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Figure 1: We compute a detailed map between subdivision surfaces given by their control meshes using a set of input landmarks (left), and
use it to accurately transport highly detailed texture images (center, right).

Abstract
We propose a novel approach for computing correspondences between subdivision surfaces with different control polygons.
Our main observation is that the multi-resolution spectral basis functions that are often used for computing a functional cor-
respondence can be compactly represented on subdivision surfaces, and therefore can be efficiently computed. Furthermore,
the reconstruction of a pointwise map from a functional correspondence also greatly benefits from the subdivision structure.
Leveraging these observations, we suggest a hierarchical pipeline for functional map inference, allowing us to compute corre-
spondences between surfaces at fine subdivision levels, with hundreds of thousands of polygons, an order of magnitude faster
than existing correspondence methods. We demonstrate the applicability of our results by transferring high-resolution sculpting
displacement maps and textures between subdivision models.

CCS Concepts
• Computing methodologies → Mesh models;

1. Introduction

Subdivision surfaces are a popular shape representation for 3D

modeling, used in the design pipeline of many artists [LVGL∗13].
A common workflow [vG09]pp. 101 entails designing a polygo-

nal, often a purely quadrangular model with a small number of

polygons, subdividing it multiple times to achieve higher smooth-

ness, and then sculpting fine details on the subdivided model. If

the model is to be used in a low-resource environment, such as

a game or an augmented-reality application, the geometric details

are then “baked” into an image, and only the low resolution geom-

etry is used at runtime. The details are rendered as normal maps or

bump maps, and more recently, by using hardware tessellation, as

displacement maps [NKF∗16].

The detailing process, i.e., designing a realistic 3D model start-

ing from a low resolution polygonal base mesh, is time consuming
and expensive. This is evidenced, for example, by the price differ-

ences between a base mesh and a detailed model, that can reach two

orders of magnitude [Tur19]. It is natural then to consider reusing
the detailing of one model as a starting point for the detailing of

a similar model. For example, if one designs a family of digital

characters with similar facial details, it would be useful to design

one such model, and then transfer the detailed editing to other base
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meshes. Similar paradigms are often used in computer graphics, for

example, deformation transfer [SP04] and style transfer [BHS∗17].

To enable such an application, a detailed correspondence
is required between two subdivision surfaces described by

different control polygons. Despite a very large body of

work dedicated to computing correspondences between triangle

meshes [VKZHCO11], there exists, to the best of our knowledge,

no method that is applicable to subdivision surfaces. Attempting to

compute the correspondence on the subdivided mesh at a high res-

olution leads to extremely long run times, as the meshes reach hun-

dreds of thousands of polygons. Alternatively, computing a corre-

spondence on a low resolution mesh and subdividing it, is similarly

ineffective, since the semantics of the geometry is not, in general,
conserved by the subdivision operation. In other words, a semanti-

cally meaningful high-resolution map, that puts in correspondence

related features on both shapes, is not necessarily the exact refine-

ment of a semantic low-resolution map.

We propose a novel approach for computing a detailed, high res-

olution correspondence between two subdivision surfaces given by

different control polygons. Our method is a generalization of the

functional map framework [OBCS∗12, OCB∗17], which is a flexi-
ble approach for inferring correspondences, agnostic to the under-

lying geometry representation. The main required components are

a basis for scalar functions defined on the surface, and a set of lin-
ear functional constraints, where both are often given in terms of
the spectral decomposition of the Laplace-Beltrami operator (LB).
Recently, a novel approach, denoted as Subdivision Exterior Calcu-

lus [dGDMD16], uses the subdivision structure to compute an ac-

curate discretization of the LB operator on polygonal meshes. This

discretization is a key component in our hierarchical approach.

It is well known, see e.g. [VL08], that the eigenfunctions of the

LB operator have a multi-resolution nature, where functions with
higher eigenvalues are more oscillatory than functions with lower

eigenvalues. A similar property holds for an often used functional

descriptor, the Heat Kernel Signature [SOG09] (HKS). This im-
plies a perfect fit between subdivision surfaces and a hierarchical
functional framework: the correspondence at a low resolution can

be represented using a small subset of low eigenfunctions, and as

the mesh resolution increases more basis eigenfunctions and de-

scriptors can be computed and used.

We design the components for constructing efficiently a hierar-

chical functional map inference scheme. These include computing

a hierarchical spectral basis, posing linear constraints and hierar-

chically optimizing for a functional correspondence. We addition-

ally show how to leverage the subdivision structure to speed up the

reconstruction of a pointwise map from the functional correspon-

dence, an important and time consuming step. Our scheme com-

putes high quality correspondences between subdivided meshes of

hundreds of thousands of polygons, at computation times that are

an order of magnitude smaller than existing correspondence ap-

proaches. We apply our detailed computed maps for transferring

high resolution geometry edits, as well as texture images, showing

the potential of our approach for 3D modeling applications.

1.1. Related Work

Our main goal is computing a correspondence between two subdi-

vision surfaces, given by their base polygonal meshes. Despite the

abundant amount of work on shape correspondence, to the best of

our knowledge, there does not currently exist an algorithm that tar-

gets this application. Therefore, we focus our literature review on

subdivision surfaces, on correspondence in general, on existing ap-

proaches for multi-resolution geometry processing, and on methods

targeting our application, namely detail transfer.

Subdivision Surfaces. Subdivision surfaces are a widely used

tool for animation, rendering and modeling of smooth sur-

faces [DKT98, ZS00, WW01, LJG14], by recursively refining a

control base mesh with subdivision rules such as Catmull-

Clarck [CC78] and Loop [Loo87], to name just a few. They

are also used for simulation of fluids [Sta03], surface deforma-

tion [GKS02, TWS06] and architectural geometry [LPW∗06].

Shape Correspondence. The literature on shape correspondence
is vast, and a complete review is beyond our scope. We refer the

reader to recent state-of-the-art reviews [TCL∗13, LI15, Lag18] for
an introduction to the topic. Most, if not all, of the shape correspon-

dence approaches use triangle meshes or point clouds as input data,

which is motivated by the need to register scanned 3D data. We, on

the contrast, are interested in matching models designed by artists,

which are given as polygonal (often quad) meshes.

To the best of our knowledge, there exist a very small number of

papers that address the problem of correspondences between quad

meshes. Eppstein et al. [EGKT08] have investigated the exact topo-

logical matching of parts of quadrangular meshes. They show that

an exact solution is NP-Hard and provide an approximate greedy

approach. Our goal is different, as we do allow varying quad topol-

ogy, and rely on the geometry instead to supply the correspondence

information. Alternatively, subdivision surface fitting can also gen-
erally be considered a correspondence method. Classic approaches

for subdivision fitting were suggested by Litke et al. [LLS01] for

Catmull-Clark subdivision, by Marinov et al. [MK05] for Loop

subdivision, and many other, more recent, fitting approaches exist.

It is worth noting that for subdivision fitting the base mesh is ini-

tially extrinsically aligned with a target triangular mesh, whereas in
our case the input base meshes are general, and can be extrinsically

and intrinsically different. Recently, Estellers et al. [ESC18b] sug-

gested a robust fitting approach that takes into consideration out-

liers. They use a decimated version of the input mesh as the base

mesh for the subdivision surface, which is extrinsically aligned to

the input mesh and thus inappropriate for our application.

While it is possible to triangulate any polygonal mesh, the result-

ing triangle meshes will have non-optimal elements, which might

degrade the differential operators that are used in computations.

Alternatively, it is possible to remesh a quadrangular mesh using
uniform triangular elements, however, that might lead to loss of

prominent features if the remeshing is too coarse. Furthermore,

the triangle meshes have to be very fine to enable the transport of

highly detailed edits or texture. Hence, mapping approaches that

are designed for triangle meshes [AL16] can potentially be used by

remeshing the input quads to a very fine refinement of the subdivi-
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sion surface, however, this leads to computation times which are an

order of magnitude larger than ours, see Figure 13.

Functional Correspondence. The functional map frame-

work [OBCS∗12] is a general approach for computing cor-

respondences, which is agnostic to the underlying geometric

representation. As it relies on a reduced basis for scalar functions,

it can be applied to any shape representation where such a

basis can be computed, e.g., point clouds [HCO18]. We are not

aware of an existing work that uses functional maps for mapping

between quadrangular meshes. The framework has been used for

computing approximately consistent quadrangulations of triangle
meshes [ACBCO17], yet there the functional map was given

as input. Recently, an interactive approach to map computation

has been introduced [GBKS18], where a functional map is

quickly computed using user-placed curves. To transfer texture,

the authors extract a point-to-point map in a post-processing

slower step, which is not interactive. Our approach, in contrast,

leverages the subdivision structure to efficiently compute both
the functional map and the point-to-point map for meshes refined

to hundreds of thousands of polygons, albeit not at interactive

rates. Other recent functional map regularizations, constraints and

priors [ERGB16, VLB∗17, NO17, RPWO18] are complementary

to our method, as they can be applied at the coarsest level instead

of the basic functional map method that we used. In [NMR∗18]
the authors suggested an approach to transfer high frequency

functions and improve existing functional maps via product

preservation. Since this step comes on top of an existing functional

map it is complementary to our approach, and may serve as an

additional improvement. Finally, the point-to-point reconstruction

step has been addressed as a separate problem in the functional

framework [RMC15, EBC17, ESBC19, NMR∗18], and some of

these methods provide a vertex-to-point-in-triangle map as output,

which can be used for transferring smooth textures. Note, though,

that the meshes still need to be very fine, in order to support

non-linear texture deformation, leading to long running times and

large memory consumption.

