An Operator Approach to Tangent Vector Fields Processing Supplemental Material

Omri Azencot ${ }^{1}$ and Mirela Ben-Chen ${ }^{1}$ and Frédéric Chazal ${ }^{2}$ and Maks Ovsjanikov ${ }^{3}$
${ }^{1}$ Technion - Israel Institute of Technology
${ }^{2}$ Geometrica, INRIA
${ }^{3}$ LIX, École Polytechnique

2. Vector Fields as Operators

Lemma 2.1 Let V a vector field on M and let $T_{F}^{t}, t \in \mathbb{R}$ be the functional representations of the diffeomorphisms Φ_{V}^{t} : $M \rightarrow M$ of the one parameter group associated to the flow of V. If D is a linear partial differential operator then $D_{V} \circ D=$ $D \circ D_{V}$ if and only if for any $t \in \mathbb{R}, T_{F}^{t} \circ D=D \circ T_{F}^{t}$.

Proof Let $p \in M$ and $f \in C^{\infty}(M)$ be a smooth function. If $V(p)=0$, then $\Phi_{V}^{t}(p)=p$ and $D_{V}(f)(p)=0$. It immediately follows that $D_{V} \circ D(f)(p)=D \circ D_{V}(f)(p)$ if and only if $T_{F}^{t} \circ D(f)(p)=D \circ T_{F}^{t}(f)(p)$ because the right hand side of both equation is equal to 0 .

Now assume that $V(p) \neq 0$. There exists (see, e.g. [Spi99] Theorem 7, p.148) a local coordinate system in an open neighborhood of p such that $V=\frac{\partial}{\partial x}$ and D can be written as

$$
D=\sum_{0<|\alpha| \leq n} a_{\alpha}(x, y) \partial^{\alpha}
$$

where $\alpha=(i, j)$ is a multi-index,$|\alpha|=i+j$ and $\partial^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x^{i} \partial x^{j}}$.
First assume that $T_{F}^{t} \circ D=D \circ T_{F}^{t}$. Since the derivative (with respect to t) of $f \circ \Phi_{V}^{t}(p)$ at $t=0$ is equal to $D_{V}(f)(p)$, the differentiation with respect to t of the equality $D(f)\left(\Phi_{V}^{t}(p)\right)=D\left(f \circ \Phi_{V}^{t}(p)\right)$ gives at $t=0$: $D_{V}(D(f))(p)=D\left(D_{V}(f)\right)(p)$. As this holds for any f and p, we deduce that $D_{V} \circ D=D \circ D_{V}$.

Assume now that $D_{V} \circ D=D \circ D_{V}$. As in the proof of Lemma 2.4, since the flow of V is a one parameter group we just need to prove that $T_{F}^{t} \circ D=D \circ T_{F}^{t}$ for t contained in an arbitrarily small interval containing 0 but not reduced to 0 . Using the product rule we have
$0=D_{V} \circ D(f)-D\left(D_{V}(f)\right)=\sum_{0<|\alpha=(i, j)| \leq n} \frac{\partial a_{\alpha}}{\partial x} \frac{\partial^{\alpha} f}{\partial x^{i} \partial x^{j}}$.
Since this equality holds for any f we deduce that for any α,
$\frac{\partial a_{\alpha}}{\partial x}=0$. As a consequence, the coefficients a_{α} of D are constant along the trajectories of V in the local coordinate system and thus for $|t|$ small enough we obtain $T_{F}^{t} \circ D(f)(p)=$ $D \circ T_{F}^{t}(f)(p)$.

Lemma 2.2 A vector field V is a Killing vector field if and only if $D_{V} \circ L=L \circ D_{V}$.

Proof As L is a differential operator, it follows from Lemma 2.1 that $D_{V} \circ L=L \circ D_{V}$ if and only if $T_{F}^{t} \circ L=L \circ T_{F}^{t}$. Recalling that the Laplace-Beltrami operator is invariant under the action of isometries of M, we immediately deduce that if V is a Killing vector field then $D_{V} \circ L=L \circ D_{V}$. Now, if $T_{F}^{t} \circ L=L \circ T_{F}^{t}$, then the Laplace-Beltrami operator L is preserved by the action of the diffeomorphims Φ_{V}^{t}. Since L determines the metric on M, Φ_{V}^{t} have to be isometries.

