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Figure 1: Left: The rose (a) is given as a source shape and the line drawing (b) as the target. The conformal mapping found via the algorithm
is used for transferring the texture from the source shape to the target shape (c). Right: Deformation of the giraffe using stroke-to-stroke
constraints, compared to point-to-point constraints. Note that our method (e) generates a deformation with less area distortion (e.g., of the
head), and without the foldovers near the head and tail evident when forcing point-to-point matching of points on the curve.

Abstract
Conformal maps between planar domains are an important tool in geometry processing, used for shape deformation and image
warping. The Riemann mapping theorem guarantees that there exists a conformal map between any two simply connected
planar domains, yet computing this map efficiently remains challenging. In practice, one of the main algorithmic questions
is the correspondence between the boundaries of the domains. On the one hand, there exist a number of conformal maps
between any two domains, thus many potential boundary correspondences, yet on the other, given full boundary prescription
a conformal map might not exist. Furthermore, an approximate boundary fitting can be enough for many applications. We
therefore propose an alternating minimization algorithm for finding a boundary-approximating conformal map given only an
initial global alignment of the two input domains. We utilize the Cauchy-Green complex barycentric coordinates to parameterize
the space of conformal maps from the source domain, and thus compute a continuous map without requiring the discretization
of the domain, and without mapping to intermediate domains. This yields a very efficient method which allows to interactively
modify additional user-provided constraints, such as point-to-point and stroke-to-stroke correspondences. Furthermore, we
show how to easily generalize this setup to quasi-conformal maps, thus enriching the space of mappings and reducing the area
distortion. We compare our algorithm to state-of-the-art methods for mapping between planar domains, and demonstrate that
we achieve less distorted maps on the same inputs. Finally, we show applications of our approach to stroke based deformation
and constrained texture mapping.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—

1. Introduction

Conformal maps are often used in computer graphics for mesh
parameterization [HLS07] and shape deformation [WG10] among
many other applications. Given two simply connected polygonal
domains, the Riemann mapping theorem [Rud87] guarantees that

there exists a conformal map between them. Constructing this map
efficiently, however, is challenging in practice.

One common approach, is to compose two conformal maps, one
from the source to the unit disk, and the second from the unit disk
to the target, thus reducing the problem to the case where one of
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the domains is the unit disk. Different methods were developed for
this task, two of the renown ones being the Schwartz-Christoffel
method [DT02] and circle packing [Ste99], where the first yields
a continuous map, from any point in the source domain, and the
latter requires a discretization of the interior, yet is guaranteed to
converge to the smooth case under refinement [HS96]. This ap-
proach has been further generalized in computer graphics to quasi-
conformal [CW15] maps and bijective harmonic maps [SH15].

Unfortunately, these methods suffer from a common drawback:
as it is necessary to pass through an intermediate convex domain,
any distortion incurred in the process could be visible in the final
map. Furthermore, the additional degrees of freedom of the prob-
lem, namely all Mobius transformations from the unit disk to itself
are not considered in this process. Finally, the method should be
efficient to allow user control at interactive rates, as well as allow
some flexibility since it is not necessarily needed to interpolate the
target shape exactly.

We suggest instead to directly map between the source and target
domains, by starting with an initial conformal map from the source
domain, and iteratively refining it until it matches the boundary of
the target domain. We represent a conformal map from the source
domain using the Cauchy transform [Bel15], which (in the con-
tinuous case) spans the entire space of conformal maps from the
domain. The Cauchy transform maps continuous functions defined
on the boundary of the domain to holomorphic functions (complex
differentiable functions which are conformal when their derivative
does not vanish) in the interior of the domain. Specifically, it can re-
produce a holomorphic map from its boundary values. Thus, given
the boundary correspondence specified by a conformal map, we
can extend this map to the interior of the domain using the Cauchy
transform.

