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Functional Thin Films on Surfaces –
supplemental material
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F

1 DERIVATION OF THE VARIATIONAL MODEL ON
TRIANGULATED SURFACES
This appendix is a more detailed presentation of the mate-
rial in section 3. We start from a set of basic geometrical
identities, and based on those we present the Taylor ex-
pansions that are mentioned in various places in the paper.
In particular, we shed more light on the derivation of the
conservation law (§3.3), and the appearance of the rotated
shape operator S̄ therein, and provide explicit formulas for
the viscous dissipation rate (§3.4).

Setup. As stated in §3.1, we consider a surface Γ, together
with a height field h : Γ → R and an approximate normal
n : Γ → R3. The fields and the surface itself are assumed
to be Lipschitz continuous, which includes the important
case where Γ is a triangular mesh and h, n are linearly
interpolated within each face of Γ. We are indeed mainly
interested in this particular case, where we also make the
following consistency assumptions1 on n:

1) approximation of the exact normal: n = ν + O(δx)
2) symmetric surface gradient: ∇Γn−∇Γn

T = O(δx)
3) directional derivatives are tangential: ∇Γn

Tn =
O(δx)

where ν is the exact (piecewise constant) normal of the faces,
δx is an appropriate measure of the size of the elements of
the triangulation, and the surface gradient ∇Γ = P∇R3 is
defined via the projection P = id−ν ⊗ ν. Based on the
consistency assumptions, we introduce the discrete shape
operator

S = −1

2
P
(
∇Γn+∇Γn

T
)
P = −∇Γn+ O(δx) (1)

The name will be justified when we look at the the expan-
sion of the surface energy.

Geometrical Identities. Our main geometrical tool is a
set of identities that describe the rate of change of var-
ious geometrical objects under the normal displacement
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1. Note that these are all satisfied when n = ν + O(δx2).

φsh(x) = x + sh(x)n(x), x ∈ Γ. In addition to the image
φsh(U) of subsets U ⊂ Γ, we will also refer to their
extrusion Φsh(U) = {φrh(x) |x ∈ U, r ∈ [0, s]}. Since we
are studying thin films, the assumption is that the parameter
s is always of order ε� 1, thus justifying considering Taylor
expansions in s. We have then, for a patch U ⊂ Γ

d

ds

∫
φsh(U)

da =

∫
φsh(U)

Tr(∇Γ(hn))d a

= −
∫
φsh(U)

hTr(S) da+ O(δx) (2)

and for the associated volume Vsh(U) = Φsh(U)

d

ds

∫
Vsh(U)

dx =

∫
φsh(U)

hn · ν da

=

∫
φsh(U)

hda+ O(δx) (3)

The approximations are based on the expansion ∇Γ(hn) =
n ⊗ ∇Γh + h∇Γn. Using the map φsh, we can expand in
a natural way the fields h and n into a neighbourhood of
Γ, so that ḣ = 0 and ṅ = 0, if we use the notation ḟ =
d
dsf(φsh(x)). We also expand the exact normal ν by taking
the normal2 of the displaced surface Γsh = φsh(Γ) at the
y = φsh(x). We can show then that

ν̇ = −∇Γ(hn)T ν = −∇Γh+ O(δx) (4)

Finally, we consider a curve γ ∈ Γ with (unit) tangent
vector τ . The normal displacement transforms the curve
γ 7→ φsh(γ) and therefore also the tangent vector, with

τ̇ = ∇Γ(hn)τ − (τT∇Γ(hn)τ)τ

=
∂h

∂τ
n+ h(

∂n

∂τ
· ρ)ρ+ O(δx) (5)

where ρ = ν × τ is the (inward pointing) conormal of γ.
Then for line integrals we have

d

ds

∫
φsh(γ)

dl =

∫
φsh(γ)

τT∇Γ(hn)τ dl

=

∫
φsh(γ)

h(
∂n

∂τ
· τ) dl + O(δx) (6)

2. The underlying assumption is that the values that s takes are small
enough, so that the images Γsh do not intersect.
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and for the area integrals over the extrusion Φsh(γ)

d

ds

∫
Φsh(γ)

da =

∫
φsh(γ)

|hn× τ |dl (7)

where n×τ is the (almost unit) normal of the surface Φsh(γ).

