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Abstract
In this paper we propose a method for analyzing and visualizing individual maps between shapes, or collections of
such maps. Our method is based on isolating and highlighting areas where the maps induce significant distortion
of a given measure in a multi-scale way. Unlike the majority of prior work which focuses on discovering maps
in the context of shape matching, our main focus is on evaluating, analyzing and visualizing a given map, and
the distortion(s) it introduces, in an efficient and intuitive way. We are motivated primarily by the fact that most
existing metrics for map evaluation are quadratic and expensive to compute in practice, and that current map
visualization techniques are suitable primarily for global map understanding, and typically do not highlight areas
where the map fails to meet certain quality criteria in a multi-scale way. We propose to address these challenges
in a unified way by considering the functional representation of a map, and performing spectral analysis on this
representation. In particular, we propose a simple multi-scale method for map evaluation and visualization, which
provides detailed multi-scale information about the distortion induced by a map, which can be used alongside
existing global visualization techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: — Shape Analysis.

1. Introduction

Maps or correspondences are ubiquitous in geometry pro-
cessing. The presence of a map between a pair of spaces en-
ables a wide variety of applications in domains as diverse as
shape parametrization, animation, reconstruction and explo-
ration among many others. Perhaps the most crucial property
of a correspondence is that it allows the transfer of infor-
mation such as labels or parametrization from one space to
another. It is therefore not surprising that computing and an-
alyzing maps lies at the essence of a wide range of geometry
processing applications.

At the same time manipulating and understanding maps
between shapes, as objects in their own right, is often chal-
lenging. This is not only because the number of possible cor-
respondences between a pair of discrete shapes is exponen-
tial but also since, even when given a correspondence or a
map between a pair of shapes, it is not easy to represent it in
a simple and intuitive form. Indeed, even visualizing a map
between a pair of shapes in a way that would highlight its
major properties is far from trivial.

For example, consider the two cat shapes and a map be-
tween them shown in Figure 2. This map has a low distor-
tion in terms of geodesic distance preservation, therefore we

Figure 1: Given a point-to-point map between a pair of
shapes (left), our method allows to identify and visualize
major problematic areas in a multi-scale fashion (middle and
right), where the corresponding points share the same color.

would expect it to be a “good” map. When visualizing this
map, a common approach would be to either draw lines be-
tween corresponding points (a), or use the coordinate (x,y,z)
functions on the source shape for representing corresponding
points (b). Although both of these methods provide a good
global understanding of the map, indicating that it roughly
puts in correspondence the appropriate parts, neither of these
methods easily identify problematic regions. An alternative
approach would be to display some local distortion measure
such as area distortion (c), or a smoothed area distortion (d).
However, this also does not help to identify a major problem
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(a) (b) (c) (d) (e)

Figure 2: (a) map rendered as lines joining corresponding points, (b) XYZ coordinates rendered as RGB on shape 2, and
transferred to shape 1 through a given map. Both methods make it difficult to identify problematic areas. Visualizing local area
distortion (c), or its smoothed version and showing the map at points attaining maximum values (d) is noisy and uninformative.
(e) Our method computes functions which identify problematic regions, here the neck region is mapped to the nose.

in this map, visualized by our method in (e): the cat neck
is mapped to the nose. A similar problem can be seen for a
“good’ map in Figure 1, where we identify that areas on the
cat’s chest are mapped to the legs.

In general, constructing a multi-scale method for map
evaluation, visualization and exploration is difficult when us-
ing the classic representation of a map as a correspondence
between points. In this case one option would be to use a
quadratic quality criterion (e.g. geodesic distance preserva-
tion between pairs of points). However, such criteria are usu-
ally global, in the sense that local shape changes, can in-
duce large distortions of distances for pairs of points every-
where on the shape. Furthermore, quadratic quality criteria
of a shape S are expensive to evaluate and often difficult to
visualize, since they are defined on the product S×S.

Another option is to use a local criterion, such as the affine
distortion introduced locally by the map at every point on
the shape. Unfortunately, such distortion measures can be
noisy (see Figure 2(c)), and it is hard to extract from them
a clear understanding of the areas on the shape where the
map fails to meet certain quality criteria, possibly ordered by
importance. Thus, the main goal of our work is to construct a
multi-scale representation for a correspondence and to apply
it for efficient map evaluation, visualization and exploration.

1.1. Overview

We assume that we are given two discrete shapes M and N
and a map T : M → N. We also assume that both shapes
are endowed with measures, µM and µN , that we expect to
be preserved for an optimal map T . Namely, for any mea-
surable set B⊆ N, µN(B) = µM(T−1(B)), where T−1(B) =
{x, s. t. T (x) ∈ B}. For example, if we expect the map to
be area preserving, then the measures would be the volume
measures on the surfaces.

