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Abstract

Tangent vector fields are prominent objects in geometry processing, and are used
in a myriad of applications, e.g., texture synthesis, fluid simulation and polygonal
remeshing. It is, however, challenging to represent, analyze and synthesize tan-
gent vector fields on discrete surfaces such as triangle meshes. The goal of this
chapter is to review the use of linear operators for these tasks. We introduce the
formulation, show the advantages and demonstrate the unique applications such a
representation makes possible. We additionally discuss the relation to functional
maps that were introduced in previous chapters.
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List of Key Symbols

Smooth

M A smooth, orientable and compact surface embedded in R3

X Surface embedding M→ R3,

f,g,h Real valued functions M→ R

u,v Tangent vector fields M→ TM

〈u,v〉 Pointwise inner product of two tangent vector fields, given by the Rieman-
nian metric on M

∇f Gradient vector field of f

∇ · v Divergence function of v

∆ Laplace-Beltrami operator
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Dv Functional vector field (FVF) corresponding to v

Df Dual FVF corresponding to f

D̃v Divergence-based FVF corresponding to v

ϕv,t The flow map of the vector field v for time t ∈ R, ϕv,t :M→M
φv,t The functional flow map of the vector field v for time t ∈ R

Discrete
M A triangle mesh, where the vertices, edges and faces are denoted by (V , E ,F),

respectively.

n Number of vertices |V|
m Number of faces |F|
X Mesh embedding X ∈ Rn×3

f, g, h Piecewise linear functions f, g, h ∈ Rn

u, v Piecewise constant tangent vector fields u, v ∈ R3m

grad Gradient operator grad ∈ R3m×n

div Divergence operator div ∈ Rn×3m

AV Vector of vertex areas AV ∈ Rn

AF Vector of face areas AF ∈ Rm

IFV Interpolation matrix from faces to vertices IFV ∈ Rn×m

IVF Interpolation matrix from vertices to faces IVF ∈ Rm×n

L Laplace-Beltrami operator L ∈ Rn×n

DFv Rectangular FVF corresponding to v, DFv ∈ Rm×n

DVv Square FVF corresponding to v, DVv ∈ Rn×n

D
F
f Dual to rectangular FVF corresponding to f , D

F
f ∈ Rm×3m

D
V
f Dual to square FVF corresponding to f , D

V
f ∈ Rn×3m

D̃Fv Rectangular divergence-based FVF corresponding to v, D̃Fv ∈ Rn×m

D̃Vv Square divergence-based FVF corresponding to v, D̃Vv ∈ Rn×n

Φv,t The functional flow map of the vector field v for time t ∈ R, Φv,t ∈ Rn×n
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Figure 1: A nearly symmetric quadrangular mesh generated using the operator based repre-
sentation of vector fields (Azencot et al., 2017) (left and right). The symmetry enables the
generation of a very low resolution model, which can be fabricated using additive manufactur-
ing, by thickening the quad mesh edges (left center and right center). The center image is a
photograph of the final printed model.

1. Introduction

Tangent vector fields are geometric objects that represent directional informa-
tion tangent to a surface. Examples include: velocity fields, curvature directions
and tangents to the parameter lines of a surface parameterization.

On smooth surfaces, a tangent vector field is often defined as a smooth assign-
ment of a tangent vector to each point on the surface. In geometry processing and
computer graphics, surfaces are often represented using triangle meshes. Thus,
on a triangle mesh it is natural to represent a discrete tangent vector field using
a piecewise constant (PC) representation, namely, as a constant tangent vector
per triangle. However, formulating and enforcing smoothness of PC vector fields
is challenging, since they are piecewise constant and therefore non-differentiable.
Some approaches to tackle this problem include using finite differences (Crane
et al., 2010), using a higher order polynomial discretization (Zhang et al., 2006;
Knöppel et al., 2013), and using discrete 1-forms (Desbrun et al., 2005).

In this chapter, we advocate a different approach, first suggested by Azencot
et al. (2013). Specifically, we consider the action of tangent vector fields on scalar
functions, by treating tangent vector fields as directional derivative operators.
These operators are linear, and, in the smooth case, completely encode the corre-
sponding vector fields. The smooth theory involving these operators, also known
as derivations (Morita, 2001, Chapter 1.4), is quite vast, as this operator-based
point of view is classical in differential geometry.
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In the discrete setting, however, this discretization is novel, and considerably
simplifies many vector field related tasks, for both synthesis and analysis. This
is due to two main properties of this scheme: (1) the only objects that are differ-
entiated are scalar functions, and (2) the linear operator can be represented as a
compact matrix in a reduced spectral basis. Consider, for example, the problem
of joint design of vector fields on two corresponding surfaces, or on an intrinsically
symmetric surface M with a self-correspondence ϕ :M→M. A tangent vector
field v is said to be consistent with ϕ if dϕ(v(q)) = v(ϕ(q)) for any q∈M. This
definition requires the differential of the map, which in a discrete setting on a
triangle mesh is difficult to obtain. However, if we use the operator point of view,
we can formulate the consistency by 〈v,∇(f ◦ ϕ)〉 = 〈v,∇f〉 ◦ ϕ for any scalar
function f : M → R. With this formulation, there is no need for the map dif-
ferential, which considerably simplifies the implementation on discrete surfaces.
Figure 1 shows an example of a nearly symmetric quadrangular mesh generated
using this approach (Azencot et al., 2017).

Due to these two properties, the operator-based approach to tangent vector
fields enables many additional applications, such as: vector field design (Azencot
et al., 2013), function transport (Azencot et al., 2013, 2014a, 2015b, 2016) and
vector field transport (Azencot et al., 2015a, 2018).

1.1. Organization

The rest of the chapter is organized as follows. In Section 2 we present the
formulation of operator-based tangent vector fields in the smooth setting. We
then proceed to describe the discrete representation, its properties and some ap-
plications in Section 3, which is based on the paper that first introduced the
topic (Azencot et al., 2013). Then, in Section 4 we present a new, divergence
based discretization of the smooth setting, which allows for a more accurate repre-
sentation of composite operators, such as the Lie bracket operator, and we present
a few applications. We conclude with a brief outlook and some open questions in
section 5.

2. Smooth Functional Vector Fields

In this section we provide the definition of functional vector fields, or the
operator representation of tangent vector fields, in the smooth setting. For clarity
of the exposition we avoid fully rigorous definitions, and refer the interested reader
to the excellent book by Morita (2001) for a full treatment.

2.1. Notation

In the following, M is a smooth, orientable, compact and embedded surface,
and f,g,h : M → R are C∞ real valued functions on it. In addition, u,v
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are tangent vector fields on M, and 〈v,u〉 is a function M → R such that
〈v,u〉(p) = 〈v(p),u(p)〉p, for any point p ∈ M. Here, the inner product 〈·, ·〉p is
given by the Riemannian metric of M at p.

2.2. Directional Derivative of Functions

A tangent vector field v on M is given by a smooth assignment of a tangent
vector v(p) to every point p ∈ M. Such a vector field can be used to compute
the directional derivative of a smooth real valued function f : M → R. The
directional derivative function g :M→ R is given by:

g = 〈v,∇f〉, (1)

where ∇f is the gradient vector field of f.
Thus, given v, we can compute the directional derivative of any function f.

