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Abstract

Notions of similarity and correspondence between geometric shapes and images are
central to many tasks in geometry processing, computer vision, and computer graphics.
The goal of this course is to familiarize the audience with a set of recent techniques that
greatly facilitate the computation of mappings or correspondences between geometric
datasets, such as 3D shapes or 2D images by formulating them as mappings between
functions rather than points or triangles.

Methods based on the functional map framework have recently led to state-of-the-art
results in problems as diverse as non-rigid shape matching, image co-segmentation and
even some aspects of tangent vector field design. One challenge in adopting these meth-
ods in practice, however, is that their exposition often assumes a significant amount of
background in geometry processing, spectral methods and functional analysis, which can
make it difficult to gain an intuition about their performance or about their applicability
to real-life problems. In this course, we try to provide all the tools necessary to appreci-
ate and use these techniques, while assuming very little background knowledge. We also
give a unifying treatment of these techniques, which may be difficult to extract from the
individual publications and, at the same time, hint at the generality of this point of view,
which can help tackle many problems in the analysis and creation of visual content.

This course is structured as a half day course. We will assume that the participants
have knowledge of basic linear algebra and some knowledge of differential geometry, to
the extent of being familiar with the concepts of a manifold and a tangent vector space.
We will discuss in detail the functional approach to finding correspondences between
non-rigid shapes, the design and analysis of tangent vector fields on surfaces, consistent
map estimation in networks of shapes and applications to shape and image segmenta-
tion, shape variability analysis, and other areas.

i



Contents

1 Introduction 1
1.1 Course Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 What are Functional Maps? 4
2.1 Functional Maps in the Continuous Setting . . . . . . . . . . . . . . . . . . 4
2.2 Functional Maps in a Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 General Functional Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Functional Representation Properties . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Choice of basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Linearity of constraints . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Operator Commutativity . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.4 Estimating Functional Maps . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.5 Regularization Constraints . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.6 Map Inversion and Composition . . . . . . . . . . . . . . . . . . . . 12

2.5 Functional Map Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1 Efficient Conversion to Point-to-Point . . . . . . . . . . . . . . . . . 13
2.5.2 Post-Processing Iterative Refinement . . . . . . . . . . . . . . . . . . 13

2.6 Shape Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7.1 Function (Segmentation) Transfer . . . . . . . . . . . . . . . . . . . 16

2.8 List of Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Computing Functional Maps 18
3.1 Joint diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Coupled bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Manifold optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Manifold ADMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Unknown input ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Coupled functional maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Correspondence by matrix completion . . . . . . . . . . . . . . . . . . . . . 24
3.6 List of Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Partial Functional Maps 28
4.1 Partial Functional Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Perturbation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ii



CONTENTS iii

4.2 Deformable clutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Non-rigid puzzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 List of Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Maps in Shape Collections 34
5.1 Descriptor and subspace learning . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Networks of Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Metrics and Shape Differences . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 List of Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Functional Vector Fields 42
6.1 From Vector Fields to Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 List of Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Map Conversion 47
7.1 Converting Functional Maps to Pointwise Maps . . . . . . . . . . . . . . . 47
7.2 Linear Assignment Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3 Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.3.1 Orthogonal refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 Regularized Map Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.5 Bijective Map Recovery by Bayesian Inference . . . . . . . . . . . . . . . . 50
7.6 Continuous Maps via Vector Field Flows . . . . . . . . . . . . . . . . . . . 51
7.7 List of Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



1

Introduction

Figure 1.1: Mappings or correspondences between point clouds, triangle meshes, volu-
metric data and images respectively .

1.1 Course Goals

The goal of these course notes is to describe the main mathematical ideas behind the
functional mapping framework and to provide implementation details for several appli-
cations in geometry processing, computer vision and computer graphics. The text in the
course materials is primarily based on previously published work including [OBCS+12,
ROA+13, ABCCO13, HG13, AWO+14, COC14, RMC15] among several others. Our aim
is to give the reader a more intuitive feel for the methods presented in these papers and
to highlight the common “functional” thread that runs through them. We also aim to
provide practical implementation details for the methods presented in these works, as
well as suggest further readings and extensions of these ideas.

Motivation A common task in many fields of applied science is to establish, quantify
and predict mapping between various objects. In this course we are primarily interested
in geometric and multimedia data, such as 2D images and 3D surfaces. In this context, a
common problem is to see whether two images contain the same object or whether two
3D models represent deformations of the same physical entity. If so, then the challenge is
to find the points that correspond to each other on the different models (Figure 1.1). Such
operations of comparison often revolve around mappings or correspondences between
objects, which can be represented as functions of the type: T : M æ N , where M and
N are geometric objects and T is a mapping, which takes points on M to points on N .
A common unifying theme in the methods that we present in this course is to treat the
mappings T as objects in their own right, and in particular, as carriers of information
which can be manipulated, stored, analyzed or optimized in a coherent framework.

1



1. INTRODUCTION 2

1.2 Overview

In this course, we will concentrate on one transformation associated with mappings,
which turns out to have particularly nice properties both theoretically and in practice
and to facilitate a wide variety of applications from shape matching to tangent vector
field design. Namely, we will consider how mappings act on real-valued functions defined
on the objects. Thus, rather than studying mappings through the lens of couplings or
correspondences between points, which has been a standard approach in many domains,
we will instead analyze the interaction between mappings and the transportation of real-
valued functions across different objects. This approach might seem artificial or unneces-
sarily complex at first sight. Indeed, why introduce an additional structure (real-valued
functions) to a seemingly unrelated problem (finding correspondences between points)?
However, as we try to show in this course, considering mappings through their action
on functions is both simpler and significantly more flexible than using the classical no-
tions of correspondences between points. To give a hint of the material presented in the
following chapters, we note here that by associating functions on different objects, it be-
comes possible to express correspondences between not only points but also probability
densities, which can be useful, for example, when the correspondence is only known
approximately. Similarly, regions or patches on the objects can be considered simply as
the appropriate indicator functions, and thus, for example, transfered when a functional
correspondence is known between objects.

More fundamentally the space of real-valued functions defined on the objects enjoys
a special structure that points or regions do not. For example, unlike points or trian-
gles, real-valued functions can be naturally added and multiplied, either pointwise or
via an inner product, to define new functions and scalars respectively. This means that in
many cases, real-valued functions live in a (suitably defined) vector space, which greatly
facilitates their manipulation and processing (Chapter 2).

In addition to the nice algebraic structure enjoyed by the space of real-valued func-
tions, another key aspect that we emphasize in this course is that linear maps (operators)
between functions can be naturally encoded as matrices in the discrete setting. More-
over the size of these matrices can be controlled and made independent of the number of
points on the objects, by using a reduced basis for the space of functions (the details on
this are given in Chapter 2). Thus, the task of recovering a mapping can be phrased as
an optimization problem over reasonably-sized matrices. This opens the door to many
numerical linear algebraic techniques and results in extremely efficient mapping and pro-
cessing methods. This is perhaps one of the key advantages of the functional maps rep-
resentation in practice, as it allows to use a new set of numerical tools to study existing
problems and define novel analysis techniques (Chapter 3).

A promising area that has only recently started to be explored is the relation between
the structural properties of the functional maps and the underlying shapes and their dis-
tortions. One remarkable advance in this area is the recognition of the structure of the
functional representation of a correspondence in the presence of holes or missing parts.
This structure can also be exploited to obtain high quality maps even in such challeng-
ing scenarios (Chapter 4). Moreover, the functional representation can be used to study
intrinsic distortion induced by a given map and to define the notion of shape differences
(Chapter 5). The shape differences, which are also defined as linear functional operators,
provide a way to compare shapes in a way that is significantly more informative than
standard scalar-valued metrics and indeed can be shown to fully encode the distortion
and even allow shape recovery and synthesis from the given difference operators (Chap-



1. INTRODUCTION 3

ter 5, Section 5.3).
One potential challenge in using functional maps for solving matching problems is

the difficulty of converting a functional map to a point-to-point map, which is often pre-
ferred in practice. Several methods have been proposed to solve this problem in practice
and we take special care to review the progress in this area (Section 2.5.1 in Chapter 2 and
entire Chapter 7).

Throughout the course we also try highlight not only the flexibility but also the unity
of the proposed approaches in quite diverse application areas. In a way, the functional
map framework can be considered as a common language in which many problems in
geometry and data processing can be expressed. Two examples of this general property
presented in these notes include the idea of functional vector fields (Chapter 6) and the
analysis of maps in shape collections (Chapter 5). In both of these scenarios, a very impor-
tant aspect is the interaction between different operations defined on the objects (vector
fields and their flows, vector fields defined on different objects, network of maps defined
on shape collections), which can be naturally expressed in the functional framework, by
the use of linear operators represented as matrices. For example, map composition be-
comes matrix multiplication, whereas the operator associated with the flow of a vector
field can be computed via matrix exponentiation.

Course Notes Structure and Organization The rest of the notes is organized according
to topics each presented in a dedicated chapter. Chapter 2 presents the general back-
ground and definitions and a simple way to use the functional map representation for
solving the shape matching problem. Chapter 3 discusses more advanced techniques
for recovering functional maps by using strong geometric and linear algebraic regulariz-
ers. Chapter 4 is dedicated to describing the properties and computing functional maps
across partially related shapes, while Chapter 5 gives an overview of techniques for com-
puting better correspodences and for exploring collections using functional maps. Fi-
nally, Chapter 6 describes how tangent vector fields can also be naturally expressed as
linear functional operators that interact naturally with functional maps, and Chapter 7
describes a set of methods for converting functional maps to point to point maps.

Note that the different chapters are to a large extent mutually independent (apart
from the dependence on Chapter 2, and thus can be read in the order that best suits to the
readers’ interests. Indeed, although we made an effort to make the notation consistent
across different chapters, there are nevertheless some discrepancies, and to reduce the
reading difficulty to a certain extent we provided a list of key symbols at the end of each
chapter.

Finally, we note that our primary goal when preparing these notes was to give an
overview of the existing methods, and for this reason, in most cases we only describe the
key ideas and contributions of the existing works, and mention the primary applications
at the end of each chapter. We therefore invite the interested readers to use these notes
to get an intuition and a sense of the scope of the current methods and to consult the
original articles, referred to in each chapter, for more detailed technical descriptions and
derivations.
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What are Functional Maps?

Figure 2.1: A point to point map T : M æ N can be represented as a functional map TF : a
correspondence between functions f : M æ R and functions g : N æ R. Given a choice
of basis for functions on M and N , the functional map can be concisely represented as a
matrix C.

2.1 Functional Maps in the Continuous Setting

To motivate our definitions, imagine that we start with two geometric objects such as a
pair of shapes in 3D, which we will denote by M and N . Now consider a correspondence
or a mapping T : M æ N between points on these shapes. In other words if p is a point
on M then T (p) is some corresponding point on N . In practice, we are often interested in
both analyzing T (for example when we consider how an object deforms) and conversely
computing the optimal T for a given pair of objects, which corresponds to solving the
shape matching problem.

Our first observation is that rather than thinking of a mapping as an association be-
tween points on the two shapes it is often more productive to think of it as a “transporter”
that allows us to move information across the two shapes. In this context it might be use-
ful to consider one of the shapes as a source and the other as a target of this transportation.
For example, given a texture on the source, we can use T to transport it onto the target
shape.

In this course we will concentrate on one particular transformation enabled by a map-
ping, which turns out to have extremely beneficial properties both theoretically and in
practice. Namely, we will consider a transportation of real-valued functions on the two
objects. To be precise, let’s suppose that T is a bijection and we are given a scalar function

4



2. WHAT ARE FUNCTIONAL MAPS? 5

f : M æ R, which can represent some geometric quantity such as curvature of different
points on M, or something more abstract such as simply some information encoded as a
real number f(p) on p.

Using the given mapping T we can transport the function f defined on M to a func-
tion g defined N simply via composition by g = f ¶ T ≠1, which means that g(p) =

f(T ≠1

(p)) for any point p on M. We will denote by TF the induced transformation that
“transports” real-valued functions on M to real-valued functions on N . We call TF the
functional representation of the mapping T (see Figure 2.1)1. We now make the following
two simple remarks:

Remark 2.1.1. The original mapping T can be recovered from TF .

Indeed, to recover the image T (a) of any point a on M, construct an indicator function
f : M æ R, s.t. f(a) = 1 and f(x) = 0 ’ x ”= a œ M. By construction if g = TF (f), then
g(y) = f ¶ T ≠1

(y) = 0 whenever T ≠1

(y) ”= a and 1 otherwise. Since T is assumed to be
invertible, there is a unique point y s.t. T (a) = y. Thus, g must be an indicator function
of T (a) and T (a) is the unique point y œ N s.t. g(y) = 1.

Remark 2.1.2. For any fixed bijective map T : M æ N , TF is a linear map between the
corresponding function spaces.

