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We propose a new iterative algorithm for computing smooth cross fields on

triangle meshes that is simple, easily parallelizable on the GPU, and finds

solutions with lower energy and fewer cone singularities than state-of-the-

art methods. Our approach is based on a formal equivalence, which we prove,

between two formulations of the optimization problem. This equivalence

allows us to eliminate the real variables and design an efficient grid search

algorithm for the cone singularities. We leverage a recent graph-theoretical

approximation of the resistance distance matrix of the triangle mesh to speed

up the computation and enable a trade-off between the computation time

and the smoothness of the output.
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1 INTRODUCTION
Directional fields, and especially cross fields, are important objects

in geometry processing. They are used in many applications, from

quadrangular remeshing to non-photorealistic rendering [Vaxman

et al. 2016]. Computing smooth cross fields on triangle meshes is

challenging, as the problem formulation inherently depends on

integer variables to encode the invariance of the crosses to rotations
by integer multiples of π/2.

A popular approach, suggested by Bommes et al. [2009] (MIQ), for-

mulates a mixed-integer optimization problem and solves it greedily

to compute the cross field. While highly efficient and effective, the

greedy solution can lead to sub-optimal results, as in Fig. 1 (top).

Alternatively, Crane et al. [2010] (TCODS) [Crane et al. 2010] posed

the problem in terms of angle defects due to parallel transport on

closed cycles, leading to a sparse linear least squares problem that

is solved efficiently when the defects are known.

We show that if the angle defects are unknown, and there are

no directional constraints, these two optimization problems are

equivalent. Furthermore, by eliminating the real variables, we remain

with an integer only optimization problem. We use this insight to

design a new iterative algorithm for minimizing the energy that is

simple, easily parallelizable on the GPU, and finds solutions with

lower energy and fewer singularities than MIQ, e.g. Fig. 1 (bottom).

Finally, we show the connection of the minimized energy to the

resistance distance matrix of the triangle mesh, and leverage a recent

graph theoretical approximation to speed up the computation and
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allow us to trade-off the computation time and the quality of the

resulting cross field.

1.1 Related Work
Cross field computation, and directional field computation in gen-

eral, has seen a surge of research in recent years. A recent re-

view [Vaxman et al. 2016] covers the latest developments, and we

therefore focus our literature review on methods closest to our

approach.

Angle based representation. A popular formulation of the cross

field computation problem is to represent every cross as an angle
with respect to a fixed local orthogonal frame. Since crosses are

invariant to rotations by integer multiples of π/2, such a represen-

tation has an inherent phase ambiguity. Therefore, finding a smooth
assignment of crosses inevitably requires taking into account these

unknown integer phases, leading to optimization problems with

integer variables. Bommes et al. [2009] suggested one of the first

efficient methods to tackle these optimization problems in the con-

text of cross field generation, by greedily rounding to an integer one

variable per iteration and resolving the system. Our approach opti-

mizes the same energy greedily, albeit using a different algorithm

that guarantees that there exists no modification of a single ±π
2

singularity’s position that reduces the energy. This leads to lower

energy values and better singularity placement. A different angle

Fig. 1. Our iterative optimization (bottom) finds a solutionwith lower energy,
and fewer singularities than MIQ (top).
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based approach, suggested by Crane et al. [2010], encodes the angle
difference per edge instead of an angle per face. This representa-

tion leads to a minimum norm linear least squares optimization

problem with constraints, where the integer variables now arise as

the constrained values. Furthermore, Crane et al. [2013, Sec. 8.4.1]

have shown that it is possible to solve this optimization problem

by solving a single Poisson problem when the integer variables are

known. We use this formulation with unknown angle defect values

as the basis for our algorithm.

Cartesian representation. An alternative to the angle based rep-

resentation is to represent the direction as two coordinate values

with respect to a local frame [Ray et al. 2006] or, equivalently, as a

complex number [Knöppel et al. 2013]. The explicit encoding of the

integer phase is not required in this representation, albeit, depend-

ing on the choice of smoothness energy, a non-convex pointwise

unit-length constraint might be required. Without the unit-length

constraint, this formulation leads to an unconstrained linear least

squares problem that can be efficiently and globally solved [Knöppel

et al. 2013]. Our main interest is in the angle-based energy, as it has

various advantages in applications; see [Vaxman et al. 2016]. We

show that for this energy our algorithm achieves lower energy val-

ues, with a smaller number of singularities, compared to competing

approaches.

Scalable cross field computation. Recently, newmethods have been

proposed [Jakob et al. 2015] for efficient cross field computation

that are applicable to meshes with millions of triangles. Such ap-

proaches often work locally, leading to a very efficient solution at

the price of cross field quality in terms of the number of singulari-

ties and field smoothness. Our approach is at the other end of the

spectrum, namely, we invest more computational time and generate

a higher quality cross field. We further allow a trade-off between

computational time and cross field quality using a single parameter.

Finally, our time/quality trade-off is implemented using a simple

algebraic approach with random projections, and does not require

constructing multi-resolution hierarchies of the input shape.

Parameterization with cone singularities. Cross field computation

is closely related to mesh parameterization. Specifically, one of the

main applications of cross fields is quadrangular remeshing, where

the parameterization gradients are aligned to the cross directions.

Then, the singularities of the cross field become the non-regular

vertices of the quad mesh. Hence, it is in general beneficial to gen-

erate smooth cross fields with a small number of singularities. As

an alternative to generating a cross field and using it for creating a

parameterization, it is possible to compute a parameterization with

cone singularities given a holonomy signature. Such conformal pa-

rameterizations were suggested [Ben-Chen et al. 2008; Springborn

et al. 2008], as well as variants that use other energies [Myles and

Zorin 2012, 2013], guarantee bijectivity [Bright et al. 2017] or gener-

ate a seamless similarity map that can be used for constructing C2

surfaces [Campen and Zorin 2017b]. While our approach generates

cross fields, it is based on finding a holonomy signature, and thus

can be used to generate inputs for cone parameterization methods

such as [Bright et al. 2017; Campen and Zorin 2017b].

Connectivity Editing. Peng et al. [2011] have proposed a set of

edit operations on a convex region of the quadrangular mesh to

improve the placement of irregular vertices (i.e,. vertices with va-

lence different than four). For example, they show that the global

placement of a single irregular vertex is in some sense rigid, whereas

singularity pairs in close proximity can be locally moved to improve

the structure of the quadrangular mesh. In contrast, our approach

guarantees that no movement of a single singularity, or the global

cancellation of a ±π/2 singularity pair can improve the energy. It

would be interesting to explore their other suggested edit operations

to locally improve the quadrangular mesh structure after generating

the global structure using our method.

1.2 Contributions
We show the equivalence between computing smooth cross fields

and finding optimal holonomy signatures in the absence of direc-

tional constraints, and leverage it to design a novel algorithm that

optimizes the angle-based cross field smoothness energy. Our ap-

proach has the following advantages:

• The algorithm is simple, easily parallelizable and finds cross

fields with lower energy values than existing approaches.

• The output cross fields are such that there is no relocation

of a single ±π
2
singularity that will reduce the energy. This

leads to cross fields with fewer singularities, and singularities

that are better placed, compared to existing methods.

• The formulation is based on the resistance distance matrix,

which has a well-known random approximation with theo-

retical guarantees. We use this approximation to trade-off

between cross field smoothness and computation time.