We therefore opt for an alternative minimization approach,
jointly optimizing for the boundary correspondence and the con-
formal map. Specifically, we alternate between finding the closest
conformal map for a given correspondence and updating the corre-
spondence given a conformal map. This approach leads to a very
simple algorithm, which runs at interactive rates and quickly con-
verges to a high quality conformal map. We demonstrate the ap-
plicability of our approach using applications to texture transfer
and shape deformation. In addition, we show that our method can
be easily extended to handle quasi-conformal maps, point-to-point
and stroke-to-stroke constraints, and that our results yield lower
area distortion than state-of-the-art conformal mapping methods.

1.1. Related Work

Many methods for numerically constructing a conformal map from
an arbitrary domain to the unit disk can be found in the literature,
see e.g. [Kyt12] for a recent review. In engineering applications, the
most common methods for this task are the Schwarz-Christoffel
Mapping [DT02] and circle packing [Ste99]. However, most of
these approaches are quite slow, requiring the solution of non-
linear equations or a dense sampling of the domain to achieve suffi-
cient accuracy. Among these, perhaps the closest to our approach is
Wegmann’s method [Weg86], which also iteratively solves for the
boundary correspondence. However, we do not restrict one of the
domains to be the unit disk (which can cause crowding [DV98]).

In Computer Graphics, planar conformal maps are popular for
shape deformation (e.g. [WBCG09], [VMW15]), yet existing con-
formal approaches do not allow for stroke-to-stroke constraints
which enable the curve constraints and the boundary to slide as we
do. Alternatively, the boundary constraints can be specified by re-
quiring the angles of the input polygon to be preserved [WG10]. We
demonstrate that our approach leads to a better trade-off between
the user’s constraints and the resulting area distortion. Another it-
erative approach which does allow boundary sliding is suggested
in [ESA07], yet it requires the discretization of the domain and
does not output a smooth conformal map.

1.2. Contributions

Our main contribution is a fast iterative algorithm for producing
conformal maps between two simply connected planar domains,
without prescribing boundary correspondence (§2). In addition, we:

• Introduce stroke-to-stroke constraints, which can be used for de-
forming a given shape in an intuitive way and for guiding a con-
formal map between two domains (§3.3).

• Show how to incorporate a quasi-conformal energy to reduce the
area distortion (§3.2).

• Show applications of our algorithm to image deformation and
constrained texture mapping (§4).

2. Iterative Closest Conformal Mapping

Given an input source shape Ωs and a target shape Ωt , both sim-
ply connected planar domains, we seek for a conformal map of the
source domain, which maps its boundary to the boundary of the tar-
get domain. The Riemann mapping theorem [Rud87] states that for
any simply connected domain Ω⊂ C, there exists a bijective holo-
morphic map f from Ω to the unit disk U = {z ∈ C : |z| < 1}. An
immediate corollary of the theorem is that for any two simply con-
nected domains Ωs,Ωt and the bijections f1 : Ωs→U, f2 : Ωt→U ,
one can construct a bijective holomorphic map between the do-
mains f : Ωs→Ωt , where f is given by f = f−1

2 ◦ f1.

However, since the space of exact holomorphic maps from one
domain to another is quite small and difficult to compute, we would
like to relax the problem and gain flexibility to control the behav-
ior of the map. Therefore, we define the following energy, which
promotes boundary fitting as a soft constraint.

Energy. Given a mapping f : Ωs→ C defined over the source do-
main Ωs with boundary curve S, we define an energy for measuring
its closeness to the target domain Ωt with boundary curve T as:

Ec( f ) =
∮

S
d( f (s),T )2ds (1)

where d(w,T ) is the minimal distance from the point w to the
boundary of Ωt : d(w,T ) = min

z∈T
|w− z|.