The output of our visualization procedure is a set of multi-
scale distortion indicators, which are a collection of smooth
functions wi : N → R that represent areas where T distorts
the measure the most. Color-coding the functions wi on N
and wi ◦T on M provides visualizations of the regions where
T is least measure preserving. The visualizations are ordered

by importance, so that w1 visualizes the most problematic re-
gion, w2 the next most problematic and so on (see Figure 1
middle and right). In addition, we provide scalars si which
quantify the distortion at the various scales. Note, that we do
not place any assumptions on the geometry or topology of
wi, and instead provide a scale parameter k, which controls
how smooth the functions wi are. Large values of k allow
for highly varying functions which reveal highly localized
distortion, whereas medium and small k force the indicator
functions to be more smooth, which is especially useful for
visualization since it allows to identify global problematic
regions (see Figure 4). As we focus on visualizing the prob-
lematic regions, our visualization lacks a global view of the
map. Therefore, our method is complementary to standard
visualization techniques.

We base our approach on the framework of functional
maps introduced in [OBCS∗12]. In that framework, instead
of treating a correspondence as a relationship between points
on two shapes, it is represented as a mapping between func-
tion spaces over these shapes. The key property of functional
maps used in [OBCS∗12] in the context of shape matching
is the fact that unlike point-to-point maps, functional maps
are always linear. In this paper, we will demonstrate that the
spectral decomposition of a given functional map provides a
unifying tool for analysis and visualization of maps between
shapes. We will also show that our map summary provides
an optimal approximation of a given map under certain con-
ditions.

2. Related Work

Map evaluation and analysis have received a significant
amount of attention in geometry processing, especially in the
context of non-rigid shape matching where the goal is to re-
cover the best map according to some quality criterion (see
e.g. [BBK06, HAWG08, LF09, KCATCO∗10, OMMG10,
KLF11, TBW∗11, SY11] among many others). Perhaps the
most common quality criterion for a map between a pair
of shapes is the preservation of pairwise quantities such as
geodesic distances [BBK06, HAWG08, TBW∗11, SY11] or
spectral quantities such as the heat kernel [MHK∗08, SH10,
OMMG10]. Generally, such measures of quality are both ex-
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pensive to compute and non-trivial to visualize. In particular,
if the metric on a shape is distorted in a small location on the
surface, the distances between many pairs of points can be
affected. This makes localizing the error and thus providing
an intuitive understanding of a map challenging.

Another way of evaluating the distortion of a map, used
mostly in shape deformation and parametrization applica-
tions (see e.g. [HG00,SMW06,LZX∗08,BCWG09], among
others), is to consider the local affine distortion introduced
by the map at every point on the shape, e.g. angular or area
distortions. On the one hand these errors are efficient to com-
pute, and easily visualized. However, although they can be
aggregated into global measures of map quality, such distor-
tion measures are too noisy to be used directly for identify-
ing problematic regions (see e.g. Figure 2e and 2d).

The related problem of visualizing maps in an intuitive
and multi-scale fashion has received relatively little atten-
tion, despite its importance in practice. Most visualization
methods are presented in an ad-hoc manner as part of larger
works whose aim is to compute the map. Common methods
include line based, color based (as in Figure 2a and 2b re-
spectively), used e.g. in [KLF11,SY11,LF09], as well as vi-
sualization of sparse correspondences using colored spheres.
In the field of optical flow, where the task is to visual-
ize dense correspondences between images, there has been
some very recent work [SLKW12] which is based on color
map selection. In this context, the authors assume that the
correspondence is given on a regular 2D grid, and there-
fore the suggested solution is not easily applicable to maps
between general shapes. A good map visualization method
would be valuable not only as an evaluation tool, but also
as a design tool for researchers investigating new algorithms
for computing shape maps, especially for identifying and vi-
sualizing problematic areas. Hence, map visualization is an
important tool for map “debugging”.

3. Functional Maps Refresher

We will base our approach on the functional map represen-
tation of a correspondence, first suggested in [OBCS∗12].
In essence, functional maps represent a correspondence be-
tween two surfaces as a correspondence between functions
defined on them, which can be encoded using a small (typi-
cally order of 100×100) matrix. Due to their algebraic struc-
ture, functional maps are more appropriate for multi-scale
analysis. Here, we briefly repeat the relevant properties of
this representation for completeness.

A map T : M→ N, which takes points on M to points on
N, induces a map TF between the function spaces of N and
M, which takes functions on N to functions on M. This map
is given by the pull-back TF (g) = g◦T, where g : N→ R.

It is easy to see that although T can be arbitrary and may
not even be a bijection, TF is linear across function spaces
and as such can be represented as a (possibly infinite) matrix

(a) (b)

Figure 3: (a) Two copies of the uniformly sampled sphere
with the identity map modified so that some points map to
the north pole. Note that this map has no distortion locally
(at sample points). Moreover, any method that assumes im-
posing a geometry of the distorted regions will fail. (b) The
problematic regions highlighted using our method, showing
all points (left) that are mapped to the north pole (right).