Lemma 2.3 Given two vector fields $D_{V_{1}}$ and $D_{V_{2}}$ that both commute with some operator D, the Lie derivative $\mathcal{L}_{V_{1}}\left(V_{2}\right)$ will also commute with D.

Proof Using that $D D_{V_{1}}=D_{V_{1}} D$ and $D D_{V_{2}}=D_{V_{2}} D$ we immediately obtain

$$
\begin{aligned}
D\left(D_{V_{1}} D_{V_{2}}-D_{V_{2}} D_{V_{1}}\right) & =D D_{V_{1}} D_{V_{2}}-D D_{V_{2}} D_{V_{1}} \\
& =D_{V_{1}} D_{V_{2}} D-D_{V_{2}} D_{V_{1}} D \\
& =\left(D_{V_{1}} D_{V_{2}}-D_{V_{2}} D_{V_{1}}\right) D
\end{aligned}
$$

Lemma 2.4 $D_{V_{2}}=\left(T_{F}\right)^{-1} \circ D_{V_{1}} \circ T_{F}$.

Proof Given $p \in M$, by definition of the push forward we have $V_{2}(T(p))=d T\left(V_{1}(p)\right)$ where $d T$ denotes the differential of the diffeomorphism T. Now if $f \in C^{\infty}(N)$ is a smooth
function, then using the chain rule we get

$$
\begin{aligned}
D_{V_{1}} \circ T_{F}(f)(p)=D_{V_{1}}(f \circ T)(p) & =d(f \circ T)\left(V_{1}(p)\right) \\
& =d f\left(d T\left(V_{1}(p)\right)\right) \\
& =d f\left(V_{2}(T(p))\right) \\
& =D_{V_{2}}(f)(T(p)) \\
& =T_{F} \circ D_{V_{2}}(f)(p)
\end{aligned}
$$

As T is a diffeomorphism, T_{F} is an isomorphism and we obtain $D_{V_{2}}=\left(T_{F}\right)^{-1} \circ D_{V_{1}} \circ T_{F}$.
Lemma 2.5 Assume that the manifold M and the vector field V are real analytic. Let $T^{t}=\Phi_{V}^{t}$ be self-map associated with the flow of V at time t. Then if T_{F}^{t} is the functional representation of T^{t}, for any real analytic function f :

$$
T_{F}^{t} f=\exp \left(t D_{V}\right) f=\sum_{k=0}^{\infty} \frac{\left(t D_{V}\right)^{k} f}{k!}
$$

Proof The set of diffeomorphisms associated to the flow of V is a one parameter group: for $t, s \in \mathbb{R}, \Phi_{V}^{t+s}=\Phi_{V}^{t} \circ \Phi_{V}^{S}$ (see [Spi99], Theorem 6, p.147). The right hand side of the equality of the Lemma also having the same property, it sufficies to show it for t contained in any arbitrarily small interval containing 0 but not reduced to 0 . Given $p \in M$, if $V(p)=0$, then for any $k,\left(D_{V}\right)^{k}(f)(p)=0$ and both hand sides of the equality are equal to $f(p)$. Now assume that $V(p) \neq 0$. There exists (see, e.g. [Spi99] Theorem 7, p.148) an analytic local coordinate system in an open neighborhod of p in which V is equal to $\frac{\partial}{\partial x}$. As a consequence without loss of generality we can assume that $V=\frac{\partial}{\partial x}$ and $p=0$, and prove the equality in this coordinate system. As the flow of $\frac{\partial}{\partial x}$ is just a translation, the left hand side of the equality becomes $T_{F} f(0)=f(t)$. As $D_{\frac{\partial}{\partial x}}(f)=\frac{\partial f}{\partial x}$, the right hand side is just the Taylor expansion of f at 0 in the direction of x :

$$
\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \frac{\partial^{k} f}{\partial x^{k}}(0) .
$$

Since f is an analytic function, for $|t|$ small enough, this Taylor expansion is equal to $f(t)$.

4. Discretization

4.1. Derivation of the discrete operator

To compute the entries in the matrix S, we need to compute integrals of the form $d_{i j}^{r}=\int_{t_{r}} \gamma_{i}\left\langle\nabla \gamma_{j}, V_{r}\right\rangle d \mu$, where t_{r} is a triangle, γ_{i} is the hat basis function of the vertex i, and V_{r} is a constant vector in t_{r}. These integrals are non zero only if both i and j are vertices of t_{r}, and their value is given by the following Lemma.