Intriguingly, the opposite is also true. If two vector fields agree on the direc-
tional derivative of any arbitrary function f, then the two vector fields are iden-
tical (Morita, 2001, Prop. 1.39). Hence, we can represent a vector field uniquely
by its directional derivative action, as is formalized in the next definition.

2.3. Functional Vector Fields

Definition 1. Given a tangent vector field v onM, the corresponding functional
vector field operator Dv is given by:

Dv(f) = 〈v,∇f〉. (2)

The functional vector field operator Dv is linear in the function it acts on, due
to the linearity of the gradient. Hence,

Dv(af + bg) = aDv(f) + bDv(g), (3)

for any two functions f,g :M→ R and any two constants a, b ∈ R.
We further define the dual functional vector field operator, which switches the

role of the function and the vector field.

Definition 2. Given a real valued function f :M→ R, the corresponding dual
functional vector field operator Df is given by:

Df(v) = Dv(f) = 〈v,∇f〉. (4)

Due to the linearity of the inner product, the dual operator is linear in its
vector field argument, with respect to both functions and constants. Thus,

Dh(fv + gu) = fDh(v) + gDh(u), (5)

for any two tangent vector fields u,v, and functions h,f,g :M→ R.
As discussed previously, a functional vector field operator uniquely encodes its

corresponding vector field. If the surface is embedded in R3, the vector field can
be easily extracted form the corresponding operator using the following Lemma.
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Lemma 1. Let v be a tangent vector field on M, and let Dv be its corresponding
functional vector field operator. Further, denote the embedding ofM by X :M→
R3, where X is given by the three coordinate functions X = (x1,x2,x3). Then:

Dv(xi) = vi, i ∈ (1, .., 3), (6)

where vi are the coordinate functions of v.

Proof. One approach to compute the gradient of a function M→ R is to extend
it to a function over R3, take its Euclidean gradient and project the result on
TpM, the tangent plane toM at p (Absil et al., 2009, Eq.(3.37)). Let (x1, x2, x3)
denote the canonical coordinates of R3. By the definition of X we have that
xi(p) = xi(p), for all the points p∈M, and therefore xi is the extension to R3 of
xi. Hence, we have that

(∇xi)(p) =
[
(∇xi)(p)

]
TpM

=
[∑3

j=1

∂xi
∂xj

(p)x̂j
]
TpM

,

where [·]TpM denotes projection on TpM and (x̂1, x̂2, x̂3) denote the canonical
directions in R3.

Note that for all p ∈M, ( ∂xi
∂xj

)(p) = δij, i.e., it equals 1 when i = j and 0

otherwise. Thus, we have:

〈v,∇xi〉(p) =
〈
v(p),

[∑3
j=1δijx̂j

]
TpM

〉
p

=
〈
v(p),

∑3
j=1δijx̂j

〉
, (7)

where the second equality holds since v is tangent to M, and we assumed that
the Riemannian metric is inherited from the standard inner product in R3.

Finally, by definition, v is given in coordinates by v(p) =
∑3

j=1 vj(p)x̂j.
Therefore: (

Dv(xi)
)
(p) = 〈v,∇xi〉(p) =

3∑
j=1

δijvj(p) = vi(p), (8)

which completes the proof.

2.4. Flow Maps

Tangent vector fields are closely related to self-maps ofM. Consider a particle
at a point p ∈M (see Figure 2). Given a tangent vector field v, we can ask where
will this particle be after time t, if its velocity is given by v. Such a particle will
trace a flow line γv(p)(t), t ∈ R of v on M, that starts at p for t = 0. This flow
line is also known as an integral curve, and it fulfills:

d

dt
γv(p)(t) = v(γv(p)(t)), γv(p)(0) = p, ∀t ∈ R. (9)

Similarly, the paths that all the points onM trace, for every t ∈ R, define a map,
in fact a diffeomorphism, from M to itself, known as the flow-map.
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Definition 3. The flow-map of v is denoted by ϕv,t :M→M, and is given by
ϕv,t(p) = γv(p)(t), for all p ∈M, t ∈ R.

For compact surfaces, the flow map is guaranteed to exist for any vector field
v and any t ∈ R (Morita, 2001, Thm 1.45). Furthermore, the flow maps have
additional structure, since (Morita, 2001, Prop. 1.42):

ϕv,t ◦ ϕv,s = ϕv,t+s, ∀t, s ∈ R. (10)

The group of diffeomorphisms {ϕv,t | t ∈ R}, with the group operation given by
composition, is known as the one parameter group of transformations generated
by v. By applying Equation (9) to all points p ∈ M, we get that the flow-maps
fulfill:

d

dt
ϕv,t = v(ϕv,t), ϕv,0 = Id. (11)

Finally, combining Equations (10) and (11), it is straightforward to see that the
inverse flow map is given by ϕ−1

v,t = ϕv,−t.

2.5. Functional Flow-maps

In previous chapters, Functional maps (Ovsjanikov et al., 2012) have played
an important role. Given a diffeomorphism T12 : M1 → M2, the correspond-
ing functional map takes functions on M1 to functions on M2. The functional
map is given by composition with the inverse of T12, and can be used to trans-
port functions between surfaces, even without the knowledge of the corresponding
pointwise map.

In the context of flow-maps, we can think of ϕv,t as the transporter of quan-
tities, and define the corresponding functional flow map.

Definition 4. The functional flow-map of v, denoted by φv,t, takes functions on
M to functions on M, and is given by:

φv,t(f)(p) = f(ϕv,−t(p)), ∀f :M→ R, p ∈M, t ∈ R. (12)

𝓋

𝑝

𝝋𝓋,𝒕ሺ𝑝ሻ

Figure 2: Illustration of a tangent vector field v and its flow ϕv,t.

7



v f )f(
1v,tφ )f(

2v,tφ

p

)p(1v,tϕ

)p(
2v,tϕ

Figure 3: Illustration of the transportation of a function f on the flow of a vector field v

(visualized using Line Integral Convolution), for two values of t = t1, t2.

See Figure 3 for an example of a function f transported on the flow of a vector
field v for two values of t, denoted by t1, t2. Consider, for example, the value of
the function φv,t1(f) at the dark blue point ϕv,t1(p) (Figure 3, center right). By
Definition 4 this value is φv,t1(f)(ϕv,t1(p)) = f(ϕv,−t1(ϕv,t1(p))) = f(p). Hence,
this value is equal to the value of the function f (Figure 3, center left) at the light
blue point p.

Functional flow-maps have some interesting properties. First, note that the
functional flow-maps fulfill the same composition rules as the flow-maps.

Lemma 2. Let {φv,t | t ∈ R} be the group of functional flow-maps corresponding
to the one parameter group of transformations ϕv,t generated by the tangent vector
field v. Then the following holds for any function f :M→ R:

φv,t(φv,sf) = φv,t+s(f), ∀t, s ∈ R, (13)

and in addition, φv,0f = f.