Multi Resolution Spectral Geometry Processing. Beyond sub-
division surfaces, other classical approaches include, for exam-

ple, multi resolution through smoothing [GSS99] and multi res-

olution through remeshing [BK04]. More recently, Vaxman et

al. [VBCG10] used a multi-resolution remeshing based approach

to compute the Heat Kernel Signature. We, on the other hand,

provide a full shape correspondence pipeline for subdivision sur-

faces, and in addition, provide bounds on the representation er-

ror of subdivided functions in the refined basis. Our work is

based on the recently proposed Subdivision Exterior Calculus

(SEC) [dGDMD16], that builds differential operators which use the

geometry of a refinement of the base mesh for geometry processing

on the base mesh. While they define the discrete operators, such as

the Laplacian, the authors did not provide an analysis of the spec-

tral decomposition of the Laplacian at different subdivision lev-

els as we do, nor did they address computing spectral descriptors.

Estellers et al. [ESC18b] use the subdivision basis functions and

quadrature rules for computing the eigenfunctions of the Lapla-

cian and spectral descriptors. Our approach, on the other hand,

does not require numerical integration, and we additionally supply

bounds on the representation error using the hierarchically com-

puted eigenvectors. Recently Nasikun et al. [NBH18] proposed a

fast approximation for the lowest part of the Laplacian spectrum

of large meshes. They construct a subspace of local basis func-

tions around sampled points and then solve a restricted, simpler,

eigenproblem. The constructed Laplacian basis does not rely on or

inherit any property from the subdivision structure of the shape,

and thus is different from our approach. Interestingly, [LV18] pro-

posed a method to spectrally approximate large graphs with smaller

graphs, not necessarily given by a polygonal mesh, and showed a

relation between the spectra of the corresponding graph Laplacians,

providing a probabilistic bound. Our approach, in contrast, is based

on refinement rather than coarsening, and leverages the subdivi-

sion structure and the mesh geometry. It is interesting, yet out of

scope for this paper, to further investigate the relation between our

bound and the bound they provide for regular graphs. Finally, a few

methods exist for computing a localized basis at different scales,

e.g. [Rus11, MRCB18], yet these are all computed on a single sur-

face, for, e.g., partial shape correspondence. We, on the other hand,

compute global basis functions, at multiple subdivision levels.

Detail transfer. An early example of detail transfer for subdi-

vision surfaces was presented by Biermann et al. [BMBZ02],

where parts of the surface were parametrized to the plane to al-

low for copy-paste operations. Other multi resolution modeling ap-

proaches are discussed in the SIGGRAPH course dedicated to the

topic [Zor06]. These techniques were also generalized to triangle

meshes [SBSCO06, SS10a, TSS∗11], and developed into a highly
successful mesh editing tool, known as MeshMixer [SS10b]. While

related, our approach is different than these methods, in that it aims

for a global correspondence between two subdivision surfaces, that
allows to transfer detailed displacement maps and texture images.

1.2. Contributions

Given two input base polygonal meshes, and a set of user specified

landmarks, we compute a multi-level map between the refinements

of the base meshes. The main contributions of our approach are:

• We show the relation between the eigenfunctions of the SEC

Laplace-Beltrami operator at different subdivision levels.

• We develop a Hierarchical Functional Maps (HFM) scheme for

subdivision surfaces that is efficient and accurate, allowing us

to compute maps for refinements with hundreds of thousands of

polygons in a few minutes.

• We apply the computed correspondence for detailed displace-

ment maps and texture image transfer between subdivision sur-

faces with different base polygon meshes.

2. Background

2.1. Functional Maps

We give here a brief overview of the functional map framework,

to make the paper self contained. More details can be found in the

paper that introduced the concept [OBCS∗12], and in the recent
SIGGRAPH course dedicated to the topic [OCB∗17].
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Figure 2: Our pipeline: (a) compute a hierarchical basis, (b) set up linear constraints from descriptors, (c) solve hierarchically for the
spectral functional map and the corresponding pointwise map at all levels, and (d) use the final fine pointwise map for texture transfer.

2.1.1. Notation

We work with a polygonal mesh M = (V,F ,E), given by its ver-
tices, faces and edges, respectively. We denote |V|= n and |F|=m,
and further denote by X∈R

n×3 the embedding of its vertices inR3.

We consider piecewise linear (PL) functions g :M→ R, given by

their values on the vertices V , and thus g∈R
n. The mass-weighted

inner product of functions onM is given by 〈g,h〉M = gTMh, with
the corresponding norm ‖g‖2M = gTMg. For matrices G,H with

functions as columns we set 〈G,H〉M =GTMH. Following the for-
mulation of Alexa and Wardetzky [AW11], the Laplace-Beltrami

operator is discretized by the Laplacian matrix L =M−1W , where

M is a diagonal mass matrix for the vertices, and W is the inte-

grated Laplacian, e.g., the cotangent Laplacian for triangle meshes.

Further, Λ ∈R
k×k is a diagonal matrix of the eigenvalues of L,

sorted from small to large, and Φ∈R
n×k has the eigenvectors of

L as columns in the same order, such thatWΦ =MΦΛ. The eigen-
functions are M-orthonormal, namely 〈Φ,Φ〉M = Ik×k. We denote

the pseudo-inverse of Φ by Φ†∈R
k×n, and note that Φ† = ΦTM.

When more than one mesh is discussed, we denote it with a sub-

script, e.g. Li is the Laplacian matrix of the meshMi, for i∈{1,2}.

2.1.2. Basics

The basic idea of the functional map framework is to generate a

map that puts in correspondence functions instead of points. Specif-
ically, for every map T12 : V1 → V2, from the vertices of M1 to

the vertices of M2, there exists a corresponding functional map

(FMap) P12 that maps PL functions onM2 to PL functions onM1.

It is given by (P12(g2))(v1) = g2(T12(v1)), for all vertices v1∈V1,
and functions g2∈R

n2 . It is easy to check that P12 is a linear oper-
ator, and thus can be described by a matrix P12∈R

n1×n2 .

The main strength of the functional map framework comes from

working with a spectral basis for functions, usually taken to be Φ,
namely the lower eigenvectors of the LB operator. In this setup, the

spectral functional map C12∈R
k1×k2 maps functions in the image

of Φ2, represented by their basis coefficients, to functions in the

image of Φ1, and is thus given byC12 = Φ†
1P12Φ2.

2.1.3. Inference

To compute a functional map C12 between two meshes M1,M2,

we first design a set of linear constraints. The map is computed
by solving a linear least squares optimization problem, where the

constraints are weakly enforced, i.e., a constraint Ax = b is refor-
mulated into the objective ‖Ax−b‖2.

Two often used linear constraints are (1) descriptor constraints
of the form C12F2 = F1, where Fi ∈R

ki×d and (2) commutativity
constraints of the formC12O2 =O1C12, whereOi∈R

ki×ki is a lin-

ear operator onMi. Both the descriptors, Fi, and the operators,Oi,

are given through their projection on the spectral bases Φi. This

framework is quite general, and there are many other ways of com-

puting a functional map, see e.g. [OCB∗17] and citations within.
We limit ourselves to these cases as they are most common.

Descriptors are often defined through a function of the eigen-

values ρ : R+ → R
+, and can be classified as signatures and land-

marks. Signatures, e.g., the Heat Kernel Signature [SOG09] and the
Wave Kernel Signature [ASC11], do not require any prior knowl-

edge on the correspondence, and can be generally defined as the

diagonal of the matrix Φρ(Λ)ΦT , where ρ is applied entry-wise to
the diagonal ofΛ. Landmarks, on the other hand, require the knowl-
edge of two corresponding vertices vi ∈Vi per landmark. Given a
vertex v∈V , these are computed by Φρ(Λ)ΦT δv, where δv ∈R

n

is a vector of zeros with a single 1 at the vertex v. The descriptors
are then projected on Φi to get the matrices Fi that are used in the
linear optimization.

Commutativity operators arise as priors on the expected corre-

spondence. For example, the Laplacian operators of two surfaces

which are nearly isometric are expected to commute with the output

map. Similarly, if the surfaces exhibit intrinsic symmetry, the sym-

metry maps are expected to commute with the output map as well.

Finally, descriptor constraints can be formulated equivalently as op-

erator commutativity constraints, leading to better maps [NO17].
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2.1.4. Point-to-point Map Reconstruction

Once a spectral functional map C12 has been computed, it can be
used as-is to transfer functions from M2 to M1. However, it is

often beneficial to extract a full functional map, represented as a
permutation matrix P12 ∈R

n1×n2 , from which a vertex-to-vertex

map, T12, can be extracted. Quite a few methods exist that achieve

this, e.g., [RMC15, EBC17], yet they are mostly variations on the

following approach: use the map C12 as an initial solution for the
ICP algorithm [BM92] for rigid alignment in the spectral domain.

Specifically, the objective ‖C12ΦT
2 −ΦT

1 P12‖2 is alternately mini-
mized for P12 and C12 under the constraints that P12 is a permuta-
tion matrix, andC12 is an orthonormal matrix.