To see this, note TF (–
1

f
1

+ –
2

f
2

) = (–
1

f
1

+ –
2

f
2

) ¶ T ≠1

= –
1

f
1

¶ T ≠1

+ –
2

f
2

¶ T ≠1

=

–
1

TF (f
1

) + –
2

TF (f
2

).
We may paraphrase these remarks to say that knowledge of TF is equivalent to knowl-

edge of T . And while T may be a complicated mapping between surfaces, TF acts linearly
between function spaces.

It is hard to overestimate the consequences of these two simple observations, and a
large portion of our course will be dedicated to exploring them in full detail. Perhaps the
simplest way to appreciate the utility of the functional representation TF is to note that
linear transformations can be represented often be encoded as matrices and there is an
intimate relation between different linear algebraic operations (solving linear systems,
computing matrix inverses and spectral decompositions, and even matrix exponentia-
tion) turn out all to be very closely related to many operations in manipulating mappings
or correspondences between shapes, which have traditionally been considered difficult
or cumbersome in practice (matching between non-rigid shapes, inverting and compos-
ing different mappings, computing distortion induced by a map or computing flows of
tangent vector fields). We will go through each of these constructions (and many more!)
and explore their theoretical and computational utility, as well as suggest further possible
extensions.

2.2 Functional Maps in a Basis

Now suppose that the function space of M is equipped with a basis so that any function
f : M æ R can be represented as a linear combination of basis functions f =

q
i ai„

M
i ,

with scalar coefficients ai. Then, we have:

TF (f) = TF

A
ÿ

i

ai„
M
i

B

=

ÿ

i

aiTF

1
„M

i

2
.

1Note that it would perhaps be more natural to define T

F

as via pull-back with respect to T rather than
T

≠1, so that T

F

would map functions from N to M. We follow this approach in the following chapters, but
for simplicity of presentation keep T

F

and T to be maps in the same direction here.
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f
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N

¥ a1 + a2 + · · · + a

k

¥ b1 + b2 + · · · + b

k

¿

T

F

¿

¿

C
¿

Translates coefficients from �M to �N¥ �N �+
M

Figure 2.2: When the functional spaces of source and target shapes M and N are en-
dowed with bases �M and thus every function can be written as a linear combination
of basis functions, then a linear functional map TF can be expressed via a matrix C that
intuitively “translates” the coefficients from one basis to another.

In addition, if N is equipped with a set of basis functions {„N
j }, then TF

1
„M

i

2
=

q
j cji„

N
j for some {cji}, and we obtain:

TF (f) =

ÿ

i

ai

ÿ

j

cji„
N
j =

ÿ

j

ÿ

i

aicji„
N
j . (2.1)

Therefore if we represent f as a vector of coefficients a = (a
0

, a
1

, ....ai, ...) and g = TF (f)

as a vector b = (b
0

, b
1

, ...., bi, ...), then Eq. 2.1 simply says: bj =

q
i cjiai, where cji is in-

dependent of f and is completely determined by the bases and the map T . In particular
cji is the jth coefficient of TF („M

i ) in the basis {„N
j }. Note that the matrix C has a partic-

ularly simple representation if the basis functions {„N
i } are orthonormal with respect to

some inner product È·, ·Í, namely cji = ÈTF („M
i ), „N

j Í.
We conclude with the following key observation (See Figure 2.2 for illustration):

Remark 2.2.1. The map TF can be represented as a (possibly infinite) matrix C s.t. for any
function f represented as a vector of coefficients a we have TF (a) = Ca.

This remark in combination with the previous two remarks shows that the matrix C
fully encodes the original map T .

Functional Representation of Given Map Suppose we are given a map T between two
discrete objects N and M, represented by a collection of n and m vertices respectively. We
can represent such a map by a matrix T of size m◊n. In general, when T is not necessarily
a bijection, the functional map can only be well defined to transport real-valued functions
on M to their corresponding functions on N (i.e., in the direction oposite to that of the
original map). In the full basis, the functional map associates a real-valued function f on
M to the function T€f on N . If P is a bijection then T≠1

= T€ and (T€
)

≠1

= T, so in
this case we can define the functional map between N and M (i.e., in the same direction
as the map itself) using f æ Tf .
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When the objects are equipped with a reduced set of basis functions stored as columns
of matrices �N and �M respectively, then the corresponding functional map in the re-
duced basis can be found by solving the linear system of equations:

�N C = T€�M, which leads to:

C = �€
N T€�M, if �€

N � = I, or C = �€
N AN T€�M, if �€

N AN � = I,

The latter case is especially common in geometry processing, where AN is often taken to
be a diagonal matrix of area weights of each vertex, and the basis functions are computed
to be orthonormal with respect to this set of weights (e.g., [Rus07]).

2.3 General Functional Maps

Motivated by this discussion, we now turn towards the definition of linear functional map-
pings that are strictly more general than functional representations of classical point-to-
point mappings. The point of view that we take is to downplay the mapping T and focus
our attention on the matrix C. We thus define:

Definition 1. Let {„M
i } and {„N

j } be bases for F(M,R) and F(N ,R), respectively. A gen-
eralized linear functional mapping TF : F(M,R) æ F(N,R) with respect to these bases is the
operator defined by

TF

A
ÿ

i

ai„
M
i

B

=

ÿ

j

ÿ

i

aicji„
N
j ,

where cji is a possibly infinite matrix of real coefficients (subject to conditions that guarantee
convergence of the sums above).

Example. As an example, consider a pair of shapes in Figure 2.3 with three bijective
maps between then: two approximate isometries (the “natural” map that associates the
points of the source with their counterparts of the target, and the left-right mirror sym-
metric map) and one map that puts the head and tail in correspondence. For each map,
the point-to-point representation is shown as color correspondence while the functional
representation is shown as a heat map of the matrix C

0..20◊0..20

, where we used the
Laplace-Beltrami eigenfunctions as the basis for the function space on each shape. Note
that the functional representations of the near-isometric maps are close to being sparse
and diagonally dominant, whereas the representation of the map that associates the head
with the tail is not. Also note that none of the maps is diagonal, an assumption made by
previous algorithms [JZvK07, MHK+08, OSG08].

2.4 Functional Representation Properties

As we have noted above, the functional representation of a pointwise bijection can be
used to recover its representation as a correspondence, and is thus equivalent. Note,
however, that this does not imply that the space of bijections coincides with the space of
linear maps between function spaces, as the latter may include functional mappings not
associated with any point-to-point correspondence.

Perhaps the simplest example of this is a functional map that maps every function
on one shape to the constant zero function on the other. Such a map clearly cannot be
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(a) source (b) ground-truth map (c) left to right map (d) head to tail map

Figure 2.3: Two shapes with three maps between them, each rendered as a point-to-point
mapping through color correspondence (top) and its functional representation (bottom)
with colors proportional to matrix values. Note that the least isometric map in (d) leads
to a more dense matrix.

associated with any pointwise correspondences since all such functional maps must, by
definition, preserve the set of values of each function. Nevertheless, by going to this
richer space of correspondences, we obtain a representation that has several key proper-
ties making it more suitable for manipulation and inference.

Intuitively, functional maps are easy to manipulate because they can be represented
as matrices and thus can benefit from standard linear algebra techniques. To make this in-
tuition practical, however, the size of the matrices must be moderate (i.e., independent of
the number of points on the shapes), and furthermore map inference should be phrased
in terms of linear constraints in this representation. In the following sections we will
show how to achieve these goals first by choosing the appropriate basis for the function
space on each shape (Section 2.4.1) and then by showing how many natural constraints
on the map can be phrased as linear constraints on the functional map (Section 2.4.2),
reducing shape matching to a moderately-sized system of linear equations (Section 2.5).

2.4.1 Choice of basis

As noted above, the functional map representation is flexible in the sense that it gives us
the freedom to choose the basis functions for the functional spaces of M and N . Indeed,
if we choose the basis functions to be indicator functions at the vertices of the shapes,
then C is simply the permutation matrix which corresponds to the original mapping.
However, other choices of bases are possible, which can lead to significant reductions
in representation complexity and are much better suited for near-isometric mappings
between shapes, which is desired behavior in many practical applications.

Perhaps the two most important characteristics for choosing a basis for functional
maps are compactness and stability. Compactness means that most natural functions
on a shape should be well approximated by using a small number of basis elements,
while stability means that the space of functions spanned by all linear combinations of
basis functions must be stable under small shape deformations. These two properties
together ensure that we can represent the action TF using a small and robust subset of
basis functions and we need only consider a finite submatrix C

0..m◊0...n, for some moder-
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Figure 2.4: Average error vs. number of basis functions used in the representation. For
each shape with a known ground-truth pointwise map, shown as a color correspondence,
we computed its functional representation and measured its accuracy in reconstructing
the original map. A geodesic disk with radius 1 is shown on each shape for scale.

ate values of m and n, of the infinite matrix C (Definition 1). In other words, for a given
function f , represented as a vector of coefficients a = (a

0

, a
1

, ....ai, ...), we would likeq
j

q
i aicji„

N
j ¥

qn
j=0

qm
i=0

aicji„
N
j , for some fixed small values of m and n.

In the discussion below, we will concentrate on shapes undergoing near-isometric de-
formations, for which we will use the first n Laplace-Beltrami eigenfunctions as the basis
for their functional representations (where n = 100 throughout all of our experiments,
independent of the number of points on the shape). This choice of basis is natural, since
eigenfunctions of the Laplace-Beltrami operator are ordered from “low frequency” to
“higher frequency,” meaning that they provide a natural multi-scale way to approximate
functions, and as a result functional mappings, between shapes. Moreover, although in-
dividual eigenfunctions are known to be unstable under perturbations, suffering from
well-known phenomena such as sign flipping and eigenfunction order changes, the space
of functions spanned by the first n eigenfunctions of the Laplace-Beltrami operator can
be shown to be stable under near-isometries as long as the nth and (n + 1)

st eigenvalues
are well separated, as shown for example in the work of [Kat95].

To illustrate the role of the size of the basis on the functional representation, we mea-
sure the ability of a functional map to capture a ground-truth point-to-point correspon-
dence using a fixed number n of basis functions. In particular, we consider the eigenfunc-
tions of the standard cotangent weight discretization of the Laplace-Beltrami operator
[PP93, MDSB02]. Figure 2.4 shows the average error induced by the functional represen-
tation for a set of pairs of deformed versions of the cat shape provided in the TOSCA
[BBK08] dataset. Each of these shapes contains 27.8K points, with a known ground-truth
correspondence. We represented this pointwise correspondence between the cat0 shape
and the others using an increasing number of eigenvectors, and for each point x com-
puted its image as: T (x) = arg miny ||”y ≠ TF (”x)|| where ”x and ”y are the projections
of the indicator functions at the points x and y onto the corresponding basis (See Sec-
tion 2.5.1 for details). The error is measured in average geodesic error units, and we plot
a geodesic disk of a unit radius around a single (corresponding) point on each shape
for reference. Note that the eigenfunctions of the Laplace-Beltrami operator provide a
compact representation of the map and that only 30 ≠ 40 eigenfunctions are sufficient to
represent the ground-truth point-to-point map well.
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2.4.2 Linearity of constraints

Perhaps even more importantly, the functional representation is particularly well-suited
for map inference (i.e., constrained optimization) for the following reason: when the un-
derlying map T (and by extension the matrix C) are unknown, many natural constraints
on the map become linear constraints in its functional representation. Below we describe
the most common scenarios.

Function preservation. Given a pair of functions f : M æ R and g : N æ R, the corre-
spondence between f and g can be written simply as Ca = b where C is the functional
representation of the map, while a and b are the representation of f and g in the chosen
bases of M and N . Note that the function preservation constraint can be phrased en-
tirely in terms of the matrix C without knowledge of the underlying correspondence T ,
since a and b do not depend on the map C. This is especially useful for shape matching
applications where C is unknown, but could possibly be recovered by phrasing enough
constraints of type Ca = b. The function preservation constraint is quite general and
includes the following as special cases.

Descriptor preservation. If f and g are functions corresponding to point descriptors
(e.g. f(x) = Ÿ(x) where Ÿ(x) is Gauss curvature of M at x), then the function preservation
constraint simply says that descriptors are approximately preserved by the mapping.
Furthermore if the point descriptors are multidimensional so that f(x) œ Rk for each x
then we can phrase k scalar function preservation constraints, one for each dimension of
the descriptor.

Landmark point correspondences. If we are given landmark point correspondences
T (x) = y for some known x œ M and y œ N (e.g., specified by the user or obtained
automatically), we can phrase this knowledge as functional constraints by considering
functions f and g that are, for example, distance functions to the landmarks or normally
distributed functions around x and y. Indeed, the confidence with which the landmark
correspondence is known can be encoded in the functional constraints very naturally
(e.g., if it is only known within a certain radius).

Segment correspondences. Similarly, if we are given correspondences between parts of
shapes rather than individual points, we can phrase such correspondences as functional
correspondences again by either considering the indicator functions on the segments or
using more robust derived quantities such as the distance function.