Proof. By definition we have for any point p ∈M:

φv,t(φv,sf)(p) = (φv,sf)(ϕv,−t(p)) = f(ϕv,−s(ϕv,−t(p))). (14)

By Equation (10) we get:

f(ϕv,−s(ϕv,−t(p))) = f(ϕv,−(t+s)(p)) = φv,t+s(f)(p). (15)

Finally, φv,0(f)(p) = f(ϕv,0(p)) = f(p), due to Equation (11), which completes
the proof.

Furthermore, the functional flow-map is closely related to the functional vector
field operator by differentiation with respect to t, as follows.

8



Lemma 3. Let {φv,t | t ∈ R} be the group of functional flow-maps corresponding
to the one parameter group of transformations ϕv,t generated by the tangent vector
field v. Then the following holds for any function f :M→ R (Morita, 2001, Eq.
(2.28)):

d

dt
φv,t(f)|t=0 = −Dv(f). (16)

We repeat the proof here, for completeness, and using our notations and defi-
nitions so far.

Proof. By the definition of φv,t and ϕv,t we have:

d

dt
φv,t(f)(p) =

d

dt
f(ϕv,−t(p))

=
〈
(∇f)(ϕv,−t(p)),

d

dt
ϕv,−t(p)

〉
Multivariate chain rule

=
〈
(∇f)(ϕv,−t(p)),−v(ϕv,−t(p))

〉
Eq. (11)

=− (Dvf)(ϕv,−t(p)) Def. 1,
(17)

and since ϕv,0 = Id, the result follows.

Finally, when both are considered as operators on functions, the functional
flow-map and the functional vector field operators commute, as formalized in the
following Lemma.

Lemma 4. Let {φv,t | t ∈ R} be the group of functional flow-maps corresponding
to the one parameter group of transformations ϕv,t generated by the tangent vector
field v, and let Dv be the corresponding functional vector field operator. Then, for
any function f :M→ R, and for any t ∈ R we have:

Dv(φv,tf) = φv,t(Dvf). (18)

Proof.

Dv(φv,tf) = − d

ds
φv,s(φv,tf)|s=0 Lemma 3

= − d

ds
φv,s+tf|s=0 Lemma 2

= − d

ds
φv,t(φv,sf)|s=0 Lemma 2

= φv,t(−
d

ds
φv,sf)|s=0 φv,t independent of s

= φv,t(Dvf) Lemma 3.

(19)
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These properties of the functional flow-maps allow us to derive a useful PDE
for the family of functions generated by the functional flow-maps.

Lemma 5. Let {φv,t | t ∈ R} be the group of functional flow-maps corresponding
to the one parameter group of transformations ϕv,t generated by the tangent vector
field v. Let f0 :M→ R, and define the time-varying function f : R ×M → R
by f(t) = φv,t(f0). Then the following holds:

d

dt
f(t) = −Dvf(t), f(0) = f0, ∀t ∈ R. (20)

Proof.
d

dt
f(t) =

d

dt
φv,t(f0) = definition of f(t)

=
d

ds
|s=0 φv,t+s(f0) =

=
d

ds
|s=0 φv,sφv,t(f0) = Lemma 2

=
d

ds
|s=0 φv,sf(t) = definition of f(t)

=−Dvf(t) Lemma 3.

(21)

Functional flow-maps enable us to work with functions and linear operators as
the main object of interest instead of points and maps. On smooth surfaces, the
two approaches are similar. However, when considering optimization problems on
discretized surfaces, represented by triangle meshes, there are inherent advantages
to using functions.

First, the discretization of the space of functions is well studied, and methods
such as finite elements are very effective at this task. Second, the space of functions
on a surface forms a linear vector space, which can be effectively represented using
a basis. Maps and points, on the other hand, are more difficult to deal with, due
to the non-linear and non-convex constraint which requires that each point is
mapped to a point that lies on the surface.

2.6. Lie bracket

Tangent vector fields have an additional important structure, denoted by the
Lie bracket. Given two tangent vector fields v,w, their Lie bracket [v,w] is a
tangent vector field, given by (Morita, 2001, Eq.(1.9)):

D[v,w]f = Dv(Dwf)−Dw(Dvf). (22)

When M is an embedded surface we can use Lemma 1 to get a coordinate ex-
pression for the Lie bracket.
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v u

t=0.125 t=0.25

Figure 4: (left) The vector field shown at the bottom row yields a zero bracket with respect to
the vector field shown at the top row. (center) The Lie bracket of two vector fields u, v encodes
the failure of their flows to commute. We use the vector fields shown on the left and on the
right for each shape, correspondingly. (right) Two non-commuting vector fields u, v (top) and
the transport of u over the differential of the flow of v for time t (bottom). Images on the left
and right are reused with permission from (Azencot et al., 2016).

Lemma 6. Let M be an embedded surface. If v,w are two tangent vector fields,
then the coordinate functions of [v,w] are:

[v,w]i = Dv(wi)−Dw(vi), i ∈ [1, .., 3], (23)

where vi,wi are the coordinate functions of v,w, respectively: v =
∑3

i=1 vix̂i,
and w =

∑3
i=1 wix̂i.

Proof. Let X : M → R3 be the embedding functions of M, X = (x1,x2,x3).
Then, according to Lemma 1, we have:

[v,w]i = D[v,w](xi) = Dv(Dwxi)−Dw(Dvxi) = Dv(wi)−Dw(vi). (24)

The Lie bracket defines a special relation between vector fields, known as
commutation. Two vector fields v,w commute if [v,w] = 0, and this holds if and
only if their flow-maps commute (Lee, 2012, Thm. 9.44), namely:

ϕv,s ◦ ϕw,t = ϕw,t ◦ ϕv,s, ∀s, t ∈ R. (25)

Figure 4 demonstrates the relationship between the bracket of two vector fields
u, v and the resulting flows. We consider the two vector fields on the bunny (left),
and the frog (right). The center figures show the flow line of v starting from a
point p for time t (blue) followed by the flow line of u (red), and then backward
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∂
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21],1−[→�U:σ
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Figure 5: Illustration of the construction of σ̄ : [−1, 1]2 7→ U , the inverse of a local chart σ,
using the flows of two commuting vector fields v,w in the neighborhood of a point p.

on v (green) and backward on u (black), all for time t. For the bunny, the two
vector fields commute and so do their flows, “closing” the rectangle. For the frog,
the vector fields do not commute, resulting in a mismatch of the original point p
and the final point, leading to interesting flow behavior on the right.

In the context of applications, the Lie bracket is important because of its
relation to finding local coordinates, or a local parameterization, onM. In appli-
cations such as curvature-aligned quadrangular remeshing (Bommes et al., 2009),
two tangent vector fields v,w are given, and we would like to find a local coor-
dinate chart σ : U → R2 for a sub-domain U ⊂ M, such that if σ is given by
the two functions (sv, sw), then the vector fields v,w are mapped by dσ to the
coordinate directions ∂

∂sv
, ∂
∂sw

, respectively.
An important result (Lee, 2012, Thm. 9.46) is that if the vector fields v,w

commute, then such a parameterization indeed exists. Given two linearly inde-
pendent commuting tangent vector fields v,w on an open subset U ⊂ M, we
can construct the local coordinate chart as follows (see Figure 5). Given a point
p ∈ U , there exists an ε > 0 such that the map σ̄ : (−ε, ε)2 → U , given by
σ̄(sv, sw) = (ϕw,sw(ϕv,sv(p)), is a diffeomorphism, and its differential maps the co-
ordinate directions ∂

∂sv
, ∂
∂sw

to the tangent vector fields v,w, respectively. Then,

the required coordinate chart is given by σ = σ̄−1.