2.2. Subdivision Exterior Calculus

2.2.1. Notation

We work with a polygonal base mesh and its refinements, up to

the finest subdivision level, denoted by f . We distinguish between
meshes at different subdivision levels with a superscript. Thus, we

have a set of meshes Ml = (V l ,F l ,E l), with l ∈{0, .. f}, where
M0 is the base mesh. Following de Goes et al. [dGDMD16], we

define a subdivision matrix Sl ∈R
nl+1×nl for the vertices at level l.

Hence, the embedding of V l+1 is given by Xl+1 = SlXl , for l > 0,

taking X
0 = X0. We accumulate the subdivision of multiple lev-

els by multiplying the corresponding subdivision matrices, namely

S
f l = S f−1S f−2 · · ·S l+1S l for 0 ≤ l < f . We use Loop subdivi-

sion for triangle meshes, and Catmull-Clark for quad meshes.

2.2.2. Discrete Differential Operators

The geometry of the subdivided meshes Ml changes significantly

from the control mesh after a few subdivision levels. The method-

ology proposed in SEC is to use the mass matrices of the finest
subdivision level for computing the differential operators of all

levels, by defining a subdivision operator that commutes with the

discrete exterior derivative. It is straight forward to show that we

can compute the SEC unweighted Laplace-Beltrami operator by

W
l = (S f l)TW f

S
f l . Similarly, the SEC mass matrix for the ver-

tices is given by M
l = (S f l)TM f

S
f l . Note, that since the finest

subdivision level f is assumed to be constant, we remove it from
the notation for clarity. Figure 3 illustrates the construction of the

operators at the different levels.

Figure 3: Construction of refined geometries (top), and SEC oper-
ators (bottom). We map between geometries at the finest level.

3. Hierarchical Functional Maps (HFM)

Notation. We use a combined notation of SEC and FMaps, with

a superscript to denote the subdivision level, and a subscript to de-

note the mesh. For example,W0
2∈R

n02×n02 denotes the unweighted

Laplacian of the second base mesh.

Our goal is to compute a correspondence between two subdivi-

sion surfaces, given by their control meshesM0
i , with i∈{1,2}. To

this end, we design an efficient and accurate functional map infer-
ence scheme for subdivision surfaces by leveraging the subdivision

structure. Figure 2 illustrates our pipeline.

In the following, we describe our sub-goals for each FMap com-

ponent, and how we achieve them.

4. Spectral Functional Basis

The spectral functional basis is the main ingredient in the func-

tional map approach, and it greatly contributes to its effectiveness.

To achieve similar effectiveness, we pose the following require-

ments on the HFM basis.

4.1. Requirements

Multi-scale. The number of basis functions required to represent
a function should be correlated with its oscillatory nature, or, more

precisely, with the norm of its gradient. This property allows us to

control the “resolution” of the computed correspondence through

the number of basis functions, and thus the dimensions of the func-

tional map matrix.

Scalable. The basis should be efficiently computable, even on

meshes at high subdivision levels. As our goal is to transfer detailed

displacement and texture maps, we need the HFM to be applicable

to fine mesh resolutions on which detailed displacement maps can

be resolved.

0 50 100 150 200
0.4

0.6

0.8

1

Figure 4: Average representation error for 1000 random functions
in the image of Sl , normalized by the functions’ squared norm, as
a function of the number of eigenvectors k. We compare using the
prolonged eigenvectors Φ̂l+1, with the optimal representation error
achieved by using Φl+1. Note that while the exact eigenfunctions
achieve a slightly better representation error for larger k values,
the graphs are almost indistinguishable.
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Complete. As we tailor a spectral basis, it is imperative that our
basis fully spans the space of functions we want to represent, i.e.

functions up to some oscillation resolution.

Orthonormal. An orthonormal basis, with respect to the inner

product with the vertex mass matrix, allows for fast inversion of

the basis, without requiring the computation of the pseudo-inverse.

4.2. SEC Laplacian Eigenvectors

The SEC Laplacian operator of subdivision level l∈{0, .., f}, given
by Ll = (Ml)−1

W
l is positive semi-definite [dGDMD16], and thus

we can compute its lowest k eigenvectors and eigenvalues, given by
Φl∈R

nl×k and Λl∈R
k×k, respectively. By definition, these fulfill:

W
lΦl −M

lΦlΛl = 0, 〈Φl ,Φl〉Ml = I. (1)

It is natural to consider the relation between the SEC Lapla-

cian operators on multiple levels. First, note that for all levels

l∈{0, .., f}, the operator Ll depends on the geometry of the finest

level f , given by Mf ,W f , and on the multilevel subdivision opera-

tor S f l , which in turn depends only on the connectivity of the con-
trol mesh. Therefore, all Laplacians derive from the same geometry,
and it is expected that there will be a well defined relation between

Φl ,Λl and Φl+1,Λl+1. Indeed, we have the following, which fol-

lows directly from the definitions and Equation (1):

(Sl)T (Wl+1SlΦl −M
l+1SlΦlΛl) = 0, (2)

sinceWl = (Sl)TWl+1Sl and similarly forMl+1.

Definition 1 The prolonged eigenvectors and eigenvalues at level
l+1 from level l are given by:

Φ̂l+1
:= SlΦl , Λ̂l+1

:= Λl . (3)

Using this definition and Equation (2) it is straightforward to

show the following.

Lemma 1 The prolonged eigenvectors and eigenvalues Φ̂l+1, Λ̂l+1

are weak eigenvectors and eigenvalues of L
l+1 with respect to

functions of level l+1 which are in the image of Sl . Explicitly,
for any function gl+1∈ Im(Sl) we have:

〈gl+1,Ll+1Φ̂l+1− Φ̂l+1Λ̂l+1〉Ml+1 = 0, (4)

〈Φ̂l+1,Φ̂l+1〉Ml+1 = I. (5)

All the proofs, though elementary, are provided in the appendix

for completeness. The important point is that the inner products

〈·, ·〉M and 〈·,L·〉M are invariant to the subdivision level l when
applied to subdivided functions (see Lemma 5).

Intuitively, Lemma 1 implies that the prolonged eigenvectors and

eigenvalues provide a good approximation of the eigen decomposi-

tion of Ll+1, when considering functions in the image of Sl .

Finally, we can bound the representation error of the projection

on the prolonged eigenvectors, as follows.

Lemma 2 Let g∈ Im(Sl). Then

‖g− Φ̂Φ̂†g‖2M ≤ ‖∇g‖2
M

λk+1
≤ λmax

λk+1
‖g‖2M, (6)

Eigenvectors Φ Prolonged eigenvectors Φ̂

Figure 5: A few low eigenvectors and the corresponding prolonged
eigenvectors from a level below. Note the clear visual similarity.

where all quantities are at level l+1, Φ̂ are the first k eigenvectors
of Ll prolonged to l+1, λk+1 is the k+1th eigenvalue of Ll , λmax is
the largest eigenvalue of Ll , and ∇g is a discrete gradient defined
such that ‖∇g‖2

M
= 〈g,Lg〉M.

The proof uses a similar technique to the one that is used

to show the bound for the eigenvectors of the Laplacian, see

e.g., [CPK18]Eq.(17), for the first bound, and the Courant-Fisher

Minimax Theorem [ANT09, ANT08] for the second bound. Note

that on triangle meshes ∇g is the gradient field of the subdivision
of g to the finest level f , becauseWl = (S f l)TW f

S
f l . On general

meshes ∇g can be defined through the L2 norm of the 1-form d0g
subdivided to the finest level, with respect to the edge-based mass

matrix.

Figure 4 demonstrates experimentally the result of Lemma 2. We

show the average representation error, normalized by the functions’

squared norm ‖g‖2
M
, as a function of k, the number of computed

eigenvectors. We use Φl+1 and Φ̂l+1, for a set of 1000 random

functions in the image of Sl . Note that while Φl+1 leads to a better

error after 100 eigenvectors, the difference is smaller than 1%.

Figure 5 visualizes the eigenvectors Φl+1 and the prolonged

eigenvectors Φ̂l+1 for a few low eigenvectors. For visualiza-

tion purposes, we chose eigenvectors which correspond to non-

repeating eigenvalues. Note, that the sign of the eigenvectors is

arbitrary, hence we show either the eigenvector or its negation, cho-

sen so that the eigenvectors visually correspond between the sets.

The figure demonstrates that in addition to having similar represen-

tation power, the eigenvectors themselves are visually very similar.

Figure 6 (left and center left) shows the eigenvalues of Ll at var-

ious levels. Note, that in addition to the eigenvectors, the eigen-

values are also quite similar, and the similarity breaks at higher

eigenvalues for higher levels. This is demonstrated further in Fig-

ure 6 (center right and right), which shows the ratio Λl+1/Λl for

the different subdivision levels.

The bound in Lemma 2 depends on the largest eigenvalue of L.

We leave further investigation of a general bound to future work,

noting that similar results for B-Spline surfaces have been recently

researched in Iso-Geometric Analysis [ESC18a].

4.3. HFM Basis

We construct our HFM basis by leveraging the representation

power of prolonged eigenvectors.

Definition 2 Let k̃ f be the total number of required basis vectors at
the finest level f . Define {kl ≥ 0, l∈0, .., f}, such that ∑ f

l=0 k
l= k̃ f .
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The hierarchical basis is given by:

Φ̃0 = Φ0, Λ̃0 = Λ0, (7)

Φ̃l+1 = [SlΦ̃l ,Φ̄l+1], Λ̃l+1 = [Λ̃l , Λ̄l+1], (8)

where Φ0,Λ0 are the first k0 eigenvectors and eigenvalues of L0,
Φ̄l+1, Λ̄l+1, are the kl+1 eigenvectors and eigenvalues of Ll+1 in

the band starting after the largest eigenvalue of Λ̃l , and the oper-

ator [·, ·] denotes either column concatenation, or diagonal matrix
concatenation according to the context.