Lemma 4.0 Let $M=(X, F, N)$ and let V be a piecewise constant vector field on M. In addition, let $t_{r}=(i, j, k) \in F$ be a triangle and V_{r} be the value of V on t_{r}. Then:
$d_{i j}^{r}=\int_{t_{r}} \gamma_{i}\left\langle\nabla \gamma_{j}, V_{r}\right\rangle d \mu=\frac{1}{6}\left\langle e \frac{1}{j r}, V_{r}\right\rangle$,

 $\pi / 2$, such that it points outside the triangle (see the inset figure for the notations).

Proof The gradient of a basis hat function is given by (see e.g. [Bot10]): $\nabla \gamma_{j}=e_{j r}^{\frac{1}{j}} /\left(2 \mathcal{A}_{r}\right)$, where \mathcal{A}_{r} is the area of the triangle t_{r}. This value is constant in t_{r}, as is V_{r}, and therefore we have:

$$
d_{i j}^{r}=\int_{t_{r}} \gamma_{i}\left\langle\nabla \gamma_{j}, V_{r}\right\rangle d \mu=\frac{1}{2 \mathcal{A}_{r}}\left\langle e_{j r}^{\perp}, V_{r}\right\rangle \int_{t_{r}} \gamma_{i} d \mu .
$$

The integral of a basis hat function on the whole triangle is exactly the volume of a pyramid with basis t_{r} and height 1 . Hence, $\int_{t_{r}} \gamma_{i} d \mu=\mathcal{A}_{r} / 3$. Plugging this in $d_{i j}^{r}$ we get:

$$
d_{i j}^{r}=\frac{1}{6}\left\langle e_{j r}^{\frac{\perp}{j r}}, V_{r}\right\rangle .
$$

Note, that this expression holds also when $j=i$.
Now, computing the values of $S_{i j}$ and $S_{i i}$ is simply a matter of identifying on which set of triangles $d_{i j}^{r}$ is not zero.

For $S_{i j}$, these are only the two triangles t_{1}, t_{2} neighboring the edge (i, j). Hence we have:

$$
S_{i j}=\frac{1}{6}\left(\left\langle e_{j 1}^{\perp}, V_{1}\right\rangle+\left\langle e_{j 2}^{\perp}, V_{2}\right\rangle\right),
$$

where the notations are given in the inset figure.
For $S_{i i}$, the relevant triangles are the faces t_{r} which are near the vertex i (denoted by $\left.N_{F}(i)\right)$, hence we have:

$$
S_{i i}=\frac{1}{6} \sum_{t_{r} \in N_{F}(i)}\left\langle e_{i r}^{\perp}, V_{r}\right\rangle .
$$

Finally, we would like to show that $S_{i i}=-\sum_{j} S_{i j}$. From the definition of $S_{i j}$ we have that:

$$
\sum_{j} S_{i j}=\frac{1}{6} \sum_{j \in N(i)}\left(\left\langle e_{j 1}^{\perp}, V_{1}\right\rangle+\left\langle e_{j 2}^{\perp}, V_{2}\right\rangle\right) .
$$

By re-arranging the sum as a sum on the neighboring faces, we get:

$$
\sum_{j} S_{i j}=\frac{1}{6} \sum_{r=(i, j, k) \in N_{F}(i)}\left(\left\langle e_{j r}^{\perp}, V_{r}\right\rangle+\left\langle e_{k r}^{\perp}, V_{r}\right\rangle\right) .
$$

It is easy to check that for a triangle $r=(i, j, k)$ we have:

$$
e_{j r}+e_{k r}=\left(p_{i}-p_{k}\right)+\left(p_{j}-p_{i}\right)=p_{j}-p_{k}=-e_{i r},
$$

and hence:

$$
\sum_{j} S_{i j}=\frac{1}{6} \sum_{r=(i, j, k) \in N_{F}(i)}\left(\left\langle-e_{i r}^{\perp}, V_{r}\right\rangle\right)=-S_{i i} .
$$