C, such that if g = ∑i aiφ
N
i and TF (g) = ∑ j b jφ

M
j , where φ

M
i

and φ
N
j form a basis functions for the functional spaces on

M and N respectively, then b j = ∑i ci jai, for some fixed ci j

independent of ai and b j. Moreover, if both φ
M
i and φ

N
j are

orthonormal, then: ci j =< TF (φ
N
i ),φ

M
j >. If M and N are

smooth manifolds, then ci j =
∫

x∈M φ
N
i (T (x))φ

M
j (x)dµM(x),

where dµM is a given measure on M.

4. Map Evaluation and Visualization

Given a pair of shapes M and N and a map T : M→ N, our
goal is to visualize T by choosing of a real-valued function
w : N→R, and displaying w on N and w◦T on M. Note that
this generic approach is often used in practice, and common
choices for w include composite functions of XYZ coordi-
nates of the vertices or indicator functions of balls around
landmark points (e.g. [KLF11,SY11,LF09]). However, these
choices are typically done in an ad-hoc way, and can fail to
highlight problematic areas (see Figures 1 and 2). Therefore
one of our goals is to devise a principled way to select “op-
timal” functions w for map evaluation and visualization.

In particular, we select w so as to highlight the areas where
the map induces highest distortion. Namely, we consider the
following measure of distortion for a function w:

dµM ,µN (w) =

∫
x∈M w(T (x))2dµM∫

y∈N w(y)2dµN
. (1)

Intuitively, dµM ,µN (w) is close to 1 if w is an indicator func-
tion of areas where T is measure preserving, and is large if
T maps areas with small measure on M to areas with large
measure on N. Finally, we select the optimal w as follows:

w∗k = argmax
w:N→R

dµM ,µN (w), s.t. w ∈ span(ΦN
1..k), (2)

where φ
N
1..k are the first k eigenfunctions of the Laplace-

Beltrami (LB) operator of N, and k is a parameter which we
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Figure 4: The region where the map distorts the area measure the most, for varying scales k, as given by w∗k . Note how the
regions become more and more localized as k grows, and the fact that the regions do not necessarily have disk topology.

interpret as a measure of “scale.” Below we will show that
w∗k is well-defined and can be computed through the singu-
lar value decomposition of the functional representation of a
given map. Furthermore, we argue that the resulting function
w∗k is a) shape-aware, b) multi-scale, c) easily computable
and d) can be used to approximate a given map T in an opti-
mal way under certain conditions.

4.1. Shape Aware and Multi-scale Properties

Perhaps the two most important properties of our approach
making it useful in practice is that our selection of optimal
function w∗k is shape-aware and multi-scale. By the former
we mean that we do not place any assumptions on the geom-
etry or the topology of the distorted region, and by latter we
mean that the parameter k provides a natural way to go from
very global (small k) to very local (large k) analysis, which
is especially useful for map visualization.

Indeed, an alternative possibility to visualize distortion on
a pair of discretized shapes would be to simply display the
function d(x) = µM(x)

/
µN(T (x)) , where µM(x) is the area

measure at point x. Unfortunately, this naive approach does
not work. First, the resulting function d can be noisy (see e.g
Figure 2c), and moreover its maxima (or even maxima of a
smoothed d, Figure 2d) may not informative. This is because
local changes in T can have a catastrophic effect on d. If, for
example, two nearby sample points x1,x2 ∈M are such that
µM(x1) = µN(T (x2)) = 1 and µM(x2) = µN(T (x1)) = ε, then
d(x1) =

µ(x1)
µ(T (x1)

= ε
−1 which can be very large. However,

x1 may not correspond to a region of interest for T since
by considering a slightly larger neighborhood, the distortion
would be: µ(x1)+µ(x2)

µ(T (x1))+µ(T (x2))
= 1.

One may hope that by considering dr(x) =
µM(B(x,r))

/
µN(T (B(x,r))) , i.e. the distortion induced

by T on geodesic balls of fixed radius r, we will identify
meaningful areas. To see that this may not be the case,
consider the two copies of the sphere with a map between
them shown in Figure 3a. The map equals to the identity
everywhere except for a few points, which are mapped to
the north pole. Considering µM(B(x,r))

µN(T (B(x,r)))
for various values

of r, would place a strong assumption on the geometry and
topology of the distorted area. Namely, that the errors in the
map are isotropic, in the sense that they are equally likely
to happen in all directions, depending only on the distance
from the point y. In the case of Figure 3a, this will fail to

isolate the points where the map does not equal to identity.
Our method, however, allows to visualize the correct areas,
see Figure 3b. Anisotropy in distortion is also common in
practice, as many times the symmetries of the shape have
a large influence on how the errors are distributed. For
example, for an elongated region such as the body of the pig
in Figure 4, the errors are distributed anisotropically, due to
slippage symmetries.