Figure 7 illustrates the hierarchical construction of the basis. We

provide further details on the splitting of the eigenvalue bands in

the Implementation Section 6.

If we consider the basis at level l as an embedding of the polygo-
nal mesh into Rkl , then the HFM basis is given by subdividing this

embedding, and adding details using additional kl+1 dimensions.

4.4. Properties

Multi-scale. We have shown that prolonged eigenvectors have

similar representation power to the exact eigenvectors, and the

number of required eigenvectors depends on the norm of the gradi-

ent, thus the HFM basis is multi-scale.

Scalable. For high subdivision levels we only need to compute
bands of eigenvectors. This tactic is a good fit with the common
numerical computation of eigenvectors and eigenvalues, which is

done per band [Ste02], leading to an efficient basis computation.

Complete. As we split the eigenspace into multiple bands, and
compute each band separately, it is preferable that no eigenfunction

is “lost”, as that will reduce the basis’ representation power. Com-

pleteness depends on the detailed strategy of band splitting, and we

do not have a formal guarantee for its existence, since the splitting

involves a heuristic for the behavior of the eigenvalues. In practice,

as we discuss in the Implementation Section 6, we can validate that

the bands have a non-trivial intersection, and discard the overlaps,

by leveraging the approximate orthogonality property. If, however,

repeating eigenvalues exist, the HFM basis may not be complete.

Approximately Blockwise Orthonormal. Our basis is computed
by concatenating prolonged eigenvectors frommultiple subdivision

levels, and thus is not orthonormal by construction. We have the

following, weaker, result.
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Figure 6: (left and center left) The eigenvalues of Ll at different
levels, note the similar trends. (center right and right) The ratio
Λl+1/Λl for the different levels, note that the similarity breaks later
for higher levels, and the ratio is very close to 1.

Figure 7: An illustration of the hierarchical basis construction
from Definition 2.

Lemma 3 Assume Λ̃l and Λ̄l+1 are distinct, and both have no

repeating eigenvalues. Let Φl+1 be the first ∑l
i=0 k

i = k̃l eigenvec-
tors of L

l+1. Then the HFM basis Φ̃ is approximately blockwise
orthonormal:

〈Φ̃l+1,Φ̃l+1〉Ml+1 =

[〈Φ̃l ,Φ̃l〉Ml E
ET Ikl+1×kl+1

]
, (9)

〈Φ̃0,Φ̃0〉M0 = Ik0×k0 , (10)

where the error matrix E is controlled by

1

kl+1 ∑
i j
|Ei j| ≤ ‖SlΦ̃l −Φl+1‖2

Ml+1 . (11)

Intuitively, the lemma bounds the failure of the basis to be or-

thonormal by the failure of the lower eigenvectors of L
l+1 to

be prolongations of the basis at level l. As demonstrated experi-
mentally in Figure 5, this error is indeed small, when no repeat-

ing eigenvalues exist. In practice, however, meshes often have re-

peating eigenvalues, thus in our computations, we do compute a

pseudo-inverse matrix of the HFM basis, as we further discuss in

the Limitations section 6.4.

4.5. Computation time

The hierarchical construction of the basis is much faster than the

exact computation, where for each level l all of the ∑l
i=0 k

i = k̃l

eigenvectors should be computed, instead of a band of eigenvec-

tors. Table 1 shows a comparison of the basis computation times

between HFM and the exact approach. It is clear that for very large

shapes our method is much less expensive.

5. Inference

To formulate an optimization problem we first define a set of linear

constraints per hierarchy level l, which are either descriptor preser-
vation or operator commutativity constraints. We then iteratively
solve a linear optimization problem at every level, which is boot-

strapped by the solution at the previous level. Finally, we propose a

novel improvement on the pointwise map extraction that leverages

the subdivision structure and yields our output: a map between fine

refinements of the subdivision surfaces.

5.1. Descriptors Constraints

A spectral descriptor is given in terms of a 1-parameter family of

functions ρt :R+ →R
+, where t∈R+, is a filter on the eigenvalues.
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Figure Shape n0 f n f k̃l Exact HFM

Fig. 13 woman 1.3k 3 85k (100,50,50,50) 26.4 12.5
Fig. 13 man 1.3k 3 85k (100,50,50,50) 26.6 12.9

Fig. 1 tiger 7.1k 3 454k (100,100,50,50) 226.3 83.1

Fig. 1 cat 1.2k 4 317k (100,50,50,50,50) 156.2 57.4

Fig. 16 zebra 9.8k 3 629k (100,100,50,50) 322.5 127.7

Fig. 16 horse 1.7k 4 439k (100,50,50,50,50) 227.5 80.8

Fig. 17 elephant 6.0k 3 385k (100,100,50,50) 194.5 72.9

Fig. 17 mammoth 1.7k 4 442k (100,50,50,50,50) 227.4 81.1

Fig. 18 troll TEX 4.2k 3 272k (100,50,50,50) 104.5 47.8

Fig. 18 troll 2.2k 3 145k (100,50,50,50) 49.0 23.7

Fig. 18 orc 2.2k 3 142k (100,50,50,50) 48.7 23.5

Table 1: Timing statistics (in seconds). From left to right: (n0) num-
ber of vertices at the coarse level; ( f ) finest subdivision level; (n f )
number of vertices at the finest level; (k̃l ) The number of eigen-
vectors computed per level. Timing (in seconds) for: exact basis
computation; HFM basis computation.

For example, the heat kernel map [SOG09] of a vertex v∈V is given

by Φρt(Λ)ΦT δv, with ρt(λ) = exp(−λt). As we do not compute
a full eigen-decomposition of the Laplacian, we would like to use

the HFM basis in a similar way for computing spectral descriptors.

Definition 3 The Hierarchical Spectral Descriptior Matrix (HSD)
is given by K̃ρ,t = Φ̃ρt(Λ̃)Φ̃T . We remove the level notation, as all

the quantities are at the same subdivision level.

We additionally define a hierarchical landmark descriptor using
K̃ρ,t,v = K̃ρ,tδv for a vertex v∈V , and a hierarchical signature de-
scriptor using K̃ρ,t,• = diag(K̃ρ,t).

The heat kernel and other spectral descriptors have beneficial

properties which we would like to preserve. Indeed, we have the

following, which is a straightforward consequence of the definition:

Lemma 4 Let K̃l+1
ρ,t be the HSD at level l+1, then:

K̃l+1
ρ,t = SlK̃l

ρ,t(S
l)T + Φ̄l+1 ρt(Λ̄l+1)(Φ̄l+1)T . (12)

Namely, the HSD at level l+1 is given by subdividing the HSD
from level l, and adding the contribution of the new basis functions

from level l+1. Thus, the difference between, e.g., the heat kernel
and the hierarchical heat kernel again depends on how much the

eigenvectors at level l+1 are similar to the subdivided eigenvectors
from level l, and similarly for the eigenvalues. In fact, since for the
heat kernel we have that the contribution of higher eigenvectors de-

cays exponentially with t, the larger t is, the better the hierarchical
heat kernel approximates the exact heat kernel.

Figure 8 shows the ratio of the hierarchical heat kernel signature

and the exact heat kernel signature for a few vertices as a function

of t (left), and for two t values for all vertices (right). Note that as t
increases the error decreases, however even for small t the error is
below 2 percent, and invisible to qualitative inspection.

In practice, we do not compute the full matrix K̃ρ,t , but only
the landmark descriptors K̃ρ,t,v for a given set of input landmarks,
and the signature descriptor K̃ρ,t,•, which is given by the diagonal.
The landmark descriptors are efficiently computed in the spectral
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Figure 8:Quantitative and qualitative evidence to the Hierarchical
HKS approximation quality. (left) The ratio of the HHKS and the
HKS for a few vertices as a function of t, (right) the exact and
hierarchical HKS for two times t as a function on the mesh. Note
that as t increases the error decreases, and that even for small t the
error is less than 2 percent, and visually indistinguishable. tmin and
tmax as recommended by [SOG09].

domain, see Section 6.2.2, and the signatures are projected onto

the HFM basis Φ̃l
i . This yields the descriptor matrices F

l
i ∈R

k̃l×d ,
where d is the number of descriptors, which is fixed for all levels.

5.2. Commuting Operators Constraints

We provide as building blocks hierarchical commuting operators

for commutativity with the Laplacian and with a given intrinsic

symmetry map, which are most commonly used, and additionally

are sparse in the spectral basis. We discuss later how dense opera-

tors can be incorporated in our framework.

Laplacian. Isometric maps commute with the Laplacian operator.
Therefore, as a regularization, a common constraint is given by

C12O2 = O1C12, where Oi = Φ†
i LiΦi = ΦT

i Mi(ΦiΛiΦT
i Mi)Φi =

Λi. We therefore leverage the approximate orthogonality property

of the HFM basis and set the Laplacian commutativity operator ac-

cordingly, taking: Õl
i = Λ̃l

i .