4.2. Proofs

Lemma 4.1 Let $M=(X, F, N)$ and let V_{1}, V_{2} be two piecewise constant vector fields on M. Then: $\hat{D}_{V_{1}}^{F}=\hat{D}_{V_{2}}^{F}$ if and only if $V_{1}=V_{2}$.
Proof We will show that given a tangent vector field V, and a corresponding operator \hat{D}_{V}^{F}, we can reconstruct V uniquely from \hat{D}_{V}^{F}. Since \hat{D}_{V}^{F} is defined locally per face, where V is smooth, the uniqueness is in fact implied by the uniqueness property in the smooth case. However, for completeness we will validate this explicitly, by providing a reconstruction method that extracts V given \hat{D}_{V}^{F}.
Given a face $r=(i, j, k)$ we compute $c_{i}=\left(\hat{D}_{V}^{F}\left(\gamma_{i}\right)\right)_{r}$ and similarly for c_{j}, c_{k}, where γ_{i} is the hat basis function of vertex i. Now, we consider the set of constraints we have on V_{r}. First, by definition we have that $\left(\hat{D}_{V}^{F}\left(\gamma_{i}\right)\right)_{r}=\left\langle\nabla \gamma_{i}, V_{r}\right\rangle=c_{i}$. In addition, V_{r} should be tangent to the triangle, hence $\left\langle V_{r}, N_{r}\right\rangle=$ 0 , where N_{r} is the normal. This yields the following linear system for V_{r} :

$$
\left(\begin{array}{c}
\left(\nabla \gamma_{i}\right)_{r}^{T} \\
\left(\nabla \gamma_{j}\right)_{r}^{T} \\
\left(\nabla \gamma_{k}\right)_{r}^{T} \\
N_{r}^{T}
\end{array}\right) V_{r}=\left(\begin{array}{c}
c_{i} \\
c_{j} \\
c_{k} \\
0
\end{array}\right)
$$

However, since $s=\gamma_{i}+\gamma_{j}+\gamma_{k}=1$, we have that $\hat{D}_{V}^{F}(s)=$ $c_{i}+c_{j}+c_{k}=0$, and similarly $\nabla \gamma_{i}+\nabla \gamma_{j}+\nabla \gamma_{k}=0$. Therefore, one of the equations is redundant. Furthermore, $\nabla \gamma_{i}$ is in the direction of the edge (j, k) rotated by $\pi / 2$, and similarly for $\nabla \gamma_{j}$ and they are both orthogonal to N_{r}. Therefore, if the triangle is not degenerate, $\nabla \gamma_{i}, \nabla \gamma_{j}, N_{r}$ are linearly independent, and the system is full rank. Since we know that \hat{D}_{V}^{F} was constructed from V, the system has a unique solution given by V_{r}.

Lemma 4.2 Let $M_{1}=\left(X_{1}, F, N_{1}\right)$ and $M_{2}=\left(X_{2}, F, N_{2}\right)$ be two triangle meshes with the same connectivity but different metric (i.e. different embedding). Additionally, let V_{1} be a piecewise constant vector field on M_{1}, then:

$$
\hat{D}_{V_{1}}^{F}=\hat{D}_{V_{2}}^{F} .
$$

Here $\left(V_{2}\right)_{r}=A\left(V_{1}\right)_{r}$, where A is the linear transformation that takes the triangle r in M_{1} to the corresponding triangle in M_{2}. Note that $\hat{D}_{V_{i}}$ is computed using the embedding X_{i}.

Proof By definition we have that

$$
\left(\hat{D}_{V_{1}}^{F}\right)_{r i}=\left\langle\left(\nabla \gamma_{i}\right)_{1},\left(V_{1}\right)_{r}\right\rangle=\left\langle\frac{R^{90}\left(p_{k}^{1}-p_{j}^{1}\right)}{2 \mathcal{A}_{1}},\left(V_{1}\right)_{r}\right\rangle,
$$

where the face $r=(i, j, k), p_{i}^{1}$ are the coordinates in X_{1} of vertex i and R^{90} is counter-clockwise rotation by $\pi / 2$ in the
plane of the triangle r. On the other hand we have