2 BACKGROUND: ANGLE-BASED CROSS FIELD
COMPUTATION

Notation. LetM = (V, E,F ) be a 2-manifold closed orientable

triangle mesh, where V are the vertices, E are the edges and F
are the faces. We denote n = |V|, l = |E |,m = |F |, the genus ofM
by д, and its Euler characteristic by χ =2 − 2д. We further denote

the dual mesh by M∗ = (V∗, E∗,F ∗) = (F , E∗,V). Following
existing work, see e.g. [Vaxman et al. 2016, Sec. 5.1], we represent

crosses using angles. Thus, we use θ ∈Rm to denote angles on the

faces, which are measured relative to a local frame of reference, i.e.,

a pair of orthogonal unit vectors tangent to the face. We further

assume that each edge in E has a known, arbitrary orientation that

also induces an orientation on the corresponding dual edge. We

denote by r ∈Rl the oriented angle difference between the reference

frames on adjacent faces. We slightly abuse notation by addressing

elements of r both as re and as ri j where e = (i, j) ∈ E∗,i, j ∈ F .
Finally, d0 ∈ Zl×n and d1 ∈ Zm×l denote the edge-vertex and face-

edge adjacency matrices, respectively, also known as the discrete
exterior derivatives on 0- and 1-forms [Crane et al. 2013].

A natural way to define the smoothness of an angle-based cross

field is to consider the change in the angle between adjacent faces.

Two methods that were suggested in the literature, MIQ [Bommes

et al. 2009] and TC [Crane et al. 2010], approach this problem using

different formulations. In the following, we first present the two

optimization problems as they were originally suggested. Then, in
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Section 3 we generalize TC, and show that the new formulation

is equivalent to MIQ, yet simpler to optimize. We provide only a

brief overview of the methods, and refer to specific sections of the

survey [Vaxman et al. 2016] and course [Crane et al. 2013] for basic

concepts.

2.1 MIQ: Mixed Integer Quadrangulation
Bommes et al. [2009] represented a cross field by an angle per face,

θ ∈Rm , relative to a fixed local orthogonal frame. To account for the

symmetry of the crosses with respect to rotations by π/2, additional
period jumps, p ∈Zl , were introduced. The MIQ objective function

is given by:

EM (θ ,p) =
∑
(i, j)∈E∗

(
θi + ri j +

π
2
pi j − θ j

)
2

. (1)

We will assume a single directional constraint is given at a face

c ∈ F , with θc =θ0. This objective function has multiple minimiz-

ers, which can be obtained by modifying θ and p simultaneously.

Therefore, to reduce the search space, Bommes et al. [2009] used

a spanning tree T ⊂ E∗ of the dual meshM∗, rooted at the con-

strained face c , and defined the optimization problem:

minimize

θ ∈Rm ,p ∈Zl
EM (θ ,p)

subject to pe = 0, ∀e ∈ T ,
θc = θ0.

(2)

Effectively, the constraints can be easily eliminated, leading to an

unconstrained mixed-integer problem inm−1 real-valued variables

and l−m+1=n+2д−1 integer-valued variables.

2.2 TC: Trivial Connections
Alternatively, instead of solving for the angles on the faces, Crane

et al. [2010] suggested to solve for the adjustment angles, or con-
nection on the edges. As these define the change in the angle when

passing on a dual edge [Vaxman et al. 2016, Sec.4.3], explicitly encod-

ing the period jumps is not required. Hence, the real-valued variables

x ∈ Rl encode the change in angle, and the objective function is

given by:

ET (x) = ∥x ∥22 . (3)

The angles θ are obtained by integrating x along a dual tree T
rooted at the constrained face c , such that θ j = θi +ri j + xi j for
(i, j) ∈T ⊂E∗.

While this objective function does not depend on integer variables,

not every x ∈Rl is valid, as different integration paths should yield

the same angle up to rotation by π/2. Thus, additional constraints
are required, leading to the optimization problem:

minimize

x ∈Rl
ET (x)

subject to Γx = π
2
s − sд(Γ).

(4)

Here, Γ ∈ Zn+2д×l is a matrix whose rows form a spanning set of

the dual cycles ofM. Specifically, ΓT =
[
d0,H

]
, where d0 ∈ Zl×n

is the oriented edge-vertex incidence matrix, whose columns form

a spanning set of the contractible dual cycles, and H ∈ Zl×2д is a

matrix whose columns form a basis for the non-contractible dual

cycles (see [Crane et al. 2013, Sec. 8.2.2] for the construction of

H ). Further, sд(Γ) ∈Rn+2д contains the angle defects [Vaxman et al.

2016, Sec.6.2] around the basis cycles of Γ. The angle defects for
the contractible cycles are given by the discrete Gaussian curvature

of the vertices, and thus sum to 2π χ by the discrete Gauss-Bonnet

formula [Meyer et al. 2003].

Finally, s ∈Zn+2д is a user prescribed integer holonomy signature
that defines the number of integer rotations by π/2 when parallel

transporting a vector along the dual cycles in Γ. Since every column

of dT
0
sums to 0, for the constraints to be feasible it is assumed that∑n

i=1si =4χ . Crane et al. [2010] showed that under this assumption

the optimization problem (4) always has a solution, and a singularity

of the cross field will arise at a vertexvi ∈V, i ∈ {1, ..,n} if and only
if si ,0, i.e., the prescribed holonomy signature of the corresponding

contractible dual cycle is non-zero.

3 INTEGER-ONLY CROSS FIELD COMPUTATION

3.1 TCO: Trivial Connections with Optimal Holonomies
A natural generalization of the TC approach is to add the integer

holonomies as optimization variables instead of having the user

prescribe them. This generalization leads to the optimization prob-

lem:

minimize

x ∈Rl ,α ∈Zn , β ∈Z2д
ET (x)

subject to

[
dT
0

HT

]
x − π

2

[
α
β

]
= −

[
αд

βд(H )

]
,∑n

i=1αi = 4χ .

(5)

Here, for notational convenience, we separate the holonomy signa-

ture as s=
[
α , β

]
, where α will denote the cone singularities vector

and β the angle defects on non-contractible cycles. Similarly, αд
is the discrete Gaussian curvature, and βд(H ) the geometric angle

defects of the dual cycles in H , where both are computable from the

geometry of the input mesh (see Figure 2).

A main result of this paper is that the optimization problems in

Equations (2) and (5) are equivalent. Formally, we have:

Fig. 2. Computing the angle defects for (green) trivial and (blue) non-trivial
cycles. For trivial cycles, we take 2π minus the sum of angles, which is the
usual discrete Gaussian curvature. For non-trivial cycles, we take the sum
of exterior angles along the blue curve–adding θ whenever the curve turns
left, and subtracting θ whenever the curve turns right.
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Theorem 3.1.

(i) Let (θ ,p) be a feasible solution of (2). Then, for any integral
basis of non-contractible dual cycles H , there exists a feasible
solution (x ,α , β) of (5) such that ET (x) = EM (θ ,p).

(ii) Let (x ,α , β) be a feasible solution of (5). Then, for any dual
spanning tree T , there exists a feasible solution (θ ,p) of (2)

such that EM (θ ,p) = ET (x).
(iii) Let (x ,α , β) and (θ ,p) be corresponding solutions as in (i,ii),

and let θT be the integrated values of x . Then θT =θ modπ/2.