To summarize, given pair of shapes M and N we can often compute a set of pairs of
functions fi, gi, such that the unknown functional map should satisfy Cai ¥ bi, where
ai, bi are vectors of coefficients representing fi, gi in a given basis. By storing these func-
tions as columns of matrices A and B respectively (where each column represents the
coefficients of a single function expressed in the basis of the corresponding shape), we
expect the following energy to have small error:

E
1

(C) = ÎCA ≠ BÎ2.

Note that in principle, given enough corresponding functions fi and gi, it should be pos-
sible to recover C by solving a least squares system.
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2.4.3 Operator Commutativity

In addition to the function preservation constraint, another class of constraints on the
map that induce linear constraints on its functional representation is commutativity with
respect to linear operators on M and N . That is, often M and N can be endowed with
linear functional operators that we may want to preserve. A first example is a symmetry
operator SF : F(M,R) æ F(M,R) which associates with every function f : M æ R
another function SF (f) : M æ R obtained as SF (f)(x) = f(S≠1

(x)), where S : M æ
M is some symmetry of M. A second example is the Laplace-Beltrami operator and
derived operators (e.g. the heat operator), which are preserved under isometries. The
operators on M and N can be quite general, however, and can represent any association
of functions on the manifold. In any case, given functional operators SM

F and SN
F on M

and N respectively, it may be natural to require that the functional map C commute with
these operators. In particular: SN

F ¶ TF = TF ¶ SM
F , or when all operators are written

in a given basis then we obtain in matrix notation, ÎSN
F C ≠ CSM

F Î = 0. Note that this
constraint can be encoded using the following energy:

E
2

(C) = ÎSN
F C ≠ CSM

F Î2.

Similarly to the E
1

the optimal C that minimizes E
2

(C) can be recovered by solving a
linear system of equations. Note that when C is expressed in the basis given by the
first k eigenfunctions of the Laplace-Beltrami operator and SM

F , SN
F correspond to the

LB operators �

M, �

N on M and N respectively then E
2

(C) has a particularly simple
expression

E
2

(C) =

ÿ

i,j

C2

ij(⁄N
i ≠ ⁄M

j )

2,

where ⁄M and ⁄N are the eigenvalues of the corresponding operators. Of course, as
mentioned above E

2

(C) is quadratic and thus the optimal matrix C can be found by
solving a linear squares system of equations. Note, however, that E

2

alone does not
provide enough information to recover C since the trivial solution C = 0 would result in
zero error.

2.4.4 Estimating Functional Maps

In practice, the simplest method for recovering an unknown functional map, (in the basis
given by the first k first eigenfunctions of the LB operator) between a pair of shapes is to
solve the following optimization problem:

C = arg min

X
E

1

(X) + E
2

(X) = ÎXA ≠ BÎ2

+ –Î�N X ≠ X�MÎ2, (2.2)

where A and B are the function preservation constraints expressed in the basis of the
eigenfunctions of the LB operator, (stored as columns of coefficients in the matrices), �M

and �N are diagonal matrices of eigenvalues of Laplacian operators and – is a scalar
weight parameter. When the shapes are approximately isometric and the descriptors are
well-preserved by the (unknown) map, then this procedure already gives a good approx-
imation of the underlying map. However, as we show below, several regularizations and
extensions can help to improve this estimation significantly.
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2.4.5 Regularization Constraints

Note that although we mentioned in Section 2.3 that there are no inherent constraints
on the matrix C to be a functional map, this does not mean that any matrix C is asso-
ciated with a point-to-point map. Indeed, while every bijective map T has a functional
representation through the matrix C, the converse is not necessarily true. Thus, there
may be constraints on the functional representation if it is known to be associated with a
point-to-point map. Although finding such constraints is difficult in general, a very useful
observation is the following (See [OBCS+12] for a proof):

Theorem 2.4.1. (1) If the underlying map T (discrete or continuous) is volume preserving, i.e.
µM

(x) = µN
(T (x)) where µM and µN are volume elements on M and N respectively, then

the matrix C associated with the functional representation of T must be orthonormal. (2) If
the underlying map T is an isometry then the corresponding functional map commutes with the
Laplace-Beltrami operator.

In matrix notation, the first result states that if the underlying point to point map is
locally volume preserving then C€C = I, and if it is an isometry then C�M

= �N C. It
turns out that when considered in the full basis (or as operators in the continuous case),
the converse both of these conditions also holds (e.g. [ROA+13]). Thus, enforcing these
constraints provides a very strong regularization on the computed map.

It follows that in most natural settings, e.g. when one expects isometries between
shapes, if one is using the functional representation to obtain a point-to-point map it is
most meaningful to consider orthonormal or nearly-orthonormal functional map matri-
ces. Furthermore, it makes sense to incorporate commutativity with the Laplace-Beltrami
operators into the regularization.

2.4.6 Map Inversion and Composition

A challenging task when considering point-to-point mappings between shapes is map
inversion, i.e. given a map T : M æ N that is not necessarily bijective, one is required to
find a meaningful version of T ≠1

: N æ M. In the functional representation finding an
inverse can be done simply by finding an inverse of the mapping matrix C. Moreover,
because for near-isometric maps we expect this matrix to be close to diagonal it is reason-
able to take the inverse of the approximating submatrix of C. Finally, in light of Theorem
2.4.1 this can be done by simply taking the transpose of C or its approximation. We note
that similarly, map composition becomes simple matrix multiplication in the functional
representation, which has been exploited when we use our representation for joint map
inference on a collection of shapes [OBCS+12].

2.5 Functional Map Inference

As mentioned in Section 2.4, functional shape maps are well-suited for inference because
of their continuous nature and because a large number of constraints become linear in this
representation. In this section we discuss how such inference can be done in practice. For
this suppose we are given a pair of discrete shapes represented as meshes, with the corre-
sponding Laplace-Beltrami eigenfunctions. Our goal is to find the underlying functional
map represented as a matrix C. The simplest way to do so is to construct a large system
of linear equations, where each equation corresponds to one of the constraints mentioned
above (either a functional constraint or the operator commutativity constraint) and find
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Algorithm 1: FUNCTIONAL MAP INFERENCE FOR MATCHING

1. Compute a set of descriptors for each point on M and N , and create function
preservation constraints.

2. If landmark correspondences or part decomposition constraints are known,
compute the function preservation constraints using those.

3. Include operator commutativity constraints for relevant linear operators on M
and N (e.g. Laplace-Beltrami or symmetry).

4. Incorporate the constraints into a linear system and solve it in the least squares
sense to compute the optimal C.

5. Refine the initial solution C with the iterative method of Section 2.5.2.
6. If required, compute point correspondences using the method in Section 2.5.1.

the best functional map by finding the matrix C that best satisfies the constraints in the
least squares sense.

2.5.1 Efficient Conversion to Point-to-Point

As mentioned in Section 2.2 given a bijection T between two discrete shapes, and the
basis vectors of their function spaces, the functional representation C of the map T can
be obtained by solving a linear system.

To reconstruct the original mapping from the functional representation, however, is
more challenging. The simplest method alluded to in Remark 2.1.1 to find a correspond-
ing point y œ N to a given point x œ M would require constructing a function f : M æ R
(either the indicator function, or a highly peaked Gaussian around x) obtaining its image
g = TF (f) using C and declaring y to be the point at which g(y) obtains the maximum.
Such a method, however, would require O(VN VM) operations for a pair of meshes with
VN and VM vertices. Such complexity may be prohibitively expensive in practice for
large meshes. To obtain a more efficient method, note that in the Laplace-Beltrami basis
”x, the delta function around a point x œ M , has the coefficients: ai = „M

i (x). This can be
seen for example, since ”x = limtæ0

+ kM
t (x, ·) = limtæ0

+
qŒ

i=0

e≠t⁄
i„M

i (x)„M
i (·) , where

kM
t (·, ·) is the heat kernel at time t on the shape M.

Therefore, given a matrix �M of the Laplace-Beltrami eigenfunctions of M, where
each column corresponds to a point and each row to an eigenfunction, one can find the
image of all of the delta functions centered at points of M simply as C�M. Now recall
that by Plancherel’s theorem, given two functions g

1

and g
2

both defined on N , with spec-
tral coefficients b

1

and b
2

,
q

i(b1i ≠ b
2i)

2

=

s
N (g

1

(y) ≠ g
2

(y))

2µ(y). That is, the distances
between the coefficient vectors is equal to the L2 difference between the functions them-
selves. Therefore an efficient way to find correspondences between points is to consider
for every point of C�M its nearest neighbor in �N . Using an efficient proximity search
structure, such as a kd-tree, this procedure will require only O(VN log VN + VM log VN )

operations, giving a significant efficiency increase in practice.

2.5.2 Post-Processing Iterative Refinement

The observation made in Section 2.5.1 can also be used to refine a given matrix C to make
it closer to a point-to-point map. Suppose we are given an initial estimate matrix C

0

that
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Figure 2.5: Comparison of our method with the state-of-the-art methods of Kim et
al. [KLF11] and Sahillioglu and Yemez [SY11] on two datasets: SCAPE [ASK+05] and
TOSCA [BBK08] with and without symmetric maps allowed (solid and dashed lines re-
spectively). Note that since our method is intrinsic only symmetric (solid line) evaluation
is meaningful.

we believe comes from a point-to-point map T . As noted in Section 2.5.1, theoretically C
0

must be such that each column of C
0

�M coincides with some column of �N . If we treat
�M and �N as two point clouds with dimensionality equal to the number of eigenvalues
used in the functional representation C

0

then this means that C
0

must align �M and �N .
Moreover, since by Theorem 2.4.1 we expect the mapping matrix C

0

to be orthonormal,
we can phrase the problem of finding the optimal mapping matrix C as rigid alignment
between �M and �N . Thus an iterative refinement of C

0

can be obtained via:

1. For each column x of C
0

�M find the closest x̃ in �N .
2. Find the optimal orthonormal C minimizing

q
ÎC ≠ x̃Î.

3. Set C
0

= C and iterate until convergence.

Note that this technique is identical to the standard Iterative Closest Point algorithm
of Besl & McKay, [BM92], except that it is done in the embedded functional space, rather
than the standard Euclidean space. Note also that this method cannot be used on its own
to obtain the optimal functional matrix C because the embedding �M and �N are only
defined up to a sign change (or more generally an orthonormal transformation within an
eigenspace). Therefore, it is essential to have a good initial estimate matrix C

0

. Finally,
note that the output of this procedure is not only a functional matrix C but also a point-to-
point correspondence given by nearest neighbor assignment between points on M and
N . We will use this method to obtain good point-to-point maps when we apply these
observations to devise an efficient shape matching method in Section 2.6.

2.6 Shape Matching

In this section we describe a simple yet very effective method for non-rigid shape match-
ing based on the functional map representation.

The simplest version of the shape matching algorithm is summarized in Algorithm
1. Namely, suppose we are given two shapes M and N in their discrete (e.g. mesh)
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representation, and the Laplace-Beltrami eigen-decomposition. Then, we simply com-
pute functional constraints that correspond to descriptor and segment preservation con-
straints together with the operator commutativity, form a linear system of equations and
solve it in the least squares sense. If necessary, we refine the solution using the method
in Section 2.5.2 and compute the point-to-point map using the method in Section 2.5.1.

2.6.1 Implementation

The key ingredients necessary to implement this method in practice are the computation
of the eigendecomposition of the Laplace-Beltrami operator, the descriptors used in the
function preservation constraints, and a method to obtain landmark or segment corre-
spondences. Note that our framework allows great flexibility for the choice of descrip-
tors and correspondence constraints since they all fit into a general function preservation
framework. In our implementation we have used the cotangent scheme [MDSB02] for
the Laplace-Beltrami operator on meshed surfaces. We also used the Wave Kernel Sig-
nature (WKS) and Heat Kernel Signature descriptors of [ASC11] and [SOG09]. Because
the method described above is fully intrinsic and does not distinguish between left and
right symmetries, it is also important to resolve ambiguities using correspondence con-
straints. However, since point-to-point correspondences (e.g. landmark) are generally
unstable and difficult to obtain without manual intervention, we have used segment cor-
respondences instead. Towards this goal, we first pre-segment every shape using the
persistence-based segmentation technique of [SOCG10] with the WKS at a fixed energy
value of the underlying function (we used e = 5 in all examples below). This gives a
relatively stable segmentation with a small number of segments (between 3 and 7 in the
shapes we examined). Given a pair of shapes, we first compute the segment correspon-
dence constraints. For this, we first compute the set of candidate pairs of segments from
the two shapes by computing segment descriptors and finding the ones likely to match.
For segment descriptors we use the sum of the WKS values of the points in the segment.
Given a pair of candidate segment matches s1, s2 on M and N respectively, we construct
a set of functional constraints using the Heat Kernel Map [OMMG10] based on segment
correspondences. We combine these together with the Laplace-Beltrami commutativity
constraint and the WKS constraints into a single linear system and solve it to find the
optimal functional mapping matrix C. Finally, we refine the solution using the iterative
method described in Section 2.5.2 and find the final dense point-to-point correspondences
using the method in 2.5.1.