Symmetry. In many cases, especially if designed by artists, the in-
put surfaces have intrinsic self-symmetry given as input self-maps,

or permutations, S0i ∈ R
n0i ×n0i . Note that if the control polygon

mesh is symmetric, then for symmetric schemes, such as Catmull-

Clark, the subdivided meshes at all levels will be symmetric as well.

Thus, given the symmetry at level l, we perform a nearest neighbor

search between the vertices of the subdivided mesh at level l+1,
namely Xl+1 = SlXl and the subdivided symmetric embedding at

level l+1, given by SlS lXl , to find the symmetry map S l+1. Since

the symmetry map is combinatoric this process is applicable to in-
trinsic as well as extrinsic symmetries. Finally, we use the given

symmetry as a commutation constraint by projecting it on the HFM

basis, namely we set: Õl
i = (Φ̃l

i)
†S l

i Φ̃
l
i .

If the mesh is exactly symmetric, the symmetry operator com-

mutes with the Laplacian, namely SL = LS, and its spectral rep-
resentation is diagonal. Since the symmetry is often not exact, we

restrict the operator to the main 3 diagonals of Õi.
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Figure 9: Hierarchical nearest neighbor search. (top) Two match-
ing vertices at level 0. (bottom) The only candidates considered for
a match of a refined vertex ofM1

1 (bottom left) are the non-zero en-
tries in S02, in the column that corresponds to the vertex from level
0 (bottom right).

5.3. Optimization

Given the hierarchical construction of the basis Φ̃l
i , the descriptors

F̃ l
i , and the commutativity operators Õl

i , we proceed to optimize

for the Hierarchical Functional Map C̃l
12, as follows.

5.3.1. Coarse level 0

Solve for C̃012 using the standard functional map optimization

scheme, by minimizing:

C̃012 = argmin
C

‖CFl
2 −Fl

1‖2F +∑
O

α(O)‖CO0
2−O0

1C‖2F , (13)

where the sum goes over all available commutativity operators, ei-

ther Laplacian, or symmetry or both, α is the weight assigned to

each operator, and the norm is the Frobenius norm. The parameter

values are fixed for all experiments and provided in the Implemen-

tation section 6.

5.3.2. Level l+1

Given the solution C̃l
12 from level l, we compute the functional map

at the next level as follows. We define the solution as the matrix:

C̃h =

[
C̃l C̄l�h

C̄h�l C̄h

]
, (14)

where h= l+1 and for clarity we removed the subscript notation.
The matrix block C̄l�h ∈R

k̃l ×kh , for example, transfers high fre-

quencies onM2 to low frequencies onM1.

Now we reformulate the descriptor and commutativity con-

straints to solve for the three unknown matrix blocks C̄. To this
end, we decompose the constraints as block matrices using:

F̃ l+1 =

[
F̃ l

F̄h

]
, Õl+1 =

[Õl 0

0 Ōh

]
, (15)

where, e.g., F̃ l ∈R
k̃l×d contains the coefficients of the descriptors

in the low eigenvectors of the basis, and similarly for the other ma-

trices. The constraint matrices F̃ l+1
i ,Õl+1

i are computed in terms

of coefficients of Φ̃l+1 when possible, e.g. for landmark spectral

constraints, and Laplacian commutativity constraints, or computed

as full operators/functions and projected to the HFM basis.

With the constraints in hand, we solve for the partial matrix

C̄l�h, independently of the other two unknown blocks:

C̄l�h
12 = argmin

C
‖CF̄h

2 − F̃ l
1 +C̃l

12F̃
l
2‖2F +∑

O
α(O)‖CŌh

2−Õl
1C‖2F .
(16)

The equations for C̄h�l and C̄h are similarly formulated in terms

of the block matrices of the linear constraints, leading to a linear

least squares optimization, which is coupled in these two blocks.

At the coarsest level we solve for (k0)2 variables, whereas at the
level h we solve two systems, with k̃lkh and khk̃h variables, respec-
tively. Since the linear solve scales cubicly in the number of vari-

ables, these reductions are significant. Dense operators will break

the block diagonal structure of Õl , and then all the three unknown

matrix blocks will be coupled. Nevertheless, solving for k̃lkh+khk̃h

variables is still much more efficient than solving for (k̃h)2 vari-
ables. Some sample timings can be seen in Table 3, where we report

the timing for all our results.

5.4. P2P recovery

While the functional map can be used as is for transporting func-

tions, our final goal is to obtain fine pointwise maps. A stan-

dard way [OCB∗17] to extract a permutation matrix P12 from the

computed spectral functional map C12, is to solve the optimiza-
tion problem: argminP,C ‖CΦT

2 − ΦT
1 P‖2 alternatingly for P and

C, starting from the inferred functional map C12. Optimizing for
P while keeping C fixed is implemented using a nearest neighbor

Source = 0l = 1l

= 2l = 3l = 3, refinedl

Figure 10: Visualization of the map during the hierarchical pro-
cess. Notice how the map improves as the resolution increases.
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search. Optimizing for an orthogonal C while keeping P fixed, is

done using a linear solve and an SVD decomposition.

It is not feasible to use this approach directly at the finest subdivi-

sion level, as it may contain hundreds of thousands of polygons and

hundreds of dimensions, making the nearest neighbors search com-

putationally intractable. Thus, we leverage our hierarchical scheme

to generalize this P2P recovery approach as follows.

Coarse level 0. Compute P012 fromC012, using spectral ICP.

Level l+1. Our assumption is that corresponding points at level
l+1 should be close to subdivided corresponding points from level

l. Therefore, when optimizing for a permutation Pl+112 using nearest

neighbors search, we only consider matching candidates that cor-

respond to the top r nearest neighbor matches from level l, see Fig-
ure 9. Namely, we consider candidates that have non-zero entries

in the corresponding r columns of Sl2. This considerably narrows
down the search space, and reduces the computation time by orders

of magnitude.

Refinement beyond the finest level. As the goal is to match be-
tween subdivision surfaces, we allow the matched points onM2 to

be arbitrary points on the subdivision surface, and not necessarily

vertices of the finest level V f
2 . This is achieved by subdividing the

spectral embedding ofM2 and optimizing for a permutation P:

P f+1
12 = argmin

P
‖C f

12(S
f
2 Φ f

2 )
T − (Φ f

1 )
TP‖2, (17)

where the dimensions of P f+1
12 are n f

1 ×n f+1
2 , again using only the r

nearest neighbors from the level below as matching candidates. The

final output map is then given by the matrix P f
12 = P f+1

12 S f
2 , whose

dimensions are, as required, n f1×n f2 . Note that P
f
12 is a general row

stochastic matrix, that encodes a vertex-to-vertex map, from V f
1 to

V f+1
2 . The entries of the rows of P f

12 are the convex combination

weights defined by the subdivision structure.

Figure 10 demonstrates this process, by visualizing the maps for

levels l = [0, .., f ], as well as the final finest map after the refine-
ment on the last level. Note the improvement of the map as the

subdivision level increases, and the smooth map achieved after the

last refinement step.

6. Implementation Details

6.1. Splitting the eigenspace

The computation of the HFM basis requires splitting the eigenspace

into f +1 bands, given the required band widths {kl ≥ 0, l ∈
0, .., f}, such that ∑ f

l=0 k
l= k̃ f . For each band we employ Matlab’s

eigs solver [Mat18, LSY98, Ste02], that computes eigenvalues and
eigenvectors near a given σ that is close to an eigenvalue.

We rely on Weyl’s law, that predicts a linear growth of the eigen-

values as a function of their index [Ivr16] to estimate an eigenvalue

in the “center” of the band of level l+1. Weyl’s law applies to the

asymptotic behavior for the continuous operator as λ→+∞, and

our operator is discrete. However, a recent similar result exists for

finite element discretization of elliptical PDEs [XZZ17]Thm 4.3,

and indeed, the empirical behavior is close to linear, see Figure 6.

Thus, we iteratively compute the bands as follows.

Level 0. Compute k0 smallest generalized eigenpairs of W0,M0,

yielding Φ̃0, Λ̃0.

Level l+1.

• Estimate a linear function λb(i) of the k̃l eigenvalues in Λ̃l as a

function of their index.

• Set σ = λb(k̃l + 1
2 k

l+1), and compute kl+1 + h generalized

eigenvalues and eigenvectors of W
l+1,Ml+1 near σ, yielding

Φ̄l+1, Λ̄l+1.

• Remove eigenvectors ϕ̄l+1 for which ‖〈Φ̃l , ϕ̄l+1〉‖∞ > ε.

As the eigenvalues are not exactly linear, we allow some lee-

way in the computation of the bands, by computing h eigenpairs
more than what is required. Then, we leverage the approximate or-

thogonality property from Lemma 3, to remove eigenvectors that

are already well represented in the basis Φ̃l , where we filter eigen-

vectors with a maximal projection norm larger than ε. In all our
experiments we used h= 15, and ε = 0.4.

Note that since repeating eigenvalues often do exist, we cannot

guarantee that the HFM basis is complete. For example, if the band

in level l is computed such that the last eigenvector is one of a pair
of eigenvectors with similar eigenvalues, the computation at level

l+1 may return the same pair rotated in eigenspace, in which case
the projection on Φ̃ may be above the threshold and the eigenvector

will be discarded. In practice, we have not experienced problems

due to this limitation.

