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Figure 1: Two intermediate frames interpolating between the source shape (left) and the target (right). Note the natural interpolation of both
large and small scale features (the tail and the horns), seamless handling of large rotations, and small distortion in the intermediate frames.

Abstract

Planar shape interpolation is widely used in computer graphics ap-
plications. Despite a wealth of interpolation methods, there is cur-
rently no approach that produces shapes with a bounded amount of
distortion with respect to the input. As a result, existing interpo-
lation methods may produce shapes that are significantly different
than the input and can suffer from fold-overs and other visual ar-
tifacts, making them less useful in many practical scenarios. We
introduce a novel shape interpolation scheme designed specifically
to produce results with a bounded amount of conformal (angular)
distortion. Our method is based on an elegant continuous mathe-
matical formulation and provides several appealing properties such
as existence and uniqueness of the solution as well as smoothness in
space and time domains. We further present a discretization and an
efficient practical algorithm to compute the interpolant and demon-
strate its usability and good convergence behavior on a wide vari-
ety of input shapes. The method is simple to implement and un-
derstand. We compare our method to state-of-the-art interpolation
methods and demonstrate its superiority in various cases.
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1 Introduction

Planar shape interpolation is a fundamental ingredient in many
graphics and geometry processing applications. Blending two
shapes is instrumental for generating in-between key-frames in
computer animation sequences, whereas blending multiple shapes
can be used for shape design and exploration. As different appli-
cations require different types of shape interpolation, there exists
no universal standard by which one can qualitatively assess shape
interpolation methods. However, in many cases it is important to
preserve the underlying geometric details of the given input shapes
as much as possible. Since the input shapes are different, intro-
ducing some amount of distortion is unavoidable. Nonetheless, it
is somewhat surprising that despite the plurality of different inter-
polation schemes, none of the existing approaches enables direct
control of the amount of distortion that is introduced.

Consider the following alternative formulation to the shape interpo-
lation problem. Denote one input shape as the source and consider
the set of maps from the source to the other target shapes. Aug-
menting this set of maps with the identity map, we can now perform
an interpolation of maps rather than shapes. Clearly, the identity
map is the ultimate map, having zero metric distortion. Other maps
in this set, however, exhibit some amount of unavoidable angular
or area distortion. The goal is to generate maps that interpolate the
input while demonstrating a small amount of distortion, which is
bounded pointwise by the input’s distortion.

We propose a novel planar shape interpolation method designed es-
pecially to be shape preserving. We provide a continuous solution
that is based on blending the pullback metrics of the input maps,
which encode all the local map distortion in the planar case. The
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action of the blended metric tensor on the source shape introduces
curvature and requires further processing in order to generate a pla-
nar embedding. We overcome this difficulty by applying a con-
formal transformation to the blended curved metric such that the
two metrics agree on the boundary while the transformed metric is
flat everywhere inside the domain. The choice of using a confor-
mal transformation is motivated by the fact that it does not affect
the amount of angular distortion that is introduced in the blending
step. Moreover, a conformal map with such boundary conditions
always exists and is unique. The actual blending is done in a way
that guarantees that the conformal distortion is bounded both lo-
cally and globally by the amount of distortion that the input maps
exhibit. Furthermore, algorithms for computing a high quality dis-
crete approximation of such a conformal map exist and are rela-
tively easy to implement. We demonstrate that using the method of
[Springborn et al. 2008] for computing the conformal map produces
high quality results with observed good convergence properties on
a large variety of inputs.

For the special case where all the given input maps are conformal
(meaning they have zero angular distortion), our method will also
yield a conformal map of the source (also the target). We fur-
ther show that our method is closed under affine transformations,
is symmetric with respect to permuting the source and targets, can
handle arbitrarily large rotations and has several other desirable
properties. Finally, we demonstrate the superiority of our approach
compared to state-of-the-art planar shape interpolation methods.

1.1 Previous Work

It is beyond our scope to review all existing interpolation, blending
and morphing methods, and we will restrict ourselves to several
notable methods and the most recent approaches. Comprehensive
review of classic methods is provided in [Wolberg 1998] for image-
based methods, and in [Alexa 2002] for mesh-based methods. Here,
we concentrate on planar shape interpolation methods, although we
mention a few relevant surface based approaches as well.

Every shape interpolation method boils down to three steps: De-
scribing the geometry of the source shapes in terms of some geo-
metric quantities, interpolating these quantities, and reconstructing
the blended geometry from the interpolated quantities. The differ-
ent methods differ by the quantity they choose to interpolate. The
most straightforward approach is to represent the geometry using
the embedding, namely the two- or three-dimensional vertex loca-
tions. This global approach is not invariant to isometric deforma-
tions of the input shapes and has the obvious drawback that the
result is in many cases self intersecting and thus invalid.

Some interpolation methods (e.g. by Shurazky and Gotsman [2001;
2003]) were designed specifically in order to guarantee that the in-
termediate results are intersection free; however, they require the
boundary of the input domains to be convex, which does not hold
in most practical scenarios. Some efforts to overcome this limi-
tation embed a non-convex shape in an artificial convex support
structure – with possibly degraded quality of the results. Another
popular approach [Alexa et al. 2000] is to represent the geometry of
the target by using the element-wise Jacobian (either vertex or face
based) of the source to target map. By interpolating separately the
rotational and shear/skew components of the Jacobians, such meth-
ods generate pleasing blends with relatively low amount of shear
in many cases. This general approach has been used in other ap-
plications such as planar shape deformation [Igarashi et al. 2005],
surface modeling [Sorkine and Alexa 2007], parameterization [Liu
et al. 2008] and image registration [Sỳkora et al. 2009].