2.6.2 Results

In this section we present an evaluation of the basic method for computing point-to-
point correspondences on the shape matching benchmark of Kim et al. [KLF11] in which
the authors showed state-of-the art results using their Blended Intrinsic Maps (BIM) ap-
proach. Using the correspondence evaluation, Figure 2.5 shows the results of our au-
tomated shape matching on two standard datasets used in the benchmark of Kim et al.
[KLF11] on which their method reported significant improvement over prior work. In ad-
dition, we evaluated a recent shape matching method by Sahillioglu and Yemez [SY11]
which did not appear in the benchmark. The graphs show the percent of correspon-
dences which have geodesic error smaller than a threshold. Note that our method shows
quality improvement over Blended Intrinsic Maps on both datasets. Note also that all of
the parameters for our system were fixed before running the benchmark evaluation and
were therefore not optimized for benchmark performance in any way.
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Source  Target 1 Target 2 Target 3 

Figure 2.6: Maps between remeshed versions of shapes from the SCAPE collection, map-
ping the coordinate functions from the source to the three target shapes using an inferred
functional map.

Although the shapes in both SCAPE and TOSCA datasets have the same connectivity
structure, this information is not used by our method, and is not needed for applying our
algorithm. To demonstrate this, Figure 2.6 shows three maps computed by our method
between a source and three target shapes from the SCAPE collection, all remeshed with
uniform remeshing. We show the map by transferring the XYZ coordinate functions to
the target shapes using the inferred functional maps. These functions are then rendered
as RGB channels on the source and target shapes.

2.7 Other Applications

2.7.1 Function (Segmentation) Transfer

As mentioned earlier, one of the advantages of the functional representation is that it
reduces the transfer of functions across shapes to a matrix product, without resorting
to establishing point-to-point correspondences. This is particularly useful since function
transfer is one of the key applications of maps between shapes and obtaining point-to-
point correspondences is often challenging. We illustrate the performance of this idea on
the task of segmentation transfer across shapes. Here we are given a pair of shapes where
one of the shapes is pre-segmented and the goal is to find a compatible segmentation of
the second shape. To achieve this task we simply construct an indicator function for
each of the segments on the source shape and use the functional map to transfer this
indicator function. Then each point on the target map will have a set of values for each of
the transferred segments. Finally, if “hard” clustering is required, we associate with the
point the segment that produced the maximum of these values.

Figure 2.7 shows this idea applied to several shapes from the TOSCA and SCAPE
datasets. For each pair of shapes we show the image of the the indicator function of
one of the segments as well as the final “hard” segmentation. Note that throughout this
procedure no point-to-point correspondences were used.

Other Extensions and Applications In the original article [OBCS+12], it was also shown
that the functional map representation can be used to improve the accuracy of other
shape matching methods, and also to improve correspondences in the context of shape
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Figure 2.7: Segmentation transfer using the functional map representation. For each pair
of shapes we show 3 figures: the user-provided source segmentation of the first shape, the
image of one of the indicator functions of a segment using the functional map computed
with our method, and the final segmentation transfer onto the target shape. Note that
point correspondences were not computed at any point during this procedure.

collections, by using map composition. Furthermore, since then, a large number of ex-
tensions have appeared some of which are outlined in the following chapters.

2.8 List of Key Symbols

Symbol Definition
M, N Shapes (in most cases assumed to be either smooth surfaces, or manifold meshes).
F(M,R) Space of real-valued functions on shape M
TF Functional representation of a given pointwise map T

C Functional map expressed as a matrix in a given basis.
� Laplace-Beltrami operator on a surface
� diagonal matrix of eigenvalues of the mesh Laplacian
� Functional basis (matrix containing basis functions as columns)
AM Diagonal matrix of area weights on shape M.
F, G Function preservation constraints (each column corresponding to a function).
A, B Function preservation constraints represented as matrices in a given basis.



3

Computing Functional Maps

In this Chapter, we mainly focus on various formulations of the functional correspon-
dence problem and optimization techniques for solving such problems.

3.1 Joint diagonalization

Let M and N be our two shapes with Laplacian eigenbases {„M
i } and {„N

i } respectively,
and let T : M æ N be a map between them. In case the map in question is an approxi-
mate isometry and in the absence of repeated eigenvalues, the eigenfunctions are defined
up to a sign flip, „M

i = ±„N
i ¶ T ≠1. However, in the more general case where the shapes

are not isometric (e.g., elephant and horse), the behavior of their eigenspaces can differ
dramatically. This poses severe limitations on many applications such as pose transfer
or shape retrieval, thus limiting the usefulness of the functional representation by a large
margin. For near-isometric shapes, since „N

i ¥ „M
i ¶ T ≠1, the coefficients cij ¥ ±”ij , and

thus the matrix C is nearly diagonal (Figure 3.1, left). However, when trying to express
correspondence between non-isometric shapes, the Laplacian eigenfunctions manifest a
very different behavior thus breaking this diagonality (Figure 3.1, right).

3.1.1 Coupled bases

A powerful approach to tackle this drawback was formulated in [KBB+12, EKB+15] as a
joint diagonalization problem. The main idea is to find a pair of new bases in which the
correspondence matrix has a near-diagonal structure (see Figure 3.1, third row). A pair
of new orthogonal bases {ˆ„M

i , ˆ„N
i }k

i=1

is constructed as a linear combination of kÕ Ø k
standard Laplacian eigenfunctions „M

i , „N
i ,

ˆ„M
i =

kÕÿ

j=1

pji„
M
j , ˆ„N

i =

kÕÿ

j=1

qji„
N
j , (3.1)

where P, Q denote the kÕ ◊k matrices of linear combination coefficients. The orthogonal-
ity of the new bases Èˆ„M

i , ˆ„M
j ÍL2

(M)

= ”ij and Èˆ„N
i , ˆ„N

j ÍL2
(N )

= ”ij implies the orthog-
onality of the matrices P€P = I and Q€Q = I. The orthogonal basis {ˆ„M

i } behaves as
eigenfunctions of the Laplacian �M if it minimizes the Dirichlet energy that can be written
as

kÿ

i=1

⁄

M
ÎÒˆ„M

i (x)Î2dx =

kÿ

i=1

⁄

M
ˆ„M

i (x)�M ˆ„M
i (x)dx = trace(Èˆ„i, �M ˆ„jÍL2

(M)

).

18
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Figure 3.1: Matrix C representing the functional correspondence between two near-
isometric shapes (left) and non-isometric shapes (middle right) expressed in the Lapla-
cian eigenbases (top row) and coupled bases obtained by the joint diagonalization proce-
dure (bottom row).

Since the eigenfunctions diagonalize the Laplacian, È„M
i , �M„M

j ÍL2
(M)

= ⁄M
i ”ij , it is

easy to express the Dirichlet energy as

trace(Èˆ„M
i , �M ˆ„M

j ÍL2
(M)

) = trace(P€�MP),

where �M = diag(⁄M
1

, . . . , ⁄M
kÕ ) is the diagonal matrix of the first kÕ eigenvalues of �M.

Let us be given q corresponding functions gi ¥ fi ¶ T ≠1, i = 1, . . . , q and let A =

(È„M
i , fjÍL2

(M)

) and B = (È„N
i , gjÍL2

(N )

) be the kÕ ◊ q matrices of coefficients of the given
corresponding functions in the standard Laplacian eigenbases. It is easy to see that the
coefficients of {fi, gi} in the new bases can be expressed as ˆA = P€A and ˆB = Q€B. Our
goal is to find P, Q resulting in {ˆ„M

i , ˆ„N
i } that behave approximately as eigenfunctions,

while being coupled in the sense ˆA ¥ ˆB. This is possible by solving the optimization
problem

min

P,Q
trace(P€�XP) + trace(Q€�Y Q) + µÎP€A ≠ Q€BÎ (3.2)

s.t. P€P = I, Q€Q = I.

Problem (3.2) can be interpreted as a joint diagonalization of the Laplacians �M and �N
[KBB+12, EKB+15]. Its solutions, referred to as coupled quasi-harmonic bases, are shown in
Figure 3.2. Note that by virtue of parametrization of the basis function the procedure can
be applied to any shape representation, for example, meshes and point clouds.

3.2 Manifold optimization

Problems with orthogonality constraints like the one arising in joint diagonalization can
be efficiently solved by manifold optimization, realizing that the feasible set is a Riemannian
sub-manifold of the Euclidean space of matrices (in this particular case, optimization
in (3.2) is performed over the product of two Stiefel manifolds of orthogonal matrices,
X = {X : X€X = I}). The main idea of manifold optimization is to treat the objective
as a function defined on the matrix manifold, and perform descent on the manifold itself
rather than in the ambient Euclidean space. A conceptual gradient descent-like manifold
optimization is presented in Algorithm 2. For a comprehensive introduction to manifold
optimization, the reader is referred to [AMS09].
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Laplacian eigenbases

Coupled bases

Figure 3.2: Examples of Laplacian eigenbases (top) of two different representations of a
human shape (mesh and point clouds) and coupled bases (bottom).

1 repeat
2 Compute the extrinsic gradient Òf(X(k)

)

3 Projection: ÒX f(X(k)

) = PX(k)(Òf(X(k)

))

4 Compute the step size –(k) along the descent
direction

5 Retraction: X(k+1)

= RX(k)(≠–(k)ÒX f(X(k)

))

6 until convergence;
Algorithm 2: Smooth optimization on matrix
manifold X .

X(k)

Òf(X(k))

PX(k)

–

(k)ÒX f(X(k))

RX(k)

X(k+1)

X
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3.2.1 Manifold ADMM

When dealing with non-smooth manifold-constrained optimization problems (for exam-
ple, when using a robust norm as the data term in the joint diagonalization problem),
the Manifold ADMM (MADMM) technique introduced in [KGB16] can be used. Given a
problem of the form

min

XœX ™Rm◊n

f(X) + g(AX), (3.3)

where f and g are smooth and non-smooth real-valued functions, respectively, A is a
fixed k ◊ m matrix, and X is a matrix manifold, Algorithm 2 cannot be used directly
because of non-smoothness of the objective function.

The key idea of MADMM is that problem (3.3) can be equivalently formulated as

min

XœX ,ZœRk◊n

f(X) + g(Z) s.t. Z = AX (3.4)

by introducing an artificial variable Z and a linear constraint. The method of multipliers
applied to only the linear constraints in (3.4), leads to the minimization problem

min

XœX ,ZœRk◊n

f(X) + g(Z) +

fl
2

ÎAX ≠ Z + UÎ2

F

(3.5)

where fl > 0 and U œ Rk◊n have to be chosen and updated appropriately (see below).
This formulation now allows splitting the problem into two optimization sub-problems
w.r.t. to X and Z, which are solved in an alternating manner, followed by an updating
of U. Observe that in the first sub-problem w.r.t. X we minimize a smooth function with
manifold constraints, and in the second sub-problem w.r.t. Z we minimize a non-smooth
function without manifold constraints. Thus, the problem breaks down into two well-
known sub-problems. This method, which we call Manifold Alternating Direction Method
of Multipliers (MADMM), is summarized in Algorithm 3.

1 Initialize k Ω 1, Z(1)

= AX(1), U(1)

= 0.
2 repeat
3 X-step: X(k+1)

= argmin

XœX
f(X) +

fl
2

ÎAX ≠ Z(k)

+ U(k)Î2

F

4 Z-step: Z(k+1)

= argmin

Z
g(Z) +

fl
2

ÎAX(k+1) ≠ Z + U(k)Î2

F

5 U(k+1)

= U(k)

+ AX(k+1) ≠ Z(k+1)

6 k Ω k + 1

7 until convergence;
Algorithm 3: Generic MADMM for non-smooth optimization on a manifold X .

The X-step is the setting of Algorithm 2 and can be carried out using any standard
smooth manifold optimization method. Similarly to common implementation of ADMM
algorithms, there is no need to solve the X-step problem exactly; instead, only a few
iterations of manifold optimization are done. Furthermore, for some manifolds and some
functions f , the X-step has a closed-form solution. The implementation of the Z-step
depends on the non-smooth function g, and in many cases has a closed-form expression:
for example, when g is the L

1

-norm, the Z-step boils down to simple shrinkage.
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3.3 Unknown input ordering

Many formulations of the functional map computation assumes the knowledge of a set
of corresponding functions {fi, gi} on the two shapes M and N , respectively. While there
exist various methods for extracting repeatable functions stable under wide classes of
transformations (see, e.g., [LBB11]), their ordering is usually arbitrary. To overcome this
shortcoming, [PBB+13] proposed to solve simultaneously for the functional map and the
unknown permutation of the unordered inputs.

We start with the simplified case in which the process generating the inputs is per-
fectly repeatable in the sense that it finds q functions on M and N , such that for every fi

there exists a gj = fi ¶ T ≠1 related by the unknown correspondence t. We stress that the
ordering of the fi’s and gj ’s is unknown, i.e., we do not know to which gj in N a fi in M
correspond. This ordering can be expressed by an unknown q ◊ q permutation matrix �.