Thus, instead of fixing the geometry or topology of the
distorted region, we assume simply that w must be suffi-
ciently smooth, and by controlling the smoothness, we allow
the user to control the scale at which distortion is computed
and visualized. In particular, we force w to lie in the span
of the first k eigenfunctions of the Laplace Beltrami opera-
tor. Since the eigenfunctions of the Laplace-Beltrami oper-
ator are ordered from being very smooth (as measured by
the integral of the squared norm of the gradient) to having
larger variation as k increases, the user-specified parameter
k controls the smoothness of w. Thus, small values of k cor-
respond to more “global” distortion whereas large values of
k identify local changes of measure (see Figure 4).

For a discrete shape with n vertices where the measure is
given as a function over the vertices, if we take k = n, we
would get an indicator function of the point y ∈ N which

maximizes µM(T−1(y))
µN(y)

. If we take k = 1, we would get a con-
stant function. Figure 4 shows a few examples of w∗k , for
a various choices of k, where the measure at each vertex is
given by the area of the corresponding Voronoi region. Note
that the region where the function values are high is mean-
ingful in terms of distortion in the map. Furthermore, as k
grows these regions become more localized as expected.

4.2. Computing w∗k using Functional Maps

Given two discrete shapes M and N represented as triangle
meshes and containing m and n points each, a map T : M→
N, and two measures µM and µN , how can we find w∗k ? The
most common way to specify a measure on discrete shapes
is by assigning non-negative values to individual points. We
call these functions dµM : M→R+ and dµN : N→R+ on M
and N respectively. For simplicity, in this section we assume
that the measures are the standard area measures, i.e. dµM(x)
is the area of the Voronoi region of x on M. However, the
results apply to any choice of measure (see Section 4.4). The
following theorem ensures that computing the optimal w can
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Figure 5: Visualizing the map between a cow and a giraffe from [KLF11]. We show the distortion indicators corresponding to
the first three and last two singular vectors, as well as the corresponding singular values. Note how the map has problematic
regions, which are easy to miss in the standard visualization (left) but are highlighted by our method.

be done simply via a singular value decomposition of the
functional representation C of the map T .

Theorem 4.1 Given a map T : M→N between two discrete
shapes, the optimal function w∗k = Φ

N
1..kw where Φ

N
1..k con-

tains the first k eigenfunctions of the LB operator on N and
w is the right singular vector corresponding to the largest
singular value of the functional representation C of T .

Proof First note that since dµM ,µN is invariant to a global
scale in w, the optimization in Eq. (2) can be written as:

w∗k = argmax
w∈span(ΦN

1..k), ‖w‖2
µN

=1
‖w◦T‖2

µM , where

‖w‖2
µN = ∑

y∈N
w(y)2dµN(y), and

‖w◦T‖2
µM = ∑

x∈M
w(T (x))2dµM(x).

Since w is assumed to lie in the span of the first k eigenfunc-
tions of the LB operator, we let w = Φ

N
1..kw, where w ∈ Rk,

and remove the span constraint. This allows us to re-write,
Eq. (2) as:

w∗k = argmax
w∈Rk ,‖ΦN

1..kw‖2
µN

=1
‖ΦM

1..kCw‖2
µM , (3)

where Φ
M
1..k and Φ

N
1..k represent the m×k and n×k matrices

containing the first k eigenfunctions of the Laplace-Beltrami
of M and N respectively, and C represents the functional rep-
resentation of the map T . The following Lemma allows us
to replace the weighted norm in Eq. (3) with the simple Eu-
clidean norms.

Lemma 4.2 Let M be a discrete shape with a measure µM ,
given as a function dµM over the vertices of M. Then, if
{ψM

1..k} are a set of functions on M which are orthonormal
with respect to dµM:

∑
x∈M

ψ
M
i (x)ψM

j (x)dµM(x) = 1 if i = j and 0 otherwise,

then for any function w = ∑i aiψi:

‖w‖2
µM = ∑

x∈M
w2(x)dµM(x) = ∑

i
a2

i .

Proof Note simply that (∑i aiψi(x))2 = ∑i a2
i ψ

2
i (x) +

∑i 6= j aia jψi(x)ψ j(x). Since ψi are assumed orthonormal, the
lemma follows.

This Lemma can be seen as a very special case of the generic
Plancherel’s theorem. Most importantly for us, it holds under
any choice of measure. Using Lemma 4.2, assuming that the
basis functions Φ

M
1..k and Φ

N
1..k are orthonormal with respect

to µM and µN respectively, we can rewrite Equation 3 as:

w∗k = argmax
w∈Rk ,‖w‖2=1

‖Cw‖2. (4)

Note that we have replaced the weighted norms ‖·‖µM and ‖·
‖µN with the simple Euclidean norm. Now finding w∗k can be
done simply using the singular value decomposition of C. In
particular, if C =UΣV T is the singular value decomposition
of C, then it is well-known that w∗k = V1, namely the right
singular vector corresponding to the largest singular value.
The optimal w∗k is given by Φ

N
1..kw∗k .