6.2. Landmark Descriptors

6.2.1. Landmarks at fine levels

The input base meshes are often coarse, and therefore it is possible

that semantic landmark points, e.g., an elbow, do not land on ver-

tices, see e.g., Figure 11 (left). Thus, it is imperative to allow the

user to place landmarks on any subdivision level l.

Due to the subdivision structure, the embedding of a vertex

v f ∈V f of the refined mesh is a convex combination of the embed-

dings of base mesh vertices. Specifically, the convex combination

weights are the non-zero elements of the v f -th row of S f0. There-

fore, we compute the fine landmark descriptor as the correspond-

ing convex combination of the coarse landmark descriptors, using

K̃0ρ,t(S
f0)T δ f

v . The same applies for placing landmarks at any level

h≤ f , and computing descriptors at any level 0≤ l< h, by taking
K̃l

ρ,t and S
hl . Figure 11 (right) shows the resulting coarse descrip-

tors for the fine landmarks shown.

6.2.2. Efficient basis coefficients computation

A landmark descriptor of a vertex v∈V is given by Definition 3:

K̃l
ρ,t,v=Φ̃l ρt(Λ̃l)(Φ̃l)T δv.

For the functional map optimization we only need the basis co-

efficients of these descriptors, which are given by (Φ̃l)†K̃l
ρ,t,v =

ρt(Λ̃l)(Φ̃l)T δv. Denoting the v-th row of Φ̃l by ϕ̃lv we therefore
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have that the coefficients of the landmark descriptor are ρt(Λ̃l)ϕ̃lv,
which is a vector of size k̃l . Thus, we can compute the coefficients
directly, without computing the full descriptor first.

The same applies for descriptors of landmarks vh at finer levels
h> l, where the basis coefficients are ρt(Λ̃l)(ShlΦ̃l)T δvh .

6.3. Parameters

Hierarchy. The finest subdivision level f is set according to the
required number of vertices in the finest level. In our examples we

used meshes with up to 629K vertices at the finest subdivision level.

For flexibility, we allow for different f levels forM1 andM2.

HFM Basis. In all the experiments, we set k0 = 100, and kl = 50

or 100 for the other levels. We additionally do not demand that

kl1 = kl2, and allow for rectangular functional maps, see Table 1.

Linear Constraints. We choose between 7− 21 landmarks per

shape for the landmark descriptors, depending the deviation from

isometry of the expected map, with more landmarks required

for less isometric shapes. We use WKS and WKM descrip-

tors [ASC11], taking 100 energy levels distributed as recommended

by the authors. We normalize each shape to unit area and normalize

each descriptor to unit norm. Our models are extrinsically symmet-

ric, thus we search for this symmetry explicitly, and use it as an

operator commutativity constraint.

Inference. The α weights are set to 10−2 and 104 for the Lapla-

cian commutation and symmetry commutation respectively. We use

Matlab’s direct solver to solve the linear system.

P2P Recovery. We use fixed parameters for the P2P reconstruc-
tion, using s= 5 alternating ICP iterations at the coarse level, s= 3

at the finer levels, and r = 3 for the hierarchical nearest neighbors

search. At the last level of refinement we use only one ICP iteration.

6.4. Limitations

The HFM basis is not guaranteed to be complete in the presence

of repeating eigenvalues. In practice we have not seen ill effects

due to this, but a more principled approach for preventing missing

eigenvectors is an interesting avenue for future work.

Figure 11: (left) Corresponding landmark points do not land on
vertices of the coarsest level V0, therefore landmark on fine vertices
are required. (center, right) Coarse landmark descriptors on both
meses for the fine vertices showed on the left.

Figure n02,n
0
1 f2, f1 n f

2 ,n
f
1 pts T (m)

Fig. 1, tiger � cat 7.1k,1.2k 3,4 454k,317k 15 9.5

Fig. 16, zebra � horse 9.8k,1.7k 3,4 629k,439k 16 13.6

Fig. 17, eleph. � mam. 1.7k,6.0k 3,4 385k,442k 16 9.9

Fig. 18, troll tex � troll 4.2k,2.2k 3,3 272k,145k 21 4.3

Fig. 18, troll tex � orc 4.2k,2.2k 3,3 272k,142k 21 4.3

Fig. 13, woman � man 1.3k,1.3k 3,3 85k,85k 7 1.6

Fig. 19, troll � orc 1.3k,1.3k 3,3 145k,142k 21 2.9

Table 2: Statistics and timing. From left to right: (n02,n
0
1) number

of vertices at the coarse level; ( f2, f1) finest subdivision level of
source and target models; (n f

2 ,n
f
1 ) number of vertices at the finest

levels; (pts) number of landmarks; (T) total time in minutes.

We currently do not handle dense commutation operator con-

straints, such as [NO17]. Technically it is possible to incorporate

them, however for high subdivision levels they slow down the pro-

cess. Using an iterative solver with warm start, e.g. as has been

done in [GBKS18], could improve our performance further.

Our approach inherits the existing problems of functional map

based approaches that rely on WKS descriptors. In some cases, the

map might have bad regions, e.g. the right tusk of the mammoth

in Figure 17, and the nose of the troll in Figure 18. However, we

do believe that our framework provides an excellent platform for

improving the functional map machinery further.

We do not handle shapes with multiple components, which are

common in models designed by artists, where there are often differ-

ent components for the eyes, teeth, and others. Thus we pre-clean

each shape from any small connected components and remove du-

plicate vertices if they exist.

7. Results

All the computations were performed on a machine with an i7 CPU

and 64GB RAM. The code was written in Matlab except for the

Catmull-Clark subdivision for quads which was written in C++ and

used as a MEX file.
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Figure 12: (left) Conformal distortion of the maps for our experi-
ments. (right) Quantitative comparison of the conformal distortion
of the maps. We compare our method (HFM), the non heirarchical
functional maps scheme FMAPS12 [OBCS∗12], INFORM [NO17]
and HOT [AL16]. HOT achieves the best conformal distortion, at a
25× higher computational cost, our method is second.

c© 2019 The Author(s)

Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



M. Shoham, A. Vaxman & M. Ben-Chen / Hierarchical Functional Maps between Subdivision Surfaces

Target Model

Source Model

Source Model HFM (Ours), 2 min FMAPS12, 27 min INFORM, 33 min HOT, 52 min

Source Model HFM (Ours) FMAPS12 INFORM HOT

Figure 13: Comparison of our method (HFM) with the non hierarchical functional maps scheme FMAPS12 [OBCS∗12], INFORM [NO17]
and HOT [AL16] for displacement transfer. Note that our map correctly transfers displacements at both low resolution (around neck) and
high resolution (face and head). The original FMAPS approach does not handle well the fine details on the face, INFORM gives a result
comparable to ours, and HOT produces a mostly good result, yet causes the head displacements to slide. All methods took an order of
magnitude longer than ours to compute. The bottom row visualizes the map by transporting a checkerboard texture.

c© 2019 The Author(s)

Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



M. Shoham, A. Vaxman & M. Ben-Chen / Hierarchical Functional Maps between Subdivision Surfaces

Fig. 1, tiger � cat

l = 0 l = 1 l = 2 l = 3 l = 4 Total

Basis 2.8 13.9 32.6 66.6 33.4 149.3

Desc 0.2 0.4 1.4 5.6 2.2 9.8

Fmap 0.4 0.4 1.5 1.6 2.2 6.1

P2P 0.8 2.0 9.2 37.8 186.0 235.8

Refine 172.5 172.5

Total 4.2 16.7 44.7 111.6 396.3 9.5m

Fig. 16, zebra � horse

l = 0 l = 1 l = 2 l = 3 l = 4 Total

Basis 3.3 17.5 45.8 89.5 44.6 200.8

Desc 0.1 0.5 1.9 7.5 4.4 14.6

Fmap 0.3 0.3 1.4 1.5 2.1 5.7

P2P 1.4 2.4 11.8 50.1 263.9 329.6

Refine 265.0 265.0

Total 5.2 20.8 61.0 148.8 580.1 13.6m

Fig. 17, eleph. � mam.

l = 0 l = 1 l = 2 l = 3 l = 4 Total

Basis 2.7 12.8 31.8 68.5 47.0 163.6

Desc 0.1 0.4 1.4 5.2 4.7 11.9

Fmap 0.4 0.3 1.5 1.6 2.1 6.0

P2P 0.9 2.4 11.5 47.3 225.4 287.7

Refine 124.3 124.3

Total 4.1 16.0 46.3 122.7 404.2 9.9m

Fig. 18, troll tex � troll

l = 0 l = 1 l = 2 l = 3 Total

Basis 2.4 6.5 22.5 44.3 75.9

Desc 0.1 0.3 1.4 4.2 5.7

Fmap 0.4 0.8 1.2 1.8 4.1

P2P 0.9 3.8 17.1 85.1 107.1

Refine 66.9 66.9

Total 3.7 11.5 42.0 202.4 4.3m

Fig. 18, troll tex � orc

l = 0 l = 1 l = 2 l = 3 Total

Basis 1.8 6.4 22.6 44.3 75.3

Desc 0.1 0.3 1.1 4.2 5.6

Fmap 0.3 0.8 1.2 1.7 4.0

P2P 0.8 3.9 17.2 85.0 106.8

Refine 66.4 66.4

Total 3.1 11.3 42.0 201.5 4.3m

Fig. 13, woman � man

l = 0 l = 1 l = 2 l = 3 Total

Basis 0.5 2.1 7.8 15.2 25.7

Desc 0.02 0.07 0.3 1.2 1.6

Fmap 0.3 0.5 0.9 1.3 3.0

P2P 0.2 2.3 8.9 34.7 46.0

Refine 21.6 21.6

Total 1.1 5.0 17.9 74.0 1.6m

Fig. 19, troll � orc

l = 0 l = 1 l = 2 l = 3 Total

Basis 1.2 4.0 14.8 30.5 50.7

Desc 0.07 0.2 0.7 2.9 3.9

Fmap 0.4 0.8 1.2 1.7 3.9

P2P 0.5 3.5 14.5 32.7 81.1

Refine 37.8 37.8

Total 2.1 8.5 31.2 135.6 2.9m

Table 3: Timing statistics (in seconds) for each step in each level
of the hierarchy. Basis: subdividing and computing the HFM basis;
Desc: computing the descriptors and symmetry operators; Fmap:
computing the functional map; P2P: extracting a point to point
map; Refine: the last refinement step on the finest level.

