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Figure 1: (left) A typical setup of the Hele-Shaw experiment with our simulation results. (right) One of the effects obtained by our simulation.

Abstract
Hele-Shaw flow describes the slow flow of a viscous liquid between two parallel plates separated by a small gap. In some
configurations such a flow generates instabilities known as Saffman-Taylor fingers, which form intricate visual patterns. While
these patterns have been an inspiration for artists, as well as thoroughly analyzed by mathematicians, efficiently simulating them
remains challenging. The main difficulty involves efficiently computing a harmonic function on a time-varying planar domain,
a problem which has been recently addressed in the shape deformation literature using a complex-variable formulation of
generalized barycentric coordinates. We propose to leverage similar machinery, and show how the model equations for the
Hele-Shaw flow can be formulated in this framework. This allows us to efficiently simulate the flow, while allowing interactive
user control of the behavior of the fingers. We additionally show that complex barycentric coordinates are applicable to the
exterior domain, and use them to simulate two-phase flow, yielding a variety of interesting patterns.

1. Introduction

The interaction between fluids often leads to compelling visual phe-
nomena, such as mixing and pattern formation. In this paper we
are interested in viscous fingering, which are the patterns gener-
ated at the unstable interface of a viscous liquid. Such patterns can
arise when a liquid flows into a porous medium (e.g. sand), and are
closely related to other pattern phenomena such as bacterial growth
and snowflake formation. One option to experimentally study such
fingering phenomena, is to inject air into a viscous liquid trapped
between two parallel plates separated by a small gap (see Figure 2),
also known as a Hele-Shaw cell [Saf86]. This setup allows exper-
imental and mathematical analysis of the pattern formation, as the
governing equations for the expanding air bubble are the same as
those of other more complex flows yielding similar phenomena.

From the Computer Graphics perspective, such flows generate
intricate patterns which have inspired artists [Hal13] and design-

ers [Ner12]. It would therefore be potentially useful to simulate
such patterns numerically, and allow the user to control the finger
formation, while preserving the physical behavior and appearance
of the liquid. While a plethora of methods exist for numerically
simulating this phenomenon in the Computational Fluid Dynam-
ics literature, the vast majority requires copious amounts of com-
putational resources, and are thus not amenable to user control at
interactive rates. Furthermore, traditional fluid simulation methods
from Computer Graphics, such as a full Navier-Stokes simulation,
is unnecessarily computationally heavy: there is no need to simu-
late the full behavior of the fluid in the domain, since the fingering
phenomena happen at the moving free boundary.

In the spirit of recent methods for fluid simulation using bound-
ary tracking [KB14], we suggest a boundary integral formulation
for this problem. Our main observation is that the problem formu-
lation shares many properties with the problem of planar shape
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deformation, where the behavior is prescribed by user constraints,
rather than by the laws of physics. We therefore propose to leverage
a reduced model successfully used for shape deformation, namely
generalized barycentric coordinates, in order to parameterize the
behavior of the flow. As Hele-Shaw flow is governed by a har-
monic function, we use complex holomorphic barycentric coordi-
nates, which simplify the derivation and analysis.

We show how to formulate the model equations using complex
barycentric coordinates, which allows us to simulate the flow at in-
teractive rates, and thus allows user control over the direction in
which the fingers grow. By controlling the domain of injection, e.g.
by injecting from a line segment instead of a point, we further the
artist’s control and enable the generation of a large variety of pat-
terns. Finally, we show that complex holomorphic coordinates are
applicable to the exterior of a planar bounded domain, which al-
lows us to simulate finger formation in the case of two liquids with
different viscosities, as well as for multiply connected domains,
which allows us to simulate obstacles.

1.1. Related Work

While fingering in Hele-Shaw cells has not been, to the best of
our knowledge, simulated in Computer Graphics, the body of work
dedicated to the experimental, analytical and numerical study of
this phenomenon in the Computational Fluid Dynamics (CFD) lit-
erature is vast, and a complete review is beyond our scope. We
therefore focus our literature overview on putting our work in con-
text of existing schemes, by discussing the simulation of this phe-
nomenon in other disciplines, simulation of related phenomena in
graphics, and other applications in graphics which use similar tools.

Viscous fingering in Hele-Shaw cells. An excellent review on
the problem of viscous fingering in two dimensions, including the
Saffman-Taylor model equations, the formulation using complex
analysis and conformal maps, as well as numerical experiments,
appears in [BKL∗86]. A more recent mathematical treatment of the
problem using a complex analytic approach is given in [GV06]. Ex-
perimental investigation of this problem continues to this date, in-
cluding, e.g., analyzing the dependency of the emerging pattern on
the viscosity ratio in two-phase flow [BRN15]. Numerical methods
in the CFD literature are diverse, including boundary integral meth-
ods [LLL07], yet the main focus in such disciplines is long-time
evolution and the emergence of limit shapes (see e.g. the largest
simulation to date [LLFPM09]), as opposed to computation at in-
teractive rates which is necessary for enabling user control. For a
recent review of numerical methods for this problem in CFD, see
the PhD thesis [Dal13] and references within. Finally, it is worth
noting that while the Cauchy integral formula has been used be-
fore [Kha15] for this problem, the formulation there is quite dif-
ferent, as the integral there is computed numerically as opposed to
our approach which uses analytic integrals on polygonal domains,
leading to a more stable computation.

Simulation of related phenomena in Graphics. For a review
of the simulation of the full Navier-Stokes equations in graph-
ics we refer to [Bri15]. The simulation of viscous flow us-
ing reduced dimensional methods has been proposed for viscous
threads [BAV∗10], viscous sheets [BUAG12] and viscous thin films
on curved surfaces [AVW∗15], and gap coupled solids [QYF15].