Figure 4 shows the functions w∗k for a map computed by the
method of Kim et al. [KLF11] and volume measure-based
distortion, for several choices of k. To visualize the matching
function on shape M, we use Φ

M
1..kU1.

4.3. Quantitative Measures

Since the largest and smallest singular values are
σmax(corrsp. min)(C) = sup(corresp. inf)‖w‖=1‖Cw‖, we can
see that it is possible to evaluate the measure-preserving
quality of the map T through the analysis of the singular
values of its functional representation C. Indeed, the follow-
ing results relate the singular values of the functional map C
to the quality of the underlying map T.

Theorem 4.3 Given two shapes, M and N, and a map T :
M → N, its functional representation C, which maps func-
tions on N to functions on M is orthonormal if and only if
T is measure preserving, i.e. for any measurable set A⊂ N,
µN(A) = µM(T−1(A)) where µM and µN are the given mea-
sures on M and N. Moreover, if C is full-rank, i.e. σmin(C)>
0, then T must be surjective, up to sets of measure 0 on N.

Proof See Appendix

Note that Theorem 5.1 in [OBCS∗12] establishes one di-
rection of Theorem 4.3 (that volume preservation implies or-
thonormality) which is useful for regularization when com-
puting the map. However, the opposite direction is also true,
and is useful for analyzing a map, by establishing that the
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map’s quality (in terms of measure distortion) can be directly
inferred from the singular values of C.

Note also that while the function corresponding to the first
singular vector w∗k provides us with a visualization of the
most distorted region, by considering the following singu-
lar vectors, we can visualize the distorted regions in order
of importance. Hence, by combining the information from
both the singular vectors and singular values, we have a
quantitative and qualitative way of evaluating maps. Figure
5 shows the first few singular vectors of a map computed by
the method in [KLF11], as well as the matching singular val-
ues, where we used k = 30 on M (the giraffe), and k = 300
on N (the cow). In addition we show the visualization col-
oring both surfaces using the xyz coordinates of M. While
in this visualization the map seems to be of high quality, our
method identifies the problematic mapping of the nose of the
cow to the head and neck of the giraffe, as is seen in the first
singular vector. The second and third singular vectors show
the incorrect mapping on the legs, where the hoof of the cow
is mapped to half the length of the giraffe’s leg. Finally, the
last singular vectors (29 and 30) show how the horns of the
cow are mapped to areas on the neck of the giraffe.

4.4. Changing the Measure

Note that the framework that we have described above is ap-
plicable to any pair of measures µM ,µN and any map T . In
most cases, we use the standard area measure. However, in
many cases there are better choices for visualizing distortion.
For example, for non-isometric maps some areas of stretch
are expected, and we might prefer to focus on regions where
extremities are not mapped to extremities.

Intuitively, by changing the measure from the volume
measure in the discrete case, we wish to replace the area
element on M with an arbitrary function dµM . Or, equiva-
lently, given two surfaces M and N we wish to compare two
surfaces M f and Ng which are conformal to M and N re-
spectively, such that the conformal factor is prescribed by
f = dµM and g = dµN . Interestingly, for continuous 2d man-
ifolds, the L2 norm of the gradient of any function is invari-
ant under conformal changes of the metric. Therefore, the
use of the Laplace-Beltrami eigenfunctions is still justified,
since they preserve their well-ordered smoothness properties
(as measured by the norm of the gradient), meaning that re-
stricting the function w to lie in the span of the first k eigen-
functions provides a meaningful notion of scale, allowing to
concentrate from global (small k) to highly local (large k)
deformation.

In practice, there is no need to compute the new surfaces
MdµM and NdµN . All we need in order to apply our machin-
ery is to use the eigenvectors of the Laplace-Beltrami opera-
tor defined on the new surfaces. It is straightforward to see,
that under a conformal change of metric of M given by the
conformal factor dµM defined at the vertices of M, the dis-
cretization of the LB operator is given by LM

f = F−1W M ,

Figure 6: Visualizing two different distortion measures. We
show the distortion indicators corresponding to the first two
singular values, for the area measure, and a measure based
on HKS. Note that HKS-based distortion is sensitive to ex-
tremities not being mapped to each other, whereas area dis-
tortion is sensitive to local scale changes.

where F is diagonal matrices representing dµM while W M is
the standard stiffness matrices given by the cotangent weight
scheme of Meyer et al. [MDSB02]. Note that W M is fixed
and independent of dµM .

This means that given the discrete measures dµM and
dµN , we can simply form the matrices: LM = F−1W M and
LN = G−1W N , where F and G are diagonal matrices con-
taining dµM and dµN respectively. Then, we compute the
eigenfunctions of LM and LN by solving the generalized
eigenvalue problems: W M

φ
M = λFφ

M and similarly for N.