3. Discrete Functional Vector Fields

In this section, we describe a discretization of the concepts that were presented
in the previous Section. The discretization approach follows the original presen-
tation of the method (Azencot et al., 2013). In this case, some (but not all) of
the properties from the smooth setting carry over to the discrete setting.
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3.1. Notation

In the following, M is an orientable, closed and embedded triangle mesh, where
M = (V , E ,F) are the sets of vertices, edges and faces, respectively, and we denote
by n = |V| and m = |F| the number of vertices and faces. The embedding of the
mesh in R3 is denoted by X.

Functions and vector fields. We use finite elements to represent discrete scalar
functions and tangent vector fields. Specifically, we use conforming piecewise
linear (PL) elements for functions, and piecewise constant (PC) elements for vector
fields. Thus, f, g, h : V → R are column vectors of length n that represent the
degrees of freedom of PL functions, and u, v : F → R3 are column vectors of
length 3m that represent PC vector fields. We also occasionally use piecewise
constant functions, which we denote by f, g, h : F → R, and they are column
vectors of length m.

Rotations. We denote by J t∈R3×3 the counter-clockwise rotation by π/2 in the
plane of the face t∈F , and by J ∈R3m×3m the block diagonal matrix that encodes
the rotations for all the faces.

Vectors to matrices. We use the bracket [·] operator to convert vectors in Rn and
Rm to diagonal matrices in Rn×n, Rm×m and R3m×3m respectively (replicating each
entry 3 times for the latter). The dimensions of the resulting matrix is inferred
from the context.

We additionally require an operator that encodes the face-wise multiplication
of a vector field by a piecewise constant function, which we denote by [·]• ∈ R3m×m.
Specifically, if w = [v]•f, then w(t) = v(t)f(t)∈R3,∀t∈F . The transpose of this
operator, [·]T• ∈ Rm×3m evaluates face-wise inner products, i.e. if f = [v]T•w, then
f(t) = 〈v(t), w(t)〉∈R.

Note that these operators have the following properties:

1. [·] is symmetric w.r.t its input and its argument, i.e. [f ]g = [g]f .
2. [·]• is linear in its argument, i.e. [v + w]• = [v]• + [w]•.
3. [·]T• is symmetric w.r.t its input and its argument, i.e. [v]T•w = [w]T• v.
4. [v]T• [w]• = [[v]T•w] ∈ Rm×m.
5. [v]•[w]T• ∈R3m×3m is a block diagonal matrix, with blocks of size 3× 3, that

encodes for every face t the outer product v(t)w(t)T ∈ R3×3.
6. [w]•f = [f]w ∈ R3m.

Areas and inner products. The vector of triangle areas and vertex areas are de-
noted by AF ∈Rm and AV ∈Rn, respectively. We take the vertex area as 1/3 of
the total area of its adjacent triangles. The L2 inner product between two PL
functions f, g, two PC functions f, g and two vector fields u, v are given by:

〈f, g〉L2 = fT [AV ]g, 〈f, g〉L2 = fT [AF ]g, 〈u, v〉L2 = uT [AF ]v. (26)
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Interpolation. The interpolation matrix IFV ∈ Rn×m interpolates quantities from

faces to the vertices, i.e., IFV (i, j) = AF (j)
3AV (i)

, iff vertex i belongs to face j and 0

otherwise. Similarly, IVF interpolates data from vertices to faces and is defined by
IVF = [AF ]−1(IFV )T [AV ] such that 〈f, IVFg〉L2 = 〈IFV f, g〉L2 holds.

Differential operators. We additionally require discrete gradient grad∈R3m×n and
divergence div∈Rn×3m operators. Specifically we use:

(grad f)(t) =
1

2AF(t)

∑
vi∈t

fvi J t etvi , t ∈ F , (27)

where etvi is the directed edge opposite to the vertex vi in the triangle t =
(v1, v2, v3) ∈ F , vi ∈ V (see Figure 6). Alternatively, this operator can be writ-
ten as:

grad =
1

2
[AF ]−1 J XE , (28)

where XE ∈R3m×n is a matrix that encodes the edge vectors of M . Specifically,
XE(t, vi) = etvi = X(vi+2)−X(vi+1) ∈ R3, i ∈ 1, .., 3.

∈ F)3, v2, v1v= (t

∈ Viv

2v

3v

1v

1tve

1tvetJ

Figure 6: Illustration of the computation of the gradient operator in Equation (27).

The discrete divergence is given in terms of the gradient operator:

div = −[AV ]−1 gradT [AF ]. (29)

Note, that these operators are identical to the standard ones in geometry process-
ing, see e.g. (Botsch et al., 2010, Chapter 3). We would like to note two important
properties that follow directly from the discrete definitions of functions, vector
fields, L2 inner products and differential operators that we use.

3.1.1. Divergence free vector fields

In the smooth setting, for all v = J ∇f we have that∇·v = 0. The analogous
property holds when using the discrete operators, as was shown by Polthier and
Preuss (2003), i.e., let v = J grad f then div v = 0.
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3.1.2. Discrete Integration by Parts

In the smooth setting, for a closed surface, the following holds (Petersen et al.,
2006, pp. 382):

〈v,∇f〉L2 + 〈∇ · v,f〉L2 =

∫
M
〈v,∇f〉 da+

∫
M

f(∇ · v) da =

∫
M
∇ · (fv) = 0.

(30)
Analogously, using our definitions, we have the following Lemma. It was proved
by Azencot et al. (2013), and we repeat the proof here using our notation.

Lemma 7. For a closed triangle mesh M , a function f and a vector field v, the
following holds:

〈v, grad f〉L2 + 〈div v, f〉L2 = vT [AF ] grad f + fT [AV ] div v = 0. (31)

Proof. The proof follows directly from the definition of grad in Equation (29):

fT [AV ] div v = −fT [AV ][AV ]−1 gradT [AF ]v =

= −(grad f)T [AF ]v = −vT [AF ] grad f,
(32)

where in the last step we used the fact that a scalar is the transpose of itself, and
that [AF ] is diagonal and thus symmetric.

Note that we did not use the product rule ∇ · (fv) = 〈v,∇f〉 + f(∇ · v),
which was used to show integration by parts in the smooth case. This is a much
stronger condition, since it is defined pointwise, and in fact it does not hold for
our definition of discrete differential operators.