A proof is given in the Appendix. The main building block of the

proof is to relate the variables of the two optimization problems

using a linear system of equations. We show that this system always

has a unique solution that is integer-valued for p and (α , β). The
integer solutions are guaranteed by a result from the theory of cycle

bases on graphs [Liebchen and Rizzi 2007], stating that a square

submatrix of an integral cycle basis matrix, obtained by removing

columns corresponding to edges of a spanning tree, is unimodular.

Corollary 3.2. The optimization problems MIQ and TCO are
invariant to the choice of dual spanning tree T and basis for non-
contractible cycles H , respectively. Specifically:

(i) Given a feasible solution (θ ,p) to MIQ with some spanning tree
T , then for any spanning tree ˜T , there exists a feasible solution
( ˜θ , p̃) such that EM (θ ,p) = EM ( ˜θ , p̃) and ˜θ = θ mod

π
2
.

(ii) Given a feasible solution (x ,α , β) to TCO with some choice of
basis H , then for any basis H̃ , there exists a feasible solution
(x̃ , α̃ , ˜β), such that ET (x) = ET (x̃) and ˜θT = θT mod

π
2
.

This is a straightforward result of Theorem 3.1: given a solution

(θ ,p) to MIQ with some spanning tree T , we use part (i) of the

theorem to construct a solution (x ,α , β) to TCO, and then use part (ii)
with a different spanning tree

˜T to construct another MIQ solution

( ˜θ , p̃). The theorem guarantees that EM (θ ,p) = EM ( ˜θ , p̃) and also

that
˜θ = θ mod

π
2
. A similar argument shows that TCO is invariant

to the choice of H . Note that p and β might change, though this is

inconsequential to the resulting cross fields, which are given by θ
and θT respectively.

As the optimization problems are equivalent, we can devise an

algorithm for optimizing Equation (5) instead of Equation (2). There

are a few advantages to changing the parameterization of the prob-

lem to the variables (x ,α , β). First, we can use the discrete Hodge

decomposition [Tong et al. 2003] to eliminate the real variables x
and remain with an integer-only problem. Second, the integer vari-

ables α have a geometric meaning, as the cone singularities of the

computed cross field, and thus we can devise an efficient iterative

method for optimizing them. Finally, the separation of α and β al-

lows us to relax β while optimizing α , simplifying the algorithm for

high genus meshes.

3.2 IOQ
The problem in Equation (5) has some interesting properties, as was

noted in [Crane et al. 2013, Sec. 8.4.1]. First, recall a fundamental

property of the adjacency matrices d0,d1, namely that d1d0 = 0.

Hence, any vector x ∈Rl can be uniquely decomposed as x =d0a +

Bb + dT
1
c , where B ∈Rl×2д is a matrix whose columns form a basis

for the linear space ker(d1) \ im(d0), and a ∈Rn ,b ∈R2д , c ∈Rm . B

is computed from H by B = H − d0(dT
0
d0)†dT

0
H and is orthogonal

to d0 and d1 (see [Crane et al. 2013, Sec. 8.2.2]). Here † indicates the
Moore-Penrose pseudo-inverse. This decomposition is also known

as the Hodge decomposition of discrete differential forms [Tong et al.

2003] (we discuss the metric in Section 6.1). Thus, the constraint in

Equation (5) can be written as:[
dT
0

HT

] [
d0 B dT

1

] 
a
b
c

 = π
2
s − sд(Γ), (6)

yielding the constraint matrix[
dT
0
d0 dT

0
B dT

0
dT
1

HTd0 HT B HTdT
1

]
=

[
dT
0
d0 0 0

HTd0 HT B 0

]
. (7)

Here we used the fact that the matrices d0,B are orthogonal, and

the fact that the edge values of the non-contractible dual cycles

in H sum to 0 on all triangles; thus HTdT
1
= 0. Consequently, c is

not constrained by Equation (7). Due to the orthogonality of the

decomposition, we have ET (x) = ∥d0a∥2
2
+ ∥Bb∥2

2
+ ∥dT

1
c ∥2

2
, and thus

the optimal solution will always have c = 0. Finally, the constraint

on a does not depend on β , and is given by:

a(α) = L†( π
2
α − αд), (8)

where L = dT
0
d0 is the graph Laplacian. Note that a(α) is defined

only up to an additive constant, since L has co-rank 1. Similarly, the

constraint on b is:

b(α , β) = (HT B)−1
(
π
2
β − βд(Γ) − HTd0a(α)

)
, (9)

where HT B is non-singular since both H and B are full rank.

Combining these properties allows us to eliminate the real-valued

variables a,b and remain only with the integer-valued variables α , β .
Hence, the part of the objective function that depends on the cone

singularities α is:

EI (α) = ∥d0a(α)∥22 = ( π2 α − αд)
T L†( π

2
α − αд), (10)

where we used the fact that L† is symmetric, and L†LL† = L†. Finally,
the optimization problem is:

minimize

α ∈Zn , β ∈Z2д
EI (α , β) = EI (α) + ∥Bb(α , β)∥22

subject to

∑n
i=1αi = 4χ .

(11)

The optimization problems TCO and IOQ are equivalent. Formally,

we have:

Theorem 3.3. (x ,α , β) is an optimal solution to Equation (5) if
and only if x = d0a(α) + Bb(α , β) and (α , β) is an optimal solution to
Equation (11).

The proof is a straightforward result of Equations (6)-(9) and is

provided in the Appendix for completeness. Similar results, albeit

not in the context of optimizing the holonomy signature, appear

in [Crane et al. 2013, Sec. 8.4.1] and [Campen and Zorin 2017a].

Corollary 3.4. For a closed, oriented triangle mesh, with a single
directional constraint, the optimal cross field for MIQ, i.e., the optimal θ
mod

π
2
in Equation (2), is fully determined by the holonomy signature

s=
[
α , β

]
.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 91. Publication date: August 2018.



Integer-Only Cross Field Computation • 91:5

Fig. 3. Comparison between direct rounding and an exact CVP solver [Agrell
et al. 2002] for some low resolution meshes sorted by genus. Note that in
most cases direct rounding yielded an optimal solution. Notable exceptions
are the ball and heptoroid meshes, of genus 5 and 22 respectively, where
CVP did improve the solution considerably. We also show the resulting cross
fields for the ball mesh with β computed by rounding (left) and CVP (right).

This is a straightforward result of Theorem 3.1 and Theorem 3.3.

A solution (θ ,p) is optimal for MIQ if and only if there exists a

corresponding optimal solution (x ,α , β) for TCO, where (α , β) are
also optimal for IOQ. Thus optimality can be determined from the

holonomy signature s=
[
α , β

]
.

3.3 IOQr: Relaxation
We will consider a relaxation of Equation (11), with the β variables

relaxed to be real-valued. Note that in this case we can always make

b(α , β) equal 0 by taking β∗(α) = 2

π

(
βд(H ) + HTd0a(α)

)
. Thus, we

can eliminate β and solve

minimize

α ∈Zn
EI (α)

subject to

∑n
i=1αi = 4χ .

(12)

Then, given the solution α∗ to the above, we further solve:

minimize

β ∈Zn
∥Bb(α∗, β)∥2

2
.