$$
\begin{aligned}
\left(\hat{D}_{V_{2}}^{F}\right)_{r i}=\left\langle\left(\nabla \gamma_{i}\right)_{2},\left(V_{2}\right)_{r}\right\rangle & =\left\langle\frac{R^{90}\left(p_{k}^{2}-p_{j}^{2}\right)}{2 \mathcal{A}_{2}},\left(V_{2}\right)_{r}\right\rangle \\
& =\left\langle\frac{R^{90} A\left(p_{k}^{1}-p_{j}^{1}\right)}{2|A| \mathcal{A}_{1}}, A\left(V_{1}\right)_{r}\right\rangle,
\end{aligned}
$$

where $|A|$ is the determinant of A. It is easy to check directly, that for any A we have that: $A^{T}\left(R^{90}\right)^{T} A=|A|\left(R^{90}\right)^{T}$, which implies $\hat{D}_{V_{1}}^{F}=\hat{D}_{V_{2}}^{F}$, as required.

Lemma 4.3 Let $M=(X, F, N), V$ a piecewise constant vector field on $M, f=\sum_{i} f_{i} \gamma_{i}$ a PL function on M, and w_{i} the Voronoi area weights, then:

$$
\sum_{i=1}^{|X|} w_{i}\left(\hat{D}_{V} f\right)_{i}=\sum_{i=1}^{|X|} w_{i}(\operatorname{div}(V))_{i} f_{i} .
$$

where:

$$
(\operatorname{div}(V))_{i}=\frac{1}{2 w_{i}} \sum_{t_{r} \in N_{F}(i)}\left\langle V_{r}, e_{i r}^{\perp}\right\rangle .
$$

Proof From the definition of \hat{D}_{V}, we have that

$$
\sum_{i=1}^{|X|} w_{i}\left(\hat{D}_{V} f\right)_{i}=\sum_{i=1}^{|X|}\left(W \hat{D}_{V} f\right)_{i}=\sum_{i=1}^{|X|}(S f)_{i}=\sum_{i=1}^{|X|} \sum_{j=1}^{|X|} S_{i j} f_{j} .
$$

Switching the roles of the indices i, j, we get:

$$
\sum_{i=1}^{|X|} \sum_{j=1}^{|X|} S_{j i} f_{i}=\sum_{i=1}^{|X|} g_{i} f_{i}, \quad g_{i}=\sum_{j=1}^{|X|} S_{j i} .
$$

The only non-zero entries in the i-th column of S are on the diagonal and entries $S_{j i}$ such that j is a neighbor of i. Thus we have:

$$
g_{i}=S_{i i}+\sum_{j \in N(i)} S_{j i} .
$$

Plugging in the definition of $S_{j i}$ and $S_{i i}$ we get:
$g_{i}=\frac{1}{6} \sum_{t_{r} \in N_{F}(i)}\left\langle e_{i r}^{\frac{1}{r}}, V_{r}\right\rangle+\frac{1}{6} \sum_{j \in N(i)}\left(\left\langle e_{i 1}^{\perp}, V_{1}\right\rangle+\left\langle e_{i 2}^{\frac{1}{2}}, V_{2}\right\rangle\right)$.
Again, we can re-arrange the second sum as a sum on neighboring faces and get:

$$
\begin{aligned}
g_{i} & =\frac{1}{6} \sum_{t_{r} \in N_{F}(i)}\left\langle e_{i r}^{\perp}, V_{r}\right\rangle+\frac{1}{6} \sum_{t_{r} \in N_{F}(i)}\left(\left\langlee_{i r}^{\left.\left.\frac{1}{i r}, V_{r}\right\rangle+\left\langle e_{i r}^{\perp}, V_{r}\right\rangle\right)}\right.\right. \\
& =\frac{1}{2} \sum_{t_{r} \in N_{F}(i)}\left\langle e_{i r}^{\perp}, V_{r}\right\rangle=w_{i}(\operatorname{div}(V))_{i} .
\end{aligned}
$$

Finally, we get:

$$
\sum_{i=1}^{|X|} w_{i}\left(\hat{D}_{V} f\right)_{i}=\sum_{i=1}^{|X|} g_{i} f_{i}=\sum_{i=1}^{|X|} w_{i}(\operatorname{div}(V))_{i} f_{i},
$$

as required.

References

[Bot10] Botsch M.: Polygon mesh processing. A K Peters, Natick, Mass, 2010.
[Spi99] SPIVAK M.: A comprehensive introduction to differential geometry. Vol. I, third ed. Publish or Perish Inc., 1999.