Representing the functions in the bases on each shape, we have ai = È„M
i , fiÍL2

(M)

and bj = È„N
j , gjÍL2

(N )

related (approximately) by B� = CA, where fiji = 1 if ai cor-
responds to bj and zero otherwise. Note that in the above relation both � and C are
unknown leading to an ill-posed problem, which can be regularized by adding structure
priors on C. While in [PBB+13] only the approximate diagonality prior was considered,
the formulation is amenable to more general types of priors. The general correspondence
inference problem can be written as

min

C,�

1

2

ÎB� ≠ CAÎ2

F

+ fl(C), (3.6)

where the minimum is sought over k ◊ k matrices C (representing the correspondence T
between the shapes in the functional representation) and q◊q permutations � (capturing
the correspondence between the input functions). The second term promotes solutions
respecting the structure of C. In the particular case of fl being a weighted ¸

1

norm pro-
moting diagonal structure, the authors of [PBB+13] dubbed problem (3.6) as permuted
sparse coding.

The solution of (3.6) can be obtained using alternating minimization iterating over C
with fixed �, and � with fixed C. Note that with fixed �, we can denote BÕ

= B� and
reduce problem (3.6) to the regularized correspondence inference problem with ordered
inputs,

min

C

1

2

ÎBÕ ≠ CAÎ2

F

+ fl(C). (3.7)

On the other hand, when C is fixed, we set AÕ
= CA, reducing the optimization objective

to

ÎB� ≠ AÕÎ2

F

= tr

1
B€B��€

2
≠ 2tr

1
AÕ€B�

2
+ tr

1
AÕ€AÕ

2
.

Since � is a permutation matrix, ��€
= I, and the only non-constant term remaining

in the objective is the second linear term. Problem (3.6) thus becomes the following q ◊ q
linear assignment problem (LAP)

max

�
tr

1
�€E

2
, (3.8)

where E = AÕ€B = A€C€B. Due to total unimodularity of LAPs, it can be solved as the
following linear problem

max

�Ø0
vec(E)

€
vec(�) s.t.

I
�1 = 1
�€1 = 1.

(3.9)
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Figure 3.3: Outer iterations of the robust permuted sparse coding alternating the solution
of inference problem (3.12) with the linear assignment problem (3.13). Three iterations,
shown left-to-right, are required to achieve convergence. Depicted are the permutation
matrix � (first row), the correspondence matrix C (second row), and the outlier matrix O
(last row). The resulting point-to-point correspondence and the correspondence matrix
C refined using the ICP are shown in the rightmost column.

Problems 3.7 and 3.9 are alternated; in cases where the prior fl is a convex function, con-
vergence to a local minimum is guaranteed. In practice, excellent convergence is ob-
served after a few outer iterations. Figure 3.3 illustrates convergence in three iterations.

So far, we have assumed the existence of a bijective, albeit unknown, correspondence
between the inputs fi’s and the gj ’s. In practice, the process detecting these functions
is often not perfectly repeatable. In what follows, we discuss the more realistic setting
in which q functions fi are detected on M, and r functions gj detected on N (without
loss of generality, q Æ r), such that some fi’s have no counterpart gj , and vice versa.
This partial correspondence can be described by a q ◊ r partial permutation matrix �
in which now some columns and rows may vanish. Let us assume that s Æ q fi’s have
corresponding gj ’s. This means that there is no correspondence between r ≠ s columns
of B and q ≠ s columns of A, and the relation B� ¥ CA holds only for an unknown
subset of its columns. The mismatched columns of B can be ignored by letting some
rows of � vanish, meaning that the correspondence is no more surjective. This can be
achieved by relaxing the equality constraint �1 = 1 in (3.9) replacing it with �1 Æ 1.
However, dropping surjectivity as well and relaxing �€1 = 1 to �€1 Æ 1 would result
in the trivial solution � = 0. To overcome this difficulty, we demand every column of
A to have a matching column in B, and absorb the r ≠ s mismatches in a column-sparse
n ◊ q outlier matrix O that is added to the data term of (3.6). This results in the following
problem

min

C,O,�

1

2

ÎB� ≠ CA ≠ OÎ2

F

+ fl(C) + µÎOÎ
1,2, (3.10)

which can be thought of as a robust version of (3.6). The last term involves the ¸
1,2 norm

ÎOÎ
1,2 =

nÿ

i=1

ÎoiÎ2

, (3.11)
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which can be thought of as the ¸
1

norm of the vector of the ¸
2

norms of the columns oi

of O. The ¸
1,2 norm promotes column-wise sparsity, allowing to absorb the errors in the

data term corresponding to the columns of A having no corresponding columns in B;
the parameter µ Ø 0 controls the amount of such outliers. The r ◊ q matrix � is searched
over all surjective correspondences.

As before, problem (3.10) is split into two sub-problems, one with the fixed permuta-
tion �,

min

C,O

1

2

ÎBÕ ≠ CA ≠ OÎ2

F

+ fl(C) + µÎOÎ
1,2, (3.12)

with BÕ
= B�, and the other one with the fixed C,

max

�Ø0
vec(E)

€
vec(�) s.t.

I
�1 Æ 1
�€1 = 1,

(3.13)

Note that an surjective correspondence is relaxed into a column-wise stochastic and row-
wise sub-stochastic matrix �.

3.4 Coupled functional maps

Instead of finding one functional map from L2

(M) to L2

(N ), it is possible to consider
simultaneously two coupled functional maps T

1

: L2

(M) æ L2

(N ) and T
2

: L2

(N ) æ
L2

(M) satisfying T
1

T
2

= id [ERGB16]. In matrix representation, this coupling constraint
amounts to C

1

C
2

= I. Coupled functional maps are computed by solving the optimiza-
tion problem

min

C1,C2
ÎC

1

A ≠ BÎ + ÎA ≠ C
2

BÎ + µÎW ¶ C
1

Î + µÎW ¶ C
2

Î (3.14)

s.t. C
1

C
2

= I.

where W is a mask as in the permuted sparse coding problem promoting a funnel-shaped
structure of the matrices C

1

, C
2

. In [GB16], it was shown that the set of pairs of invert-
ible orthogonal matrices BO = {(M, N) : M€N = I} is a Riemannian matrix manifold
referred to as biorthogonal manifold; it is thus possible to employ manifold optimization
techniques to solve (3.14).

3.5 Correspondence by matrix completion

In [KBBV15], it was proposed to formulate functional map computation as a geometric
matrix completion [KBBV14]. In classical matrix completion problem, one is given a sparse
set of observations aijœ�

of a matrix A and tries to find the lowest rank matrix with
elements equal to the given ones on the subset of indices �. Since rank minimization
turns out to be an NP-hard problem, Candès et al. [CR09] proposed using a convex
relaxation of the problem

min

X
ÎXÎú s.t. xij = aij , ij œ �,

where the nuclear norm ÎXÎú =

q
i ‡i (‡i denoting here the singular values of X =

U�V€) is used as the convex proxy of the rank. It is common to replace the constraint
by a penalty,

min

X
ÎXÎú + µÎP

�

X ≠ aÎ,
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where P
�

X = (xijœ�

).
Matrix completion problems are widely used in recommender systems such as the

classical Netflix problem, in which the matrix of scores given by users to different movies
has to be estimated from a sparse set of samples. However, the standard problem setting
does not account for possible geometry of the problem. For instance, if the columns corre-
spond to users and rows to movies, and a friendship relation between users is available
in the form of a social graph, one would expect friends to give similar scores. A sim-
ple geometric matrix completion model (see Figure 3.4) assuming column- and row-wise
smoothness, understood as the Dirichlet energy w.r.t. column- and row-graphs,

min

X
ÎXÎú + µ

1

trace(X€�rX) + µ
1

trace(X�cX€
) + µ

2

ÎP
�

X ≠ aÎ,

was proposed in [KBBV14] (here �c, �r denote the column- and row-graph Laplacians,
respectively).

Figure 3.4: Left: geometric matrix completion in the Netflix problem (columns represent
users and rows are movies; geometric structure of columns is given in the form of a social
graph of users). Right: correspondence as a matrix completion problem.

In [KBBV15], this model was adapted to shape correspondence problems. Consider-
ing the functional correspondence operator represented in delta-bases on discrete shapes
as an m ◊ n matrix T (n and m denote here the number of vertices on the two shapes M
and N , respectively),

min

T
ÎTÎú + µ

1

trace(T€�N T) + µ
1

trace(T�MT€
) + µ

2

ÎTF ≠ GÎ + µ
3

ÎTÎ
1

,

where F = (f
1

, . . . , fq) and G = (g
1

, . . . , gq) are n ◊ q and m ◊ q matrices representing the
corresponding functions, TF ¥ G. The use of the additional L

1

-norm penalty promoting
sparsity of T, together with the Dirichlet energy promoting its row- and column-wise
smoothness, results in correspondence localization [OLCO13]. Parametrizing T = UV€,
where U, V are m◊k and n◊k matrices, respectively, with arbitrarily large k, the problem
can be equivalently posed as [SRJ04]

min

U,V
1

2

(ÎUÎ2

F

+ ÎVÎ2

F

) + µ
1

trace(VU€�N UV€
) + µ

1

trace(UV€�MVU€
)

+µ
2

ÎUV€F ≠ GÎ + µ
3

ÎUV€Î
1

(3.15)

Parametrizing the factors U = �N P, V = �MQ as linear combinations of kÕ Laplacian
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eigenfunctions, problem (3.15) can be rewritten as

min

P,Q
1

2

(Î�N PÎ2

F

+ Î�MQÎ2

F

) + µ
1

trace(QP€�N PQ€
) + µ

1

trace(PQ€�MQP€
)

+µ
2

ÎPQ€A ≠ BÎ + µ
3

Î�N PQ€�€
MÎ

1

, (3.16)

where notation follows our discussion of joint diagonalization. Note that matrices P, Q
are not orthogonal.

The matrix completion approach turns out to be advantageous when the given corre-
spondence information is very scarce. Since rank(T) Æ k and k can be arbitrarily large (in
practice, limited only by computational complexity) as opposed to the plain functional
maps formulation as a linear system (in which k must be smaller than q in order to make
the system determined), the matrix completion approach behaves better in situations
where k ∫ q (see Figure 3.5).
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Figure 3.5: Behavior of different functional correspondence model for increasingly large
rank of the correspondence matrix k. The matrix completion model manifests better cor-
respondence quality with the increase of k, while other models’ quality deteriorates.
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3.6 List of Key Symbols

Symbol Definition
T Continuous functional map
T Discrete functional map expressed in the delta basis
C Functional map expressed as a matrix in the basis of LB eigenfunctions.
X Matrix manifold
�M Discretization of the Laplacian �M
�M Matrix of eigenvectors of the Laplacian �M
ˆ�M, ˆ�N Coupled bases
�M Diagonal matrix of eigenvalues of the Laplacian �M
� Permutation establishing input functions ordering
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Partial Functional Maps

This Chapter discusses how the functional map representation can be used to deal with
shapes having missing parts, with the presence of clutter, and the two sources of nuisance
simultaneously.

4.1 Partial Functional Maps

In case one of the two shapes has holes or missing parts, the functional representation of
the correspondence still has a meaningful structure which can be taken advantage of, as
recently shown in [RCB+16].

Assume to be given a full shape M and a partial shape N that is approximately iso-
metric to some (unknown) sub-region MÕ µ M. The authors showed that for each “par-
tial” eigenfunction „N

j of N there exists a corresponding “full” eigenfunction „M
i of M

for some i Ø j, such that cij = ÈTF („M
i ), „N

j ÍL2
(N )

¥ ±1, and zero otherwise. Note that
differently from the full-to-full case discussed in the previous chapters, where the approx-
imate equality holds for i = j (see, e.g., Section 3.1), here the inequality i Ø j induces a
slanted-diagonal structure on matrix C. In particular, it can be shown that the angle of the
diagonal can be directly (and quite conveniently) estimated from the area ratio of the two
surfaces [RCB+16]. The precomputed angle can then be used as a prior on C to drive the
matching process (we will see how in Section 4.1.2).

4.1.1 Perturbation analysis

In this Section we sketch an algebraic argument motivating the behavior that we observe
for the eigenfunctions of the partial shape. In a nutshell, the idea is to model partiality
as a perturbation of the Laplacian matrices �M, �N of the two shapes. Specifically,
consider the dog shape M shown in the inset, and assume a vertex ordering where the
points contained in the red region N appear before those of the blue region ¯N . Then, the
full Laplacian �M will assume the structure

�M =

A
�N 0

0 �
¯N

B

+

A
PN E
E€ P

¯N

B

, (4.1)

where the second matrix encodes the perturbation due to the boundary interaction be-
tween the two regions. Such a matrix is typically very sparse and low-rank, since it con-
tains non-zero elements only in correspondence of the edges connecting the boundary
ˆN to ˆ ¯N .