Discretization. We represent the source and target domains by
their boundary, discretized as a source polygon S with n vertices
and a target polygon T with m vertices. The space of the holomor-
phic maps defined over the source polygon is given by a discretiza-
tion of the Cauchy transform for polygons [WBCG09], which
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yields the Cauchy-Green coordinates. These coordinates express
a subspace of the holomoprhic maps as complex-valued vectors in
the range of a fixed complex matrix, depending only on S. Mini-
mizing the discretized energy Ec then boils down to solving a least-
squares system using a fixed matrix.

2.1. Background - Cauchy-Green coordinates

The Cauchy transform [Bel15] is a widely used operator in complex
analysis, which generates the space of holomorphic functions on a
domain Ω from continuous functions f (z) defined on the boundary
∂Ω:

u(z) =
1

2πi

∮
∂Ω

f (w)
w− z

dw, z ∈Ω. (2)

The function u is holomorphic in the domain, and when f cor-
responds to the boundary values of a holomorphic function, the
Cauchy transform will reproduce f .

The Cauchy coordinates [WBCG09] are a discretized version of
the integral (2). If we discretize Ω using a polygon {zi}n

i=1, then
given samples of the function fi = f (zi) and by interpolating them
linearly on the edges of the polygon, we can calculate the integral
analytically. The integration yields n functions Ci(z), denoted as the
Cauchy-Green coordinates, such that the value of the integral (2) is
given by:

u(z) =
n

∑
i=1

Ci(z) fi. (3)

Note, that while the boundary of the domain is discretized as a poly-
gon, the interior of the domain is continuous, thus z can take the
value of any point in the domain. We provide the expressions for
Ci(z) given the input polygon in Appendix A.

2.2. Algorithm

Discrete energy. The source polygon is sampled at r points (not
necessarily at the vertices), denoted by {z j}. If we are given the
boundary correspondence to the target, namely for each of the sam-
pled points, we have a corresponding point on the target domain
boundary w j, then the energy Ec is discretized by:

Ec({ fi}) =
r

∑
j=1
|

n

∑
i=1

Ci(z j) fi−w j|2.

Since the correct correspondence is not known in advance, we set
w j as additional optimization variables, and constrain them to be
points on the edges of the target polygon T . If we pack the co-
ordinates Ci(z j) of each sample in a coordinate matrix C ∈ Cr×n,
such that row j contains the coordinates of sample z j, then the dis-
cretized energy is:

Ec( f̂ , ŵ) = ‖C f̂ − ŵ‖2, (4)

where f̂ ∈Cn, ŵ ∈Cr are complex vectors with entries { fi},{w j},
respectively.

Alternating minimization. We obtain the following minimization
problem:

min
f̂ ,ŵ

Ec( f̂ , ŵ), s.t. ŵ ∈ T. (5)

We solve the minimization problem using a local-global approach,
by alternating between minimizing it with respect to the conformal
map given by C f̂ (the global step), and the corresponding points on
the target, ŵ (the local step).

The initial points w0 are obtained by sampling the target bound-
ary with respect to the arclength of the source boundary sampling,
and the coefficients f̂ 0 are initialized with zero. Then, at each itera-
tion the coefficients f̂ k are updated by minimizing (4) with respect
to f̂ . This is a linear least squares problem, where the minimizer is
given by f̂ k = C+ŵk−1. Here C+ is the pseudo-inverse of the ma-
trix C, given by C+ = (C∗C)−1C∗, and C∗ is the conjugate trans-
pose of C.

In the second step of each iteration we minimize the energy with
respect to ŵ, under the constraint that ŵ is a set of points lying
on the target domain boundary. This is done by finding for each
point z j, transformed by the current mapping f̂ k, the closest point
on an edge (or a vertex) of the target polygon T . The algorithm is
summarized in Algorithm 1.