3.2. Directional Derivative of Functions

Analogous to the smooth case, we can define the directional derivative of a
PL function f ∈ Rn in the direction of a PC vector field v ∈ R3m. Unlike the
smooth case, the resulting function is not as smooth as f , but is instead piecewise
constant. The directional derivative g : F → R is given by:

g(t) = 〈v(t), (grad f)(t)〉, ∀t ∈ F , (33)

or equivalently:
g = [v]T• grad f ∈ Rm. (34)

In the discrete case, the directional derivative function g is not in the same space
as the input function f , and therefore the linear operator that encodes directional
derivatives is rectangular. In the following, we use an interpolation approach to
address this issue, whereas in the next Section we consider a different discretiza-
tion.
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3.3. Functional Vector Fields

Definition 5. Given a tangent vector field v on M , we define two corresponding
functional vector field operators:

DFv = [v]T• grad ∈ Rm×n, (35)

DVv = IFV D
F
v ∈ Rn×n. (36)

The operator DFv does not use interpolation, and thus retains all the infor-
mation about v. However, this operator is rectangular, and therefore cannot be
used as is in settings which require square matrices, e.g. for flow-maps. In such
settings, we will use DVv .

In the discrete case, the functional vector field operators are simply matrices,
and therefore linear in their function argument with respect to constants.

Lemma 8. The sparsity structure of DFv and DVf are given by the following.

1. If the entry (t, i), t∈F , i∈V in DFv is non-zero, then i∈ t, i.e. the vertex i
belongs to the triangle t.

2. If the entry (i, j), i, j ∈V in DVv is non-zero, then either i= j or (i, j)∈ E,
i.e. (i, j) is an edge in M .

Proof.

1. Let fi ∈ Rn be a PL function such that fi(j) = 1 if and only if i= j and
0 otherwise, and let gi = DFv fi. If the entry (t, i) is non-zero, then gi(t) is
non-zero. By the definition of DFv , we have that gi(t) = 〈v(t), (grad fi)(t)〉.
Since grad fi is non zero only for triangles t which are neighbors of the vertex
i, the result follows.

2. If the entry (i, j) is not zero, then there should exist an entry (i, t) in IFV
and an entry (t, j) in DFv which are not zero, for some triangle t ∈F . By
the definition of IFV and the first part of the proof, this implies that both i
and j belong to the triangle t. This is possible only if i = j or (i, j)∈E .

Definition 6. Given a function f : V → R, the corresponding dual functional
vector field operators are given by:

D
F
f = [grad f ]T• ∈ Rm×3m, (37)

D
V
f = IFV D

F
f ∈ Rn×3m. (38)

Duality. As in the smooth case, we have that D
F
f (v)=DFv (f), since [grad f ]T• v=

[v]T• grad f , and similarly for D
V
f .
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Linearity. Linearity with respect to constants follows since the operators are ma-
trices. Linearity with respect to functions, however, is more subtle in the discrete

case, and holds only for D
F
f . We have that:

D
F
h ([v]•f + [u]•g) = [gradh]T• [v]•f + [gradh]T• [u]•g = [D

F
h v]f + [D

F
h u]g, (39)

for any two tangent vector fields u, v, and functions h : V → R, f, g : F → R.

Reconstruction. In the discrete case, in general, full reconstruction given the em-
bedding X is possible only for DFv . We have:

Lemma 9. Let v be a tangent vector field on M , and let DFv be its corresponding
functional vector field operator. Further, denote the embedding of M by X : V→
R3, where X is given by the three coordinate functions X = (x1, x2, x3). Then:

DFv (xi) = vi, i ∈ (1, .., 3), (40)

where vi∈Rm are the coordinate functions of v.

Proof. Let Mt denote the plane of the triangle t, and extend v(t) to a constant
vector field vt on that plane. Since Mt is a smooth surface, and vt a smooth
vector field, we can apply Lemma 1, and deduce that Dvt

(xi) = vti. Since vt is
constant, Dvt

(xi)(p) = DFv (xi)(t) = vti(p) = vi(t), ∀t∈F , p∈Mt.

3.4. Flow-Maps

Carrying the flow-map definition presented in Definition 3 to the discrete case
introduces some challenges, due to the discontinuity of piecewise constant vector
fields at mesh edges. In fact, tracing vector fields robustly on a triangle mesh is
a separate and important research topic, see e.g. the work by Ray et al. (Ray
and Sokolov, 2014) and citations within. We therefore avoid defining discrete flow
maps, and define directly discrete functional flow-maps.

3.5. Functional Flow-maps

In Lemma 5, we have seen that given a one parameter group of transformations
{ϕv,t | t ∈ R} generated by the tangent vector field v, its corresponding group of
functional flow-maps φv,t, and a function f0, then the following holds:

d

dt
f(t) = −Dvf(t), f(0) = f0, ∀t ∈ R, (41)

where f(t) = φv,t(f0).
In the discrete setting, we mimic functional flow maps, by defining operators

that generate solutions to the analogous discrete equation.
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Definition 7. Let v be a tangent vector field on M , and DVv its corresponding
functional vector field. The discrete functional flow map of v is given by:

Φv,t = exp(−tDVv ) ∈ Rn×n, ∀t ∈ R, (42)

where exp is the matrix exponential.

Lemma 10. Let {Φv,t | t ∈ R} be as in Equation (42), for the tangent vector field
v. Let f0 : V → R, and define the time-varying function f : R × V → R by
f(t) = Φv,t f0. Then the following holds:

d

dt
f(t) = −DVv f(t), f(0) = f0, ∀t ∈ R. (43)

Proof. The system of linear differential equations in Equation (43) is a matrix
ODE, which is known to have a unique solution (Godunov, 1997, Thm 1), given
by (Hochbruck and Ostermann, 2010, Eq. (1.4)) f(t)=exp(−tDVv ) f0 =Φv,t f0.

Discrete functional flow-maps allow us to use flow-related properties without
explicitly computing the discrete flow-map. Furthermore, all the operations are
not geometric, but algebraic, thus we can leverage various algebraic tools such
as spectral analysis, representation in a reduced basis, etc. While computing the
matrix exponential is challenging numerically (Moler and Van Loan, 2003), there
exist efficient methods for computing the product of the matrix exponential with
a vector (Al-Mohy and Higham, 2011), which is the only computation that we
need in order to compute the functional flow of a given function f0. The flow in
Figure 3 for example, was generated using this approach.

Using this definition, additional properties of functional flow maps carry over
to the discrete case, due to the properties of the matrix exponential.

Lemma 11. Let {Φv,t | t ∈ R} be the group of functional flow-maps generated by
the tangent vector field v. Then the following hold:

1. Identity at 0: Φv,0 = Id.

2. Composition: Φv,tΦv,s = Φv,t+s, ∀t, s ∈ R.

3. Derivative at 0: d
dt

Φv,t|t=0 = −DVv .

4. Commutativity: DVv Φv,t = Φv,tD
V
v .

Proof. All the properties follow directly from Φv,t = e−tD
V
v .

1. Trivial since e0 = Id.

2. Follows from e−tD
V
v e−sD

V
v = e−(t+s)DVv .

3. We have that e−tA = Id− tA+ 1
2
t2A2 +O(t3), thus d

dt
e−tA|t=0 = −A.

18



4. We have that e−tA =
∑∞

k=0
1
k!

(−tA)k, thereforeAe−tA =
∑∞

k=0
1
k!

(−t)kAk+1 =
e−tAA.

In addition to the properties we have shown in the smooth case, additional
properties are easy to show in the discrete finite dimensional case. For example,
we have the following:

Lemma 12. Let {Φv,t | t ∈ R} be the group of functional flow-maps generated by
the tangent vector field v, and let O∈Rn×n be a real matrix. Then the following
holds:

DVvO = ODVv ⇔ Φv,tO = OΦv,t ∀t ∈ R. (44)

Proof.