(13)

In the following two sections we first propose an iterative algo-

rithm for minimizing the energy in Equations (12), (13) and then

show how to devise an approximation that allows us to trade-off

the quality of the cross field and the computational time.

4 OPTIMIZATION

4.1 Solving for α
The optimization problem in Equation (12) is an instance of the

closest vector problem (CVP) [Micciancio 2001], known to be NP-hard

in the general setting. While there exist instances of the problem

that are polynomially solvable [Sahraei and Gastpar 2017], to the

best of our knowledge such an algorithm is not currently known

for matrices of the form of L†. Furthermore, our problem has an

additional complication due to the sum constraint onα . We therefore

opt for an iterative approach that has some favorable properties: (i)

the constraint holds by construction, (ii) it is easily parallelizable,

and (iii) it is closely related to the resistance distance and thus admits

a graph-theoretic approximation.

Assume α (t ) ∈ Zn is a feasible solution for Equation (12), and

consider the update α (t+1) = α (t ) + hi j , where hi j = hi − hj , and
hi ∈Zn is a vector that is all zeros except for a single 1 at the i-th

entry. Note that α (t+1) sums to 4χ . Thus, to minimize (12), we start

with a random feasible α (0) ∈ Zn , and iteratively update it by adding
the best hi j over all possible choices of i, j, i, j as follows:

(i∗, j∗) = argmin

1≤i, j≤n,i,j
E(α (t ) + hi j ),

α (t+1) = α (t ) + hi∗ j∗ .

We continue this process as long as there exists a choice of (i, j) that
reduces the energy.

While global optimality cannot be guaranteed, we have some

partial guarantees since there is no hi j that reduces the energy.

Specifically, it is easy to see that there is no relocation of a single

cone singularity of magnitude ± π
2
, and no cancellation of two such

singularities that reduces the energy.

4.2 Solving for β
The optimization problem in Equation (13) is also a CVP, of di-

mension 2д, with the matrix
π
2
B(HT B)−1 and the target vector

B(HT B)−1(βд +HTd0a). For low dimensional lattices, and low reso-

lution meshes, i.e. when д,n are small, finding the optimal solution

is still computationally feasible [Agrell et al. 2002]. However, we

found that direct rounding yields excellent results, and in many

cases the exact CVP solution did not considerably improve the en-

ergy. This is demonstrated in Figure 3, which shows the energy

∥Bb(α , β)∥2
2
computed using direct rounding and using the exact

CVP solution. Thus, in our experiments we use β = round(β∗(α∗)).
A large improvement in the energy did occur for some of the higher

genus meshes, implying an interesting future research direction.

4.3 Initialization
To initialize α (0), we pick a set of random indices S ⊆ {1, ...,n} and
set α (0) at these locations to ±1 such that

∑
i α
(0)
i = 4χ holds.

To check the stability of our algorithm to this initialization, we ran

it on the Bunny mesh with a varying number of initial singularities,

N = 30 times for each |S | value. For each run, we measured the

resulting final energy, and the resulting number of cone singularities.

As is evident in Figure 4, both the energy (left) and the final number

of singularities (right) are stable under the choice of initial random

Fig. 4. Final energy value (left) and final number of cone singularities (right)
as we increase the number of initial singularities. We also show the energy
value and number of singularities of MIQ [Bommes et al. 2009]. Note that
our method is stable to the initialization, and in all cases yields a better
energy than MIQ with fewer singularities.
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Fig. 5. The average of α across N random initializations for the initial (a)
and final (b) iterations. Note that the singularities concentrate at specific
locations, yet there might be multiple equivalent configurations, e.g. on the
tail. We also show one of our results (c) and the MIQ result (d).

input, even when the number of initial singularities is far larger

than their final number. For reference, we also show the energy

value and the number of singularities of MIQ for this mesh. Note

that for all runs our results yield a lower number of singularities

and a lower energy.

As the figure shows, there is a larger variability in the final num-

ber of singularities than in the energy. We believe this is because

there are multiple solutions that lead to similar energy values. To

demonstrate this, we additionally show in Figure 5 the average of α
across all N experiments for the initial (a) and final (b) iterations.

Note that while the singularities concentrate at specific locations,

there might be multiple equivalent configurations, e.g. on the tail,

leading to a greater variation in the singularities than in the energy.

We additionally show one of our results (c), and the MIQ result (d).

4.4 Convergence.
Our algorithm converges in a relatively small number of iterations.

Figure 10 (left) shows the energy values during the iterations, for

different numbers of initial singularities, additional to the minimal

number required to fulfill the constraints on α . Note that starting
from more singularities leads to slower conversion; thus, in our

experiments we always use for initialization the minimal number

possible of ± π
2
singularities.

4.5 Parallelization
Our iterative update for α is computationally demanding, yet easily

parallelizable. To devise a practical algorithm, we note the change

in energy due to the addition of hi j :

π 2

4
EI (α + hi j ) = π 2

4

(
EI (α) + hTi ju(α) + Ri j

)
,

where

Ri j = h
T
i jL
†hi j , u(α) = 2L†(α − 2

π αд).

Note that the matrix R, whose (i, j)-th entries are given by Ri j , is
independent of α and can be precomputed. Furthermore, we have:

u(α + hi j ) = 2L†(α − 2

π αд + hi j ) = u(α) + 2L
†hi j .

Thus we can compute u(0) = u(α (0)) and update it at every iteration.

Hence, at each iteration we do the following:

(i∗, j∗) = argmin

1≤i, j≤n,i,j
u
(t )
i − u

(t )
j + Ri j ,

α (t+1) = α (t ) + hi∗ − hj∗ ,

u(t+1) = u(t ) + 2L†i∗ − 2L
†
j∗ ,

where L†i is the i-th column of L†. The resulting algorithm, denoted

IOQr, is given in Algorithm 1.

The algorithm is highly parallel, since the computation for every

(i, j) is independent, and thus it is naturally amenable to a GPU

implementation. It does, however, require the precomputation of L†,
which may be prohibitive for large meshes. In our experiments, this

algorithm was adequate for meshes with up to 40K faces (see Figure

3 in the supplemental material) on an NVIDIA GeForce GTX 1080

Ti GPU. For larger meshes, we propose an approximation scheme

described in the next section.

5 APPROXIMATION

5.1 Background: The Resistance Distance
The matrix R that appears in Algorithm 1 has a geometric meaning,

and is known as the graph resistance distance matrix. It encodes

graph-theoretical distances originally used in the theory of electrical

networks [Kirchhoff 1958]. On an edge, it is equal to the potential

difference when we inject a unit current at one end of the edge

and extract it at the other end. It can also be thought of as the

commute time between two vertices [Chandra et al. 1996], or the

probability that an edge appears in a random spanning tree of the

graph [Bollobás 2013; Doyle and Snell 1984]. The resistance distance,

also known as the commute time distance, has been used in geometry

processing for various applications; see e.g. [Patané and Spagnuolo

2013]. It can be computed explicitly by:

Ri j = h
T
i jL
†hi j = L†ii + L

†
j j − 2L

†
i j ,

ALGORITHM 1: IOQr, IOQϵ

input :V, F, E, d0, H , L†, R , R̃ϵ
output :α , β
n,m, l ← number of vertices, faces, and edges respectively;