Data: source polygon S, target polygon T
Result: set of coefficients f̂ defining the closest conformal

map found from S to T
ẑ = SamplePolygon(S);
ŵ0 = SamplePolygon(T);
f̂ 0 = 0;
k← 0;
while Ec( f̂ k, ŵk)> threshold do

f̂ k+1←C+ŵk;
ŵk+1← ClosestPoint(T,C f̂ k+1);
k← k+1 ;

end
return f̂ k

Algorithm 1: Iterative closest conformal mapping

Convergence. The Iterative closest conformal map (ICCM) algo-
rithm always converges to a local minimum, since at each iteration
the energy is reduced twice. First, by minimizing it with respect to
the conformal map given by f̂ while keeping ŵ fixed and second,
by projecting the points on the target polygon T , therefore solving
for ŵ while keeping f̂ fixed. Figure 2 shows a typical execution of
the algorithm and the energy Ec during the iterations.

3. Extensions

3.1. P2P Constraints

For gaining more control over the behavior of the conformal map,
we can add additional energies to the minimization problem. One
possibility is the point-to-point energy EP2P which allows the user
to guide the conformal map by specifying points in the source do-
main ui and their desired location in the target domain vi. Packing
the coordinates of the source points ui together, we obtain the ma-
trix CP2P where each row contains the coordinates of a source point.
Then, the P2P energy is expressed by:

EP2P( f̂ ) = ‖CP2P f̂ − v̂‖2 (6)
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Figure 2: Top: the energy during the iterations of a typical execution
of the algorithm on a log-log scale. Bottom, from left to right: the
initial domain, the conformal mapping after a single iteration of the
algorithm, and the conformal mapping after 100 iterations.

where v̂ is the vector of target locations. Minimizing only this en-
ergy yields a conformal map which transforms the chosen source
points as close as possible to the target positions. With both ener-
gies combined, we now seek to minimize E =Ec( f̂ , ŵ)+λEP2P( f̂ ),
where λ is a parameter controlling the strength of the P2P energy.
This optimization problem can be solved in a very similar way to
the ICCM algorithm, the only difference being the fact that now the
minimization with respect to f̂ should be taken over the weighted
least squares problem defined by the two energies. In addition, for
the initialization step it is beneficial to calculate f̂ 0 by minimizing
the EP2P energy, yielding a rough initial map, and set ŵ0 to be the
closest points on the target boundary to the sampled points mapped
by f̂ 0. Figure 3 shows the result of running the algorithm with user
defined P2P constraints.

Figure 3: left: source domain and constrained points, right: the
mapping obtained by the ICCM algorithm with the specified tar-
get boundary and P2P constraints.

3.2. Quasi-conformal maps

Since the number of degrees of freedom for a conformal map from
one simply-connected domain to another is quite small, a possi-
ble way to extend the space of mappings is allowing the map to
be quasi-conformal. Instead of looking for a holomorphic function,
we will search for a complex harmonic function, where the real and
imaginary parts are both real harmonic functions. It is known that
any complex harmonic function f can be decomposed as the sum
of holomorphic and antiholomorphic functions. Thus, we will rep-
resent the complex harmonic function f using the Cauchy-Green
coordinates by:

f (z) = Φ(z)+Ψ(z) =
n

∑
j=1

C j(z)φ j +
n

∑
j=1

C j(z)ψ j (7)

where Φ(z) = ∑
n
j=1 C j(z)φ j is a holomorphic function and Ψ(z) =

∑
n
j=1 C j(z)ψ j is an antiholomorphic function. Denoting by C the

matrix of coordinates for the sampled points (similarly to the pre-
vious section), the energy Ec now becomes:

Ec =

∥∥∥∥(C C
)( φ̂

ψ̂

)
− ŵ

∥∥∥∥2

(8)

where φ̂ is the vector with entries φ j and ψ̂ is the vector with entries
ψ j.