Note that since W is positive semi-definite and F is diago-
nal and positive, the resulting eigenfunctions φ

M ,φN are or-
thonormal with respect to the measures dµM and dµN as re-
marked by Rustamov in [Rus07]. Therefore, Lemma 4.2 ap-
plies and we can solve the optimization problem in Equation
3 simply by computing the singular vectors of the functional
matrix C. Note that unlike approximating functional maps
with the LB operator, which, as remarked in [OBCS∗12]
works well for “natural” functions on manifolds, there are no
restrictions in the above procedure on the measures dµM and
dµN , since they are used to define the corresponding LB op-
erators. Although it is possible to use more accurate notions
of discrete conformality (e.g. the one defined in [SSP08]),
we have found this approach to be sufficient for our needs.

Figure 6 shows an example of the effects that can be iden-
tified by using different measures of distortion using our
method. One example would be to take the distortion mea-
sure to be derived from the Heat Kernel Signature [SOG09].
As this function has very distinctive values for extremities, it
can identify regions where extremities are not mapped to ex-
tremities, as in Figure 6 (right). The area measure, on the
other hand, identifies other regions, where there are large
changes in local scale, making analysis and visualization
based on these measures complementary.
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Figure 7: Reconstruction error for a point-to-point maps
from their functional representation, for different values of
k. Note that for k = 300 we can reconstruct the map using
only about r = 4 SVD basis vectors.

4.5. Map Summary

The results above imply that the functions corresponding to
the singular vectors of the functional representation of a map
can be used as a compact summary of the map, which can be
used for visualization, since they identify areas of maximal
measure distortion. Here we also briefly note that the sin-
gular vectors provide an optimal summary of the map in an
information-theoretic way – by providing an optimal low-
dimensional approximation of the functional map.

Namely, suppose we are given a map T : M→ N, and let
C be its functional representation mapping functions on N to
functions on M. Now, suppose we are given a fixed budget
of r functions and we would like to find an r-dimensional
basis in which the action of C is well approximated. In other
words, we would like to find a projection matrix V with r
orthonormal columns, such that ‖Ca‖ ≈ ‖CVrV T

r a‖.

The following lemma is easy to show using the well-
known properties of the singular value decomposition for
low rank approximation:

Lemma 4.4 Given a matrix C ∈ Rk×k and a number r < k,
the optimal orthogonal projection matrix Vopt ∈ Rk×r:

Vopt = min
Vr

max
a
‖Ca−CVrV T

r a‖. (5)

is given by first r right singular vectors of C. Moreover, in
this case, for any vector a, CVrV T

r a = UrSrV T
r a where Sr is

an r× r diagonal matrix of singular values, and Ur is given
by the first r left singular vectors of C.

In other words, if we are given a matrix C ∈ Rk×k, and
we would like to approximate it by its composition with an
r-dimensional projection matrix, then the optimal projection
is given by the singular vectors of C.

Note that if a is a vector representing a function through
its coefficients in the LB basis, i.e. f = Φa, f : M→R then,
g = ΦVrV T

r a can be written as g = Ψb, where Ψ are the
r basis functions given as Ψi = ΦVi (the ith column of Vr)

Input: Shapes M,N, a map T : N→M, functions
f : M→ R+, g : N→ R+, kM ,kN , r > 0

Output: Functions wM
h ,wM

l : M→ Rr , wN
h ,w

N
l : N→ Rr ,

sh, sl ∈ Rr

F ← diag( f ); G← diag(g);
W M ←L(M); W N ←L(N);
ΦM ← eig(F−1W M ,kM), ΦN ← eig(G−1W N ,kN)

solve ΦN
1..kN

C = ΦM
1..kM
◦T for C

[U,S,V ]← svd(C)

wM
h ← ΦM

1..kM
V1..r , wM

l ← ΦM
1..kM

VkM−r+1:kM

wN
h ← ΦN

1..kN
U1..r , wN

l ← ΦN
1..kN

UkM−r+1:kM
sh← diag(S1..r,1..r), sl ← diag(SkM−r+1:kM ,kM−r+1:kM )

Algorithm 1: Visualization and evaluation of a map be-
tween shapes.

and b is an r-dimensional vector given by b =V T
r a. In other

words, we can treat the approximation of C as a change of
basis, where the first k Laplace-Beltrami eigenfunctions are
replaced by r basis functions, each given as a linear combi-
nation of the LB eigenfunctions, with coefficients provided
by columns of Vr. Note finally that C becomes a diagonal
functional map when the basis functions on the two spaces
are represented by Φ

MVr and Φ
NUr.