Mass density. The relation between the mass density u and
the height follows directly by integrating (3) with U = Γ
w.r.t. s:∫

Vεh

dx =

∫ ε

0

∫
Γsh

hda ds+ O(δx)

=

∫ ε

0

{∫
Γ
hda+ s

∫
Γ
h2 Tr(∇Γn) da+ O(s2)

}
ds+ O(δx)

= ε

∫
Γ

(
h− ε

2
h2 Tr(S)

)
da+ O(δx+ ε3)

where we recall that Γ0h ≡ Γ. From the defining property∫
Vεh

dx = ε
∫
Γ udawe deduce then that u = h− ε

2h
2 Tr(S)+

O(δx + ε3). Conversely, we will make extensive use of the
substitution h = u+ ε

2u
2 Tr(S) + O(δx+ ε3).

Gravitational Energy. The Taylor expansion for the gravita-
tional energy Eg =

∫
Vεh

z dx is very similar to the previous
paragraph, with the major difference that, whereas ḣ = 0
by construction, ż = ∇z · (hn) = h cos θ + O(δx). It follows
that∫

Vεh

z dx =

∫ ε

0

∫
Γsh

zhda ds =∫ ε

0

{∫
Γ
zhda+s

∫
Γ

(
hż−zh2 Tr(S)

)
da+O(s2)

}
ds+O(δx)

= ε

∫
Γ

(
zh+

ε

2
h2 cos θ − ε

2
h2zTr(S)

)
da+ O(δx+ε3)

= ε

∫
Γ

(
zu+

ε

2
u2 cos θ

)
da+ O(δx+ε3)

Note that the change of variables h = u + ε
2u

2 Tr(S) in the
last line introduces a term ε

2u
2zTr(S) that cancels out with

the existing term.

Surface Energy. For the surface energy, the Taylor expansion
is very similar in spirit to the well-known Steiner formulas.
The main difficulty is that the leading order term is simply
the area of Γ which is fixed, and therefore we need to
calculate the second variation of the surface area. Although
it is an established result for smooth surfaces, we will sketch
its calculation to illuminate the way ∇Γn shows up in
the case of a triangular surface. The main idea is that a
parametrization of Γ can be pushed forward onto the images
Γsh. If we write the metric of Γ as g = XTX , where X is
the matrix whose columns are the coordinate vectors Xi of
the parametrization, then the Xi are pushed forward by the
normal displacement map φsh so that Ẋi = ∇Γ(hn)Xi ⇒
Ẋ = ∇Γ(hn)X . For the induced metric g of the Γsh, we
have then ġ = XT (∇Γ(hn)+∇Γ(hn)T )X and this is exactly
where the matrix ∇Γ(hn) comes into all the geometrical
measure calculations. In particular, with the help of the iden-
tities d

ds Tr(g) = Tr(ġ) and d
ds det(g) = det(g) Tr(g−1ġ)

and the fact that the tangential projection can be written

as P = Xg−1XT , we can show that the area element√
det(g) dx1 dx2 grows with

d

ds

√
det(g) = Tr(∇(hn))

√
det(g)

= −hTr(S)
√

det(g) + O(δx)

and, together with the fact that ḣ = 0 and ṅ = 0 by
construction,

d2

ds2

√
det(g) ={

Tr(∇(hn))2 − Tr(∇(hn)2) + |∇Γ(hn)T ν|2
}√

det(g)

=
{
h2(Tr(S)2 − Tr(S2)) + |∇Γh|2

}√
det(g) + O(δx)

Considering these for a uniform film h = 1, and recalling
the relation between the variation of the surface area and
the curvatures given by the Steiner formulas, we naturally
identify H = Tr(S) as the discrete mean curvature, and
K = 1

2 (Tr(S)2−Tr(S2)) as the discrete Gaussian curvature.
Recall that S is a 3× 3 matrix with a zero eigenvalue, since
Sν = 0. If we denote κ1, κ2 the other two eigenvalues (and
κ3 = 0), then we can easily show that H = κ1 + κ2 + κ3 =
κ1 + κ2. Furthermore, K = κ1κ2 + κ2κ3 + κ3κ1 = κ1κ2,
whereas det(S) = 0, justifying the unexpected expression
for K . Using the derivatives above, we can prove the first
variation (2) and derive a similar identity for the second
variation. An expansion similar to the ones we used above,
with the change of variable form h to u in the end, yields
then the relevant terms in expression (9).