α (0) ← random placement of ±1 such that

∑
iα
(0)
i = 4χ , α (0) ∈Zn ;

m(0) ← −∞; t ← 0;

u (0) ← 2L†(α (0) − 2

π αд ); u (0) = solve(L, 2α (0) − 4

π αд );
whilem(t ) < 0 do

i, j ← argmin

1≤i, j≤n,i,j
u (t )i − u

(t )
j +Ri j ; ... +(R̃ϵ )i j ;

α (t+1) ← α (t ) + hi − hj ;
u (t+1) ← u (t ) + 2L†i − 2L

†
j ; u (t+1) = solve(L, 2α (t+1) − 4

π αд );
m(t+1) ← u (t )i − u

(t )
j +Ri j ; ... +(R̃ϵ )i j ;

t ← t + 1;
end
a = solve(L, π

2
α (t ) − αд );

β = round

(
2

π (βд (H ) + HT d0a)
)
;
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Fig. 6. The results of our exact and approximated algorithms (IOQ and
IOQe), compared with MIQ [Bommes et al. 2009] and GO [Knöppel et al.
2013], on two symmetric models. See the text for details.

yet this requires the matrix L†, which is computationally prohibitive

to compute for large meshes. To overcome this, we use an efficient

random approximation of R.

5.2 Random Approximation
Spielman and Srivastava [2011] proposed a method, based on ran-

dom projections, to approximate the resistance distance of a given

graph. Calculating R is equivalent to computing the pair-wise Eu-

clidean distances between points in

{
d0L
†hi

}
vi ∈V , which are the

columns of d0L
†
. This is true since

Ri j = h
T
i jL
†hi j = hTi jL

†LL†hi j

=
(
hTi jL

†dT
0

) (
d0L
†hi j

)
= ∥d0L†hi j ∥22 .

To efficiently and accurately approximate these, Spielman and Srivas-

tava [2011] projected the columns of d0L
†
onto a subspace spanned

by O(logn) random vectors and calculate the distances in the pro-
jected space. Let Qk×l be a random Bernoulli matrix with entries

of ±1/
√
k , where k ≥ 24 logn/ϵ2, for some ϵ > 0. They computed

Y = Qd0 and solve ZL = Y for Z . The n columns of Z are the pro-

jected points of dimension k , and we can use the Euclidean distances
between them to approximate the resistance distance by:

(R̃ϵ )i j = ∥Zi − Z j ∥22 ,

where Zi is the i-th column of Z . The algorithm for computing R̃ϵ
is provided in Algorithm 2.

ALGORITHM 2: Approximate resistance distance

input :V, E, ϵ
output : R̃ϵ
k ← round(24 logn/ϵ 2);
Q ← random k × l matrix with entries ±1/

√
k ;

Y ← Qd0;
ZT = solve(L, YT );
(R̃ϵ )i j = ∥Zi − Z j ∥2

2
;

Fig. 7. Left: Histogram of the pair-wise distortions Ri j /(R̃ϵ )i j for three
values of ϵ . Right: Percentage of pairs with distortion greater than 10% as
we increase the projected dimension k . See the text for details.

Implementation. To compute Z we first factorize L, and then use

back-substitution, using [Davis 2013]. The pair-wise distances be-

tween all the columns in Z are then computed efficiently on the

GPU using the built-in Matlab function “pdist”. The algorithmic

modifications required in order to work with the approximate re-

sistances instead of R and L† are minor. The only difference is that

instead of using L† for updating u, we need to solve a sparse linear

system at every iteration, yet we can do that efficiently using the fac-

torization of L. The changes are highlighted in Algorithm 1, where

green lines replace blue lines when using approximate resistances.

Note that when using approximate resistances, the energy is no

longer guaranteed to monotonically decrease; thus, we stop when

we identify a cycle in the solutions.

Figure 10 shows the energy values during the iterations for the

approximated and exact algorithms with the same initialization.

Note that the graphs are almost indistinguishable. Indeed, in practice

the approximated algorithm yields energy values that are very close

to the result of the exact algorithm. Figure 6 shows the output of the

approximated algorithm with ϵ = 0.5 compared with MIQ [Bommes

et al. 2009], GO [Knöppel et al. 2013] and our exact algorithm IOQ, on

two symmetric models. Note that compared to MIQ and GO on the

torus, IOQ finds a lower energy solution with fewer singularities.

Furthermore, for both the cube and the torus, the singularities’

locations are close to symmetric. IOQe yields very similar results to

IOQ, at the expense of a slightly higher energy. Note that the GO

result on the cube is very similar to ours, up to a global rotation of

all the crosses, which does not affect the energy.

Approximation quality. The Johnson-Lindenstrauss Lemma guar-

antees that with high probability the Euclidean distances will not

be distorted by more than a multiplicative factor of 1 ± ϵ [Achliop-

tas 2001; Dasgupta and Gupta 2003; Johnson and Lindenstrauss

0

0.5

1

1.5

2

Fig. 8. The resistance distance and its approximations as we increase ϵ ,
with respect to the red point. Here we show the running time in seconds, T ,
and the original and projected dimension, n and k respectively.
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Fig. 9. Time/quality tradeoff of IOQϵ with different ϵ values. We show
the average across N = 300 experiments of α after convergence, using (a)
the exact resistance distance with different initial random α ; and (b-d) the
approximate resistance, with different random projections and the same
initial α . Note that for ϵ = 0.5 we get a dimensionality reduction of more
than 90%, yet the algorithm yields excellent cone positions.

1984]. In practice, we found that for graphs that come from trian-

gle meshes, the distortion is empirically less than the theoretical

guarantee. Figure 7 (left) shows the distortion ratio of Ri j/(R̃ϵ )i j
for different values of ϵ . For example, for n=55,000 and ϵ ≈0.5, the
reduced dimension is k=1000. In this case, the expected distortion

is 50%, yet the actual observed maximal distortion is only around

15%. In Figure 7 (right) we show the trend for a growing k , i.e. a
decreasing ϵ , of the percentage of pairs with distortion higher than

10%, again for n = 55,000. Note that the distortion quickly decreases,

with less that 5% of such pairs for k = 1000.

To give some insight into the behavior of the approximation,

we visualize in Figure 8 the exact resistance distance R, and its

approximation R̃ϵ for different values of ϵ . We show these as color

coded functions, where the function is the resistance distance of all

mesh vertices from a single marked vertex. Note that, as expected,

the functions become noisier as ϵ grows, yet qualitatively, they are

similar to the exact resistance distance.

Time/quality tradeoff. Fig. 9 shows the robustness of this approxi-
mation when combined with our algorithm, and the resulting trade-

off between the quality of the output and the computational time.

We first compute N = 300 different R̃ϵ for various ϵ values, by run-

ning Algorithm 2. Then, for a fixed initial α (0), we run Algorithm 1

with the different R̃ϵ . We show in (b-d) the average optimal α after

convergence, where we average across the N experiments for matri-

ces with the same ϵ . In addition, we show in (a) the average optimal

α , when using the exact resistance distance, and starting from N
random initializations, for comparison. As the figure shows, while

the locations of the singularities degrade for very large ϵ , for ϵ = 0.5

we achieve a dimensionality reduction of more than 90%, and still

Fig. 10. Left: Energy values during the iterations for different numbers
of initial singularities, for both the exact (IOQ) and approximated (IOQe)
methods. Right: Close-up of the same graph. Note that the energy plot of the
approximated method is nearly indistinguishable from the exact method.

get an excellent distribution of the locations of the singularities. In

all our experiments, unless mentioned otherwise, we used ϵ = 0.5.