The dilatation of a mapping f is defined as [AE66]:

D f (z) =
| fz|+ | fz|
| fz|− | fz|

=
1+ | fz|/| fz|
1− | fz|/| fz|

(9)

where fz = ( ∂

∂x + i ∂

∂y ) f and fz = ( ∂

∂x − i ∂

∂y ) f . The dilatation can
be used for measuring the conformal distortion of the mapping: for
a conformal map the dilatation is exactly 1 (since fz = 0, which is
equivalent to satisfying the Cauchy-Riemann equations), and as it
gets larger, the map distorts angles more. Therefore, for limiting the
amount of conformal distortion the dilatation has to be minimized,
which can be achieved by minimizing | fz|. Note that while a quasi-
conformal map requires a bounded dilatation in the whole domain,
we do not find this global bound, but attempt to minimize it by
minimizing the values of | fz| on the boundary. From the maximum

ICCM

ICQCM

Area
distortion

Area
distortion

Conformal
distortion

Conformal
distortion

Figure 4: Left: The source polygon. Top row: The conformal map
found by the ICCM algorithm, bottom row: quasi-conformal map
found by the ICQCM algorithm. Note that we achieve less area
distortion in the quasi-conformal mapping at the expense of some
conformal distortion.
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modulus principle [Kra12], since in our case fz is antiholomorphic,
the maximum value of | fz| occurs on the boundary of the domain,
and thus by minimizing | fz| on the boundary, it will be minimized
inside the domain as well.

In our representation, since f decomposes as a sum of two holo-
morphic and antiholomorphic functions we get that fz = Φz = Dφ̂

and fz = Ψz = Dψ̂, where D is the matrix with the derivatives of
the coordinates for the sampled points, i.e. D = ∂

∂zC. Therefore, we
add the energy:

Eq = ‖ fz‖2 = ‖Dψ̂‖2, (10)

where the derivative is calculated for each element in the ma-
trix, as described in Appendix A. Figure 4 compares the area and
conformal distortion of the conformal and quasi-conformal maps
achieved using our approach. Note the reduced area distortion near
the boundary of the domain, at the expense of a small conformal
distortion.

3.3. Stroke to Stroke mapping

A similar idea to ICCM can be employed for extending the point-
to-point constraints to curve-to-curve constraints. In this type of
constraints, the user can draw a source stroke Sks inside the domain
and a target stroke Skt , and the goal would be to find a conformal
mapping of the domain which maps between the drawn strokes.
Formally, we define the energy ES2S in a very similar way to the
energy Ec:

ES2S( f ) =
∫

Sks

d( f (s),Skt)
2ds, (11)

where d(z,T ) measures the minimal distance of the point z from
the curve T . The discretization of the energy is achieved using the
Cauchy-Green representation of the conformal mapping f . First,
the source and the target strokes are sampled uniformly at n points
{s j}n

j=1 and {t j}n
j=1. Next, we calculate the Cauchy-Green coor-

dinates for the points sampled on the source stroke and pack them
together in a matrix Csk. Finally, the discretized energy is defined

(a) Source (b) p2p (c) s2s

Figure 5: Stroke to stroke constraints used for shape deformation.
Left: the original shape and the given constraints. Middle: defor-
mation with point-to-point constraints (the points on the strokes are
fixed). Right: deformation with stroke-to-stroke constraints (points
are allowed to move along the strokes). Note that using the stroke-
to-stroke constraints yields a lower area distortion for the hands and
the head.

by:

ES2S( f̂ , t̂) = ‖Csk f̂ − t̂‖2 (12)

where t̂ is the vector of points sampled on the target stroke. The
minimization of this energy is done using a similar iterative algo-
rithm to ICCM, where at each iteration a least squares problem is
solved for the coefficients f̂ k+1, and then the new set of points t̂k+1

is calculated by projecting the current mapping of the source points
on the target stroke.