7.1. Timing and map quality

Table 2 shows statistics and timings for all our experiments. The

longest computation time is 13.6 minutes for the zebra and horse
pair (Figure 16), where the models at the finest level have 629k and
439k vertices. Timings for each step per level are given in Table 3.
The most time-consuming step in our approach is the P2P recon-

struction step, in average close to 70% of the total computation

time. Yet, this is a considerable speedup over the same computa-

tions in the non-hierarchical setup, where this step is the most time

consuming one. We measure map quality by the conformal distor-

tion induced by the map (Figure 12 (left)). The distortion of our

maps are of the same order of magnitude as existing approaches.

7.2. Comparisons

We compare our method to HOT [AL16], INF [NO17] and

BCICP [RPWO18] using code supplied by the authors. For all

the methods, we triangulated the meshes, and used the same con-

straints as ours, when possible with the provided code. Specifi-

cally, for HOT we used only the landmark descriptors, and for INF

and BCICP we used landmark and Laplacian commutativity con-

straints. We additionally compared to a functional maps setup with-

out the hierarchy (FMAPS), where we used landmarks, Laplacian

and symmetry constraints.

The timings in minutes were: FMAPS: 27, INF: 33 and HOT: 52.

BCICP failed to complete the computation due to memory issues.

Our timings are given in Table 2, where the total time was under 2

minutes, and thus an order of magnitude faster than the other ap-

proaches. More detailed timings, including each step in the pipeline

for each level in the hierarchy, are given in Table 3.

The quantitative and visual results are summarized in Fig-

ures 12(right) and 13. We show the source and target meshes, with

the corresponding landmarks, the deformed source mesh, and the

resulting deformed target mesh after displacement transfer using

the computed map. We also show a visualization of the map by

transferring a checkerboard texture. Note that our result provides

the best visual map for transporting the deformation. The quanti-

tative results show that our approach is better than state-of-the-art

methods for all methods except of HOT, which is 25× slower than

our approach.

7.3. Application: Transferring textures

Given a pointwise map P f
12 between the finest subdivision levels we

can transfer texture images.

Assuming both models have texture coordinatesU f
i that are sub-

divided to the finest level, and given a texture image for M2, we

construct a new texture image for M1. This is done by first com-

puting the deformed texture coordinates of M1, given by Ũ1 =
(Pu�x
1 )P12(P

x�u)2U2, where all the quantities are at the finest level.
Here, Px�u maps texture vertices to model vertices, and vice versa

for Pu�x. Next, the model is saved and rendered, with coordinate

locations given byU1 and texture coordinates given by Ũ1. The re-
sulting image is the new texture image forM1.

A technical issue remains—the texture seams ofM2 do not nec-

essarily correspond to texture seams ofM1, leading to visible arti-

facts in the new texture. To remedy this, we identify quads ofM1

that are mapped to vertices in the 1-ring neighborhood of the tex-

ture seams ofM2, and remove them from the rendering, leading to

missing texture regions. Finally, we use an off-the-shelf image in-

painting tool [Inp18] for recovering the missing regions, where we

use the removed quads as the inpainting mask. This process does

not require user intervention, and is demonstrated in Figure 14.

Combined with our high quality maps at the finest levels,

this approach is highly effective for texturing base objects us-

ing a detailed high resolution texture of a different model. Fig-

ures 1, 15, 16, 17, 18 demonstrate our results, with statistics and

timings given in Table 2 and Table 3. Note that the transported

texture closely follows the semantic correspondence between the

shapes. To the best of our knowledge, such detailed transfer was

difficult to achieve before.

7.4. Application: Transferring displacement maps

Another common workflow with subdivision surfaces is sculpting
on a refined mesh, and then baking the resulting displacements

c© 2019 The Author(s)
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Figure 14: The texture transfer process. (left) the input texture im-
age, (center) the transported image with the missing data along
the texture seams of the source model, (right) the final inpainted
results. The textured model appears in Figure 1.

into a displacement map. Transferring displacement maps created

this way is in fact simpler than transferring texture images, since

the displacement map can be reproduced with linear interpolation

of vertex values at the finest level (as opposed to texture images,

where the pixel data is denser than the vertex data). Therefore,

we render the new displacement image using linear vertex colors

instead of a texture image. Since texture vertices have the same

displacement value even if they are on a texture seam, no texture

discontinuities are introduced, and thus this application does not

require inpainting. If a low level polygonal model is not required,

we can skip the baking step, and simply transport the displacement

function directly, as a function on the surface.

Figure 19 demonstrates this approach. We deformed one of

the troll models from Figure 18 using Blender’s multi-resolution

sculpting [vG09]pp. 101, and computed the resulting displacement

map as a function on the surface. Then, we computed a map to a dif-

ferent troll model, transported the displacement function with the

map and applied the displacement. Note the similar semantic loca-

tions of the ornaments on the two trolls. Figure 13 used the com-

puted map in the same way, to transport displacement functions.

We show our results, and the results of other map computation ap-

proaches on the same model, leading to inferior or similar results

with an order of magnitude longer computation times. Note that our

map was accurate enough to transport the details in a semantic way

to the correct locations on the face and head of the target model.

8. Conclusions and Future Work

We presented a method for computing correspondences between

subdivision surfaces, which to the best of our knowledge was not

possible before. We investigated the spectral structure of the SEC

Laplace Beltrami operator at different subdivision levels, and lever-

aged the results to construct a hierarchical spectral basis. Using this

basis, we designed a hierarchical functional map inference scheme

Source Model Target Model

Figure 15: Map visualization with checkerboard texture transfer
for the tiger and cat pair from Figure 1.

that given input landmarks generates very detailed maps, an order

of magnitude faster than existing approaches for triangle meshes.

Finally, we showed how our maps can be used for texturing and de-

tailing subdivision models, by transferring highly detailed texture

images and displacement maps.

Our approach has many avenues for future work. We chose the

SEC Laplace Beltrami operator as a truncated basis to represent

functions and operators, because it allows us to derive theoreti-

cal representation bounds. Alternatively, a wavelet hierarchical ba-

sis [Ber04] could be more appropriate for subdivision surfaces. To

that end, the computational consequences of using such a basis,

e.g. in terms of the sparsity of the resulting constraints, would need

to be evaluated. On the other hand, a local wavelet basis might be

more suitable for partial matching, or for transporting discontinu-

ous textures, e.g. for models with semi-sharp creases. We addition-

ally note that although the hierarchical scheme seems independent

from the subdivision structure, our theoretical claims rely on dif-

ferential operators that use the metric of the fine mesh through the

subdivision structure. Another technical route to investigate is the

number of eigenpairs taken at each subdivision level. In general,

the number of eigenfunctions we need depend on the frequency of

the functions that we want to represent, and not on the total number

of vertices, hence a data driven approach might be appropriate.

From the application standpoint, our computed maps scan po-

tentially be incorporated into 3D modeling environments, e.g.,

Blender, for simultaneous sculpting on two shapes, like symme-

try is used for sculpting today. Finally, generalizing our approach

to collections of subdivision surfaces would enable tasks such as

joint shape analysis on the abundant datasets of open 3D movies.
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Figure 18: Troll family. Texture transfer from a troll to two other troll models. (left to right) input source and target models with corresponding
landmarks, input and output texture images, the textured input and our textured output results, map visualization with checkerboard texture.
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Figure 19: Displacement transfer from a troll to an orc model. We show the input and output models with the displaced geometry, from
multiple views, and map visualization with checkerboard texture.
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Appendix - Proofs.

Lemma 5 Let gl+1 = Slgl and hl+1 = Slhl . Then we have that

〈gl+1,Ll+1hl+1〉
Ml+1 = 〈gl ,Llhl〉

Ml ,

〈gl+1,hl+1〉
Ml+1 = 〈gl ,hl〉

Ml .
(18)

Proof.

〈gl+1,Ll+1hl+1〉
Ml+1 =

(gl+1)TWl+1hl+1 = (since L =M
−1

W)

(Slgl)TWl+1Slhl = (since gl+1 = Slgland same for h)

(gl)TWlhl = (sinceWl = (Sl)TWl+1Sl )

= 〈gl ,Llhl〉
Ml . (since L =M

−1
W)

(19)

And similarly,

〈gl+1,hl+1〉
Ml+1 =

(Slgl)TMl+1Slhl = (since gl+1 = Slgland same for h)

(gl)TMlhl = (sinceMl = (Sl)TMl+1Sl )

= 〈gl ,hl〉
Ml ,

(20)

which completes the proof. Note that the same reasoning holds for inner

product of matrices.