Despite their usefulness, these interpolation methods fail to suc-
cessfully handle maps with large rotations, and some are quite sen-

sitive to the underlying mesh tessellation or are non-symmetrical
with respect to swapping the source and target shapes. These prob-
lems were partly addressed by [Choi and Szymczak 2003; Fu et al.
2005] and more fully by [Baxter et al. 2008]. Other interpolation
approaches, which are based on a differential coordinate represen-
tation, were proposed by [Sheffer and Kraevoy 2004; Lipman et al.
2005; Xu et al. 2006] and [Kircher and Garland 2008]. However,
even state-of-the-art methods suffer from a severe drawback: the
main ingredient in all these methods is to act element-wise, and
then “combine” everything by solving a global optimization prob-
lem. Since the system is solved in the least-squares sense, there
is no guarantee on the maximal local distortion introduced in the
blended shapes. One of our main observations is that it is possible
to compute a global embedding from the element-wise geometric
properties while preserving the conformal distortion, simply by us-
ing a conformal map to the plane.

An alternative approach is to develop algorithms based on some
physical view, e.g., by using continuum mechanics and elasticity
theory [Hu et al. 2004; Bao et al. 2005; Chao et al. 2010]. Since
such approaches are based on finite elements discretization, they
are guaranteed to converge in the limit of refinement. However,
they still cannot provide guarantees on the amount of local distor-
tion of the blended shapes. The same drawback holds for the shape
space method in [Kilian et al. 2007] where an additional concern is
computational efficiency, due to the involved non-linear and non-
convex optimization method. Most recently, [Winkler et al. 2010;
Fröhlich and Botsch 2011] propose a method based on interpolat-
ing the edge lengths and dihedral angles, coupled with a non-linear
reconstruction method. We show that interpolating edge lengths in
2D is somewhat problematic, as in some cases it causes dependency
on the source triangulation which is not reduced under refinement.

There are blending methods [Sederberg and Greenwood 1992;
Shapira and Rappoport 1995; Surazhsky and Elber 2002; Liu et al.
2004; Klassen et al. 2004; Whited and Rossignac 2011] that in-
terpolate between boundary curves of planar domains, instead of
between the domains themselves. This problem is significantly dif-
ferent than the problem we are addressing, as we are assuming that
we are given the map between the interior of the domains, and need
to take it into account when computing the blended shapes.

The method of [Weber and Gotsman 2010] interpolates smooth
conformal maps by interpolating the so-called angular factor on the
shape’s boundary. The uniqueness of this method lies in its ability
to guarantee that any intermediate map is also conformal, hence
has exactly zero angular distortion. Our method can be seen as an
extension of this approach that supports the wider class of quasi-
conformal maps for guaranteeing bounded conformal distortion.

Recently, a few methods have been developed [Zeng et al. 2009;
Gu et al. 2010; Lipman et al. 2012; Weber et al. 2012] which are
based on the theory of quasi-conformal maps, but whose aims are
different. These focused on either computing a quasi-conformal de-
formation or computing the map of the interior given the map of the
boundary. Lipman [2012] provides a general framework for com-
puting parameterizations with bounded distortion which potentially
could be combined with shape interpolation methods. The method
requires the user to explicitly set a global bound on the distortion as
well as a reference frame field. Choosing an inappropriate bound
or frames may lead to an empty solution space. Our method is con-
ceptually simpler, leads to an efficient algorithm and requires less
input from the user. Furthermore, it provides a point-wise bound on
the distortion which is implicitly derived from the input map.

1.2 Contributions

Our main contributions are:



• A continuous formulation of the shape blending problem with
a set of useful properties (Section 2).

• A continuous solution based on metric blending and confor-
mal mapping, which fulfills these properties (Section 3).

• A discretization and a simple practical algorithm that is ex-
perimentally shown to converge to the continuous solution,
has the required properties, and compares favorably with the
state-of-the-art (Sections 4 and 6).

2 The Problem

We will first describe the problem and our proposed solution in the
continuous case, and later show how to discretize it. To simplify
the exposition and limit the notational clutter, we will formulate the
case of interpolating between two shapes - a source and a target.
This setup will be extended to the case of N shapes in Section 5.

Given source and target shapes, we compute intermediate shapes
such that a specific set of properties holds which guarantee the qual-
ity of the interpolations. All properties follow the same two guiding
principles: the deformation of the intermediate frames with respect
to the source shape should be as “simple” as the deformation of the
target, and the frames should vary smoothly from source to target.

Therefore, we require the Lagrange property, namely source and
target reproduction for the appropriate values of t. Further, we
require that if the target is a “simple” deformation of the source
(e.g. affine or conformal), then so are the intermediate frames. As a
natural generalization, we require the intermediates to be “as close
to conformal” to the source as the target is. This property can be
defined rigorously using the conformal distortion introduced by a
map. Finally, following the smoothness guiding principle, we re-
quire the interpolation to be invariant to the swap of source and
target, and to vary smoothly in time.

In order to formally specify these properties, we will need the fol-
lowing standard definitions.

2.1 Definitions

Let S0 ⊂ R2 be a simply connected domain. A metric gp on S0 is
a symmetric bilinear form defined at every point p ∈ S0: gp : R2×
R2 → R. The metric allows us to measure lengths (using gp(Y, Y ))
and angles (using gp(Y,Z)), where Y,Z are tangent vectors at p.