This energy, similarly to the P2P energy, can be used for guiding
the conformal map when combined with the closeness energy Ec,
but can also be useful for deforming a shape. In the latter scenario,
it is beneficial to add a regularization term which is defined as an
additional energy Es( f̂ ) = ‖D(2) f̂‖2, where D(2) is a matrix con-
taining the second derivative of the Cauchy-Green coordinates for
additional points sampled on the boundary of the domain. This en-
ergy is useful for fixing the degrees of freedom (when the number
of constraints is smaller than the number of coordinate functions)
and for preserving the smoothness of the boundary. Figure 5 shows
the deformation found using the stroke-to-stroke constraints, and
the comparison to the deformation found using similar point-to-
point constraints. Note that since the points are allowed to move
freely on the target stroke, the deformation found using the stroke-
to-stroke constraints yields a smaller area distortion for the hands
and the head.

3.4. Higher Order Approximation of the Distance Function

In the global step of the minimization problem (the optimization for
f̂ ), we used a zeroth order approximation of the distance function
d(z,T ) at the mapped point f (z j), namely the squared distance to
the closest point found in the previous step w j. One could use, al-
ternatively, a higher order approximation for the distance function
as suggested in [PLH04]. The first order approximation of d(z,T )
is the distance to the tangent at the closest point w j. Thus, using
complex-variable notation the first order approximation is given by
d(z,T )≈ Re

(
(z−w j)N j

)2, where N j is the unit normal at w j and
we have used the representation of a dot product between two vec-
tors a,b ∈ R2 in complex form: 〈a,b〉 = Re(ab). Integrating the
first order approximation in the global step, we obtain the follow-
ing minimization problem:

f̂ k+1 = argmin
f̂
‖Re

(
N
(
C f̂ − ŵ

))
‖2 +λ‖C f̂ − ŵ‖2 (13)

where N is the diagonal matrix with the entries N j on its main di-
agonal. Note that the zeroth order approximation is used here as a
regularization term for stabilizing the energy when the algorithm
is close to converge. This is still a simple least squares problem
which can be solved by converting the complex variable formula
to one with real variables. Note that the local step does not need to
change since the distance function can be exactly calculated when
the points f (z j) are fixed, therefore an approximation is not nec-
essary. Figure 6 shows a comparison between the different approx-
imation orders. Notice that while the zeroth order approximation
works well for points far away from the curve, the first order ap-
proximation behaves better for points close to the curve, and the
convergence is achieved much faster.
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Figure 6: (a) Convergence of the energy using different orders of
approximation for the distance function. (b), (c) the conformal map
obtained by the zeroth and first order approximations at iteration
30, in which the first order approximation has converged.

4. Experimental Results

4.1. Implementation Details

We have implemented the ICCM algorithm and its extensions in
MATLAB. Given a source polygon S with n vertices and a target
polygon T , we sample the source polygon at r points for creating
the vector of points P used for discretizing the closeness energy
Ec. It is necessary to sample points at the edges of the polygon
for constraining their mapping to be close to the target polygon.
While a sparse sampling may result in mapping of points between
the sampled ones to points far from the target polygon, sampling
too dense might make the algorithm slow. The number of sampled
points per edge should depend on its length and on the available
computational resources. Since in our experiments the source poly-
gons had approximately uniform edge lengths, we have found that
sampling each edge at 4 points (including the vertices) is sufficient
for achieving good results. The target polygon is sampled according
to the accumulative arclength of the points in P, starting from the
first point P1. Next, we calculate the coordinates matrix C of size
r× n, where row j contains the coordinates of point Pj. The other
energies Es,EP2P,ES2S are discretized in a similar way, with the
coordinate matrices D(2)

s ,CP2P,CS2S. Finally, the conformal map is
found by minimizing the combined energy:

E( f̂ ) = Ec( f̂ , ŵ)+αEs( f̂ )+βEP2P( f̂ )+ γES2S( f̂ , t̂)

= ‖C f̂ − ŵ‖2 +α‖D(2) f̂‖2 +β‖CP2P f̂ − v̂‖2 + γ‖CS2S f̂ − t̂‖2

Note that E( f̂ ) is a quadratic energy in f̂ , and thus can be written
as E( f̂ ) = ‖A f̂ − b‖2. Since the coordinates matrices are constant
during the iterations of the algorithm, we can calculate the pseudo-
inverse of A in advance, and use it during the iterations minimizing
the energy with respect to f̂ by multiplying f̂ k+1 = A+bk. After the
new coefficients f̂ k+1 are found at each iteration, the vector bk+1

is calculated by updating ŵk+1 and t̂k+1 to be the closest points on
the target boundary and target strokes.

