 1 for comparison. The results of [30] are reported for the same ta-mECG lead pair
(1 and 4) and the same 68 recordings used in our experiments. To obtain the PCA-based

reference results, the dsSTFT was applied to s
(1)
PCA and s

(2)
PCA and the algorithm continued

as described in Algorithm 6.1, step 3. For the operator A, Algorithm 6.1 is applied as is,
whereas for operator S, the only modification is the use of operator S instead of A. The
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Algorithm 6.1. Fetal ECG extraction using operator A.

1. Preprocessing -- Low-pass filtering below 100Hz, trend removal (median filtering),
and computation of a lag map with a window of 8 samples (7-sample overlap) for each

ta-mECG lead. Denote the resulting signals by s
(\ell )
i, lag, \ell = 1, 2, where i = 1, . . . , N

and N = 6\times 104 is the number of samples in each ta-mECG recording.
2. Fetal Instantaneous Heart Rate Detection

(a) Construct the operator A from the two ta-mECG leads, s
(1)
i, lag and s

(2)
i, lag, and

compute its eigenvectors \psi 
(\bfA )
k (i) (sorted as in subsection 6.2).

(b) Apply deshape Short Time Fourier Transform (dsSTFT) [31] to the real and

imaginary parts of
\bigl\{ 
\psi 
(\bfA )
k (i)

\bigr\} 20
k=1

, separately.
(c) Take the median over all the resulting spectrograms of the dsSTFT of\bigl\{ 

\psi 
(\bfA )
k (i)

\bigr\} 20
k=1

.
3. Maternal ECG Removal and Fetal ECG Estimation -- Continue similarly to the

algorithm described in [30], after the dsSTFT stage, using the spectrogram obtained
in step 2c above.

Table 1
F1 measure for the CinC2013 dataset calculated using Algorithm 6.1 with the operators \bfA and \bfS , compared

to PCA applied directly to the ta-mECG signals and to the state-of-the-art results of [30]. Note that here we
report the results of [30] for the same 68 recordings used in our experiments [30, footnote 6 after Table 3].

Mean(F1)\% STD(F1)\% median(F1)\% IQR(F1)\%

\bfA 82.74 28.37 98.41 12.7

\bfS 78.7 28.66 97.86 46.31

s
(1)
PCA 73.01 29.95 94.13 57.99

s
(2)
PCA 78.59 27.84 97.02 49.09

[30] 89.81 20.84 98.41 5.1

mean, standard deviation (STD), median and interquartile range (IQR) over the F1 values
of the 68 subjects are presented. This table depicts that the operator A extracts significant
information related to the fHR from the ta-mECG leads. It improves the results obtained by

using the ta-mECG signals after applying PCA, s
(1)
PCA and s

(2)
PCA.

Note that the comparison of the embedding obtained by A to the PCA of the channels
shows that a simple decomposition of the channels to their principal components does not
capture the fetal ECG and demonstrates the role of the operator A.

We further note that the state-of-the-art results, obtained by [30], outperform our results
as presented in Table 1. In [30], the maternal ECG is first removed and then only the remaining
fetal ECG is processed. For comparison, we applied the proposed operators, A and S, after
first removing the maternal ECG in a similar manner. This led to improved results, which are
closer to the state-of-the-art results. For A, the median and IQR of the F1 measure in this
case were 98.5\% and 6.7\%, respectively, and for S, they were 98.5\% and 6.2\%, respectively.
The mean and STD of the F1 measure were 87.3\%\pm 23.8\% for A and 87.1\%\pm 24.4\% for S. In
this setting, the performance of operator S is comparable to operator A, whereas in Table 1,
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the operator A leads to significantly better performance. These results further demonstrate
the properties of the proposed operators. In the latter case, removing the maternal ECG
causes the fetal ECG to become the dominant common component in the two signals, which
leads to its identification by the operator S. In addition, since each ECG lead captures a
different view of the fetal ECG it is still revealed by operator A as well.

While the reported performance does not outperform the state-of-the-art method based on
two channels reported in [30], these results support the potential of the antisymmetric operator
in fHR extraction, which was demonstrated by the synthetic example in subsection 6.2 as well.
In addition, one advantage of our method over [30] is that our method can be applied directly
to the ta-mECG channels, prior to the removal of the maternal ECG waveform, which might
distort the remaining signal and introduce additional noise.

One of the reasons for the degraded performance of the operator A in the real application,
compared with the synthetic example in subsection 6.2, is that the database is composed of
heterogeneous signals---it is recorded using different machines, includes pregnant women of
different gestational ages, uses different lead placements, contains different noise levels, etc.
(all of which are unknown to us). In addition, the presence of significant noise in some ECG
leads hampers the performance, since the noise is a part of the difference component (different
between the two ECG leads) and therefore is captured by A. Indeed, Table 1 demonstrates
our method's sensitivity to noise and data heterogeneity, as the median F1 score of A is similar
to the state of the art [30], but the mean F1, STD, and IQR are higher. Therefore, based on
these results and on the synthetic example in subsection 6.2, we believe that an additional
extensive noise suppression stage may improve the performance of the proposed algorithm
and lead to results which are closer to the state of the art.