When we apply a map φ : S0 → R2, the changes in lengths and
angles induced by the map can be computed using a special metric,
called the pullback metric of the map. The pullback metric is de-
fined as gp(Y,Z) = 〈dφp(Y ), dφp(Z)〉, where 〈, 〉 is the standard
Euclidean inner product, and dφp is the differential of φ. Since S0

and S1 = φ(S0) are both flat, dφ(Y ) is simply JY , where J is the
2 × 2 Jacobian matrix of φ. It is easy to check that as a result we
have gp = JTJ .

The conformal distortion of the map φ at a point p ∈ S0 is given by
K(p) =

√
λ1/λ2, where λ1 and λ2 are the maximal and minimal

eigenvalues, respectively, of gp.

Equipped with these definitions, we can now formally specify our
problem, as follows.

2.2 Problem Specification

Input: Two simply connected planar domains S0, S1 ⊂ R2, a lo-
cally bijective and differentiable map φ : S0 → S1 and a scalar
t ∈ [0, 1].

Output: A map φ̂t : S0 → R2 and the corresponding domain
Ŝt = φ̂t(S0).

2.2.1 Required Properties
Source and target reproduction. φ̂0 = Id and φ̂1 = φ, where
Id is the identity map.

Pointwise bounded conformal distortion. Let p ∈ S0 and
K(p) be the conformal distortion of φ at p. In addition, let K̂t(p)

be the conformal distortion of φ̂t at p. Then K̂t(p) ≤ K(p). As a
special case, if K = 1, thus φ is a conformal map, then K̂t = 1,
and therefore, φ̂t is also conformal.

Affine reproduction. If φ is an affine map, then φ̂t is affine.

Symmetry. Let ψ : S1 → S0 be the inverse of φ, and let R̂t be
the interpolation result from S1 to S0 at time t. Then R̂t = Ŝ1−t.

Smoothness. The derivative dŜt/dt exists and is bounded.

t = 0
source

t = 1 
targett = 0.75t = 0.25

Figure 2: An example of two intermediate frames generated by
our bounded distortion interpolation algorithm. Note the natural
interpolation of the large rotation.

3 Bounded Distortion Shape Interpolation

As discussed in the Introduction, there are many possible discrete
representations of the geometry that can be interpolated to generate
the blended shapes. Our main observations are as follows: First, by
choosing a geometry representation which has a continuous equiva-
lent, we can hope for a solution which converges under refinement,
and therefore is not dependent on the discretization. Second, since
the blended representation is not necessarily realizable in the plane,
we should choose a realization method that does not introduce ad-
ditional distortion. Therefore, we propose a two-step interpolation
process:

1. Compute a blended metric gt for S0 as the interpolation of the
the identity and the pullback metric under φ.

2. Let φ̂t : S0 → C be the map whose pullback metric is ĝt =
e2ugt, with boundary conditions u(∂S0) = 0.

Our choice to interpolate the metric is motivated by the following
reasons. First, the metric is easy to discretize on a triangular mesh,
simply as a 2× 2 positive definite matrix per triangle. The approx-
imation of the piecewise-constant metric of the continuous metric
improves when the mesh is refined, which is necessary if we expect
our algorithm to be consistent for different discretizations. Second,
since the metric is rotation invariant, it can simply be interpolated
linearly: gt = (1− t)I+ tg, where I is the Euclidean metric on S0

(the identity), and g is the pullback metric under φ.

Note that since our domains are planar, the metric tensors can be
represented in the same global coordinate frame using 2 × 2 ma-
trices, and the blending can be done by blending the matrix coef-
ficients. Further, note that these matrices are symmetric positive
definite (SPD) by definition, and since the space of SPD matrices
forms a convex cone, any convex combination of SPD matrices is



an SPD matrix. Therefore, gt is a valid metric tensor, yet, the Gaus-
sian curvature that it implies is not necessarily zero.

Since the metric gt is not flat, it is not possible to directly embed
it in the plane. This problem arises in other shape interpolation
methods, where the interpolated quantity is no longer consistent -
either there is no embedding that realizes it, or such an embedding
is not flat. Many shape interpolation method address this problem
by solving a Poisson system, namely, finding an embedding which
best realizes the interpolated geometric quantity in the least squares
sense. Unfortunately, such an approach cannot provide guarantees
on properties of the result, such as bounded distortion. We, there-
fore, chose instead to find a flat metric in the space of metrics con-
formal to gt. This guarantees that the flattening process does not
increase the angular distortion introduced by the interpolation.

In the continuous case, although it is hard to solve analytically for
ĝt, it is possible to show that it exists and is unique, as follows. The
metric gt(p), p ∈ S0 uniquely determines the Gaussian curvature
κt(p), and the Laplace-Beltrami operator ∆t(p). If ĝt is a metric
conformally equivalent to gt, namely ∃u : S0 → R, such that
ĝt = e2ugt, and if the Gaussian curvature under ĝt is 0, then the
following partial differential equation holds

κt = ∆tu, (1)

(see, e.g., [Gu et al. 2010], equation (7.8)). For specific boundary
conditions, the solution u exists and is unique, and defines the con-
formal flat metric ĝt. Note that in 2D, the metric uniquely defines
the embedding up to global translation and rotation. These three
global degrees of freedom can be fixed automatically by linearly
interpolating their values between source and target. Alternatively,
manually setting them allows for some artistic freedom and control.
For example, an experienced user may draw a curve describing the
path that a fixed anchor point should follow.