In the case of quasi-conformal mapping, the vector of coeffi-
cients f̂ (with n elements in the conformal case), is extended to

contain 2n elements f̂ q =

(
φ̂

ψ̂

)
, where the first n elements rep-

resent the holomorphic function φ(z) and the last n elements rep-
resent the antiholomorphic function ψ(z). Additionally, each one
of the coordinate matrices is concatenated from the right with its
conjugate (i.e. Cq =

(
C C

)
), so that the quasi-conformal func-

tion evaluated at the sampled points is given by f (ẑ) = Cq f̂ q. In
this case, the energy Eq is also added as part of the weighted least
squares problem.

4.2. Limitations

One limitation of our method is that it does not have the option to
control the area distortion. Therefore, the mappings found by the
method may introduce large area distortions in order to minimize
the energy. However, by searching for a quasi conformal mapping
we have seen that the area distortion can be reduced at the expense
of some conformal distortion.

In addition, our method does not prevent flipping, which can ap-
pear in the continuous holomorphic map obtained by the algorithm,
and may not preserve the order of the points on the boundary. Fur-
thermore, the algorithm depends on the initial boundary correspon-
dence, and for a bad initialization, e.g., a convex part of the source
is mapped into two different parts of the target, the optimization
will converge to a local minimum.

4.3. Comparisons

We have compared our algorithm to several methods for mapping
between planar shapes. Figure 7 shows the source polygon in blue,
the target polygon in red, the mapping achieved with each of the
methods, and the conformal and area distortions. In column (b) we
show the results of the method described in [SH15] for construct-
ing a smooth bijective map between arbitrary polygons via a con-
vex regular polygon. We have discretized the interior of the two
domains, constructed two harmonic maps from the domains into a
convex regular polygon, and composed one with the inverse of the
other in order to get a mapping between the two domains. In col-
umn (c) we show the results of the method in [ESA07], in which
the interior of the domain is discretized, and an energy which mea-
sures the distance between the mapping of the source’s boundary
to the target’s boundary and the distortion of the laplacian of the
source mesh is minimized. Notice that both of these methods do
not produce a conformal map and therefore introduce some confor-
mal distortion. In column (d), we use the method from [WG10] for
finding a conformal mapping which maps the angles of the source
polygon to the angles of the target polygon. However, the length
of the edges is not prescribed, and therefore the mapping does not
interpolate the target polygon and can produce large area distortion
as can be seen in the results. In column (e) we have used the Szego
coordinates which were introduced in [WBCG09]. Our method is
shown in column (f). In the example we have also used two p2p
constraints in order to construct the initial boundaries correspon-
dence and for guiding the source of the branch and the top leaf to
their desired location. Notice that the method produces a confor-
mal map, therefore there is no conformal distortion, but the area
distortion is not constrained and therefore it introduces more area
distortion than the other methods in some parts of the mesh.
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Conformal 

distortion
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distortion

(a) Source (b) [SH15] (c) [ESA07] (d) [WG10] (e) Szego [WBCG09] (f) ICCM

Figure 7: Comparison of our algorithm to state-of-the-art methods for computing maps between planar domains. Note that our algorithm
produces a conformal map with no shearing artifacts, but may introduce some area distortions.

4.4. Additional Results

Deformations. Figure 8 shows a deformation generated by map-
ping a source sketch to a target sketch, both drawn by the user. Two
point-to-point constraints were used for guiding the mapping of the
hand and the head of the monkey. Note that the quasi-conformal
map better approximates the point-to-point constraints, as well as
reduces the area distortion (see the point constraint in the hand).