See e.g. [TDF∗15], and references within, for additional ap-
proaches to viscous fluid simulation. As opposed to these methods,
we only need to simulate the behavior of the boundary curve of
the fluid, and therefore face different challenges. Perhaps the phe-
nomenon most related to our approach, is the simulation of Lapla-
cian growth leading to fractal pattern formation, which is governed
by similar equations. Such phenomena are exhibited for example
by lichen growth, as were simulated in [Sum01, DGA04] using
Diffusion Limited Aggregation. In [KSSL07], a dielectric break-
down model was used for efficiently simulating lightning, whereas
in [Kim06] a hybrid algorithm was used for simulating ice forma-
tion. While all these problems are related to ours, the formulation
of Hele-Shaw flow requires the use of dedicated solutions, which
are both efficient and user controllable.

Other applications using similar tools. Our numerical simula-
tion is based on complex-valued holomorphic barycentric coordi-
nates, knowns as the Cauchy-Green (CG) barycentric coordinates,
which were first suggested for image deformation in [WBCG09],
following their initial introduction using a real-variable formula-
tion [LLCO08]. These coordinates were later extended to allow
for conformal maps with sharp bends [WG10], to non-holomorphic
functions [WBCGH11], and to three-dimensions [BCWG09]. The
CG coordinates are a special case of generalized barycentric co-
ordinates, which are used in graphics mostly for cage-based shape
deformation, see e.g. [Flo15], for a recent review. The CG coor-
dinates are based on a boundary integral formulation, formulated
in complex variables for ease of analysis, using analytical, as op-
posed to numerical, integration. It has been shown [WBCG09] that
these coordinates are well-behaved even near the boundary of the
domain, as they have a non-singular limit there, which motivates
their use for the simulation of Hele-Shaw flows. Recently, beyond
shape deformation, boundary element formulations have been used
in graphics for, e.g., fluid simulation [KB14, BKB12, GNS∗12],
sound simulation [ZJ09], and crack simulation [HW15, ZBG15].

1.2. Contributions

Our main contribution is a formulation for efficiently simulating
Hele-Shaw flow with viscous fingering at interactive rates, while
allowing for user control, using Cauchy-Green barycentric coordi-
nates. Specifically, we:

• Formulate the model equations of the Hele-Shaw flow in terms
of the Cauchy-Green coordinates, which leads to an efficient nu-
merical simulation method (Sections 2, 3).

• Show that the Cauchy-Green coordinates are applicable to more
general problems, such as exterior domains, and multiply con-
nected domains, which allows us to simulate two-phase flow, and
flow with obstacles (Section 4).

• Show a variety of effects that can be achieved with our technique
(Section 5).

2. One phase Hele-Shaw Flow

2.1. The Model.
The Physics. We investigate the evolution of an incompressible
viscous liquid slowly injected into (or pumped out of) two paral-
lel plates separated by a small gap, under the influence of surface
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tension, and without gravity. To simplify the exposition, we ini-
tially assume that the surrounding fluid is air (i.e. has zero viscos-
ity and constant pressure), and extend later to more general settings.
We further assume no-slip boundary conditions at the interface be-
tween the liquid and the plates, and a freely evolving liquid-air in-
terface. Figure 2(a) illustrates this scenario.

The general Navier-Stokes equations describing fluid motion can
be considerably simplified under the aforementioned assumptions.
Specifically, the fluid velocity can be integrated across the gap,
yielding a reduced model in terms of the two-dimensional aver-
aged velocity V . Following the derivation presented in [GV06], the
governing equation is V = −∇Φ, where Φ is a scalar potential
function, related to the physical pressure p by Φ = (h2/12µ)p, with
h the gap height and µ the fluid viscosity.

Assuming the fluid is incompressible and fills the entire gap
(therefore having a constant height h) the fluid averaged velocity is
divergence free everywhere except at the injection point, which we
assume to be at the origin. There we have a source of strength Q< 0
representing a constant rate of injection. If the fluid is pumped out
of the cell, Q will be positive instead. Thus, in the interior of the
fluid domain we have:

∆Φ = Qδ0(x,y),

where ∆ is the Laplacian and δ0(x,y) is the two-dimensional Dirac
distribution supported at the origin.

The boundary conditions for the pressure p are given by the
Young-Laplace condition, namely the pressure difference at the
fluid-air interface is proportional to the mean curvature of the in-
terface. Assuming constant air pressure at the exterior of the fluid,
we can eliminate it from the equation by shifting both pressures
by a constant factor. Furthermore, in the reduced two-dimensional
model, the mean curvature of the interface is the curvature κ of the
boundary curve, yielding the boundary conditions Φ = σκ, where
σ is a rescaled surface tension parameter.

The Geometry. From the geometric perspective, the fluid occu-
pies a time-dependent planar domain Ω(t) ⊂ C, which we assume
to be simply-connected. Note, that we switch to complex-variable
notation for points in the xy plane, namely we denote the point
(x,y) ∈ R2 by z = x+ iy, where i is the imaginary unit. The afore-
mentioned model equations for the potential and velocity can be
formulated as an evolution problem for the boundary of the domain

h

Q<0Q>0

(a)

Ω

𝑂

 𝑛

𝜕Ω = Γ

(b)

Figure 2: The Hele-Shaw cell model. (a) The physical model. (b)
The geometry and notation.

(a) (b) (c)

Figure 3: (top) injection and (bottom) suction, with zero surface
tension. (a) The potential Φ at t = 0 is positive for injection
and negative for suction. (b) Boundary velocity: points closer to
the source have higher velocity. (c) Curve evolution: the curve
is smoothed for injection and sharpened for suction. The original
curve is shown in blue, and later iterations in green.