28
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N

N̄

M
If the perturbation matrix is identically zero, then (4.1) is

exactly block-diagonal; this describes the case in which N
and ¯N are disjoint parts, and the eigenpairs of �M are an
interleaved sequence of those of the two blocks. The key re-
sult shown in [RCB+16] is that this interleaving property still
holds even when considering the full matrix �M as given in
(4.1): Its eigenpairs consist of those of the blocks �N , �

¯N ,
up to some bounded perturbation that depends on the length
and position of the boundary ˆN .

4.1.2 Algorithm

In the part-to-full setting, one is interested in determining a functional map built upon
a near-isometry T : N æ MÕ, where the part MÕ µ M is an additional unknown of the
correspondence problem. The idea is to model the part as a soft indicator (or segmenta-
tion) function v : M æ [0, 1] such that v(x) = 1 if x œ MÕ and zero otherwise, and to
simultaneously solve for the functional map matrix C and the indicator v. The resulting
optimization problem takes the general form:

min

C,v
ÎCA ≠ B(v)Î

2,1 + fl
corr

(C) + fl
part

(v) , (4.2)

where B(v) denotes the spectral coefficients of the descriptor field on M weighted by v
(which thus acts like a mask), fl

corr

is a correspondence regularization term, and fl
part

is
part regularization. The L

2,1 norm makes the data term more robust to noisy data.
As correspondence regularization, the authors in [RCB+16] proposed to use the penalty

fl
corr

(C) = µ
1

ÎC ¶ WÎ2

F + µ
2

ÿ

i”=j

(C€C)

2

ij + µ
3

ÿ

i

((C€C)ii ≠ di)
2 ,

where ¶ is the element-wise product. The µ
1

-term models the slanted-diagonal structure
of C, where matrix W is a weight matrix with zeroes along the slanted diagonal and large
values outside. A similar term was used in Section 3.3 for full-to-full correspondence.
The slope of W can be estimated in several ways, one simple possibility being the area
ratio of the two surfaces [RCB+16]. The µ

2

- and µ
3

- terms promote orthogonality of the
functional map; here, d is a vector with the first r elements set to 1 and the remaining
to 0, where r is the estimated rank of the map (obtained in the same way as the slope
estimate).

For part regularization, the following terms (inspired by [BB08]) are considered:

fl
part

(v) = µ
4

3
area(N ) ≠

⁄

M
v dx

4
2

+ µ
5

⁄

M
ÎÒMvÎdx .

The µ
4

-term asks for the sought part to have area close to the partial shape N . The µ
5

-
term is an intrinsic equivalent of the Mumford-Shah functional from image processing,
measuring the length of the boundary of the part represented by a soft indicator func-
tion. Asking for short boundary length prevents the algorithm from getting stuck at local
minima with highly fragmented regions.

The optimization problem (4.2) is non-convex, and can be minimized in an iterative
fashion by solving for C and v alternatingly until convergence. Although this approach
does not guarantee to reach a global optimum, the obtained solutions are typically very
accurate, as also recently demonstrated in the challenging SHREC’16 Partial Correpon-
dence benchmark [CRB+16]. Some qualitative examples are reported in Figure 4.1.
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Figure 4.1: Examples of solutions obtained with the partial functional maps algorithm of
Section 4.1.2. Each partial shape is matched to the reference full model (leftmost shape).

M N1

C1 C€
1 C1

N2

C2 C€
2 C2

N3

C3 C€
3 C3

N4

C4 C€
4 C4

Figure 4.2: Functional maps at increasing amounts of clutter. The model M is matched to
scenes N

1

-N
4

, giving rise to the matrices of spectral coefficients C
1

-C
4

. Observe how the
dominant slope of Ci varies with clutter, moving from the lower- to the upper-triangular
part of the matrix. The rank of Ci decreases as more and more clutter is introduced, a fact
that is manifested in empty rows and columns in Ci, and in the sparse diagonal structure
on C€

i Ci. The latter property can be used as a prior when solving for Ci. The zero-clutter
pair (M, N

1

) is the setting considered in Section 4.1.

4.2 Deformable clutter

The approach described in the previous Section can be applied whenever one is given a
partial query N to be matched to a full model M (part-to-full matching). If both shapes
have missing parts (part-to-part) or if additional geometry (or “clutter”) is present in
either shape, the approach will fail due to its underlying assumptions. Moreover, it is not
clear whether a particular structure is still observable in matrix C under this challenging
setting.

A positive answer to this question was recently given in [CRM+16]: In the presence
of clutter, it is still possible to find eigenfunctions „M

i on M for some indices i, having
corresponding eigenfunctions „N

j on N for some indices j. There is a key difference
with what we have seen in the previous settings. While in the full-to-full case we had
correspondence for i = j and in the part-to-full case for i Ø j, here the correspondence
among indices cannot be reliably predicted. The diagonal slant of C, which identifies the
pairs (i, j) for which cij = ÈTF („M

i ), „N
j ÍL2

(N )

”= 0, is now an unknown that we need to
optimize for. In particular, we expect cij ”= 0 only for a sparse set of indices, i.e., matrix
C will have empty rows and columns. See Figure 4.2 for an illustration at increasing
amounts of clutter.

Due to the presence of clutter, a more general formulation for the correspondence
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Figure 4.3: Two examples of a deformable object-in-clutter problem, and the correspond-
ing solutions obtained with the method described in Section 4.2.

problem is required since it is now possible that only parts of both shapes are matchable.
In mathematical terms, this amounts to introducing two segmentation functions u : M æ
[0, 1] and v : N æ [0, 1] indicating the shape parts that are put into correspondence. This
leads to an optimization problem of the form:

min

C,◊,u,v
ÎCA(u) ≠ B(v)Î

2,1 + fl
corr

(C, ◊) + fl
part

(u, v) . (4.3)

The regularization terms on correspondence and part are defined in a similar manner to
Section 4.1.2. Notice, however, that the diagonal slope of C, denoted by ◊, is now an
optimization variable. This is used to define a parametric weight matrix W(◊) that is
used to promote a slanted diagonal structure on C as in the previous case. Similarly to
partial functional maps, the optimization process alternates between the two blocks of
variables {C, ◊} and {u, v} until convergence. We refer to [CRM+16] for the technical
details.

4.3 Non-rigid puzzles

A problem related to the ones described in the previous Sections was recently tackled in
[LRB+16]. Specifically, the authors considered a shape correspondence problem in which
multiple parts, possibly with additional clutter, are to be matched to a given full model.
The query parts may partially overlap, and the model shape might have “missing” re-
gions that do not correspond to any query shape; conversely, there might be “extra”
query shapes that have no correspondence to the model shape. Similarly to the previous
problems, the final task is to establish a dense part-to-whole correspondence for each par-
tial shape, and simultaneously determine a segmentation of the model. The method can
thus be seen as an extension of partial functional maps [RCB+16] for the multiple part
setting on one hand, and a non-rigid generalization of the rigid puzzles problem treated
in [LBB12] on the other.

This “non-rigid puzzle” problem admits a simple formulation as follows

min

C
i

,u
i

,v
i

pÿ

i=1

ÎCiAi(ui) ≠ Bi(vi)Î2,1 +

pÿ

i=0

fl
corr

(Ci) +

pÿ

i=1

fl
part

(ui, vi)

s.t.
pÿ

i=0

ui = 1 ,
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Figure 4.4: Example of a non-rigid puzzle problem: given a model human shape (left-
most, first column) and three query shapes (two deformed parts of the human and one
unrelated “extra” shape of a cat head), the goal is to find a segmentation of the model (sec-
ond column, shown in yellow and green; white encodes parts without correspondence)
into parts corresponding to (subsets of) the query shapes. The third column shows the
computed correspondence between the parts.

for a problem with p query parts, and with p
0

denoting possible missing parts. Again, the
regularization terms on correspondence and parts can be defined in a similar manner as
in (4.2). Note that the summation constraint renders the problem a proper segmentation
task, enforcing a complete covering of the model. The problem above thus consists in
solving p partial functional correspondence problems simultaneously, under covering
constraints. Figure 4.4 shows an example of a non-rigid puzzle solved with this method
(additional details can be found in [LRB+16]).

4.4 Applications

Partial correspondence problems arise in numerous applications in the computer vision
and graphics communities. A few representative examples are given below.

Shape reconstruction from range data is a classical application that involves real data
acquisition by 3D sensors, inevitably leading to missing parts due to occlusions or par-
tial view. If the object to be scanned is allowed to undergo non-rigid deformations, the
problem is commonly referred to as dynamic fusion and is considered one of the most
challenging problems of shape analysis and 3D vision.

Object detection and recognition in clutter classically arise in robotics applications,
where one has to locate a reference model within a dynamic environment acquired in 3D.
Surveillance applications often require the ability to match and compare the (partially)
scanned subject against an existing database of shapes, up to body deformation.

Finally, in computational biology the identification of similar tertiary structure of pro-
teins provides important information for analyzing their function. Structural similarity
is often phrased as a partial correspondence problem between mesh representations of
the 3D structures of proteins.
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4.5 List of Key Symbols

Symbol Definition
MÕ Sub-region of a full shape M
TF Functional representation of a given pointwise map T

C Functional map expressed as a matrix in the Fourier basis
� Matrix representation of the Laplace operator
ˆM Boundary of shape M
u, v Indicator functions with values in [0, 1]

ÒM Intrinsic gradient operator on shape M
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Maps in Shape Collections

Considering a collection of shapes related by mappings provide valuable information on
deformation model and plausible deviations from this model. The earliest data-driven
approaches for devising a deformation model, however, rely heavily on a consistent
parametrization of the deformation domain (e.g. on a fixed grid in Euclidean space),
and perform statistical analysis on the positions of vertices of the shapes. The functional
framework does not need such parametrization, as it is purely intrinsic, making the anal-
ysis of a shape collection more tractable and general. In this chapter we introduce two
methods to improve the computation of functional maps, first by using a supervised
learning technique for feature selection and the second by imposing consistency among
mappings with respect to composition. The last section presents the shape difference opera-
tors, an operator-based representation of intrinsic deformation, initially used for analysis
of shape collection.

5.1 Descriptor and subspace learning

The simple algebraic structure of functional maps allows us to handle maps using stan-
dard linear algebra tools. However the approximation of a functional maps often relies
on intrinsic descriptors computed separately on each shape. Two difficulties can arise
from this computation: first the descriptors usually do not span the entire space of func-
tions, second noisy functional correspondences can result in unreliable mappings in some
part of the functional space. Using a collection makes the functional map computation
more robust to non-isometric deformations and allows us to identify subspace of func-
tion on which the map is reliable. In this section we introduce the algorithm suggested
in [COC14] closely related to inverse problems.

Functional Map Approximation The basic method described in Chapter 2 approxi-
mates the functional map Ci using a set of linear constraints. The first type of constraints
is given by a set of pairs of functions that are expected to be preserved by the deforma-
tion. The second is a regularization term coming from the deformation model. This leads
to the least squares problem:

Cı
i = arg min

X
ÎXA

0

≠ AiÎ2

F + –ÎX�
0

≠ �iXÎ2

F .

Here, A
0

, Ai are the matrices that contain, as columns, pairs of functions that we expect
to correspond under the unknown map, written in a given basis (e.g. the basis given

34
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Figure 5.1: Supervised Learning. Given a collection of functional maps, a set of optimal
weight Dı and a basis of the p-best mapped functions Yp are computed. When given
a previously unseen shape (circled in red) we obtain an approximated functional map
Cp

n+1

(Dı
) restricted to the most reliable function subspace.

by the eigenfunctions of the LB operator), whereas �
0

, �i are the diagonal matrices of
eigenvalues of the LB operator, as discussed in Section 2.4.4 above.

In this basic approach, the functional correspondences (also called probe functions be-
low) are assumed to be given. In practice, however, this choice can already be challenging
as not all such correspondences result in a useful functional map. The key idea proposed
in [COC14] is to introduce weights for probe functions, and to use supervised learning
to obtain optimal weights, given a set of example functional maps. Thus, the functional
constraint will be replaced by: ÎXA

0

D ≠ AiDÎ2

F where the weights D will be optimized
so that the weighted descriptors are jointly as informative as possible. This will allow
us to improve the quality of the functional maps and moreover to extract the functional
subspaces in which the computed maps will be as most reliable.

For this, we can define the function D ‘æ Cı
i (D), which maps a given sets of weight to

the corresponding optimal functional map, via the solution of the optimization problem:

Cı
i = arg min

X
ÎXA

0

D ≠ AiDÎ2

F + –ÎX�
0

≠ �iXÎ2

F .