Constrained texture mapping. Figure 9 shows how the algorithm
can be used for constrained texture mapping. In this experiment we
have used the method from [BCGB08] for calculating a conformal
flattening of the given mesh, resulting in a 2D mesh which is con-
formal to the original. Next, we used our algorithm for finding a
conformal map from the boundary of the texture (a square) to the
boundary of the 2D mesh, and the point-to-point constraints were
used for guiding the conformal map.

(a) Source (b) Conformal (c) Quasi-conformal

Figure 8: Deformation of the monkey using conformal vs quasi-
conformal mappings. Note that the quasi-conformal map better ap-
proximates the point-to-point constraints, as well as reduces the
area distortion (see the point constraint in the hand).

Figure 9: Constrained texture mapping. Top left: the input texture.
Top right and bottom row: the texture is mapped to the surface,
using point-to-point constraints as a guidance.

Texture transfer. In this experiment we calculated a conformal
mapping from a hexagon into a flattened mesh, which is confor-
mal to the target 3D mesh. Then, we have transfered the texture
from the original shape to the target shape through composition of
the two conformal maps. The results are shown in Figure 10.

5. Conclusions and Future Work

We have shown a fast algorithm for mapping between planar
shapes, and proposed several extensions for controlling the map.
In addition, we introduced stroke-to-stroke constraints, a general-
ization of point-to-point constraints, which can be used as an intu-
itive deformation framework. We demonstrated how the proposed
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(a) Source (b) Flattened target (c) Target mesh

Figure 10: Texture transfer between shapes. The texture from the
hexagon (a) was transfered to the lilium mesh (c) through compo-
sition of two conformal maps.

method can be used for deforming a shape by sketching a source
and target boundary and for transferring textures.

While the mappings found using this method may introduce a
large area distortion, we have found that it can be minimized by
considering quasi-conformal mappings, and we believe it can also
be controlled by adding an additional energy which will make the
optimization non linear. It might also be possible to prevent flips
and handle non-convex shapes better by preserving the order of
the points when projecting them onto the target boundary. Another
interesting direction will be calculation of mappings between three
dimensional shapes, using a generalization of the Cauchy-Green
coordinates.
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Appendix A: Cauchy-Green coordinates formulas.

Given a polygon with n vertices {z j} and a point z inside the poly-
gon, we use the notations A j = z j−z j−1, B j = z j−z for expressing
the Cauchy-Green coordinates as:

C j(z) =
1

2πi

(
B j+1

A j+1
log

B j+1

B j
−

B j−1

A j
log

B j

B j−1

)
The expressions for the first and second derivatives of the coordi-
nates are given by:

D j(z) =
1

2πi

(
1

A j+1
log

B j

B j+1
+

1
A j

log
B j

B j−1

)
D(2)

j (z) =
1

2πi

(
1

B j−1B j
− 1

B jB j+1

)
When the point z lies on an edge of the polygon, the logarithm

in some of the coordinates has to be calculated for a real negative
number which lies on the branch of the logarithm. In this case the
limit for the logarithm log B j+1

B j
when the point z lies on the edge

e j = {z j,z j+1} is obtained by lim
z→e j

log B j+1
B j

= log
∣∣∣B j+1

B j

∣∣∣+ iπ, and

the limits of the coordinates are calculated using this limit.

For a point z on a vertex of the polygon the coordinates are cal-
culated by:

C j(z) =
1

2πi


B j+1
A j+1

log B j+1
B j

z = z j−1

log B j+1
B j−1

z = z j

−B j−1
A j

log B j
B j−1

z = z j+1

The derivative of the coordinates is not defined for the vertices of
the polygon. However, it can be approximated by calculating the
derivative of the coordinates for a point close to the vertex, located
inside the polygon.
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