In practice, representing a map in the modified basis has
a noticeable effect in reducing the reconstruction error when
capturing the point to point map through its functional rep-
resentation. Figure 7 shows the average geodesic error asso-
ciated with converting a point-to-point map to its functional
form, using the eigenfunctions of the unweighted Laplace-
Beltrami operator, and using the new basis derived from the
singular vectors of C. Note that for k = 200, and r = 4 basis
functions we can reconstruct the map so that the image of
each point is on average within one hop neighbor of its im-
age as given by the map (See also [OBCS∗12] Figure 3 and
associated text).

The figure shows another interesting phenomenon - if r
is too large the reconstruction error grows. This happens be-
cause there are functions in the span of the first k LB eigen-
functions of M which are not in the span of the first k LB
eigenfunctions of N. When r is small, the SVD procedure
makes sure that these basis vectors are not used, however as
r ≈ k, there is no way to avoid these basis vectors, which
introduce errors into the map.

5. Experimental Results

Our visualization and evaluation framework is described in
Algorithm 1. Here diag( f ) constructs a diagonal matrix out
of a function f , and diag(F) extracts the diagonal from the
matrix F , L(M) is the cotangent weights Laplacian of the
shape M, eig(M,k) returns the eigenvectors of M matching
the smallest k eigenvalues, and svd(C) computes the singular
value decomposition C =USV T .

The computed functions wM
h (or wM

l ) are used to visualize
regions in M which stretch (or shrink) the measure f under

submitted to COMPUTER GRAPHICS Forum (2/2013).



8 Ovsjanikov et al. / Analysis and Visualization of Maps Between Shapes

 

Area 

HKS 

w1 w2 w30 

382 → 397 
Avg Error: 0.07 

BIM 

(e)

Area 

w1 w2 w3 

w29 w30 

399 → 397 
Avg Error: 0.09 

BIM

w1 w2 w3 

mesh007 → mesh019 
Avg Error: 0.19 

Fmaps 

Area 

w29 w30 

(c) 

Area 

w1 w2 w3 

397 → 388 
Avg Error: 0.08

BIM

w29 w30

(d)

Area 

HKS 

w1 w2 w3 

386 → 390 
Avg Error: 0.21 

BIM 

(a) 

(b) 

Figure 8: Visualizing the distortion of a few maps from [KLF11] and [OBCS∗12]. See the text for details.

the map. Every column in wM
h,l and wN

h,l represent functions
which correspond under the map, thus color coding these
functions on the shapes M and N allows us to see in which
regions the distortions are concentrated, and how these re-
gions are mapped. The values sh ≥ 1 and sl ≤ 1 are a quanti-
tative measure of distortion, where large values of ‖sh,l−1‖
indicate large distortion.

We have experimented with a few maps from the map col-
lection created by the methods in [KLF11] and [OBCS∗12].
Figure 8 shows the visualization of a few such maps, us-
ing different distortion measures. For all our experiments we
took kM = 30,kN = 300. We always pick a large kN to min-
imize the loss due to reconstruction error on N, and have
found that for visualization purposes kM = 30 provides a
good trade-off of smoothness versus accuracy. We visualize
the functions wl ,wh, and also show the average geodesic er-
ror (see [KLF11] Figure 7 for a visualization of this value).
As can be seen in the figure, this standard error metric is
not always informative, as there are problematic regions for
which this error metric is small. We can further see that dif-
ferent distortion measures locate different type of errors in
the map, prioritizing them differently.

Note specifically how w3 differs when computing it using
the area measure vs. when computing it using HKS (marked

(a) and (b) respectively in the figure). Using the area measure
(a), we get a function localized on the tail area, which indeed
scaled considerably. Using the HKS measure (b) we identify
the fact that a cylindrical area on the leg of the giraffe is
mapped to an extremity on the bull.

Our method is most effective when the map analyzed is
of high quality, but has some problematic regions. However,
it can also be useful even when the map is bad enough so
that standard color coding of the coordinate function can be
used to identify problems. Consider for example Figure 8
(c) where both the coordinate color coding and w1 identify a
discontinuity: the right foot mapped to the top of the left leg.
However our method also identifies additional areas (e.g. in
w29), which are hard to see in the standard visualization.

As we are primarily interested in maps between non-rigid
and often non-isometric shapes, there are bound to be distor-
tions which although they are large, are “acceptable”, as the
mapping is semantically meaningful. See for example (d):
there is a very big area distortion, however the map is good
in that region, since it nicely maps between the tails of the
pig and the horse. Furthermore, as the maps we investigate
are not necessarily bijections, interesting phenomena appear.
For example, by looking at the lower singular vectors (e.g.
w30 in (e)), we can identify regions where the map fails to be
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Figure 9: Compact visualization of 50 maps from deformed
humans onto an undeformed shape. These functions demon-
strate the areas with maximum distortion, on the shapes
where this area was distorted the most.

surjective - namely maps a large area on one shape to a zero
(or very small) area on the second shape.