Γ(t) = ∂Ω(t), given in terms of the time-varying scalar potential
Φ(t) : Ω(t)→ R [GV06, pp. 17]:

∆Φ(z) = Qδ0(z), z ∈Ω (1a)

Φ(z) = σκ(z), z ∈ Γ (1b)

vn = 〈
∂Γ

∂t
(z), n̂(z)〉= 〈−∇Φ(z), n̂(z)〉, z ∈ Γ, (1c)

where n̂ is the outward unit normal direction of the boundary curve
Γ (see Figure 2(b)). The first two equations yield a unique solution
for the potential Φ(t), and the last equation specifies that the fluid-
air interface (namely the boundary Γ(t) of the domain) evolves ac-
cording to the normal velocity vn = 〈V, n̂〉.

Given an input initial domain Ω(0), our goal is to efficiently find
a family of domains Ω(t) which fulfill the model equations (1a)-
(1c). To understand the behavior of the flow, consider the equations
for the zero surface tension case (ZST), when σ = 0. In this case,
the value of Φ on the boundary is 0, thus when the fluid is injected
(i.e. Q < 0), the potential in all the domain is positive. Hence, the
velocity at the boundary points outward and the boundary expands.
Intuitively, points closer to the singular point at the origin will have
a larger potential gradient, and therefore move faster away from the
origin. This effect tends to smooth the curve. See Figure 3 (top) for
an example showing the potential (a), the resulting velocity (b), and
a few evolutions of the front under injection (c).

If, on the other hand, the fluid is pumped out (i.e. Q > 0), the
potential is negative in all the domain, and the velocity points to-
wards the interior. In this case as well points closer to the origin
will move faster, but now the movement is towards the origin, en-
hancing the curvature (see Figure 3 (bottom)). This property makes
the front unstable, as small perturbations grow, and is the cause
for the fingering phenomena. Numerically, this is one of the rea-
sons simulating this flow is challenging: a naive discretization of
the model equations in the case of suction (which is the interesting
case generating the pleasing visual phenomena) might quickly be-
come unstable and cease to evolve. While the surface tension term
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acts as a regularizer, careful numerical treatment is still required in
order to evolve the front in a stable and efficient manner.

To do that, we leverage an important property of the system,
namely that it is described by harmonic functions, which allows
us to reformulate the problem in terms of boundary information
only. Specifically, we will consider two approaches, modeling the
behavior of Γ and Φ, respectively. In both cases, reformulating the
problem in terms of complex functions is instrumental, due to the
wide applicability of complex methods to the analysis of harmonic
problems in two-dimensions [CSMP15].

The Complex Formulation. We briefly mention some complex
analysis notation which is required for the following discussion,
and refer the reader to the excellent book [Ahl66] for a thorough
introduction. We slightly abuse notation, by treating planar vectors
(x,y) as the complex number x+ iy, thus for example, the gradient
of a real function φ : C→ R corresponds to the complex number
∂φ/∂x+ i∂φ/∂y. A holomorphic function is a function that is complex
differentiable, namely the limit ∂ f/∂z(z0) = limz→z0

f (z)− f (z0)/z−z0

exists regardless to the direction in which z approaches z0.

The Cauchy-Riemann equations [Ahl66] formalize the relation
between a holomorphic function f (z) = φ(z) + iψ(z) and its real
and imaginary parts φ,ψ : C→ R. Specifically, φ,ψ are harmonic,
and their gradients are orthogonal and of equal norm. Furthermore,
any harmonic function is the real part of some holomorphic func-
tion. Thus, we can rephrase the Hele-Shaw model equations using a
holomorphic complex potential W : Ω→C, whose real part agrees
with the real-valued potential: Re(W ) = Φ. Reformulating Equa-
tions (1a)-(1c) using W we have [GV06, pp.17-18]:

W (z) =
Q
2π

log(z)+g(z), z ∈Ω (2a)

Re(W (z)) = σκ(z), z ∈ Γ (2b)

vn =−Re(
∂W
∂z

n̂(z)), z ∈ Γ, (2c)

where g is a holomorphic regular function (i.e. without poles in
Ω). For the first equation we used the fact that Re(1/2π log(z)) =
1/2π log(|z|) is the Green’s function for the Laplacian in the plane,
and thus solves Equation (1a), whereas g is used to fulfill the

𝑧 = 𝑓(𝑡, 𝜁)𝑈(𝜁)
Ω(𝑡, 𝑧)

𝑂

 𝑛 =
𝜁𝑓′ 𝜁

𝑓′ 𝜁
 𝑛 = 𝜁

𝑂

𝜕Ω = Γ(t, z)

Figure 4: Notation for evolving the interface. We map the unit disk
U(ζ) (left) using a time varying conformal map f (ζ, t) to a time-
varying domain Ω(t,z) with boundary Γ(t,z) (right). The normal to
the disk is mapped with the derivative of the map f ′ to the scaled
normal at the target domain.

analytic

(a)

ours

(b)

analytic

(c)

ours

(d)

Figure 5: Comparison of the quadratic form analytic approach for
injection (a) and suction (c) with our approach for injection (b) and
suction (d), using the same initial curve Ω(0). Note that our method
indeed produces a cusp similar to the cusp of the analytic solution.

boundary conditions (1b). Finally, the third equation is due to the
representation of the inner product of two planar vectors in com-
plex form: 〈a,b〉= Re(ab), and the relation between the derivative
of a holomorphic function and the gradient of its real part, yielding:
∂W/∂z = ∂Φ/∂x− i∂Φ/∂y.