Of course, this procedure does not provide us with an algorithm
for computing φ̂t directly, because, in general, equation (1) does
not have an analytic solution. We, therefore, justify this model, by
proving the properties it has in the continuous case, and then ap-
proximate it using a discrete algorithm. Figure 2 shows an example
of two interpolated frames computed using the discrete algorithm.
We will show experimentally that in the discrete case, the conformal
distortion K̂t(p) converges to the continuous conformal distortion,
which we can compute analytically in some simple cases.

3.1 Properties

We will now explain why the continuous solution we defined satis-
fies all the properties we require.

Source and target reproduction. This property trivially holds.
By definition we have that g0 is the identity, which is a flat metric.
Since our boundary conditions are u = 0 on the boundary of S0,
the trivial solution u = 0 on all the domain S0 solves equation (1).
Therefore, the flat metric ĝ0 equals g0. Given the additional degrees
of freedom provided by the user (a single point and orientation), we
get that φ̂0 = Id namely, source reproduction. Using similar ar-
guments, we have that g1 = g, which is also flat and therefore
ĝ1 = g1 = g. Combined with interpolating the position and orien-
tation degrees of freedom provided by the user, we get that φ̂1 = φ
namely, target reproduction.

Pointwise bounded conformal distortion. The conformal dis-
tortion K of a map φ is defined as

√
λ1/λ2, where λ1 and λ2 are

the largest and smallest eigenvalues, respectively, of the pullback
metric under φ. First, let us consider the conformal distortionKt of
the blended metric gt. Using the variational definition of the eigen-
values of a matrix, we can show (see Appendix A) that if M1 and

M2 are positive definite matrices, and M = tM1 + (1− t)M2, t ∈
[0, 1], then ∃α ∈ [0, 1] such that c(M) ≤ αc(M1)+(1−α)c(M2),
where c(M) = λ1/λ2 is the l2 matrix condition number of M .
Therefore, c(M) ≤ max(c(M1), c(M2)). Since the conformal
distortion K and the condition number of the metric g are related
by a monotonic function, we have that Kt ≤ K. As the flat metric
ĝt is conformal to the metric gt, the conformal distortion K̂t = Kt.
This is easy to see: since ĝt = e2ugt, the eigenvalues of ĝt are
scaled uniformly, and therefore, their ratio does not change. This
computation holds for any point p ∈ S0, and accordingly we have
K̂t(p) ≤ K(p) as required.

Figure 3 shows an example of the interpolation results (based on
the discrete algorithm described in Section 4). The figure shows
the source, target, some representative intermediate frames, as well
as a graph showing the conformal distortion for a few triangles as
a function of t. It is evident from the graphs that the pointwise
bounded conformal distortion property holds for this discrete case.

Affine reproduction. φ is a global affine map if and only if g(p)
is constant, independent of p. Therefore, the blended metric gt is
also a constant. As a consequence, gt is flat, since Gaussian cur-
vature is a result of variation in the metric (this is is easy to see by
considering the Brioschi formula, see, e.g., [Gray et al. 2006] The-
orem 17.3). Finally, as we have seen previously, if gt is flat, then
we reproduce it; namely, ĝt = gt. Therefore, ĝt is also constant
and φ̂t is a global affine map. Figure 4 demonstrates this property.

Symmetry. Let h = g−1 be the pullback metric under ψ, and let
hs = (1 − s)I + sh. In addition, let ψs : S1 → M be a map that
realizes the metric hs. The pullback metric of the composed map
ψs ◦ φ : S0 → M is a metric on S0 given by ghs (because the
pull-back of a composition is the compositions of the pull-backs in
reverse order. See e.g. [Weintraub 1997], Proposition 3.61 (b)). To
show symmetry, it is enough to show that gh1−t = gt, since if the
metrics before the conformal map are identical, the metrics after
the conformal map will also be. A simple calculation shows that
gh1−t = g((1− (1− t))I + (1− t)h) = g(tI + (1− t)g−1) =
tg + (1− t)I = gt.

Smoothness. If the map φ is continuously differentiable, the
metric g exists and is differentiable everywhere on S0. Further-
more, gt is a smooth function of t, and therefore, its derivative with
respect to t exists (and is, in fact, constant). If we additionally as-
sume that φ has bounded angular distortion, then the determinant of
the metric g, as well as that of gt is bounded away from 0. This im-
plies that κt and ∆t depend smoothly on t, and as a consequence, u
(the solution to (1)) also depends smoothly on t. Hence, the metric
ĝt, the map φ̂t and the domain Ŝt vary smoothly with t. Figure 5
demonstrates this property.

4 Discretization

Now that we have seen that the continuous solution has various
desirable properties, we need to discretize it in order to be able to
compute the blended shapes in practice. We proceed by formulating
the discrete equivalent of the interpolation problem, as follows.

Notations. We use S = (X,F ) to represent a triangle mesh,
where X is the 2D embedding of the vertices, and F is the con-
nectivity. Variables with subscript t correspond to the intermediate
frame t, and we use x̂ to represent variables after the conformal
map. For example, Mt is the interpolated metric at time t, and M̂t

is the resulting metric after the conformal map.

Input: Two planar triangle meshes with identical connectivity
S0 = (X0, F ) and S1 = (X1, F ) such that no triangle in S1 is
flipped or collapsed, and a scalar t ∈ [0, 1].
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Figure 3: Shape interpolation with bounded conformal distortion. Every plotted line represents one triangle in the mesh (the lines are
colored the same as their corresponding triangles), and the graph plots the conformal distortion of this triangle as a function of t. Note that
the graphs are monotonic, and in no case is the intermediate distortion bigger than the distortion at t = 1 for any triangle.
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Figure 4: Affine reproduction. The color shows the conformal dis-
tortion with respect to the source. Note, that since the target is a
global affine map of the source (with uniform conformal distortion),
so are the intermediate frames.