Computing this visualization is very efficient in prac-
tice since it only requires computing the SVD of a mod-
erate sized matrix C. The most costly operation is com-
puting the first k eigenfunctions of the LB operator. Since
k≈ 100−300 this step does takes about 10-30 seconds on a
standard PC for shapes with up to 50k points.

5.1. Shape Collections

An interesting application of our visualization technique is
that it allows to visualize collections of maps compactly.
Namely, suppose we have a set of maps from n shapes:
S1, ...,Sn to a given shape S0. This gives us n functional maps
Ci, which can be represented as matrices Ci ∈ Rk×k. Now,
we can construct a matrix C ∈ Rnk×k, where each block of
size k× k corresponds to one of the i matrices Ci. Note that
given a function f : S0 → R represented as a vector a ∈ Rk

of basis coefficients, we have Ca = b where b ∈ Rnk×1 and
each block of size k corresponds to Cia, i.e. the coefficients
of Ti ◦ f on shape Si. Thus: a1 = argmax‖a‖=1 ‖Ca‖ repre-
sents the coefficients of the function f which is jointly most
distorted by the maps Ci.

To illustrate this phenomenon, we considered 50 de-
formed human shapes from the SCAPE dataset, and their

correspondences onto the undeformed shape. We repre-
sented each map as a 200× 30 functional mapping and
constructed a 10000× 30 matrix C as described above. We
computed the first singular vectors as described above, and
picked the deformed shapes where the norm of the coeffi-
cient vector was the largest. Figure 9 shows the functions
corresponding to the first singular vectors of C, visualized
on the shapes we picked. We have repeated this experiment
for the 19 shapes from the animals collection in [KLF11],
shown in Figure 10. We identified some errors in the map
which were consistent across the collection, e.g. the nose of
the dog was mapped to the neck in a number of cases. We
note that this joint map analysis is closely related to stan-
dard mesh-based inverse kinematics [SZGP05] except that
our method is completely intrinsic and does not rely on com-
putations in Euclidean space.

5.2. Limitations

Our method has several limitations. First, in terms of usabil-
ity, our approach generates a large number of images (by
varying the scale and the measures), which might create vi-
sual overlaod for a user. This is especially true when visu-
alizing a collection of maps. It could be more appropriate to
have an interactive means of navigating the different images,
so that the user can explore various problematic regions un-
der different measures. Second, the topology of the problem-
atic region might have more than one connected component,
in which case the color coding visualization does not pro-
vide enough information to identify which region is mapped
to which. This could be easily solved by post-processing the
multi-scale distortion indicators to identify non-zero regions.
In addition, our method has no information on the semantics
of the map, and therefore could identify regions which are
highly distorted, yet semantically mapped correctly. Finally,
by construction, our method does not visualize the global ef-
fect of the map, e.g. whether a symmetric flip is present, and
as such is complementary to existing visualization methods.

6. Discussion

As the research on finding maps between shapes advances,
it is critical that the research on evaluation methods follows
closely. This work demonstrated an attempt to visualize and
evaluate maps between shapes in a multi-scale way, by lever-
aging the machinery provided by the functional map repre-
sentation and its spectral decomposition. We have also pro-
vided preliminary evidence that this decomposition is useful
for visualizing collections of maps. In general, we believe
that this approach may open the door for research on “map
processing”: the study of maps between shapes as objects in
their own right.

By adding this additional level of abstraction, it could po-
tentially be possible to perform new types of analysis, for
example to consider map analogies (A is to B as C is to D),
or to compare between objects which are not directly compa-
rable (such as images and surfaces), by comparing the set of
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Figure 10: Compact visualization of 19 maps from different
animals onto a dog shape from [KLF11].

maps that acts on these objects. Furthermore, it could poten-
tially be possible to define “map descriptors” by using the
spectral decomposition of the maps, and to perform “map
retrieval” on a collection of maps. In essence, investigating
maps between objects provides a unique perspective on the
properties of these objects, and thus we believe that devel-
oping algorithms for map understanding is crucial for the
ultimate goal of shape understanding.
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Appendix
6.1. Proof of Theorem 4.3

We only need to prove that if C is orthonormal then T is
locally volume preserving the other implications being The-
orem 5.1 in [OBCS∗12]. If C is orthonormal then for any
function f on M we have < C f ,C f >N=< f , f >M . As-
sume that T is not locally volume preserving, i.e. there ex-
ists a set A ⊂ M such that µM(A) 6= µN(T−1(A)) where µM
and µN are the volume measures on M and N. If we de-
notes by fA the indicatrix function of A, fA(x) = 1 if x ∈ A
and fA(x) = 0 otherwise, C fA is the indicatrix function of
T−1(A) and we then have < fA, fA >M= µM(A) is not equal
to <C fA,C fA >N= µN(A): a contradiction. The second part
of the theorem is proven in the same way: since all the singu-
lar values are positive any subset of M with non zero measure
must have a non empty pre-image.
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