With the complex formulation at hand, we can now attempt to
address the model equations. We will propose two approaches, with
complementary advantages. First, we will leverage the invariance
of harmonic functions under conformal (angle preserving) maps,
to directly solve for the evolving front Γ(t) by parameterizing it
as a time-evolving conformal map (and thus a holomorphic func-
tion) from the unit disk. This allows us to handle both injection and
suction, and produces similar behavior as a known analytic solu-
tion for the challenging case of suction with zero surface tension.
Unfortunately, this approach is difficult to extend to more general
scenarios (e.g. non-zero surface tension and two-phase flow), and
causes additional technical problems due to uneven sampling of
the evolving front. Our second approach is to directly solve for the
evolving complex potential W , and it can be applied in a variety
of scenarios, yet cannot reproduce the analytic solution. Still, this
approach is highly useful in practice, as it is easily modified to al-
low for user control, and is efficient enough to allow interactivity.
Note that Figure 5 was produced with the first approach, and all the
others were produced with the second approach.

2.2. Evolving the Interface

The Riemann Mapping Theorem states that for any simply con-
nected domain Ω ⊂ C there exists a unique bijective conformal
mapping which maps the unit disk U = {ζ : |ζ| < 1} into Ω such
that f : U→Ω, f (0) = 0, f ′(0)∈R+. Thus, we can track the time-
varying domain of the fluid Ω(t) by the time-varying conformal
map f (ζ, t) from the unit disk into Ω(t) for every t (see Figure 4).

The Polubarinova-Galin (PG) equation [GV06] provides a con-
dition that the conformal mapping f (ζ, t) must satisfy (in the case
of a single singular point at the origin (s = 0) and zero surface ten-
sion) for the model equations to hold. It builds on three facts: First,
harmonic functions are invariant under conformal maps, and thus
given a solution to the model equations on U we can use the con-
formal map to get a solution on Ω. Second, the normal velocity vn
can be expressed both in terms of the complex potential WΩ and the
time derivative of the conformal map ∂ f/∂t. And finally, the normal
n̂ on Ω can also be computed using f (as seen in Figure 4).

Combining these facts yields the equation (see supplemental ma-
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terial) [GV06, Eq. (1.16)]:

Re

(
∂ f
∂t

ζ
∂ f
∂ζ

)
=− Q

2π
, ζ ∈ ∂U. (3)

It was shown [Gus84] that in the case of injection under some
assumptions on smoothness of ∂Ω(0) there exists a unique solution
f (ζ, t) satisfying the PG equation. It is also possible to find analytic
solutions by using a special form for f (ζ, t) (i.e. expressing specific
types of boundaries). For example, in [Gal45] the author chose the
quadratic form f (ζ, t) = a1(t)ζ+a2(t)ζ

2 where a1(t) and a2(t) are
real coefficients. Substituting f (ζ, t) into (3) gives two equations
which can be solved for the coefficients a1,a2 at time t, yielding an
explicit solution for the problem.

In the next section we discuss the spatial discretization using the
Cauchy-Green barycentric coordinates for this formulation, and the
resulting discrete equations. Figure 5 shows such solutions to the
PG equation for injection and suction, using the quadratic form ap-
proach and our approach, using the same initial curve Ω(0). Note,
that our method produces similar behavior to the analytic solution.

2.3. Evolving the Potential

As solving for the conformal map f has several issues, we alter-
natively suggest to find the complex potential W (z) which satis-
fies Equations (2a)-(2c). We do so by solving for the holomorphic
function g(z) : Ω→ C, which satisfies the boundary conditions:
Re(g(z)) =−Q/2π log |z|+σκ(z). Interestingly, holomorphic func-
tions and conformal maps are equivalent, thus we can use the same
ansatz for the spatial discretization, namely the discrete Cauchy-
Green coordinates. Furthermore, this approach is more easily gen-
eralizable to handle multiple singularities of different types.

Mutliple Singularities. In the physical model, extending to mul-
tiple singularities implies that instead of having a single source or
sink of the velocity at the origin, there are multiple sources and
sinks at locations sk ∈ Ω, with strengths Qk. Thus Equation (1a)
changes to ∆Φ = ∑k Qkδ(z− sk). Since Green’s functions can be

(a) (b) (c)

Figure 6: Simulating a sink localized on a line segment. (a) The
scalar potential Φ. (b) The velocity of the interface, note the larger
region of high velocities. (c) The resulting evolution of the front.

Figure 7: A few frames from an interactive simulation, where the
user modifies the singularity’s location in real-time. The resulting
singularity path is shown on the left. Note how the path of the fin-
gers is modified to “aim” for the location of the closest singularity.

superimposed, the corresponding contribution to the complex po-
tential is ∑k 1/2πQk log(z− sk) = ∑k Ws(z,sk).

Similar reasoning allows us to add line singularities, namely
sources and sinks which are localized on line segments. Given a
line segment l : s(t) = z1 + t(z2− z1), its contribution to the com-
plex potential is Wl(z, l) = 1/2πQl

∫ 1
0 log(z−s(t))dt (see the supple-

mental material for the closed form solution of this integral). Fig. 6
shows the scalar potential and the velocities for a source localized
on a line segment. Note that, compared to a point source, there is
a larger neighborhood of points on the evolving curve with large
velocities, yielding a more noticeable effect during the evolution.

Combining the contributions from all the singularities yields to
the following modification to Equation (2a):

W (z) = ∑k Ws(z,sk)+∑k Wl(z, lk)+g(z), (4)

where {sk} and {lk} are the sets of point sources and line segments,
respectively.