Conservation Law. We consider the volume of fluid Vεh(U)
in the part of the thin film above a patch U ⊂ Γ. As the
height function h changes in time, we require that the rate of
change of the volume Vεh(U) matches the flux of the velocity field
v through the sides3 Fεh(U) = Φεh(∂U):

d

dt

∫
Vεh(U)

dx =

∫
Fεh(U)

v · µda (8)

where µ = n×τ
|n×τ | is the (inward pointing) normal of the

surface Fεh(U). For the left hand side, we have already
essentially shown that

d

dt

∫
Vεh(U)

dx = ε

∫
Γ
∂tuda+ O(δx+ ε3)

The right hand side can be written as∫
Fεh(U)

v · µda =

∫ ε

0

∫
φsh(∂U)

h v · (n× τ) dl ds

=

∫ ε

0

{∫
∂U

h v · (n× τ) dl + s

∫
∂U

h2v · (n× ∂n

∂τ
) dl
}

ds

=

∫
∂U

h

∫ ε

0

{
vΓ,s · (n× τ) + sh vΓ,s · (n×

∂n

∂τ
)

}
dsdl

+ O(δx+ ε3)

where vΓ,s is the tangential part (since the triple product
with n eliminates the normal component) of the velocity on

3. Since the boundary Φεh(∂U) is itself time-dependent, we should
consider the relative velocity V (y) = v(y) − ẏ instead. But ẏ = s htn
and n · µ = 0, and therefore V · µ = v · µ.
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the layer Γsh. The term ∂n
∂τ comes in fact from the sum of τ̇

(from the variation of v·µ) and h(∂n∂τ ·τ)τ (from the variation
of dl via (6)). By (5), then τ̇ + h(∂n∂τ · τ)τ = ∂h

∂τ n + h∂n∂τ and
the cross product with n eliminates the first term. Next, we
need to apply the divergence theorem to get an integral over
U . For this, we note that n×τ = ν×τ+O(δx) and ν×τ = ρ
is exactly the conormal of ∂U that we need. The problem is
the second term, which we need to rewrite. For any vector
a ∈ R3, we introduce the skew-symmetric matrix [a]× =(

0 −a3 a2
a3 0 −a1
−a2 a1 0

)
, which is defined so that [a]×b = a × b for

any vector b. In other words, it is the matrix representation
of the cross product with a fixed vector. Applying this for
the normal ν, it is easy to show that the projection P =
−[ν]2×. Then vΓ,s · (n× ∂n

∂τ ) = vΓ,s · (n×∇ΓnPτ) = −vΓ,s ·
([n]×∇Γn[ν]2×τ) = −([n]×∇Γn[ν]×)T vΓ,s · [ν]×τ = −S̄vΓ,s ·
(ν × τ) + O(δx) with S̄ = −[ν]×S[ν]×. This is exactly what
we need to apply the divergence theorem:∫

∂U
h

∫ ε

0

{
vΓ,s · (n× τ) + sh vΓ,s · (n×

∂n

∂τ
)

}
dsdl =∫

∂U

{
h

∫ ε

0

(
vΓ,s − shS̄vΓ,s

)
ds

}
· ρdl =

−
∫
U

divΓ

{
h

∫ ε

0

(
vΓ,s − shS̄vΓ,s

)
ds

}
da

= −
∫
U

divΓ

{
h

∫ ε

0
QsvΓ,s ds

}
da

with the tensor Qs = id−shS̄. Making, as usual, the change
of variables from h to u yields the form of the tensor Qs that
we use in §3.3.