Finding the best weights We assume that we are given a collection of n deformations
of the same object with known functional maps Ci (Figure 5.1). The optimal weights Dı

are the ones that produce an approximation Cı
i (D) that is closest to the ground truth

known Ci. Thus, we want to solve the following optimization problem:

Dı
= arg min

D

nÿ

i=1

ÎCı
i (D) ≠ CiÎ,

where the sum is over the set of given training maps Ci. Note that the choice of norm in
the above energy is very important and the naive choice of squared Frobenius norm for
comparing the optimized with the known functional maps typically leads to poor per-
formance. Note also that although the optimization problem is non-convex, the energy
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is nevertheless continuous with respect to the weight matrix D, and can be optimized in
practice as described in [COC14] in more details.

Basis function extraction Since the probe functions can give redundant information in
some shape parts and incomplete information in others, our functional map will map
some subspaces of L2

(M
0

) more reliably than others. Using a collection of shapes we
would like to extract the most stable subspaces.

For this purpose we propose to use the learned optimal weights Dı and the resulting
estimated functional maps Cı

i (Dı
) to identify stably mapped functional subspaces by

comparing Cı
i (Dı

) to the reference maps Ci. The output will be Y an orthonormal basis
of L2

(M
0

) ordered with decreasing confidence. This can be done efficiently in practice
by computing a singular value decomposition of a moderately sized matrix.

Functional map to a test shape using a reduced basis Now if we are given an extra
shape Mn+1

that does not belong to the training set, we first compute its probe functions
and store them in a matrix An+1

. We then compute the functional map Cı
n+1

(Dı
) by

using the optimal weight matrix Dı. Finally, since we know that Cı
n+1

(Dı
) contains

some badly mapped subspaces (for example the antisymmetric functions), by using Yp

the p first column of Y, we compute the reduced map Cp
n+1

Cp
n+1

= Cn+1

Yp : L2

(M
0

) fl L2

(Span(Yp)) æ L2

(Mn+1

).

As shown in [COC14], this procedure can lead to significantly better functional map,
by first removing the manual process of selecting the right set of probe functions, and
instead learning the optimal set from the given input correspondences and moreover by
restricting the functional map to the right subspace in which the map is more reliable.

5.2 Networks of Maps

Functional maps enable information transport between between two shapes. When mul-
tiple related shapes are available, it is natural to consider multi-hop information transport
by composing functional maps along a directed path of pairwise functional maps. Thus
suggests organizing a collection of related shapes into a connected network whose nodes
are the individual shapes and where certain pairs of shapes are linked by directed edges,
each decorated with a functional maps between the corresponding shape pair. An ad-
vantage of the network view is that it allows us have access to multiple maps between
a given pair of shapes, simply by forming functional map compositions along different
paths in the network connecting the two shapes in question. For example, functional
maps between relatively dissimilar shapes are likely to be less accurate — but by com-
posing functional maps along a path of interpolating shapes where the relative changes
are smaller, we may be able to get a better quality map.

In fact there are more fundamental ways in which a functional map network can be
used to improve the maps decorating its edges, beyond re-writing maps as compositions
of other maps. This is because functional maps express notions of function value preser-
vation across two shapes, and value equality is transitive. What this implies is that in an
ideal setting map compositions would be path-invariant: compositions along any path
connecting the same pair of shapes should yield the same result. Equivalently, this can be
stated as cycle closure — composing maps along any edge cycle in the network should
yield the identity map. If we have a collection of n shapes and build a big mapping matrix
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C consisting of n ◊ n blocks Cij , where Cij is the functional map from shape i to shape
j, the cycle closure constraint puts very strong restrictions on the matrix C. As it turns
out [HWG14], C has to be positive semidefinite and of low rank — all the cycle closure
conditions introduce many dependencies among the elements of C. This implies that we
can use low-rank matrix completion techniques to replace the ordinal functional maps
by others that are close to the original but more cycle consistent [HWG14]. In practice we
find that this helps improve the original maps.

Cycle consistency. Formulating cycle consistency as an optimization criterion amenable
to efficient computation also becomes a challenge in the functional setting, even in the full
similarity case, where presumably we want preservation of functions transported around
all cycles in the network — equivalently, we want to compositions of operators along any
cycle to yield the identity. Recall that the unknowns to be estimated are the elements of
the mapping matrices Cij . A network or graph can have an exponential number of cy-
cles. Furthermore, even for short cycles (say 3-cycles) the multiplication of the operator
matrices will yield algebraic expressions of degree 3 in the matrix element variables. So it
seems that the cycle consistency conditions yield an exponential number of highly non-
linear equations.

Latent spaces. The key notion is to introduce certain latent functional spaces that encap-
sulate the commonalities among the data. In the simplest case of full similarity between
the shapes there is just one latent space, the common abstraction or “Platonic ideal” of
which all the individual shapes are instances. If we postulate functional maps Yi that
map each individual functional space Fi over shape i to a common functional space F ,
then we can factorize each Cij as Cij ¥ Y≠1

j Yi. From this expression it is clear the com-
position of the Cij around any cycle is a telescoping product, where all the Yi cancel out
and we get the identity.

This turns out to be equivalent to the existence of row-orthogonal matrices Yi =

(yi1, · · · , yiL)

T œ RL◊dim(F
i

), 1 Æ i Æ N such that

Cij = Y+

j Yi, ’(i, j) œ G. (5.1)

Again, here Y+ denotes the Moore–Penrose pseudo-inverse of Y.
It is clear that matrices Yi can be used to specify maps between pairs of shapes that

are not neighbors in the original network:

Cij = Y+

j Yi, ’(i, j) /œ G. (5.2)

If we now let C be a big matrix that encodes the pair-wise map matrices in blocks,
then we can express the relation between C and matrices Yi as

C :=

Q

ca

C
11

· · · CN1

... . . . ...
C

1N · · · CNN

R

db =

Q

ca

Y+

1

...
Y+

N

R

db
1

Y
1

· · · YN

2
. (5.3)

Joint map optimization. Adopting the robust principal component analysis framework
[CLMW11, WS13], we formulate the following convex program to compute the map ma-
trix:

Cı
= min

C
⁄ÎCÎı +

ÿ

(i,j)œG
ÎCijAi ≠ AjÎ

2,1. (5.4)
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Input Joint map correction Consistent bases

Figure 5.2: Map Computation Pipeline. The single-level map construction algorithm
consists of two steps. The first step takes a shape collection and (noisy) initial functional
maps between pairs of 3D shapes as input and solves a low-rank matrix recovery problem
to correct pair-wise maps. The second step then extracts consistent basis functions from
optimized pair-wise maps.

The objective function essentially consists of two types of matrix norms. The first com-
ponent is called the trace-norm defined as ÎCÎı =

q
i ‡i(C), where ‡i(C) are singular

values of C. As discussed in depth in [CLMW11], the trace-norm is a convex proxy for
the rank of a matrix. The second component utilizes the L

2,1 norm, i.e., ÎAÎ
2,1 =

q
i ÎaiÎ,

where ai are columns of matrix A. This L
2,1 norm, which is a special group-lasso objec-

tive [YL06], has the effect that the optimal value of C is insensitive to outlier functional
correspondences. An alternative is to use the element-wise L

1

norm.

Orthogonal basis synchronization. Assuming that the functional maps are area-preserving
and thus represented by orthogonal matrices Cij = Y€

j Yi, cycle consistency is automat-
ically guaranteed. In this setting, problem (5.4) can be posed as optimization on the
product of Stiefel manifolds [KGB16]

min

Y1,...,Y
N

ÿ

(i,j)œG
ÎYiAi ≠ YjAjÎ

2,1 s.t. Y€
i Yi = I, (5.5)

possibly with additional regularization on Yi like in the joint diagonalization problem.
Due to non-smoothness of the data term, optimization is carried out using Manifold
ADMM method [KGB16]. Problem (5.5) can be interpreted as a ‘synchronization’ of or-
thogonal bases.

5.3 Metrics and Shape Differences

Comparing deformations is a fundamental operation in shape collection. For this pur-
pose we introduce two difference operators acting on functions describing the deforma-
tion undergone by the metric. They take into account two orthogonal local distortion: the
change in the area and the change in the angle. Interestingly those shape difference oper-
ators act on functions on the reference shape and produce functions on the same shape.
This simple property allows us to perform deformation comparison and visualization.

Moreover this description is provably comprehensive as the distorted metric can be
recovered from the shape operators so the shape difference can also be used for shape
synthesis. Given two operators and a reference shape it is possible to retrieve the shape
realizing this deformation.

Shape Difference Operators Introduced in [ROA+13], the shape difference operators
describe a shape deformation by considering the change of two inner products between
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functions. Namely, given a pair of shapes M, N and a diffeomorphism T : N æ M,
with the associated linear functional map (pullback) defined by TF (f) = f ¶ T , the au-
thors introduce the area-based and conformal shape difference operators DA and DC

respectively, as linear operators acting on (and producing) real-valued functions on M
implicitly via the following equations:

Èf, DA(g)ÍL2
(M)

:= ÈTF (f), TF (g)ÍL2
(N )

’f, g (5.6)

Èf, DC(g)ÍH1
0 (M)

:= ÈTF (f), TF (g)ÍH1
0 (N )

’f, g (5.7)

where the inner products are defined as Èf, gÍL2
(M)

:=

s
M fgdµ and Èf, gÍH1

0 (M)

:=s
MÈÒf, ÒgÍdµ.

The existence and the linearity of the operators DA and DC is guaranteed by the
Riesz representation theorem. As shown in [ROA+13], for smooth surfaces, the map T
is area-preserving (resp. conformal) if and only if DA (resp. DC) is the identity map
between functions. From this it follows that T is an isometry if and only if DA and DC

are both identity. Those two operators provide a comprehensive description of intrinsic
deformations.

To illustrate the properties of the shape differences we use a simple low-dimensional
description of a shape collection. Here we choose a fixed base shape and compute the
shape difference matrices with respect to the remaining shapes in a collection. Then, we
represent each shape by its shape difference matrix and plot them as points in PCA space.
Figure 5.3 represents the conformal deformation of a bunny into a sphere as viewed by
the two shape differences. As expected the conformal shape difference is almost identity
while the area and isometric shape differences both capture the distortion. In the second
experiment, shown in Figure 5.3, we explore another collection obtained by the shearing
of a plane patch. As this deformation is area preserving, the area-based shape difference
provides no information, unlike the conformal shape difference.

Reconstruction The operator-based representation of metric distortion is not only use-
ful for collection analysis, it can be used for deformation synthesis. At the moment this
is done by analyzing the discrete operator for reconstructing triangle meshes.

In a special case when the surfaces M and N are triangle meshes with identical con-
nectivity, the functional map CT is simply the identity matrix. Therefore, we obtain the
following discrete shape differences ([ROA+13] Option 1):

DA = A≠1

MAN , DC = W ≠1

M WN ,

where A is a diagonal mass matrix and W is a stiffness matrix [Rus07]. According to
[ZGLG12], DC is the identity matrix if and only if M and N have the same edge length
up to global scaling. Adding that the area-based shape difference is also identity implies
that both meshes share the same discrete metric. Interestingly the continuous statement
remains true in the discrete setting.

In [BEKB15] the authors consider the mass and stiffness matrices as functions of the
edge lengths ¸. They are able recover the discrete metric of the deformed mesh given the
shape differences DA, DC by minimizing the energy:

min

¸
ÎA≠1

MA(¸) ≠ DAÎ2

F + ÎW ≠1

M W (¸) ≠ DCÎ2

F .

The embedding is then computed through a Multidimensional scaling (MDS) problem
(see Figure 5.4).
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Figure 5.3: Top row: Approximately conformal deformation of a bunny into a sphere.
The PCA applied to shape differences confirms the presence of large area distortion in
contrast to small conformal distortion. Bottom row: Area preserving deformation of a
plane. The area shape difference is almost constant.

However the extrinsic curvature (second fundamental form) is not encoded in this
setup leading to possible multiple surfaces with identical metric. To add this informa-
tion an extension of the shape difference operators is proposed in [CSBC+16] using offset
surfaces to capture extrinsic distortion, complementing the purely intrinsic nature of the
original shape differences. The authors demonstrate that a set of four operators is com-
plete, capturing intrinsic and extrinsic structure and fully encoding a shape up to rigid
motion in both discrete and continuous settings. Moreover, they show that in the pres-
ence of full information (without loss due to the basis truncation) the discrete metric
(edge lengths) can be obtained by solving two linear systems of equations, and provide
a convex optimisation method to approximate the edge lengths given shape difference
operators expressed in a reduced basis.

5.4 Applications

Analysis of shape collection arises in many applications in computer graphics.

Shape matching Considering networks of maps has a direct application in improving
correspondences between shapes by introducing new constraints such as cycle consis-
tency and identifying outliers in a set of features [COC14, HWG14, KGB16].

Shape collection analysis Shape differences offer the possibility of comparing defor-
mations and therefore finding similar deformation within a shape collection. Moreover
it provides a low-dimensional embedding and a notion of distance between 3D models
in a shape space [ROA+13, CSBC+16].