In the next section we show how the Cauchy-Green barycentric
coordinates can be used for this formulation. Figure 7 shows an ex-
ample of a flow where the point location of the singularity (i.e. the
source s) changes during the flow, which allows fine control on the
behavior of the fingers. Since the computation is done at interac-
tive rates, the user can move this location interactively, yielding an
intuitive tool for generating finger-like effects (see the video).

3. Discretization

In the previous section we described how the model equations of
Hele-Shaw flow can be reduced to finding a time-varying holomor-
phic function, representing either a conformal map from the unit
disk to the fluid domain, or the regular part of the complex po-
tential of the fluid domain, under some constraints. This setup is
remarkably similar to the setup common in planar shape deforma-
tion, where we seek a deformation of the input shape which is de-
tail preserving, under some user constraints. In [WBCG09] it was
proposed to use the machinery of conformal maps for this prob-
lem, yielding exactly the same mathematical formulation as we
have, namely, finding a time varying conformal map under some
constraints. We now leverage that machinery to get a deformation
which is conformal, yet driven additionally by the physical model,
rather than exclusively by a human user.
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3.1. Cauchy-Green Coordinates.

The Cauchy integral formula [Bel92] is a central result in complex
analysis, expressing the fact that the values of any holomorphic
function inside a domain Ω can be calculated by the following in-
tegral on the boundary of Ω:

f (z) =
1

2πi

∮
∂Ω

f (w)
w− z

dw, z ∈Ω. (5)

The Cauchy-Green Coordinates [WBCG09] are a discretization of
the Cauchy integral. The domain Ω is discretized using a polygon
on which we store the function as values at the vertices { f j}n

j=1.
The function f (w) is approximated on each edge by a linear inter-
polation between these values. Then, the integration on the edges
can be calculated analytically, yielding a complex coefficient C j(z)
for each f j. These complex coefficients are called the Cauchy-
Green barycentric coordinates. Finally, the integral is approxi-
mated using the sum:

f (z) = ∑
n
j=1 C j(z) f j.

Similarly, the derivative of f can be approximated using the deriva-
tive of C j(z):

f ′(z) = ∑
n
j=1 C′j(z) f j = ∑

n
j=1 D j(z) f j.

We provide the expression for the Cauchy-Green coordinates and
their gradients in the supplemental material. In the following we
show how the CG coordinates can be used for evolving the interface
and the complex potential.

3.2. Evolving the Interface
Spatial Discretization. We search for a time varying conformal
map f : U→Ω, which satisfies Equation (3). We discretize the unit
circle using a regular n-sided polygon Û , and represent the confor-
mal map using n functions f j(t), j ∈ 1..n, t ∈ R, corresponding to
the vertices of the polygon. Then, the map of Û is:

f (ζ, t) = ∑
n
j=1 C j(ζ) f j(t), ζ ∈ Û . (6)

Since C j(ζ) are independent of f , the time derivative is given
by: ∂

∂t f (ζ, t) = ∑ j C j(ζ)
∂

∂t f j. Thus, the semi-discrete PG equation
corresponding to Equation (3) is, for ζ ∈ ∂Û :

Re

((
n

∑
j=1

C j(ζ)
∂ f j

∂t

)(
ζ

n

∑
m=1

Dm(ζ) fm

))
=− Q

2π
. (7)
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Figure 8: Front evolution for the stable case of injection (left) and
suction (middle) with small surface tension (10−5), using the com-
plex potential approach (Section 3.3). The method yields linear
evolution of the area as expected (right).

We additionally sample the regular polygon at the points S =
{ζl} ∈ ∂Û , which leads to the space-discrete system of ODEs:

Re
(
(C ∂

∂t
f̂ )l(D f̂ )l

)
=− Q

2π
,∀l ∈ 1..|S|, (8)

where C,D are complex matrices with entries Cl j = C j(ζl) and
Dlm = ζlDm(ζl), respectively, and f̂ is a vector with entries f j(t).

Time Discretization. We use an explicit Euler scheme to integrate
equation (8). Specifically, given f̂ k at iteration k, we find a discrete
approximation of ∂

∂t f̂ k, denoted by (∆ f̂ )k, by minimizing the error
of an over-constrained set of linear equations derived from Equa-
tion (8) sampled at 4n points. Finally, we set f̂ k+1 = f̂ k +∆t(∆ f̂ )k

for a constant delta time ∆t = 0.001. Figure 5 (top) shows a compar-
ison of our evolution for the case of injection with the classic solu-
tion obtained using the quadratic complex form, where we achieve
similar behaviour.

Regularization. While this approach works for the injection prob-
lem, the suction problem requires additional regularization because
of its ill-posed nature. The regularization we propose is the mini-
mization of the second spatial derivative of ∆ f̂ , in order to keep the
conformal map smooth. Thus, we add a regularization term λC(2)

to the linear equations, where C(2) are the second spatial deriva-
tives of the Cauchy-Green coordinates in matrix form (provided in
the supplemental material). Figure 5 shows our result with this reg-
ularization (where we used λ = 0.001) compared with the classic
analytic solution. Note that we manage to achieve the characteristic
cusp despite our use of regularization.

3.3. Evolving the Potential
Spatial Discretization. We search for a holomorphic function
g(z) : Ω(t)→C, given by equations (4) and (2b). We first discretize
the input domain Ω(t) using n samples, to get the closed polygon
Ω̂(t), and then we use again the Cauchy-Green coordinates to rep-
resent g(z):

g(z) = ∑
n
j=1 C j(z)g j, z ∈ Ω̂(t). (9)

The boundary conditions (2b) yield the constraints:

Re

(
n

∑
j=1

C j(z)g j

)
=−Re(Wsrc(z))+σκ(z), z ∈ ∂Ω̂,

where Wsrc(z) is the combined potential of all the sources and sinks,
as given in Equation (4).