⇒ If DVvO = ODVv then it is easy to see by induction on k that for all k ≥ 0
we have (DVv )kO = O(DVv )k. Hence, O also commutes with polynomials in
DVv and the result follows.

⇐ Taking the derivative with respect to t on both sides at t = 0, we have:

d

dt
Φv,tO|t=0 =

d

dt
OΦv,t|t=0 ∀t ∈ R

d

dt
Φv,t|t=0O = O

d

dt
Φv,t|t=0 ∀t ∈ R O does not depend on t

−DVvO = −ODVv ∀t ∈ R Lemma 11(3)
(45)

3.6. Lie bracket

Analogously to the smooth case, we define the Lie bracket operator of two
tangent vector fields u, v on M as the commutator of their square functional
vector field operators:

DV[v,w] = DVvD
V
w −DVwDVv . (46)

As in the smooth case, we have the relationship between the functional flow
maps and the Lie bracket operator.

Lemma 13. The functional flow maps of two vector fields commute if and only
if their Lie bracket vanishes:

Φv,tΦw,s = Φw,sΦv,t, ∀s, t∈R ⇔ DV[v,w] = 0. (47)
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Proof. First, set O = Φw,s, and apply Lemma 12, to get that:

Φv,tΦw,s = Φw,sΦv,t, ∀s, t∈R ⇔ DVv Φw,s = Φw,sD
V
v , ∀s ∈ R. (48)

Now, set O = DVv , and apply Lemma 12 again, yielding:

DVv Φw,s = Φw,sD
V
v , ∀s∈R ⇔ DVvD

V
w = DVwD

V
v . (49)

Unfortunately, unlike in the smooth case, the operator DV[v,w] is not a functional

vector field. This is easy to see when considering the sparsity structure of DVv .
As shown in Lemma 8, DVv has a 1-ring neighborhood sparsity structure. When
two such matrices are multiplied, the resulting matrix has a 2-ring neighborhood
sparsity structure, and therefore, cannot in general be a functional vector field.
In the smooth case, these second order dependencies cancel out, however in the
discrete case they do not.

To extract a vector field from DV[v,w] it is still possible to use the embedding

and compute u = DV[v,w]X, where u ∈ Rn×3. However, this yields a vector field
on the vertices, which is only approximately tangent to the input surface. This
approach was used by Azencot et al. (2018) to numerically simulate the EPDiff
flow on a triangulated mesh.

4. Divergence-based Functional Vector Fields

As we have seen, discrete functional vector fields are quite powerful, allowing
us to represent complicated geometric objects such as the flow map, using simple
algebraic operations on matrices, such as computing the matrix exponential.

There are however some properties of the smooth case that do not carry over
nicely to the discrete case. One such example is the Lie bracket described in
Section 3.6, which fails to yield a discrete functional vector filed as in the smooth
case. In this section, we propose an additional discretization of the functional
vector field operator, which, combined with the previous one, allows us to alleviate
some of the inconsistencies in the discrete case.

4.1. Smooth DFVF

A well-known result from Riemannian geometry (see e.g., (Petersen et al.,
2006, pg. 58)), the product rule for the product of functions and vector fields, is
given by:

f∇ · v + 〈∇f,v〉 = ∇ · (fv), (50)

where this equation holds for any point p∈M. Thus, instead of directly working
with gradients of functions, we define the following.
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Definition 8. Given a tangent vector field v onM, the corresponding divergence-
based functional vector field (DFVF) operator D̃v is given by:

D̃v(f) = ∇ · (fv)− f∇ · v. (51)

In the smooth case, the definitions in equations (2) and (51) are equivalent,

i.e. Dv(f) = D̃v(f) for all functions f. In the discrete case, however, this choice
leads to different discrete operators.

4.2. Discrete DFVF

Definition 9. Given a tangent vector field v on M , the corresponding divergence-
based functional vector field (DFVF) operators are given by:

D̃Fv = div[v]• − [div v]IFV ∈ Rn×m,

D̃Vv = div[v]•I
V
F − [div v] ∈ Rn×n.

(52)

The corresponding dual operators are given by:

D̃Ff = div[f]− [IFV f] div ∈ Rn×3m,

D̃Vf = div[IVFf ]− [f ] div ∈ Rn×3m,
(53)

and we have: D̃Fv f = D̃Ff v and D̃Vv f = D̃Vf v.

The main advantage of the divergence-based rectangular operator, is that it
can be multiplied with the rectangular functional vector field operator that we
have introduced earlier, to yield a better discretization of the Lie bracket operator.

4.3. Mixed Lie bracket operator

Definition 10. The mixed Lie bracket operator of two tangent vector fields v, w
is given by:

DF[v,w] = D̃Fv D
F
w − D̃FwDFv ∈ Rn×n. (54)

The mixed lie bracket operator uses both the discrete divergence and discrete
gradient operators, to yield a better discretization, that has some interesting prop-
erties.

Lemma 14. The operator DF[v,w] can be written as:

DF[v,w] = divB(v, w) grad−[div v]DVw + [divw]DVv , (55)

where B(v, w) = [v]•[w]T• − [w]•[v]T• is a 3m× 3m block diagonal matrix, encoding
the outer products v(t)w(t)T − w(t)v(t)T per face t∈F .
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Proof.

DF[v,w] = (div[v]• − [div v]IFV )[w]T• grad−(div[w]• − [divw]IFV )[v]T• grad

= div[v]•[w]T• grad−[div v]IFV [w]T• grad− div[w]•[v]T• grad +[divw]IFV [v]T• grad

= div([v]•[w]T• − [w]•[v]T• ) grad−[div v]IFV [w]T• grad +[divw]IFV [v]T• grad

= div([v]•[w]T• − [w]•[v]T• ) grad−[div v]DVw + [divw]DVv

= divB(v, w) grad−[div v]DVw + [divw]DVv .
(56)

We can further simplify the operator B as follows.

Lemma 15. Let B(v, w) be the operator defined in Lemma 14. Then the following
holds:

B(v, w) = [[v]T• J w]J . (57)

Proof. By the definition in Lemma 14 we have that B(v, w) at the triangle t∈F
depends only on the values of v, w at t. Let ξi∈R3, i∈1..3 be an orthonormal frame
at the triangle t, such that ξ3 is in the normal direction, and set B = ( ξ1 ξ2 ξ3 ).

Note, that the rotation by π/2 in the triangle t is given by J t = B
(

0 −1 0
1 0 0
0 0 0

)
BT

Now, let v(t) = B
(
a
b
0

)
, w(t) = B

(
c
d
0

)
be the representations of v(t), w(t) in this

basis, respectively. Then B(v, w)(t) given by

B(v, w)(t) = B
(( a

b
0

)
( c d 0 )−

(
c
d
0

)
( a b 0 )

)
BT

= B
(

0 ad−bc 0
bc−ad 0 0

0 0 0

)
BT

= (bc− ad)B
(

0 −1 0
1 0 0
0 0 0

)
BT

= ( a b 0 )
(

0 −1 0
1 0 0
0 0 0

)(
c
d
0

)
J t

= ( a b 0 )BTB
(

0 −1 0
1 0 0
0 0 0

)
BTB

(
c
d
0

)
J t

= v(t)T J tw(t)J t

= 〈v(t),J tw(t)〉 J t .