Output: An intermediate planar mesh Ŝt = (X̂t, F ).

We choose the following discretizations for the two main steps of
our algorithm:

1. We discretize the metric to be piecewise constant, namely we
have a function Mt : F → R2×2.

2. We discretize conformal maps using CETM, the approach
in [Springborn et al. 2008].

The first choice is a standard finite element approach. It guaran-
tees that the discrete representation of the metric will become a
better approximation of the continuous metric as the triangulation
is refined. The second choice does not guarantee convergence to
the continuous conformal map; however, it is shown to be well-
behaved in practice. Additionally, CETM is well-behaved not only
in the limit of refinement, but also for coarse meshes. It is worth
noting that any intrinsic method, requiring only the metric and not
the embedding in order to compute the conformal map, can be used.

Our full algorithm is described in Algorithm 1. In the next section
we explain why our algorithm is valid and discuss its properties.

Algorithm Notations. For each triangle f ∈ F , Et(f, i), i ∈
(1, 2, 3) is the length of the edge in the triangle f opposite to the
vertex i, Mt(f) is the interpolated metric on f , and e0 is an edge
vector of f .

4.1 Algorithm Validity

For our algorithm to be valid we need to show the following. First,
that eT0 Mte0 is always positive, and that the triangle inequality
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Figure 5: Smoothness. We show the value ||X̂t+ε − X̂t||Fro/ε for
decreasing ε. We use the same source and target as in Figure 3,
and show different values of t. Note that these values converge as ε
goes to 0.

holds for Et. Second, the edge length Et(f, i) is computed twice,
for both of its neighboring triangles - we need to show that these
computations are consistent.

Positivity and triangle inequality follow from the fact that the ma-
trixMt is symmetric positive definite, and therefore the inner prod-
uct it defines is a distance metric. Consistency of Et follows from
the following simple lemma, which shows that blending metrics is
equivalent to blending squared edge lengths.

Lemma 4.1 Let M be the metric for a triangle f ∈ F , as defined
in lines (2,3) in Algorithm 1. Further, let e0 be one edge vector
in f in S0, and e1 the corresponding edge vector in S1. Then,
eT0 Mte0 = (1− t)||e0||2 + t||e1||2.

Proof First, note that ||e1||2 = eT0 Me0 by definition of M . The
result follows by linearity: eT0 ((1− t)I+ tM)e0 = (1− t)eT0 e0 +
teT0 Me0 = (1− t)||e0||2 + t||e1||2.

This simple observation guarantees that the edge lengths we com-
pute are consistent in its adjacent triangles. In fact, our algorithm
can be thus simplified to Algorithm 2.

In the following section we investigate which of the properties of
the continuous algorithm holds also for its discrete counterpart. In
addition, we demonstrate the consistency of the algorithm under a
change of triangulation, and the convergence of the discrete confor-
mal distortion to the continuous one.



Algorithm 1: Bounded Distortion Shape Interpolation Algorithm
Input: Triangle meshes S0 = (X0, F ), S1 = (X1, F ), a scalar

t ∈ [0, 1]

Output: Intermediate mesh Ŝt = (X̂t, F )

1 foreach Triangle f ∈ F do
2 J = Jacobian of affine transformation from X0(f) to X1(f);
3 M(f) = JTJ ;
4 Mt(f) = (1− t)I + tM(f);
5 for i = 1 to 3 do
6 e0 = X0(f, i+ 1)−X0(f, i+ 2);

// Here, + is computed modulus 3

7 Et(f, i) =
√
eT0 Mt(f)e0;

8 end
9 end

10 Êt = CETM(Et, u = 0 on the boundary );
11 X̂t = embed Êt using single position and orientation constraints

supplied by user;

Algorithm 2: Simpler BD Shape Interpolation Algorithm
Input: Triangle meshes S0 = (X0, F ), S1 = (X1, F ), a scalar

t ∈ [0, 1]

Output: Intermediate mesh Ŝt = (X̂t, F )

1 foreach edge e ∈ F do
2 Let ||e0||, ||e1|| be the edge lengths of e in S0 and S1

respectively;
3 Et(e) =

√
(1− t)||e0||2 + t||e1||2;

4 end
5 Êt = CETM(Et, u = 0 on the boundary );
6 X̂t = embed Êt using single position and orientation constraints

supplied by user;

4.2 Properties

Whenever the intermediate edge lengths Et are embeddable in the
plane (namely, the angle deficit at every vertex is 0), then CETM
returns Êt = Et, and we have all the continuous properties. This
shows source, target and affine reproduction. Symmetry also triv-
ially holds, because we are blending the squared edge lengths.

The conformal distortion implied by the edge lengths Et – namely,
before the conformal map – is pointwise bounded using the same
arguments we used in the continuous case (simply considering the
metric of a triangle, instead of a point). However, CETM returns
only a discrete conformal map, and therefore the conformal distor-
tion at every triangle is bounded only in the limit of refinement.

We will now demonstrate experimentally the convergence and con-
sistency properties of our algorithm. First, we show an exam-
ple for which we can compute the conformal distortion induced
by our continuous algorithm explicitly. We demonstrate that the
discrete conformal distortion resulting from the discrete algorithm
converges under refinement to the continuous conformal distortion.
Second, we discuss a scenario where our algorithm is invariant to
the choice of triangulation, but a similar algorithm is not.