6 IMPLEMENTATION
We implemented our algorithm in Matlab, using its built-in support

for GPU parallelization with “gpuArray”. For the inner loop that

minimizes over all (i, j) pairs, we used a CUDA kernel. For the

exact algorithm, we first attempt to compute L† on the GPU, and

if that fails due to memory requirements, we attempt a blockwise

GPU inversion. If that also fails, we invert L† on the CPU. For large

meshes, where L cannot be inverted on the GPU, the exact algorithm
is therefore computationally very expensive. For the approximate

algorithm, we factorize L on the CPU, and use the factorization

to compute Z . Then R̃ϵ is computed from Z on the GPU. On our

machine, with an NVIDIA GeForce GTX 1080 Ti GPU and an Intel

Core i7-7820X CPU @ 3.60GHz with 8 cores, the exact algorithm

takes a few minutes for a mesh with 50K faces, and the approximate

algorithm with ϵ = 0.5 takes around 20 seconds. The full timing

details are provided in Figure 3 of the supplemental material.

6.1 Limitations
The main limitation of our algorithm is the heavy computational

load. Because we have to fit L† or R on the GPU, the memory require-

ment is O(n2/2), which on our hardware (12 GB RAM) was feasible

for meshes with up to 100K faces. This could potentially be reduced

to O(nloд(n)) by holding Z instead on the GPU and computing R̃ϵ
on the fly.

Another limitation is that we do not handle directional constraints.

In many scenarios, especially quadrangular remeshing, it is benefi-

cial if the cross field is aligned with the curvature directions of the

surface. We leave the generalization of our approach to directional

constraints for future work.

Finally, the geometry of the surface is not incorporated in the sys-

tem matrix L, since we use L = dT
0
d0, and not a weighted Laplacian.

The TC formulation allows for adding weights on the edges, [Crane

Fig. 11. An example of our method with the graph Laplacian (left) and the
cotangent Laplacian (middle) compared to MIQ (right). Note that in both
cases our method finds a better solution in terms of smoothness energy and
singularity placement.
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Fig. 12. The improvement in energy and singularities of our exact
(IOQ) and approximate (IOQe) methods relative to MIQ, computed by
(EMIQ /Eours )(( |S |MIQ + 1)/( |S |ours + 1)) on the meshes from [Myles
et al. 2014], where |S | is the number of singularities. Note that for all meshes
our result is bigger than 1, and thus improves on MIQ. Furthermore, the
results of IOQ and IOQe are comparable for most meshes.

et al. 2010, Section 2.5], and a similar approach could be applied to

MIQ as well. We did not attempt that, as we wished to compare to

a non-modified MIQ. As the approach of Spielman and Srivastava

[2011] can be applied to a weighted graph, we believe a suitable

adaptation of our algorithm that incorporates the geometry in L
can be devised. See Figure 11 for a preliminary result in which we

replaced L by the cotangent Laplacian and no approximation was

used. Note that the resulting cross-field has fewer singularities and

a lower smoothness energy than the MIQ result.

7 RESULTS

7.1 Comparisons
Quantitative, with MIQ [Bommes et al. 2009]. We compared our

exact method (IOQ), our approximated method (IOQe with ϵ = 0.5)

and MIQ [Bommes et al. 2009]. For IOQ, IOQe and MIQ we used

the same single directional constraint on an arbitrary face. GO can

be computed without any directional constraints. To evaluate the

methods, we assessed the angle-based energy of the output fields

E = EM (θ ,p) from Equation (2), the number of singularities |S |, i.e.
the number of vertices vi ∈V such that αi ,0, and the timing, on

the models from the benchmark provided by [Myles et al. 2014]. We

implemented our method in Matlab and CUDA, while for MIQ we

used the Libigl [Jacobson et al. 2016] implementation.

Figure 12 shows the ratio of improvement of our methods vs. the

MIQ result, i.e. (EMIQ /Eours )((|S |MIQ + 1)/(|S |ours + 1)). As the
figure shows, the product of these ratios is always greater than 1

(the vertical black line); thus, for all models we improve upon MIQ.

Also note that the approximate method (IOQe) yields comparable,

and sometimes better, results than IOQ. The median improvement

ratio over all models is 1.71 for IOQ and 1.86 for IOQe.

Quantitative, with GO [Knöppel et al. 2013]. The cross field genera-
tion method suggested by Knöppel et al. [2013] optimizes a different

energy than MIQ, yet is very efficient and has global optimality

guarantees (for their energy). We compared our method with GO as

well, using aMatlab implementation with a face-based discretization
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Fig. 13. The improvement in energy and singularities of our exact (IOQ) and
approximate (IOQe) methods relative to GO [Knöppel et al. 2013], using
the same protocol as in Figure 12. Here, again, for all meshes our result is
bigger than 1, and thus improves on GO. Furthermore, the results of IOQ
and IOQe are comparable for most meshes.

as done in [Diamanti et al. 2014]. The results are shown in Figure 13,

using the same quantitative measures as in Figure 12. Since we are

measuring an energy that GO is not optimizing for, our method

outperforms GO in terms of energy. Note, however, that we also

outperform GO in terms of the number of singularities. The median

improvement rate over all models was 2.99 for IOQ and 3.3 for IOQe.

All the quantitative results, i.e. E, |S | for all the methods and all the

models are provided in Figures 1 and 2 in the supplemental material.

Timing. Our approach is considerably slower than both MIQ and

GO. For example, MIQ completed for all the models within a few

seconds, whereas GO is even faster, finishing in less than a second

for all models. Our approximated method with ϵ = 0.5 takes around

20 seconds on models of size 50K faces. Our exact method can take

around 5minutes for such models and around 20minutes for models

of 100K faces. However, it is efficient for models whose L matrix

can be inverted on the GPU. All the timing results for IOQ and IOQe

are provided in Figure 3 in the supplemental material.

Qualitative. Figure 15 shows a few example models from the

benchmark with their corresponding cross fields for the different

methods. Note that for the IOQ approach there are considerably

fewer singularities, with a smaller energy, and the singularities are

well distributed when compared with the MIQ and GO results.

Fig. 14. Energy, number of singularities and timing scalability, on a series
of meshes with varying resolutions. See the text for details.
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Fig. 15. Some meshes from the benchmark and their cross fields. Note that our method yields considerably fewer singularities with lower energy values.

7.2 Scalability
To compare the scalability of our approach with respect to the

energy, number of singularities and timing, we ran our methods

and MIQ on a series of meshes with the same geometry and varying

resolution of the Bunny mesh. As Figure 14 shows, our energy

remains the same order of magnitude when increasing the mesh

size, and the number of singularities remains largely the same. In

terms of timing, both IOQ and IOQe are slower than MIQ, yet IOQe

is considerably faster than IOQ.

7.3 Varying ϵ
Figure 16 shows our results on a model with sharp features as we in-

crease ϵ , the approximation parameter. Note that with ϵ = 1, which

reduces the dimension to a mere 3% of the original dimension, IOQe

still finds a similar singularity placement, albeit with a somewhat

higher energy. For the best trade-off between the resulting smooth-

ness energy and the reduced dimension, we have found that taking

ϵ = 0.5 is appropriate.