(58)

Since this holds for every triangle t, the result follows by the definitions of the [·]T•
and [·] operators.

4.3.1. Sparsity structure

Using Lemma 14, we can deduce the sparsity structure of the mixed Lie bracket
operator.
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Figure 7: Applying the Lie bracket operator DV
[v, u] to the i-th eigenfunction ϕi of the Laplace-

Beltrami operator, leads to visible oscillations (bottom), whereas when using the mixed Lie
bracket DF

[v,u] the results are smoother (top).

Lemma 16. The mixed Lie bracket operator DF[v,w] has a 1-ring sparsity structure.

I.e, if the entry (i, j) is non-zero, then either i = j or (i, j)∈E.

Proof. The first component, up to diagonal mass matrices and constants, has the
structure of gradT B(v, w) grad. As we have shown earlier, grad has a non-zero
entry (t, i) only if i∈ t. The matrix B has no effect on the sparsity structure, since
it is block diagonal, and does not have mixed entries for two different triangles.
Hence, if (i, j) is non-zero in the first component, then there exists a triangle t
such that i ∈ t and j ∈ t, therefore either i= j or (i, j)∈E . Therefore, the first
component has a 1-ring sparsity structure. The last two components are formed
by the multiplication of a diagonal matrix with a 1-ring sparse matrix, according
to Lemma 8, and therefore are also 1-ring sparse. Hence, DF[v,w] is the sum of
1-ring sparse matrices, and the result follows.

The sparsity structure of the Lie bracket operator is of great importance in
practice. For example, when applying the operator to a smooth function (e.g. the
first few eigenfunctions of the Laplace-Beltrami operator), the mixed Lie bracket
operator DF[v,u] yields a smooth function, whereas the operator from Azencot et al.

(2013), DV[v,u], exhibits visible oscillations (see Figure 7).
Furthermore, one of the most useful applications of the functional vector field

operator is transporting functions on flows of vector fields using the functional flow
map, e.g., as was done in Azencot et al. (2014b, 2015b) for fluid simulation. This
computation is done, as described in Definition 7, by evaluating f(t) = e−tDvf0.
Thus, powers of Dv are involved in the computation, and the wrong sparsity
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]v,u[
VD

]v,u[
FD

Figure 8: Transporting a function using the bracket operator DV
[v,u] leads to more discretization

error (bottom) compared to computing transport using the mixed operator DF
[v,u] (top).

structure can generate considerable discretization noise during function transport,
as can be seen in Figure 8.

4.3.2. The Lie bracket of divergence-free vector fields

Consider the special case when the smooth vector fields u,v are gradients of
functions rotated in the tangent plane by π/2, namely v = J ∇f,u = J ∇g.
Then, it is well known (Arnold, 1989, Appendix 2) that [v,u] = J∇{f,g},
where {f,g} = 〈J ∇f,∇g〉 is known as the Poisson bracket of the functions
f,g. Hence in the smooth case, the following holds:

D[v,u]h = 〈∇h,J ∇{f,g}〉 = −D̃J ∇h{f,g}, (59)

where the first equality is by the definition of D , and the second by multiplying
both sides of the inner product by J and using the definition again.

In the discrete setting using our operators, we have the following result.

Theorem 1. Let v = J grad f, u = J grad g, and define {f, g}=〈J grad f, grad g〉,
analogously to the smooth case. Then the following holds:

DF[v,u]h = −D̃FJ gradh{f, g}. (60)

Proof. First, note that div v = div u = 0, as was discussed in section 3.1.1. Hence,
the last two addends in Equation (55) are zero. Thus, from Lemma 15, for any
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Figure 9: The extrinsic extraction of the commutator vector field yields similar results on
a uniformly tessellated mesh (top) and a highly non uniform tessellation of the same model
(bottom).

function h we have,

DF[v,u]h = div([[v]T• J u]J ) gradh

= div([[J grad f ]T• J J grad g]J ) gradh

= − div[[J grad f ]T• grad g]J gradh

= − div[{f, g}]J gradh

= − div[J gradh]•{f, g}
= −D̃FJ gradh{f, g},

(61)

where in the step before last we used Property 6 of the bracket operators (see
Section 3.1), and in the last step we used again the fact that divJ gradh = 0.

4.3.3. Extraction of the commutator vector field

Given the operator DF[v,w], it is possible to extract a corresponding vector field

by taking u = DF[v,w]X ∈Rn×3. While this procedure results in a vector field on
the vertices, which is not guaranteed to be tangent to the surface, in practice
this procedure seems to yield a satisfactory result. We show in Figure 9 the
robustness this extraction to the triangulation of the mesh. Given two fields on
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a smooth mesh, we compute their bracket and show its reconstruction in the
top row. The bottom row shows the same computation, but on a low resolution
uniform sampling of the original mesh, which contains many skinny triangles.
Note that the resulting vector fields are similar in both cases.

4.3.4. Limitation: loss of group structure

While the sparsity structure of DF[v,u] is the correct one, we do not have a

result linking it back to a corresponding vector field w, such that DVw = DF[v,u].
Furthermore, the result from Lemma 13 that links a vanishing Lie bracket to the
commutation of the functional flows also does not hold, since the separate flows
are no longer well defined. It remains an open question whether one can design
discrete functional vector fields, and a corresponding Lie bracket operator, such
that both the group structure, and the closure under bracket properties hold.

4.4. The Lie bracket as a linear transformation on vector fields

In some applications, instead of computing DF[v,w] for two given vector fields,
we wish to compute a vector field w whose bracket with v fulfills some property,
e.g. its norm is minimal. We therefore define the following operator.

Definition 11. Given a vector field v, the operator adv : R3m → Rn×3 is given
by:

adv(w) = DF[v,w]X. (62)

Note that adv is linear, and can be written in the following concise form.

Lemma 17. The operator adv can be written as:

adv =

D̃Fv 0 0

0 D̃Fv 0

0 0 D̃Fv

−
D̃Fv1

D̃Fv2

D̃Fv3

 ∈ R3n×3m , (63)

where vi∈Rm are the coordinate functions of v.

Proof. From Lemma 9, we have that DFv xi = vi, i∈ 1, .., 3. Hence, from Defini-
tions 9 and 10 we have:

DF[v,w]xi = D̃Fv wi − D̃Fwvi = D̃Fv wi − D̃Fvi
w. (64)

The result follows, by considering all three components, and taking w =
(

w1
w2
w3

)
.