4.3 Experimental Convergence

In order to show convergence to the continuous case, we need to
compute analytically the continuous solution, which is infeasible
except in trivial cases. We will, therefore, show convergence of the

conformal distortion to the continuous conformal distortion, which
we can compute analytically if we know explicitly the map φ. In
the following we refer to φ as a map to C, instead of as a map to
R2, as it is easier to compute analytically the conformal distortion
if the map is represented using complex functions.

We set up our experiment as follows. Let φ : C → C be a com-
plex function from the plane to itself, and let φz(z) = ∂φ/∂z and
φz̄(z) = ∂φ/∂z̄. Then, a simple calculation shows that the metric
tensor M(z), z ∈ C is given by:

M(z) = |φz|2(|µ|2+1)

[
1 0
0 1

]
+2|φz|2

[
<(µ) =(µ)
=(µ) −<(µ)

]
,

where <(µ) and =(µ) are the real and imaginary components of µ,
and µ(z) = φz̄(z)/φz(z).

Given a triangle mesh S0 = (X0, F ), we compute S1 = (X1, F )
using X1(z) = φ(z). For every triangle f ∈ F , take zf to be the
barycenter of the triangle, compute Mt(zf ) = (1− t)I + tM(zf ).
Given the metric Mt(zf ) we can compute Kt(zf ) =

√
λ1/λ2,

where λ1 and λ2 are the largest and smallest eigenvalues of
Mt(zf ), respectively. We compute the discrete conformal factor
K̂t(f) similarly, using the Jacobian of the affine map that takes the
triangle f in S0 to the triangle f in Ŝt. Finally we compute the
following quantities:

E2 =
∑
f∈F

Af ||Kt(f)− K̂t(f)||2/
∑
f∈F

Af ,

E∞ = max
f∈F
|Kt(f)− K̂t(f)|,

(2)

where Af is the area of the triangle f in Ŝt. E2 and E∞ repre-
sent the approximation error of the discrete solution. As the size of
the triangles decreases, we expect the discrete solution to provide a
better approximation, and these values to decrease as well.

Figure 6 (left) shows a plot ofE2 andE∞ as a function of the mesh
resolution (number of vertices) for the map φ = m1 ◦ A ◦ m2,
where m1 and m2 are Möbius maps of the form m(z) = az+b

cz+d
.

A(z) = (1+K)<(z)+(1−K)=(z)i is a simple affine stretch. The
map φ is a Teichmüller map (a conformal map composed with an
affine stretch, composed with a conformal map), one of the simplest
examples of a quasi-conformal map. The results for the following
three Teichmüller maps:

φ1(z) =
2z

z − 5
+

2

3

z̄

z̄ − 5
,

φ2(z) =
20

2z − 5
+

12

2z̄ − 5
,

φ3(z) =
3(4z + 5)

3z + 1
+

4z̄ + 5

3z̄ + 1

appear in Figure 6. Note, that both E2 and E∞ converge to 0.

4.4 Why squared edge lengths?

A few previous approaches [Lipman et al. 2005; Winkler et al.
2010] based the interpolation on blending the edge lengths of the
triangle mesh (in addition to some extra properties). Although the
edge lengths of a mesh are often regarded as the “discrete met-
ric”, we show that directly interpolating edge lengths (as opposed
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Figure 6: (left) Experimental convergence of the discrete confor-
mal distortion to the continuous value, for three Teichmüller maps,
using various values of t. The plot shows the values of E2 and E∞
defined in (2) as a function of the mesh resolution. Note that both
measures converge to 0. (right) Blending squared edge lengths vs.
blending edge lengths. We show the discrete conformal distortion
K(θ) as a function of the rotation angle θ of a source triangle.
Note that blending squared edge lengths results in a constant func-
tion K(θ), whereas blending edge lengths does not.

to squared edge lengths) is not consistent, in the sense that the re-
sulting conformal distortion depends on the triangulation.

Consider the following experiment: Let φ(z) = (1 + k)<(z) +
i(1 − k)=(z), for some real k ∈ R, 0 ≤ k < 1 . We choose a
triangle f in the plane, apply φ to the vertices of f , and compute
the interpolated result at some t, once by blending edge lengths, and
once by blending squared edge lengths. Given the new triangles, we
can compute the conformal distortion for both cases. We then rotate
f by an angle θ, apply φ, and repeat the process. If the interpolation
scheme is consistent, the result should be invariant to θ.

Figure 6 (right) shows that this is the case for blending squared edge
lengths, but is not the case for blending edge lengths. The figure
shows the resulting discrete K as a function of θ. Note that the
result when blending edge-lengths varies, whereas the result when
blending squared edge lengths remains the same. Note further that
since the map φ has constant conformal distortion, taking a smaller
triangle will not improve the result. Hence, blending edge lengths
cannot be invariant to the triangulation of the source domain.

5 Multiple Targets

Thus far we have focused on the simple case, with a single source
and a single target shape. However, our formulation can be easily
extended to multiple targets. The problem definition in the contin-
uous case changes as follows:

Input: N simply connected planar domains Si, i ∈ [1, N ] and a
base domain S0, N locally bijective and differentiable maps φi :

S0 → Si and weights wi ≥ 0,
∑N
i=1 wi = 1.