We sample the boundary of the discrete domain at the points
S = {zl} ∈ ∂Ω̂, which again leads to an over-constrained system
of linear equations, which can be solved for ĝ, the complex vec-
tor with entries g j. The spatial derivative of the complex potential
∂/∂zW is computed using the known derivative of the potential at the
singularities and g′(zl) = ∑ j D j(zl)g j. Finally, from Equation (2c),
the normal velocity is given by vn = −Re(∂/∂zWn̂), where n̂ is the
averaged normal at the vertices of Ω̂.

Time Discretization. We use explicit Euler integration of Equa-
tion (2c), and advance the sampled locations z j using zk+1

j =

zk
j +(∆t)vn(z j)n̂(z j). Since in this setup we can directly prescribe

non-zero surface tension σ, no regularization is required. We do,
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however, resample the curve ∂Ω̂(t) during the evolution, taking into
account the curvature. See section 5.1 for the details, as well as for
the computation method of the dynamic time-step ∆t.

While it is possible to use a more advanced time integrator, we
have observed that this approach is efficient and stable. Specifically,
for a constant rate of injection Q, the area of the domain should
grow linearly. Figure 8 shows the result of injection (left) and suc-
tion (middle) from a single source using the complex potential ap-
proach and the corresponding graph denoting the change in the area
(right). Note that we get a linear change in the area, as expected.

4. Extensions to the Model

The setup we presented, namely: simulating the one-phase Hele-
Shaw flow by evolving the complex potential with the Cauchy-
Green coordinates, can be easily extended to more complicated
physical setups. We first present the generalization to exterior flow,
namely the fluid occupies an unbounded domain in the plane which
is the complement of a simply connected curve, by showing how
the Cauchy-Green coordinates can be modified to handle holomor-
phic functions on unbounded domains. Then, by combining interior
and exterior flows, we address two-phase flow by solving for two
potential functions. Finally, we show how to handle obstacles using
multiply connected domains and different boundary conditions.

4.1. One Phase Hele-Shaw Flow with a Bubble

Ω

 𝑛

𝜕Ω = Γ

We consider the inner fluid to be air
with zero viscosity (forming a bub-
ble inside the outer fluid) and suc-
tion or injection of the external fluid
from infinity (see inset figure). The
flow is driven by the potential of the
external fluid Φ which is related to
the fluid pressure by a constant scal-
ing factor. Since the singular point
is at infinity the potential should be
harmonic everywhere but behave at
infinity as [DM13]:

Φ(z)≈− Q
2π

log |z|, as |z| →∞.

We therefore represent the potential as Φ(z) = −Q/2π log |z|+
h(z) where h(z) is a harmonic function which tends to a constant
at infinity, and its gradient tends to zero. The corresponding model
equations are therefore:

W (z) =− Q
2π

log(z)+g(z), z /∈Ω (10a)

Re(W (z)) =−σκ(z), z ∈ Γ (10b)

vn =−Re(
∂W
∂z

n̂(z)), z ∈ Γ (10c)

where g(z) is a holomorphic function which satisfies lim
|z|→∞

g(z) =

const, and n̂ still points outward of the curve. As previously, the
boundary conditions are given by the Young-Laplace condition re-
lating the pressure difference to the curvature of the boundary. The
viscosity of the inner fluid is negligible compared to the viscosity of

the outer fluid, and thus the pressure of the inner fluid is assumed to
be constant, leading to the boundary conditions in Eq. (10b). Sim-
ilarly to the interior flow, we will represent the holomorphic func-
tion g(z) using the Cauchy-Green coordinates, by slightly modify-
ing them to handle exterior domains.

Exterior Cauchy-Green Coordinates. Given a bounded simply
connected domain Ω and a function f (z) which is holomorphic in
the exterior of Ω such that limz→∞ f (z) = c for some constant c,
the following holds [Kas05, pp. 140]:

1
2πi

∫
∂Ω

f (w)
w− z

dw =

{
c z ∈Ω

c− f (z) z /∈Ω
.

This result is sometimes known as Cauchy’s integral formula for
an unbounded domain. Thus, we can pick an arbitrary point a ∈Ω,
and then the value of f (z) for a point z /∈Ω is given by:

f (z) =
1

2πi

∫
∂Ω

f (w)
w−a

dw− 1
2πi

∫
∂Ω

f (w)
w− z

dw,

and is independent of the choice of a.

We discretize the domain using a polygon Ω̂, and use the
Cauchy-Green coordinates for discretizing the Cauchy integral:

f (z) =
n

∑
j=1

Ce
j(z) f j, Ce

j(z) :=C j(a)−C j(z), z /∈ Ω̂,

where a ∈ Ω̂ is arbitrary, and Ce
j(z) is the exterior Cauchy-Green

coordinate for a vertex j of Ω̂. This result indicates that the exte-
rior coordinates can be expressed using the regular Cauchy-Green
coordinates, and so do their derivative as De

j(z) =−D j(z).

Exterior Flow. Using the exterior coordinates, we can apply our
previous ansatz and discretize Equations (10a)-(10c). Specifically,
we assume that lim|z|→∞ g(z) = const and represent it by g(z) =
∑ j C

e
j(z)g j. As before, the discrete values g j are calculated by

solving the over-constrained linear system obtained by sampling
the boundary and applying the boundary conditions Re(g(z)) =
−σκ(z) + Q/2π log |z|. Given the values of g j, the velocity is cal-
culated using the derivative of the exterior coordinates and the in-
terface is advanced according to the normal velocity.