7. Other related operators. The proposed operators are related to recent work, most
of which concern the recovery of common structures from different views, i.e., acquired by
different modalities, or from different time frames, similarly to the symmetric operator S.
Such methods include the previously mentioned alternating diffusion [29, 44], the dynamic
Laplacian [18, 19], cross-diffusion [45], and the minimizing-disagreement algorithm [13]. One
related work addressing the recovery of differences between shapes, similarly toA, is presented
in [38]. In this section, we present a short overview of some of these related operators and
discuss their connection to our work.

Most methods that address the recovery of common structures rely on operator com-
position. For example, the dynamic Laplacian [18] focuses on recovering coherent sets in
dynamical system, which can be modeled as the common structures in a set of manifolds,
each representing a different time frame. The dynamic Laplacian operator is constructed
from the composition of an operator with its adjoint, \scrL \ast 

\epsilon \scrL \epsilon , where \scrL \epsilon = P2,\epsilon RP1,\epsilon , and P1,\epsilon is
a smoothing (diffusion) operator of the manifold corresponding to the first time frame, P2,\epsilon 

is a smoothing (diffusion) operator of the second time frame, and R is the Perron--Frobenius
operator representing the system dynamics. In the context of our work, the operators P1,\epsilon 

and P2,\epsilon are analogous to the operator P
(\ell )
\epsilon . In [18] it is shown that this operator has a

spectrum and converges to the sum of the Laplace--Beltrami operators of the manifolds repre-
senting the two time frames, similarly to S\epsilon as noted in subsection 3.3. In the cross-diffusion
algorithm [45] two diffusion operators, P(1) and P(2), and their transpose, Q(1) and Q(2), are
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constructed (as in (4.4) and (4.5), respectively) based on two different metrics. A fusion of

these metrics is then obtained by
\bigl[ 
P

(1)
t+1 + P

(2)
t+1

\bigr] 
/2, where t > 0 and P

(1)
t+1 := P(1)P

(2)
t Q(1)

and P
(2)
t+1 := P(2)P

(1)
t Q(2) are constructed iteratively. Note that, similarly to S and A, this

construction is also based on the composition of forward and backward operators, i.e., Q(\ell )

and P(\ell ), respectively. Two other papers [15, 32] proposed methods for constructing a low-
dimensional representation of multiple views, based on kernel multiplication and construction
of a symmetric operator in [32] and based on joint diagonalization of the Laplacians of dif-
ferent views in [15]. Similarly to our method, these papers rely on spectral decompositions
to obtain the new embedding. The proposed operator S is also closely related to the work
presented in [6], where the common variable is recovered from multimodal data, where each
modality contains different i.i.d. noise. In our setting, this i.i.d. noise can be modeled as the
sensor specific components. In contrast to the operator in [6], the operator S recovers a new
representation of the common variable (instead of the common variable itself), but we show
that this can be achieved in more complicated scenarios, i.e., including various sensor-specific
components rather than only i.i.d. noise.

All of the above methods address the recovery of the common components only and ignore
the differences. Therefore, compared with these operators, the novelty in the current work is
the introduction of the difference revealing operator A. A similar notion of difference charac-
terization between manifolds was previously presented in [38]. There, a new linear operator
for comparison of shape deformations was proposed, which provides a mapping between the
shapes, and was shown to distort functions on the shapes only in areas where the shapes differ.
This operator was constructed as a composition of operators representing the two shapes, with
one of the operators inverted, e.g., (H(1)) - 1FTH(2)F, where H(\ell ) denotes a matrix represent-
ing the inner product on shape \ell and F is the functional map between the two shapes. In the
context of our work, the operator F is analogous to the diffeomorphism, \phi , and the operator

H(\ell ) is analogous to the operator P
(\ell )
\epsilon . In contrast to the proposed self-adjoint operator A,

this shape difference operator does not necessarily have a spectrum and depends on the order
of the operator composition. In addition, in the discrete setting, it requires the inverse (or
pseudoinverse) of a possibly large matrix.

Other operators for recovering differences between manifolds can be considered. For ex-

ample, \^A =
\bigl( 
P(1)  - P(2)

\bigr) \bigl( 
P(1)  - P(2)

\bigr) T
is a symmetric operator which obtains comparable

results in the experimental results in sections 5 and 6. However, this operator was not con-
sidered in the current paper since in the asymptotic expansion of this operator, in contrast to
A\epsilon , the second order terms, of order O(\epsilon 2), cancel out and only fourth order terms and above
remain. In the future, we plan to extend this work and explore such additional operators for
recovering hidden components of multimodal data, and to create a ``library"" of operators. We
plan to use this library of operators and construct a framework for characterizing the com-
mon and the difference structures in multimodal data or in data which lie on a time-evolving
manifold. Moreover, we plan to devise a multiresolution analysis framework for time-varying
manifolds based on such a library of operators, which can be seen as analogous to the wavelet
analysis under the manifold setting.

Note the assumption hidden in both the composite operators S and A and in the presented
alternative operator, \^A. The addition and subtraction operations in the composition imply
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that the operators lie in a linear Euclidean space, which may violate the Riemannian structure
of the operators. In future work, we plan to address this issue and investigate different ways
of composing such operators using non-Euclidean settings.
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