Dissipation. As noted in §3.4, we know that the viscous
dissipation rate

∫
Vεh
|∇v + ∇vT |2 dx is dominated by the

vertical shear stress, i.e. the normal derivative of the tangen-
tial velocity. The problem is that the tangential velocities vΓ,s

live on different tangent spaces TΓsh for various s, and so
the derivative ∂

∂svΓ,s can not be used as is for the calculation
of the dissipation. The correct idea turns out to be to

1) pull back the velocities to the common tangent space
TΓ

2) take the derivative w.r.t. s there
3) push forward the derivative up to TΓsh and take its

norm there

This leads to the following expression for the shear-
dominated viscous dissipation rate:∫

Vεh

h−2

∣∣∣∣dφsh ∂∂sdφ−1
sh vΓ,s

∣∣∣∣2 dx

where dφsh(x) is the push forward of the normal displace-
ment, and dφ−1

sh its pull back. Again using Taylor expansion
we obtain as an approximation the quadratic form

Dh(v, v) =

∫
Γ

∫ ε

0
λs

∣∣∣∣Λs ∂∂s (Λ−1
s vΓ,s

)∣∣∣∣2 dsda .

The factors λs = h−1 (1− hsH) and Λs = id−shS, which
is a linearization of the push forward dφsh, again capture
the effect of the geometry. At this point, as in §3.4, we
write the tangential velocity in the fluid as vΓ,s = Πsv,
where Πs is a (tensor) velocity profile and v is an average

velocity (independent of s) such that the conservation law
is equivalent to ∂tu = − divΓ(uv). The dissipation then can
be written as

Du(Πsv,Πsv) =

∫
Γ

∫ ε

0
λs |Rsv|2 dsda =

∫
Γ
v · C[Πs]v da

with Rs = Λs
∂
∂s

(
Λ−1
s Πs

)
and C[Πs] =

∫ ε
0 λsR

T
s Rs ds. We

wish to optimize the transportation cost tensor C[Πs] for
given boundary conditions Π0 = 0 (no-slip at substrate)
and Rε = 0 (zero shear stress at free surface) under the
integral constraint

∫ ε
0 QsΠs ds = id. The optimum profile

matches in the flat case to leading order the well-known
Hagen-Pouseuille profile. For flat domains this is discussed
in detail in [1]. The curved case for smooth substrate sur-
faces is discussed via perturbation arguments in [2]. Our
approach is with respect to the optimization closest to [3].
We use the constraint to introduce the partial flux profile
Σs =

∫ s
0 QrΠr ds ⇒ Πs = Q−1

s
∂
∂sΣs. The constraint itself

takes then the simple form Σε = id, and we can think of
the transportation cost as a function C[Σs] of the partial
flux profile with Rs = Λs

∂
∂s

(
Λ−1
s Q−1

s
∂
∂sΣs

)
. Taking the

variation of C[Σs] w.r.t. Σs, together with the boundary
conditions in the form

• Σ0 = 0 (by construction),
• Σε = id (by the constraint),
• ∂

∂sΣs|s=0 = 0 (no slip at the substrate),
• ∂

∂s

(
Λ−1
s Q−1

s
∂
∂sΣs

)
|s=ε = 0 (no shear stress at the

free surface),

we arrive at the criticality condition

∂

∂s

{
Λ−1
s Q−1

s

∂

∂s

(
λsΛ

2
s

∂

∂s

(
Λ−1
s Q−1

s

∂

∂s
Σs

))}
= 0

Note that both Qs and Λs are symmetric, hence the con-
spicuous absence of their transpose. Successive integrations,
with the limits determined by the boundary conditions, give

Σs =

∫ s

0
QcΛc

∫ c

0
λ−1
b Λ−2

b

∫ ε

b
QaΛaC da dbdc

with C a (tensor) integration constant. By the constraint∫ ε
0 QsΠs ds = id ⇒ Σε = id, we determine it uniquely as
C =

(∫ ε
0 QcΛc

∫ c
0 λ
−1
b Λ−2

b

∫ ε
b QaΛa dadbdc

)−1
. Successive

integrations and truncations of the tensors with respect to
the integration variables a, b, c (which are all of order ε),
gives us Σs and from that we can determine the profile
s 7→ Πs. The mobility then is M(u) = C[Π]−1, which after
a change of variables from h to u, yields the form of the
mobility in (11).
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