Figure 9 shows an example of using the exterior flow to “con-
tinue” a real Hele-Shaw flow. Specifically, we extracted from a
photograph by the artist Antony Hall [Hal13] the boundary curve
of a real Hele-Shaw flow, and used it as the initial conditions of
our simulation. The Figure shows the original photograph (left),
and our “simulated” photograph (right), after allowing the front to
evolve (the initial fluid has darker color). Note that the simulated
front closely resembles the original photograph. Fig. 1, 12, 15 and
the attached video show additional results using the exterior flow.

4.2. Two Phase Hele-Shaw Flow

In the general case, there are two fluids with non-zero viscosities µ1
and µ2 occupying the interior and exterior of the domain [How00].
Their flow is driven by two harmonic potentials which we denote
by Φ1 and Φ2 for the inner and outer fluid, respectively. We again
represent the potentials as the real parts of complex holomorphic
potentials W1 and W2. For simplicity we assume a single source
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Figure 9: “Continuing” an experimental Hele-Shaw flow. (left)
Photograph by Antony Hall. (right) Our evolution starting from the
boundary curve of the photograph.

inside the inner fluid located at the origin. Since the fluids are in-
compressible, the total amount of material must not change and
thus injection of material at some location must be compensated
by removal of material from another. Therefore, the outer fluid will
also have a singularity, and we assume it is at infinity.

The corresponding equations for this model are [How00]:

W1(z) =
Q1
2π

log(z)+g(z), z ∈Ω (11a)

W2(z) =−
Q2
2π

log(z)+h(z), z /∈Ω (11b)

µ1 Re(W1(z))−µ2 Re(W2(z)) = σκ z ∈ Γ (11c)

− vn = Re
(

∂W1
∂z

n̂(z)
)
= Re

(
∂W2
∂z

n̂(z)
)

z ∈ Γ (11d)

where Q1 is the strength of the singularity at the origin, Q2 is the
strength of the singularity at infinity, g(z) is a holomorphic function
inside Ω and h(z) is a holomorphic function in the exterior of Ω

which tends to a constant at infinity. Note that in order to preserve
the incompressibility of the fluids we must have that Q1 = −Q2
(the rate of injection matches the rate of pumping). The holomor-
phic functions g(z) and h(z) are determined by the Young-Laplace
boundary condition (11c), expressing the pressure jump across the
interface, and the kinematic boundary condition (11d), stating that
the normal velocities of the two fluids at the interface must be equal
(as the fluids do not mix).

As before, we represent the holomorphic functions g(z) and h(z)
using the interior and exterior Cauchy-Green coordinates g(z) =
∑ j C j(z)g j and h(z) = ∑ j C

e
j(z)h j, and discretize equations (11a)-

(11d) in the same way. The coefficients g j and h j are found as the
solution of an overconstrained linear system obtained by sampling
the boundary, and the values of g j are used for calculating the nor-
mal velocity and advance the boundary of the curve.

Figure 10 shows examples of two-phase flows, for the stable case
of injection when µ1 > µ2 (bottom), and the unstable case of injec-
tion for two viscosity ratios µ1/µ2 (top,middle). Note that the smaller
viscosity ratio generates more intricate and thinner fingers, as ex-
pected [BRN15]. Furthermore, it is worth noting that in the extreme
limits of the viscosity ratio the two previous cases are recovered.
Specifically, when µ2/µ1→ 0 the flow behaves as the one phase flow
of the inner fluid and when µ1/µ2 → 0 it behaves as the one phase
flow with a bubble. Figure 13 and the attached video show addi-
tional results of the two phase flow.

4.3. Obstacles.

Obstacles are formulated using the no-penetration Neumann
boundary conditions, i.e. the normal velocity of the interface along
the obstacle should be zero. Here the fluid domain may be multiply-
connected, and its boundary ∂Ω is composed of a free boundary
denoted by Γ1, and a part which is allowed to move only in the tan-
gent direction (where the boundary is part of an obstacle), denoted
by Γ2. Thus, the formulation is similar to the formulation of the
regular Hele-Shaw flow, with the exception that now the boundary
condition for the potential function on Γ2 is Re( ∂W

∂z n̂) = 0.

Since obstacles form holes in the domain, the domain is now
multiply-connected. Interestingly, the Cauchy integral formula
holds in this case as well [Bel92], with the modification that the
orientation of the interior boundaries should be opposite to those of
the exterior boundaries. Thus, we can use the same discretization as
before using the Cauchy-Green coordinates to represent the regular
part of the complex potential, and add the boundary conditions:

Re

((
Q

2πz
+

n

∑
j=1

D j(z)g j

)
n̂

)
= 0 z ∈ Γ2.

Note, that in this case D(z) discretizes the multiply connected
Cauchy integral. Given the fluid interface with the Cauchy-Green
coordinates DΓ(z) and m holes with the Cauchy-Green coordi-
nates {Dk(z)}m

k=1 the multiply connected coordinates are given by
D(z) = DΓ(z)− ∑

m
k=1 Dk(z). Fig. 11 shows suction from a line

source in an interior flow with obstacles and Fig. 15 shows an ex-
ternal flow with obstacles.

5. Experimental Results

5.1. Implementation details.
User Interface. We implemented our method in MATLAB. The
interface is represented as a polygon with n vertices, where n may
change during the flow. The user draws a control polygon, which is
then interpolated using a cubic spline and sampled at n= 100 points
for getting the initial polygonal interface. The user adds singularity

t

Figure 10: Two phase flow simulation. (top) Unstable injection with
µ1/µ2 = µa = 0.01. (middle) Unstable injection with µ1/µ2 = µb =
0.3. (bottom) Stable injection with µ1/µ2 = 2. Note that the lower
viscosity ratio µa (top) generates thinner and more intricate fingers.
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Figure 11: Flow with obstacles, suction from an interior segment.

points and line singularities and chooses their strength Q. The user
is free to move the singularity locations during the simulation, and
thus change the direction which the fingers will follow. Using the
line singularities the user can choose the path of a finger when it
reaches the line (see Figure 12).