Note, that one could potentially apply interpolation and projection on adv to
obtain a vector field on the faces.
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4.4.1. Application: commutation-guided rescaling

In parameterization applications it is often required that the parameterization
aligns with two direction fields, which are often computed from the curvature
directions of the surface. However, given two arbitrary vector fields, their flows
generate a parameterization only if they commute. Hence, we can formulate the
following optimization problem for the smooth case. Given two vector fields v,u
find a smooth scalar function f such that ‖[v,fu]‖L2 is minimal:

min
f

{
1

2

∫
M

∥∥[v,fu]
∥∥2

d a+
α

2

∫
M

|∇f|2 d a

}
(65)

subject to

∫
M

|f|2 d a = 1. (66)

Our discrete framework allows for an efficient evaluation of the above expres-
sion by computing the eigenvectors of the matrix:

E = F (v, u)TF (v, u) + αL ,

where F (v, u)f discretizes the smooth action on functions [v,fu], and is given
by F (v, u) = adv[u]•I

V
F , and L is the standard Laplace–Beltrami operator, given

by L = − div grad.
Figure 10 illustrates the result this procedure. Here, v is a smooth vector

field with unit norm, and u is its rotation by π/2. The two fields have non-
zero bracket, as the color coding of the norm of [v, u] shows, where the bracket’s
norm is concentrated around the singularity locations. Using the optimization
problem mentioned previously, we find a function ϕ which minimizes ‖[v, ϕu]‖2

L2 .
The resulting norm is smaller and more evenly distributed, as can be seen in the
rightmost image (see e.g. the tips of the fingers).

4.4.2. Application: As-Commuting-As-Possible vector fields

Instead of optimizing for a scalar when two directions are given as above, we
are also interested in finding a set of vector fields which commute with respect to
another vector field v. Since the linear operator adv encodes the bracket operation
on vector fields, we can easily extract commuting fields by computing its kernel.
Notice that v itself lies in the discrete kernel, by construction. Unfortunately, this
is also true for any vector field which is parallel to v. As the set of discrete com-
muting fields contains many non-smooth vector fields (e.g., any subset of vectors
in v can be rotated by π), we add a regularizer term to the energy expression. We
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Figure 10: Two smooth vector fields with non zero bracket [v, u] and a smooth rescaling function
ϕ which minimizes ‖[v, ϕu]‖2L2 . Note that after rescaling the bracket’s norm is smaller and more
evenly distributed on the surface (see e.g. the tips of the fingers).

formulate the following optimization problem for the smooth case:

min
u

{
1

2

∫
M

‖ adv u‖2 d a+
λ

2

∫
M

‖∇u‖2 d a

}
subject to

∫
M

‖u‖2 d a = 1,

where ∇ denotes here the covariant derivative of vector fields. In the discrete
setup, the above equation is expressed as an eigenvalue problem of the following
sparse matrix:

E = adTv adv +λL ,

where L is the vector Laplacian. We used the discrete connection Laplacian with
a 1-ring neighborhood of faces given by Singer and Wu (2012), however, any other
vector Laplacian can be used instead, e.g., the one suggested by Knöppel et al.
(2013). Since we are interested in tangent vector fields, we further modify the
matrix E which is of size 3m× 3m by EB = BTEB, where B ∈ R3m×2m encodes
an arbitrary orthonormal basis per face. Figure 11 shows a collection of vector
fields which are approximately commuting with a given one, computed using this
approach.

4.5. Integrating the Lie bracket operator

The functional flow-map defines a discrete flow-map of a vector field v, by
using the matrix exponential of DVv . Applying the functional flow-map allows us
to transport functions on the flow of v. Similarly, we use the matrix exponential
of adv, to transport vector fields on the flow of v. To that end, we define the
following operator:

AdΦv,t = exp
(
t[IVF ] adv

)
∈ R3m×3m , (67)
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Figure 11: As-commuting-as-possible vector fields, with respect to the vector field on the left,
the blue points are the singularities.

where [·], replicates the input matrix 3 times along the diagonal.
The discrete approximation given in Eq. (67) is potentially useful in the con-

text of fluid simulation. Indeed, while ideal fluids on surfaces can be simulated
using function transport as was shown in Azencot et al. (2014b), the situation
for ideal fluids in volume is more involved as it includes vectorial transport. For
instance, Elcott et al. (2007) simulated fluids on tetrahedral meshes by advecting
the vorticity field over the flow lines of the velocity field. Since our operators
can be easily adapted to tetrahedral meshes, an operator related to AdΦv,t can be
similarly used to integrate the volumetric Euler equations. This is an interesting
direction for future work.

4.5.1. Application: Interpolation of vector fields

The flow transportation machinery allows us to interpolate between two vector
fields in a more intuitive way than pointwise interpolation. Specifically, consider
the vector fields u0 and u1 shown in Figure 12. They both have two singularities:
one visible on the back, and another one on the left leg. If we simply interpolate
the vector fields pointwise, we would get two singularities on the back (Figure 12
(left)).

However, if there exists another vector field v, with a corresponding flow Φv,t,
such that the singularity of u0 is mapped to the singularity of u1 under the map
Φv,1, then we can transport both vector fields on the flow of v and combine the
result to get the interpolated vector field ut. Specifically, for t ∈ [0, 1]we use:

ut = (1− t) AdΦv,t u0 + tAdΦv,t−1 u1. (68)

A few frames from the result are shown in Figure 12. Note, that for t = 0 and
t = 1 we get u0 and u1, respectively, as expected, and for intermediate t values we
get a smooth interpolation of both the location of the singularity and the behavior
of the vector field.
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Figure 12: Interpolating between the vector fields u0 and u1 by transporting both on the flow
of v. See the text for details.

It is worth noting that given two arbitrary vector fields, it is in general a
difficult problem to find a corresponding vector field v which will transport u0 to
u1 in a meaningful way. However, we believe that such a problem could perhaps
be treated using optimal transportation machinery, as has previously been done
for function flow in Solomon et al. (2014). Hence, our vector field transport could
potentially be a key ingredient in extending such methods to vector fields.

4.6. Outlook

The mixed operators we have defined could potentially find multiple appli-
cations in geometry processing. Commuting flows can be used for local param-
eterization, and vector field transport could be used for numerically simulating
partial differential equations, or as a building block in more complex setups for
computing optimal transportation flows. Furthermore, the ad operator can be
used to discretize the directional derivative of the matrix exponential, potentially
allowing to compute a time-varying vector field whose flow corresponds to a given
map.

5. Conclusion and Future Work

The algebraic approach presented in this chapter, in which tangent vector fields
are represented globally instead of locally, as linear operators instead of pointwise
directions, has proven to be beneficial in many applications, and provides ample
opportunity for future work.

From the theoretical perspective, the most interesting open question is whether
the space of tangent vector fields on a triangle mesh, and the corresponding flows,
can be discretized such that the properties of the smooth case carry over to the
discrete setting. Specifically, in the smooth case, the flows and tangent vector
fields form a Lie group and a Lie algebra, respectively. In the discrete case, it
would be most natural to describe these using a matrix Lie group and algebra.
The answer to this question hinges on finding a definition of directional derivative
operators, whose commutator is again a tangent vector field, as in the smooth
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case. The mixed Lie bracket that we have presented in Definition 10 has some
of the required properties, e.g. the 1-ring sparsity structure, but not all. Finding
such a definition, or proving it cannot exist, remains an open question, to the best
of our knowledge.

From the practical perspective, the operators described in this chapter are ripe
for use in geometry processing applications. The most obvious use case is param-
eterization using commuting tangent vector fields. Other potential applications
include vector field tracing, vector field visualization, and numerical simulation of
PDEs.
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