Output: A map φ̂w : S0 → R2 and the corresponding domain
Ŝw = φ̂w(S0), such that the following properties hold:

Input reproduction. φ̂wi = φi where wi are weights that are 0
for all shapes except Si.

Pointwise bounded conformal distortion. Let p ∈ S0 and
Ki(p) be the conformal distortion of φi at p. In addition, let
K̂w(p) be the conformal distortion of φ̂w at p. Then K̂w(p) ≤
maxiKi(p). As a special case, if ∀i,Ki = 1, and thus all φi are
conformal maps, then K̂w = 1, and therefore, φ̂w is also confor-
mal.

Affine reproduction. If all φi are affine maps, then φ̂w is affine.

Invariance to the choice of S0. LetR0 6= S0 and let ψi : R0 →
Si, such that φj◦φ−1

i = ψj◦ψ−1
i , ∀i, j ∈ [1, N ]. Let Ŝw be the in-

terpolation result using S0 and weightsw, and R̂w the interpolation
result using R0 and weights w. Then Ŝw = R̂w.

Smoothness. The derivatives ∂Ŝw/∂wi exist and are bounded.

Our two-step solution can be easily extended to this case:

1. Compute gw =
∑N
i=1 wigi, where gi are the pullback metrics

under φi. Note that gi are defined on S0, and therefore, can
be safely interpolated.

2. Let φ̂w : S0 → C be the map whose pullback metric is ĝw =
e2ugw, with boundary conditions u(∂S0) = 0.

The proofs for most properties are analogous to the single-source
single-target case. First, gw is a valid metric, since it is a convex
combination of SPD matrices. Input and affine reproduction are a
result of reproducing flat metrics. The bounded distortion property
also carries over to the general case, since all we need is a con-
vex combination of SPD matrices. Smoothness also follows from
similar considerations.

The only property that is not trivial is the invariance to the choice of
S0. However, the proof is similar to the symmetry proof. Let hi be
the pullback metrics under ψi. Let hw =

∑N
i=1 wihi. We cannot

compare gw and hw directly, given that they are defined on different
domains. We will, therefore, pull them both to S1. Accordingly,
we need to show that g−1

1 gw = h−1
1 hw. Since we assumed that

φj ◦φ−1
i = ψj ◦ψ−1

i , ∀i, j ∈ [1, N ], we have g−1
1 gi = h−1

1 hi∀i ∈
[1, N ], and the result follows.

Figure 7 shows how multiple target blends with different weights
can be used for generating novel poses, given a collection of input
poses. See also the accompanying video.

input poses

novel poses

Figure 7: Blending 6 input poses (top) to generate novel poses
(bottom). The deformed textured images look very natural, with a
three-dimensional feel even though they are completely planar.



t = 0

source

t = 0.25 t = 0.5 t = 0.75 t = 1

target

Figure 8: Bounded distortion interpolation results.

6 Experimental Results

6.1 Implementation Details

We implemented our algorithm as a plugin to Autodesk Maya R©.
For implementing CETM we implemented a Newton solver (essen-
tially iterating equation (1)). In almost all cases the solver con-
verged after 2− 3 iterations. For each Newton step a linear system
was solved by computing a Cholesky decomposition using the Intel
MKL R© package. Although this process is computationally heav-
ier than existing methods, we achieve real-time frame rates (30 fps)
for meshes with up to 5000 vertices on a PC with i7-3770 CPU, as
demonstrated in the accompanying video.

6.2 Limitations

One limitation of our method is that it is designed to bound only the
angular distortion and not the area distortion. However, we have
noticed experimentally that the area distortion of the intermediate
shape is bounded, as is demonstrated by all our examples, as well
as the accompanying video. Note, though, that the bound depends
on both the area and the conformal distortions of the target. Specif-
ically, if the conformal distortion of the target is very large, the
intermediate might have a larger area than either source or target.

In addition, our method only guarantees bounded angular distor-
tion in the limit of refinement. Although we showed fast conver-
gence experimentally, it would be desirable to design a method that
can guarantee bounded distortion discretely by defining a discrete
quasi-conformal map, analogously to the definition of discrete con-
formality in CETM.

6.3 Results and Comparisons

We compared our approach to ARAP [Alexa et al. 2000], trian-
gle based ARAP local/global [Liu et al. 2008], and FFMP [Kircher
and Garland 2008]. For local/global ARAP, the rigid energies of
the intermediate shape with respect to the source/target are inter-
polated and minimized, as in [Chao et al. 2010]. The results are
summarized in Figure 13, where for each method we show the in-
terpolation result for one t value (3/4 for the spirals and 1/2 for
the other examples), and the conformal distortion (normalized to
[0, 1]) graph of 100 most distorted triangles, which are found sep-
arately for each t. The first two comparisons are also shown in the
accompanying video. The source and target are shown in the first
and last columns, respectively, and they are either textured or color
coded to show the correspondence between them.

The method with results closest to ours is FFMP, which exhibits
nice interpolations on all the examples, except for the “spirals” ex-
ample, where it introduces an unnecessary global distortion. And,
as is evident from the distortion graphs, it always introduces unnec-
essary distortion in some regions, which can be found by carefully
inspecting the results, for example, on one of the blue monster’s

K=3

K=1

A C

F

D

GE

B

source

conformal

affine
Teichmüller

0.5 0.5 0.5 0.5 0.5 0.5 K=2

Figure 9: This figure demonstrates how our method behaves for
conformal and Teichmüller maps. The figure shows (top) a source
shape A, and three targets B,C,D, along with their conformal dis-
tortion. In addition, we show three combinations E = (A+B)/2, F =
(B+C)/2 and G = (C+D)/2. See the text for details.

fingers. The large rotation required in the first 3 examples causes
the ARAP method to generate fold-overs and collapsed triangles.
Finally, due to the non-isometric input mapping between the source
and the target, ARAP local/global generates unnatural results for
the dragon, horse and blue monster examples (note e.g. the leg of
the dragon).