Fig. 16. Varying the approximation parameter, ϵ , has little effect on the
final singularity placement. Note in particular that even with a projected
dimension of k = 213, our method still places most of the singularities on
the corners as desired, albeit with a somewhat higher energy.

Fig. 17. Stability of our method (left) compared to MIQ (right) with increas-
ing levels of normal noise added to the vertex positions.

7.4 Stability to Noise
To measure the stability of our approach to geometric noise, we

added random Gaussian noise in the normal direction to the kitten

model, with standard deviation of 10 and 15 percent of the average

edge length. The results are shown in Figure 17, for IOQe with

ϵ = 0.5 (first three from the left) and MIQ (last three from the right).

Note that for the 10 percent noise level the number of singularities

remains almost the same for our approach. Even for the higher

Fig. 18. The results of our method (left) compared to MIQ (right) on a
uniform and non-uniform triangulation. Note that while our method does
not incorporate the geometry in the system matrix L, it is, at least to some
extent, robust to changes in the triangulation.
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IOQ IOQe ϵ = 0.5 MIQ

Fig. 19. Quadrangular meshes generated from our cross fields (left,center), compared to quad meshes generated from MIQ cross fields (right).

noise level, our algorithm yields considerably fewer singularities

than MIQ, as well as a lower energy.

In another experiment, we randomly flipped the edges of a mesh

to get a non-uniform triangulation. While the geometry is not en-

coded in the system matrix L, it does contribute to the right hand
side of the system through the angle defects αд , βд . Therefore, the
results are, at least to some extent, robust to changes in the triangu-

lation, as is shown in Figure 18.

7.5 Application toQuadrangulation
The cross fields we generate can be used for computing quadrangular

meshes, by creating a parameterization whose gradients align with

the cross directions, and then extracting the quads. We used off-

the-shelf approaches for these steps: the parameterization part of

MIQ [Bommes et al. 2009, Sec. 5] as implemented in libigl [Jacobson

et al. 2016], and the quad extraction method QEx [Ebke et al. 2013]

that receives as input a parameterization.While in general curvature

direction alignment is often required for quad meshing, it seems that

in some cases good cone point locations can lead to high quality

quadrangular meshes even without alignment. Figure 19 shows

some examples of quad meshes computed using our cross fields, and

using the cross field generated by MIQ. Note that the better placed

singularities and lower energy of our approach lead to smoother,

more symmetric quad meshes with better shaped quads.

8 CONCLUSION
We showed an equivalence between two existing methods for gener-

ating cross fields, which we then used to formulate a new iterative

algorithm that finds better solutions than state-of-the-art results in

terms of the angle-based energy and number of singularities. Using

a recent approximation of the resistance distance, based on random

projections, we allow a trade-off between the computation time

and the smoothness of the produced field using a single tunable

parameter, ϵ .
A natural generalization of our approach is to add support for

directional constraints. In addition, we believe that a similar iterative

approach could be useful for computing a parameterization with

integer cone locations that is aligned with a given cross field. Finally,

to the best of our knowledge, this approximation of the resistance

distance has not been used in geometry processing, but we posit that

it is of independent interest and could be useful in other applications.
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APPENDIX - PROOFS.
Let H ∈ Zl×2д be any integral basis for the non-contractible dual

cycles ofM, e.g. as obtained by computing the tree-cotree decom-

position [Eppstein 2003, Lemma 3.2] and orienting the edges [Crane

et al. 2010, Sec 2.1], and let d1 ∈Zm×l be the signed face-edge adja-

cency matrix. Further, let T ⊂E∗ be a dual spanning tree ofM.

First, we relate an MIQ solution (θ ,p) and a TC solution (x ,α , β)
through the following system of linear equations:

π
2
(Γp + s) = sд(Γ) − Γr , (14)

π
2
p + dT

1
θ + x = −r , (15)

where ΓT =
[
d0,H

]
, s=

[
α , β

]
, and sд =sд(Γ)=

[
αд , βд(H )

]
.

Lemma 8.1. For any choice of H , we have that I0(Γ)= 2

π (sд(Γ) −
Γr ) ∈Z, and ∑n

i=1 I0(Γ)(i)=4χ .

Proof. By definition, sд(Γ) are the geometric angle defects around

the cycles of Γ, and Γr is the holonomy of the local reference frame

field along the cycles of Γ (see, e.g. [Crane et al. 2010, Sec. 3.2]).

Hence, their difference is a multiple integer of
π
2
and thus I0 ∈ Z.

Furthermore, for i = 1..n we have that I0(i) is the index of the

reference frame field at the vertex vi ∈V , and thus

∑n
i=1 I0(Γ)(i)=

4χ [Ray et al. 2008, Theorem 2.3].

Lemma 8.2. Given a dual spanning tree T ⊂E∗, let Γf be the matrix
formed by the columns of Γ corresponding to E∗ \ T , i.e. dual edges
not in T . In addition, let s ∈Zn+2д such that

∑n
i=1si = 4χ . Then the

linear system
Γf pf = −s + I0(Γ) (16)

has a unique integer solution.

Proof. Every column of dT
0
sums to 0, thus we can remove its first

row and it will still span all the dual cycles. Given a matrixM , let M̂
denote the matrix with the first row removed. Hence, Γ̂ is an integral
basis for the dual cycles, with independent rows. Using [Liebchen

and Rizzi 2007, Lemma 27], we have that the matrix Γ̂f is a non-

singular unimodular matrix. Furthermore, the right hand side of

Equation (16) is integer, since s is integer and due to Lemma 8.1. Thus

the system Γ̂f pf =−ŝ + I0(Γ̂) has a unique integer solution. Finally,
we have that

∑n
i=1I0(Γ)(i)= 4χ from Lemma 8.1, and

∑n
i=1si = 4χ .

Thus

∑n
i=1(−si + I0(Γ)(i))=0. Furthermore,

∑n
i=1Γf (i, :)pf =0, thus,

pf fulfills the first linear constraint as well, and is thus a unique

integer solution of Equation (16) as required.

Lemma 8.3. Let (θ ,p) be a feasible solution of Equation (2) and let
H be an integral basis of non-contractible dual cycles. Then there exists
a unique solution (x , s) of the system of equations (14), (15) such that
s =

[
α , β

]
and (x ,α , β) is feasible for (5).
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Proof. Let s = I0(Γ) − Γp, then Equation (14) holds for (s,p). Note
that I0(Γ) is integer due to Lemma 8.1, and Γp is integer since Γ and

p are both integer. Thus, s is integer. Let
[
α , β

]
= s , with α ∈Zn , β ∈

Z2д . Then, α = I0(dT
0
) − dT

0
p, namely α is a vector containing the

indices of the cross field (θ ,p) [Bommes et al. 2009, Sec 4.1], and

thus

∑n
i=1αi =4χ [Ray et al. 2008, Theorem 2.3].

Let x = −r − π
2
p−dT

1
θ , then Equation (15) holds for (x ,θ ,p). Now,

we have that Γx = −Γr − π
2
Γp − ΓdT

1
θ . Note that d1Γ

T = 0, since

d1d0 = 0, and the columns of H are closed discrete one-forms (see
e.g. [Crane et al. 2013, Sec. 8.2.2]). From Equation (14) we have that

−Γr − π
2
Γp= π

2
s − sд(Γ), thus Γx − π

2
s=−sд(Γ) and (x , s) is feasible

for the problem (5).