Lemma 1 The prolonged eigenvectors and eigenvalues Φ̂l+1, Λ̂l+1 are

weak eigenvectors and eigenvalues of Ll+1 with respect to functions of level

l+1 which are in the image of Sl . Explicitly, for any function gl+1∈ Im(Sl)
we have:

〈gl+1,Ll+1Φ̂l+1− Φ̂l+1Λ̂l+1〉
Ml+1 = 0, (4)

〈Φ̂l+1, Φ̂l+1〉
Ml+1 = I. (5)

Proof. Since gl+1 ∈ Im(Sl) there exists a function gl ∈Rnl such that

gl+1 = Slgl . Then, we have:

〈gl+1,Ll+1Φ̂l+1− Φ̂l+1Λ̂l+1〉
Ml+1 =

〈gl ,LlΦl〉
Ml −〈gl ,ΦlΛl〉

Ml = (from Lemma 5, Def. 1)

(gl)T (WlΦl −M
lΦlΛl) = 0, (from Eq. 1)

(21)

which completes the proof of the first part. For the second part, note that

〈Φ̂l+1, Φ̂l+1〉
Ml+1 = 〈SlΦl ,SlΦl〉

Ml+1 = 〈Φl ,Φl〉
Ml = I, (22)

where we again used Definition 1, Lemma 5 and Equation 1, in this order.

Lemma 2 Let g∈ Im(Sl). Then

‖g− Φ̂Φ̂†g‖2
M

≤ ‖∇g‖2
M

λk+1
≤ λmax

λk+1
‖g‖2

M
, (6)

where all quantities are at level l+1, Φ̂ are the first k eigenvectors of Ll

prolonged to l+1, λk+1 is the k+1th eigenvalue of Ll , λmax is the largest
eigenvalue of Ll , and∇g is a discrete gradient defined such that ‖∇g‖2

M
=

〈g,Lg〉M.

Proof. Set Φl ,Λl to be the first k eigenvectors and eigenvalues of Ll , and

Φ̄l , Λ̄l the remaining nl − k eigenvectors and eigenvalues. Thus, we have:

L
l =

(
ΦlΛl(Φl)T + Φ̄lΛ̄l(Φ̄l)T

)
M

l . (23)

Since gl+1∈ Im(Sl) there exists a function gl ∈Rnl such that gl+1 = Slgl .
Now, using Lemma 5 we get:

〈gl+1,Ll+1gl+1〉
Ml+1 = 〈gl ,Llgl〉

Ml . (24)

Plugging in Equation 23 leads to:

〈gl ,Llgl〉
Ml = (gl)TMl(ΦlΛl(Φl)T + Φ̄lΛ̄l(Φ̄l)T

)
M

lgl

≥ (gl)TMlΦ̄lΛ̄l(Φ̄l)TMlgl

≥ λk+1(gl)TMlΦ̄l(Φ̄l)TMlgl ,

(25)

where in the last step we used Λ̄l ≥ λk+1I entrywise, since λk+1 is the
smallest eigenvalue in Λ̄. Now we have:

‖gl −Φl(Φl)†gl‖2
Ml =

= ‖Φ̄l(Φ̄l)†gl‖2
Ml (since [Φ, Φ̄] is a full basis)

= ‖Φ̄l(Φ̄l)TMlgl‖2
Ml (since Φ̄l is ortho wrt Ml )

= (gl)TMlΦ̄l(Φ̄l)TMlΦ̄l(Φ̄l)TMlgl

= (gl)TMlΦ̄l(Φ̄l)TMlgl (since Φ̄l is ortho wrt Ml ).

(26)

On the other hand, we have:

‖gl −Φl(Φl)†gl‖2
Ml =

= ‖Sl(gl −Φl(Φl)†gl)‖2
Ml+1 (from Lemma 5)

= ‖gl+1− Φ̂l+1(Φl)TMlgl‖2
Ml+1 =

= ‖gl+1− Φ̂l+1(Φ̂l+1)TMl+1gl+1‖2
Ml+1 =

= ‖gl+1− Φ̂l+1(Φ̂l+1)†gl+1‖2
Ml+1 ,

(27)

where the last step is due to Lemma 1 which implies that Φ̂l+1 is orthonor-

mal with respect toMl+1. Combining all the results we get:

‖gl+1− Φ̂l+1(Φ̂l+1)†gl+1‖2
Ml+1 = ‖gl −Φl(Φl)†gl‖2

Ml =

= (gl)TMlΦ̄l(Φ̄l)TMlgl ≤ 1
λk+1

〈gl ,Llgl〉
Ml =

= 1
λk+1

〈gl+1,Ll+1gl+1〉
Ml+1 ,

(28)

which completes the proof of the first bound.

Using the generalized Courant-Fisher Minimax Theorem [ANT09]Thm
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3.4 we further have that 〈gl ,Llgl〉l
M

≤ λmax‖gl‖2
Ml , where λmax is the

largest eigenvalue of Ll , completing the proof of the second bound.

Lemma 3 Assume Λ̃l and Λ̄l+1 are distinct, and both have no repeating

eigenvalues. Let Φl+1 be the first ∑l
i=0 k

i = k̃l eigenvectors of Ll+1. Then

the HFM basis Φ̃ is approximately blockwise orthonormal:

〈Φ̃l+1, Φ̃l+1〉
Ml+1 =

[〈Φ̃l , Φ̃l〉
Ml E

ET Ikl+1×kl+1

]
, (9)

〈Φ̃0, Φ̃0〉
M0 = Ik0×k0 , (10)

where the error matrix E is controlled by

1

kl+1 ∑
i j
|Ei j| ≤ ‖SlΦ̃l −Φl+1‖2

Ml+1 . (11)

Proof. According to Definition 2 we have that Φ̃l+1 = [SlΦ̃l , Φ̄l+1],

therefore we get that 〈Φ̃l+1, Φ̃l+1〉
Ml+1 is a blockwise matrix of inner prod-

ucts

[
A E
ET B

]
. Where,

A = 〈SlΦ̃l ,SlΦ̃l〉
Ml+1 = 〈Φ̃l , Φ̃l〉

Ml ,

B = 〈Φ̄l+1, Φ̄l+1〉
Ml+1 = I

E = 〈SlΦ̃l , Φ̄l+1〉
Ml+1 .

(29)

To obtain the bound on E, note that 〈Φl+1, Φ̄l+1〉
Ml+1 = 0, since their cor-

responding eigenvalues are distinct. Hence we have:

E = 〈SlΦ̃l , Φ̄l+1〉
Ml+1 = 〈SlΦ̃l −Φl+1, Φ̄l+1〉

Ml+1 . (30)

Denote A = SlΦ̃l −Φl+1,B = Φ̄l+1,M =Ml+1, thus E = 〈A,B〉M , and let
Ai be the i-th column of A. We have:

∑
i j
|Ei j| = ∑

i j
|〈Ai,Bj〉M | ≤ ∑

i j
‖Ai‖2M‖Bj‖2M , (31)

where for the last step we used the Cauchy-Schwarz inequality. Set ā to be
the diagonal of the matrix 〈A,A〉M , namely ā(i) = ‖Ai‖2M , and similarly set
b̄ to the diagonal of 〈B,B〉M . In addition, let 1 be a column vector of ones:

∑
i j
‖Ai‖2M‖Bj‖2M = 1T (āb̄T )1 = ‖A‖2M‖B‖2M , (32)

since b̄T 1 = tr(BTMB) = ‖B‖2M , and similarly for A. Finally, note that
‖B‖2M = tr(〈Φ̄l+1, Φ̄l+1〉

Ml+1 ) = tr(Ikl+1 ), and therefore ‖B‖2M = kl+1.
Combining all the results, and plugging back the definition of A we have:

∑
i j
|Ei j| ≤ ‖A‖2M‖B‖2M = ‖SlΦ̃l −Φl+1‖2Mkl+1. (33)

If the first k̃l eigenvalues at level l and at level l+1 include no repeating
eigenvalues, then the basis vectors in Φl+1 are expected to correspond (up

to sign) to the prolonged eigenvectors (see Figures 5, 6), reducing the error

on the right hand side.

Lemma 4 Let K̃l+1
ρ,t be the HSD at level l+1, then:

K̃l+1
ρ,t = SlK̃l

ρ,t(S
l)T + Φ̄l+1 ρt(Λ̄l+1) (Φ̄l+1)T . (12)

Proof. By definition, we have that

K̃l+1
ρ,t = Φ̃l+1 ρt(Λ̃l+1) (Φ̃l+1)T .

Plugging in the definition of the hierarchical basis

Φ̃l+1 = [SlΦ̃l , Φ̄l+1], Λ̃l+1 = [Λ̃l , Λ̄l+1],

we get:

K̃l+1
ρ,t =

[
SlΦ̃l Φ̄l+1

][ρt(Λ̃l) 0

0 ρt(Λ̄l+1)

][
(SlΦ̃l)T

(Φ̄l+1)T

]
=

= S
lΦ̃lρt(Λ̃l)(Φ̃l)T (Sl)T + Φ̄l+1ρt(Λ̄l+1)(Φ̄l+1)T =

= S
l K̃l

ρ,t(Φ̃
l)T (Sl)T + Φ̄l+1ρt(Λ̄l+1)(Φ̄l+1)T .

(34)
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