Figure 9 demonstrates how our method behaves for conformal and
Teichmüller maps. The figure shows (top) a source shape A, and
three targets B,C,D. In addition to the shapes, we show the confor-
mal distortion with respect to A. B is conformal to A, as is evident
from the conformal distortionKB which is close to 1. C is an affine
map of A, as can be seen from the uniform conformal distortion
KC = 2. Finally, D is a conformal map of C, as is demonstrated
by the fact that KD ≈ KC . We generate the new shapes E = (A
+ B)/2, F = (B + C)/2 and G = (C + D)/2. Since B is conformal to
A, so is E, as can be seen from the fact that the shapes of the quads
are preserved and KE ≈ 1. Furthermore, we see that in this case
blending Teichmüller maps results in an almost Teichmüller map
G, demonstrated by KG ≈ KC , which is uniform. In fact, since
D is conformal to C, G is also conformal to C, and therefore by
definition a Teichmüller of A.

Figure 10 demonstrates the behavior of our algorithm when in-
valid inputs (e.g. with fold-overs) are provided. Dealing with such
cases is sometimes inevitable in practical scenarios. Our algorithm
manages to produce high quality, well behaved results. Figure 11



source with
large fold

target

t=0.5

t=0.5t=0

t=0

t=1

target with
12 folded
triangles

t=1

Figure 10: Robustness to invalid input: (top row) part of the ele-
phant’s head in the source is folded onto itself. (bottom row) 12
individual triangles in the target shape are folded. In both cases,
the source to target map is not locally bijective, yet the interpolated
results are well behaved.

source t=0 target t=1

t=0.5

Figure 11: Local support behavior: the right part of the bar shape
is being deformed, whereas the left part remains intact (marked
green). The intermediate (t=0.5) exhibits similar behavior, leaving
the left part of the shape completely static.

demonstrates the natural local support behavior of our algorithm. In
this figure, only a part of the source shape is being deformed while
the rest of the shape remains intact. The same behavior is observed
for intermediate frames where only the relevant part of the shape is
actively deformed. Figures 1, 8 and 12, as well as the accompany-
ing video, show some additional examples of interpolated results.

7 Conclusion and Discussion

We presented a novel shape interpolation method that produces
provably high quality results with a bounded amount of distortion.
We formulated the problem in the continuous case, suggested a so-
lution, and proved the properties it satisfies. We further suggested a
discretization which experimentally converges to the continuous so-
lution, and showed why a popular alternative solution will not con-
verge. We demonstrated that our method out-performs in practice
state-of-the-art shape interpolation methods, which are not guaran-
teed to have bounded distortion.

Our approach provides a novel model for maps between domains -
conformal through an alternative metric with natural boundary con-
ditions. This suggests a natural extension of our algorithm to in-
terpolation between surfaces, using surface based conformal maps,
as in [Crane et al. 2011]. Additionally, we believe that this model
can be beneficial for other applications such as computing surface
parameterization and maps between curved surfaces.

t = 0
source

t = 0.33 t = 0.66 t = 1
target

Figure 12: Bounded distortion interpolation results. Note the nat-
ural way our method handles large rotations.
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Appendix A

Theorem 7.1 Let Mi, i ∈ [1, N ] be symmetric positive definite
(SPD) matrices, wi, i ∈ [1, N ] convex weights wi ≥ 0,

∑
i wi =

1, and let M =
∑N
i=1 wiMi. Then c(M) ≤ maxi∈[1,N ]c(Mi),

where c(M) is the l2 matrix condition number of M .

Proof The l2 matrix condition number of an SPD matrix M is
given by c(M) = λ1(M)/λ2(M), where λ1(M) and λ2(M) are
the largest and smallest eigenvalues of M respectively. From the
variational characterization of eigenvalues, we have that λ1(M) =
max||x||=1 xMxt and λ2(M) = min||x||=1 xMxt. Therefore,

λ1(M) = max
||x||=1

x(

N∑
i=1

wiMi)x
t =

= max
||x||=1

N∑
i=1

wi(xMix
t) ≤

N∑
i=1

wi max
||x||=1

xMix
t.

Hence, λ1(M) ≤
∑
i wiλ1(Mi), and similarly λ2(M) ≥∑

i wiλ2(Mi).

Since all the numbers involved are positive (as each Mi is SPD),
we have:

c(M) ≤
∑N
i=1 wiλ1(Mi)∑N
i=1 wiλ2(Mi)

≤
N∑
i=1

ui
λ1(Mi)

λ2(Mi)
=

N∑
i=1

uic(Mi),

where ui = wiλ2(Mi)/
∑N
j=1 wjλ2(Mj). Note that,

∑N
i=1 ui =

1, and since Mi are SPD, ui ≥ 0. Therefore, the ui are a set of
convex weights, implying c(M) ≤ maxi c(Mi), as required.
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Figure 13: Comparisons. In the first and second rows, the color coding shows the correspondence between the source and the target. For
the first example we show the interpolated result for t = 0.75, and for all the rest t = 0.5. The plot shows the angular distortion (normalized
to [0, 1]) of 100 most distorted triangles, which are found separately for each sample of t.