Lemma 8.4. Let (x ,α , β) be a feasible solution of Equation (5) with
cycle basis H , and let T be a dual spanning tree. Then there exists a
unique solution (p,θ ) of the system of equations (14) and (15) such
that (p,θ ) is feasible for (2).

Proof. Let s =
[
α , β

]
. Since (x ,α , β) is feasible for Equation (5),∑n

i=1si = 4χ . Now, let pf be the unique integer solution of Equa-

tion (16), guaranteed by Lemma 8.2. Define the vector p ∈Zl , such
that p(e) = 0,∀e ∈ T and p(e) = pf (e),∀e ∈ E∗ \ T . Then, p is

the unique integer solution to Equation (14) that is also feasible for

Equation (2). Let ω = −r − π
2
p − x , then ω has a unique decom-

position (up to two constants) as ω = d0ω0 + d
T
1
ω2 + Bω1. Since

(x ,α , β) is feasible for TC, we have that Γx = π
2
s − sд . Further-

more, we have that
π
2
s − sд = −Γr − π

2
Γp, due to Equation (14) .

Hence −Γx − Γr − π
2
Γp = Γω = 0, and thus ω is in the kernel of

dT
0
and HT

. Since BT = HT − HTd0(dT
0
d0)†dT

0
, we have that ω is

also in the kernel of B, and thus ω is orthogonal to the image of

d0 and the image of B. Hence, ω0 = 0,ω1 = 0. Let c ∈ F be the

constrained face, and θ0 the constrained value in Equation (2). Now,

set θ = ω2 − (ω2(c) + θ0)1, where 1 is a constant vector with all

ones. Then, θ (c) = θ0 and dT
1
θ = dT

1
ω2 = ω, because dT

1
1 = 0. Fur-

thermore, θ is defined uniquely, since ω2 is unique up to a constant

shift. Thus (p,θ ) is the unique solution of Equations (14), (15) that

is also feasible for (2).

Theorem 3.1.

(i) Let (θ ,p) be a feasible solution of (2). Then, for any integral
basis of non-contractible dual cycles H , there exists a feasible
solution (x ,α , β) of (5) such that ET (x) = EM (θ ,p).

(ii) Let (x ,α , β) be a feasible solution of (5). Then, for any dual
spanning tree T , there exists a feasible solution (θ ,p) of (2)

such that EM (θ ,p) = ET (x).
(iii) Let (x ,α , β) and (θ ,p) be corresponding solutions as in (i,ii),

and let θT be the integrated values of x . Then θT =θ modπ/2.

Proof.

(i) Let (θ ,p) be a feasible solution of (2), and let (x ,α , β) be the
feasible solution of Equation (5) guaranteed by Lemma 8.3.

Then−x = dT
1
θ+r+ π

2
p, due to Equation (15). ThusEM (θ ,p) =

∥dT
1
θ + r + π

2
p∥2

2
= ∥−x ∥2

2
= ET (x).

(ii) Let (x ,α , β) be a feasible solution of (5), and let (p,θ ) be the
feasible solution of Equation (2) guaranteed by Lemma 8.4.

Then, Equation (14) again leads to EM (θ ,p) = ET (x).

(iii) Let (x ,α , β) and (θ ,p) be corresponding feasible solutions

given by Equations (14), (15). Then, θT , the integrated angle

values, are computed by dT
1
θT = −x − r . Furthermore, from

Equation (15) we have that dT
1
θ = −x −r − π

2
p. Thus, dT

1
(θT −

θ ) = π
2
p = 0 mod

π
2
. Since on the constrained face c ∈F we

have that θT (c) = θc = θ0, we get that θT − θ = 0 mod
π
2
.

Lemma 8.6.

(i) If (x ,α , β) is an optimal solution to Equation (5) then x =
d0a(α) + Bb(α , β).

(ii) If x = d0a(α) + Bb(α , β) then ET (x) = EI (α , β).
(iii) If (x ,α , β) is an optimal solution to Equation (5) then (α , β) is

a feasible solution to Equation (11).
(iv) If (α , β) is a feasible solution to Equation (11), then for x =

d0a(α) + Bb(α , β), we have that (x ,α , β) is a feasible solution
to Equation (5).

Proof.
(i) Let (x ,α , β) be an optimal solution of Equation (5). Then

there exists a unique decomposition (up to two constants)

x = d0a+Bb+d
T
1
c . Since x is optimal, thematricesd0,B,d1 are

mutually orthogonal and c is not constrained, then c = 0. Due

to the constraints in (5) we have that dT
0
d0a =

π
2
α − αд , thus

a = a(α) + c1 for some constant c ∈R. Hence, d0a = d0a(α),
since 1 is in the kernel of d0. In addition, also due to the

constraints in (5), we have HTd0a + HT Bb = π
2
β − βд(Γ),

thus b = b(α , β).
(ii) This is trivial, since d0,B are orthogonal.

(iii) This is trivial, since the constraints of (11) are a subset of the

constraints of (5).

(iv) Let (α , β) be an optimal solution of Equation (11). ThenαT 1 =
4χ , and ( π

2
α − αд)T 1 = 0. Therefore, we have: dT

0
d0a(α) =

LL†( π
2
α −αд) = π

2
α −αд , since LL†m =m for anym orthogo-

nal to the kernel of L. Furthermore,HTd0a(α)+HT Bb(α , β) =
HTd0a(α) + π

2
β − βд(Γ) − HTd0a(α) = π

2
β − βд(Γ). There-

fore, if we set x = d0a(α) + Bb(α , β), then (x ,α , β) fulfills the
constraints in Equation (5).

Theorem 3.3. (x ,α , β) is an optimal solution to Equation (5) if
and only if x = d0a(α) + Bb(α , β) and (α , β) is an optimal solution to
Equation (11).

Proof.
⇒ Let (x ,α , β) be an optimal solution of Equation (5). Then

x = d0a(α) + Bb(α , β) by Lemma 8.6 (i). Assume that (α , β) is
not optimal for Equation (11). Then, there exists an optimal

solution (α̃ , ˜β) such that EI (α̃ , ˜β) < EI (α , β). But then, take
x̃ = d0a(α̃) + Bb(α̃ , ˜β). According to Lemma 8.6 we have

that x̃ is feasible, and ET (x̃) = EI (α̃ , ˜β) < EI (α , β) = ET (x),
contradicting the optimality of (x ,α , β).

⇐ Let (α , β) be an optimal solution to Equation (11), and set x =
d0a(α)+Bb(α , β), then according to Lemma 8.6, (x ,α , β) is fea-
sible for Equation (5). Assume that it is not optimal, then there

exists an optimal solution (x̃ , α̃ , ˜β) such that ET (x̃ , α̃ , ˜β) <
ET (x ,α , β). But since (x̃ , α̃ , ˜β) is optimal, we have that x̃ =

d0a(α̃)+Bb(α̃ , ˜β), and therefore ET (x̃ , α̃ , ˜β) = EI (α̃ , ˜β). Hence,
we have EI (α̃ , ˜β) = ET (x̃ , α̃ , ˜β) < ET (x ,α , β) = EI (α , β), con-
tradicting the optimality of (α , β).
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