Simulation. For each simulation frame the interface is sampled at
4n points (each edge is sampled 4 times) on which the boundary
conditions are applied to obtain 4n linear equations. The calcula-
tion of the coordinates for these samples can be easily parallelized,
and is thus done on the GPU (on an NVIDIA GTX 980 card). To
give a feel for the timings involved, calculating the coordinates of
4000 points takes 5 milliseconds. The system of linear equations
is then solved by minimizing the least squares error, resulting in a
vector of coefficients representing the potential. The normal veloc-
ity at each vertex is then calculated using the derivative of the coor-
dinates, and the vertices are moved using an explicit Euler scheme
with a dynamic time step, which is chosen according to the ratio of
the edge length and the normal velocity ∆t = min(|ei|/vn). Finally,
we fit a cubic spline which interpolates the new polygon and sam-
ple it according to the curvature (i.e. more samples in the highly
curved regions). The number of sampled points is chosen dynami-
cally according to a minimal edge limit and a limit on the number
of points, where we used 0.02 and 1000, respectively.

Singular integrals at the boundary. The Cauchy-Green coordi-
nates and their derivatives can be singular when evaluated at the
boundary of the domain. The coordinates, though, have a non-
singular limit, given in [WBCG09], which we use for our com-
putations. The derivatives have a non-singular limit on the edges of
the boundary polygon, yet are undefined at the vertices. Thus, we
calculate ∂W/∂z at a point close to the vertex inside the domain. We
chose to calculate the derivative at a point with distance of 10−3

from the vertex in the normal direction into the interior or the ex-
terior of the domain, depending on where the complex potential is
defined (the interior or the exterior flow). In the two phase case we
can calculate the velocity from either the interior or the exterior

Figure 12: By prescribing a line singularity the user controls the
path of the fingers, as they follow the line when it is reached.

Figure 13: Unstable injection from the origin. See text for details.

potentials. The normal of the vertices is calculated as a weighted
average of the incident edges normals.

Degrees of freedom. Since the coordinates sum to one, their imag-
inary parts sum to zero. Thus, we have one degree of freedom
which can be fixed by choosing the imaginary part of the first co-
ordinate to be zero. In the two phase case we have three degrees of
freedom: two of them are expressed as a constant addition to the
imaginary parts of each of the potentials, and fixed similarly. The
third is due to the Young-Laplace boundary condition, as it involves
the difference between the two potentials. It is fixed by choosing the
real part of the first coordinate of one of the potentials to be zero.

5.2. Limitations.

Our method has a few limitations. First, we do not handle topology
changes, which sometimes may be required (e.g. merging fronts
after passing an obstacle, or bubbles created due to self intersec-
tions). In principle, topology changes can be handled using a more
sophisticated tracking algorithm. Second, for exterior flow, if the
front becomes very large, the computational cost becomes larger
as we require many points to represent the front. We believe that
a multi-resolution approach, e.g. using a multi-grid based method
could alleviate this problem, but leave further investigation for fu-
ture work.

5.3. Applications.
Visualizing the interior flow with a texture. In this experiment
we used a texture to visualize the flow in the interior of the domain.
We simulated the two phase case, where the boundary of the mesh
acts as the interface between the two fluids. After solving for the
potentials, we used the potential of the interior domain for moving
the interior vertices of the mesh as well as the boundary vertices.
After each iteration we resample the boundary and the interior of
the mesh and interpolate the texture coordinates. In Fig. 13 we show
the results for unstable injection.

Pumping from the medial axis. Here we have computed the me-
dial axis of an input curve, and used it as a collection of line singu-
larities from which we pump the fluid (see Fig. 14 (left)).

Figure 14: (Left) Pumping fluid from the medial axis of the bound-
ary. (Right) Directing the fingers by moving a point singularity.
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Figure 15: Exterior flow with multiple obstacles.

Controlling the fingers. Here we control the direction which the
fingers follow by moving the suction point in exterior flow. In
Fig. 14 (right) the user moves the suction point in the shown path,
and the fingers follow this path as shown in the next images. Note
that in the figure we show the caged air in gray and do not show the
fluid (which occupies the exterior of the domain).

Obstacles. In this experiment we tested exterior flow with multiple
obstacles. In Figure 15 the fingers are forced to pass through the
obstacles as they move toward a line source placed at the bottom.
The full simulation is showed in the attached video. Note that in
this simulation we show the air inside the domain in red and do not
show the fluid occupying the exterior of the domain.

6. Conclusions and Future Work

We proposed a method for interactively simulating Hele-Shaw
flows using complex holomorphic barycentric coordinates. We
demonstrated a variety of flow scenarios, such as interior, exterior
and two phase, and showed how to incorporate obstacles. In ad-
dition, we provided a few applications for generating interesting
curve deformations, and appealing texture effects.

We believe that our suggested approach, leveraging methods
from shape deformation to be used for fluid simulation with in-
teractive control, is quite promising, and could be generalized to
other scenarios. For example, there exists a generalization to three
dimensions of the Cauchy-Green coordinates, which could be po-
tentially useful for three dimensional Laplacian growth. In addi-
tion, it might be possible to extend the interface tracking method to
equations which are conformal invariant other than Laplace’s equa-
tion [Baz04]. It could also be potentially possible to apply other
complex barycentric coordinates for other types of two dimensional
flows, and for other applications in fluid simulation.
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