Network of maps can be used in for co-segmentation by propagating segments in a
collection [HWG14, WHOG14].
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1.86

0

Figure 5.4: Shape analogy synthesis. Given a shape difference operator between the top
two shapes (cylinder and cylinder with bump) and another shape (sphere), a new object
(sphere with bump) is synthesized. Color code shows the point-wise error during the
optimization process.

Shape exploration Shape differences can be easily “edited” by standard linear algebra
tools. So, the ability of converting operators to embedded surfaces open the possibility of
exploring the space of possible intrinsic deformation by interpolating and extrapolating
shapes [CSBC+16].

5.5 List of Key Symbols

Symbol Definition
M, N Shapes (in most cases assumed to be either smooth surfaces, or manifold meshes).
F(M,R) Space of real-valued functions on shape M
TF Functional representation of a given pointwise map T

C Functional map expressed as a matrix in a given basis.
� Laplace-Beltrami operator on a surface
� diagonal matrix of eigenvalues of the mesh Laplacian
AM diagonal matrix of area weights on a mesh M
WM stiffness matrix of the cotangent mesh Laplacian on shape M
� Functional basis (matrix containing basis functions as columns)
AM Diagonal matrix of area weights on shape M.
F, G Function preservation constraints (each column corresponding to a function).
A, B Function preservation constraints represented as matrices in a given basis.



6

Functional Vector Fields

The advantages of representing geometric objects as linear operators on scalar functions
go beyond maps and correspondences. In this chapter, we will discuss the functional
representation of tangent vector fields, which are closely related to families of self-maps.

Representing tangent vector fields in the discrete setting is a challenging task. The
most intuitive representation, namely assigning a single Euclidean vector to each sim-
plex of a polygonal mesh requires careful tracking of the relationships between the tan-
gent spaces at different points, thus complicating tasks such as vector field design and
manipulation. For maps we know that the functional map TF holds the same informa-
tion as the map T , while being easier to work with since it is a linear operator. Similarly,
given a tangent vector field V on M, we can ask whether there exists a linear operator
VF which acts on scalar functions on M, such that VF completely represents V .

Interestingly, the directional derivative operator, which takes a smooth function to its
directional derivative in the direction of V , is exactly such an operator. Similarly to the
way we defined functional maps, we define a functional vector field (FVF) as the linear
operator VF given by: g = VF (f) = ÈÒf, V Í, where the inner product is defined pointwise
in the tangent space of each point on M [ABCCO13]. On the one hand it is easy to see
that VF is linear, and on the other hand it is well known in differential geometry that VF

exactly specifies V . Intuitively, if we know the action of VF on any function f , then at any
point p on M we can find the projection of V on two directions of the tangent plane at p,
which is enough to reconstruct V .

As we did for functional maps, given a choice of basis „M for scalar functions on
M, we can represent the functional vector field VF as a matrix DV . So far, two possible
choices of basis have been considered: the piecewise linear hat basis functions, commonly
used in finite elements, and the eigenvectors of the discrete Laplace-Beltrami operator. In
the hat basis DV is given by a large sparse matrix, whereas using the spectral basis DV is
a small dense matrix.

Equipped with this representation we can tackle classic vector field processing tasks
(such as vector field design and fluid simulation) from a new perspective. Instead of
working locally (or pointwise), e.g. specifying the value of the vector field at a point,
we can now work globally. For example, for vector field design, we can optimize for a
vector field which commutes with a given map (e.g. a symmetry map) [ABCCO13]. For
fluid simulation, we can use the sparse matrix representation of the FVF to succinctly
represent the flow of the vector field [AWO+14].

In the following we briefly outline a few useful properties of FVFs. We refer the reader
to the original papers for the details and the proofs.

42
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Figure 6.1: A tangent vector field V (visualized using its flow lines and color coded
norm) can be represented as a functional vector field VF : an operator which takes a smooth
function f : M æ R to the function g = ÈÒf, V Í. Given a choice of basis for functions on
M, the functional vector field can be concisely represented as a matrix DV .

6.1 From Vector Fields to Maps

The Flow Map. Consider a particle at a point p on M (see Figure 6.2). Given a tangent
vector field V , we can ask where will this particle be after time t, if its velocity is given by
V . Such a particle will trace a flow line of V on M. If we instead consider all the the points
on M as the starting points, for every time t œ R we have new positions which define a
self-map on M, known as the flow-map. Formally, we define a one-parameter family of self
maps, Ï : R◊ M æ M, which fulfills ˆÏ

ˆt (t, p) = V (Ï(t, p)), Ï(0, p) = p. We will often use
Ït(p) instead of Ï(t, p) to denote a single map.

ࢂ

݌

ሻ݌ሺ࢚࣐

Figure 6.2: A tangent vector field V and its flow Ït.

The Functional Flow Map. As with any map, we can think of Ït as the “transporter” of
quantities, and define the corresponding functional flow map using composition with the
inverse of the flow map: ÏtF (f) = f ¶ Ï≠t. The functional flow map naturally describes
the transport of a function (any scalar quantity) under the flow of a vector field (see e.g.
Figure 6.3), and it is therefore especially meaningful when V describes the velocity of a
fluid.

In previous chapters, we computed the functional map either directly from a point-
to-point map, or by inferring it using constrained optimization. In this respect, the func-
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(a) (b) (c) (d)
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Figure 6.3: Transporting a function (b) on the flow of a vector field (a) (visualized using
Line Integral Convolution), for two times t

1

, t
2

(c,d).

tional flow map is special, as it can be computed directly from the functional vector field,
bypassing the need to compute the point-to-point flow map. This property is quite valu-
able, since often the flow map is used solely for transporting values, and therefore work-
ing with the functional flow map is both easier and more natural.

Computing the Functional Flow. Given an initial function f
0

, the functional flow map
generates a time-varying function f : R ◊ M æ R, given by: f(t) = ÏtF (f

0

). Then f
fulfills: ˆf

ˆt = ≠ÈÒf, V Í = ≠VF (f), f(0) = f
0

.
We can now consider the space-discrete case, where M is given as a triangle mesh,

and f is represented using a finite set of basis functions. Now the equation becomes
ˆf
ˆt = ≠DV f

0

, where DV , f , f
0

are the representations of VF , f, f
0

in the chosen basis. In-
terestingly, this differential equation has a closed form solution [HO10], given by: f(t) =

exp(≠tDV )f0, where exp is the matrix exponential. Therefore, the matrix which corre-
sponds to the functional flow is exp(≠tDV ). In practice, there is no need to compute
the full exponential of the matrix, it is enough to compute the application of the matrix
exponential to a vector, which can be done using efficient algorithms [AMH11].

6.2 Properties.

Functional vector fields and their corresponding functional flow maps have some inter-
esting properties, of which we briefly mention three. Other properties such as a dis-
crete version of the uniqueness property, and discrete integration by parts are discussed
in [ABCCO13].

Pushforward. Given a bijective map T : M æ N , and a vector field V on M, the
functional pushforward of V to N is given by TF ¶ VF ¶ T ≠1

F [ABCCO13]. This property
can be used to jointly design vector fields on two shapes which correspond under a given
map.

Commutation. If DV commutes with a matrix D, namely DV ¶D = D¶DV , then so does
its flow for any t œ R. This is straightforward to see, as the matrix exponential is defined
as the sum of powers of DV . This relation is in fact stronger, and holds in both directions:
the FVF commutes with D if and only if its flow commutes with D for any t [ABCCO13].
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This property can be used to design vector fields whose flow is an isometry (known as
Killing vector fields), by constraining DV to commute with the Laplace-Beltrami operator.

Reconstruction. Given DV on M it is possible to reconstruct (an approximation of) V
by taking the projection of (DV x, DV y, DV z) to the tangent space of M , where x is the
representation in the chosen basis of the x coordinate of M , and similarly for y, z. De-
pending on the chosen function spaces, this might require interpolation (see [AVBC16]).

6.3 Applications

Vector Field Design. The functional formulation allows to optimize for a vector field
which fulfills intricate global constraints, such as commutation with a symmetry map and
isometric flow. Similarly to computing maps, we require a regularizer on the structure of
the matrix DV as not any matrix corresponds to a vector field. However, for vector fields
the situation is simpler, as they form a linear space. Thus, we can define a basis which
spans a subspace of tangent vector fields, and define the optimization problem in terms
of this basis. Figure 6.4 shows the result for designing a symmetric and anti-symmetric
vector field by requiring commutation and anti-commutation with a pre-computed in-
trinsic bilateral symmetry map.

Figure 6.4: Designing symmetric and anti-symmetric vector fields by optimizing for a
functional vector field which commutes (or anti-commutes) with an intrinsic symmetry
map. Note the symmetric behavior on the hands of the SCAPE model when symmetry
constraints are enforced in addition to directional constraints.

Fluid Simulation. The ability to compute the functional flow through the matrix ex-
ponential is highly valuable in applications where transfer of quantities is required. For
example, in fluid simulation, two different fluid models (Euler fluids [AWO+14] and vis-
cous thin films [AVW+15]) can be formulated in terms of the functional flow. Figure 6.5
shows examples of the resulting transported functions which represent (a) vorticity (local
spinning of the fluid) and (b) mass density. In (b) we use the density function as a height
function, and render the resulting offset surface. In both cases, the operator representa-
tion of vector fields allows to utilize complex optimization schemes, which would have
been considerably more difficult to implement using the point-to-point flow map.

Self-Map Inference. If we are looking for a smooth self-map, it is possible to constrain
the map to be the flow of a vector field (or a composition of flows). Then, the optimization
problem is specified in terms of the functional vector fields, instead of directly in terms of
the map. In [AVBC16] the authors used this idea to interpolate between functions on the
same surface by computing a flow map which transports the source function to the target
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Figure 6.5: Using the functional flow for fluid simulation. (a) Simulating turbulent flow
by transporting the vorticity of the fluid. (b) Simulating viscous thin film flow by trans-
porting the mass density (visualized as an offset surface).

function. The functional flow map can then be used for interpolation or extrapolation, by
transporting the source function for various times t. Figure 6.6 shows how this approach
can be used to infer a continuous intrinsic symmetry map from only a function and its
image under one instance of the symmetry map. See also chapter 7.6 for an application
of self-map inference to map improvement.

Figure 6.6: Using the functional flow for function matching and inferring a continuous
intrinsic symmetry map. (top left) Inputs: source and target functions to match. (top
right) Outputs: the vector field (direction and norm) whose flow transports the source
to the target. (bottom) Transporting the source function using the computed functional
flow.

6.4 List of Key Symbols

Symbol Definition
VF Functional representation of a given tangent vector field V

DV Functional vector field expressed as a matrix in a given basis.
Ït : M æ M The flow map of a vector field
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Map Conversion

7.1 Converting Functional Maps to Pointwise Maps

The functional map representation greatly simplifies correspondence-based tasks. If the
harmonic basis is truncated to k basis functions, the shape matching problem boils down
to solving for k2 unknowns, where k is possibly very small (typically in the range 20 ≠
300). At the same time, the truncation has the effect of ‘low-pass’ filtering, thus producing
smooth correspondences. In many applications, however, it is desirable to reconstruct the
point-to-point mapping induced by the functional map. Thus, the interest shifts to the
inverse problem of recovering the map T from its functional representation TF .

”

x

x

T

F

(”
x

)
The simplest and most direct way for reconstructing the

bijection T from the associated functional map TF consists in
mapping highly peaked Gaussian functions ”x for each point
x œ M via TF , obtaining the image g = TF (”x), and then declar-
ing T (x) œ N to be the point at which g attains the maxi-
mum [OBCS+12]. Such a method, however, suffers from at least
two drawbacks. First, it requires constructing and mapping in-
dicator functions for all shape points, which can get easily ex-
pensive for large meshes (several thousand vertices). Second,
the low-pass filtering due to the basis truncation has a delocal-
izing effect on the maximum of g, negatively affecting the quality of the final correspon-
dence (see inset).

Assume now that shapes M and N have n and m points respectively, and as in the
previous sections, let the matrices �M œ Rn◊k, �N œ Rm◊k contain the first k eigen-
functions of the respective Laplacians. Further, let matrix P œ [0, 1]

n◊m encode the map
T : M æ N . In the general case where m ”= n, the map T can be modelled as a soft as-
signment, i.e., by regarding T as a scalar function T : M ◊ N æ [0, 1] assigning a value
of confidence to each possible match (x, y) œ M ◊ N , and setting Pij = T (xi, yj). The
expression for C, the spectral representation of the functional map built upon T , can be
compactly written as

C = �N
€P€�M . (7.1)

Note that, despite our specific choice of a basis, the expression above holds for any choice
of orthogonal bases {„M

i }, {„N
j }; further, matrix C can be seen as a rank-k approximation

of P. For the particular case in which n = m and the underlying map T is a bijection,
the pointwise map recovery problem consists in finding a n ◊ n permutation matrix �
satisfying (7.1). This can be conveniently phrased as a linear assignment problem (LAP),
as discussed in the following section.

47
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7.2 Linear Assignment Problem

Consider the simple case in which n = m and k = n, i.e., the expression in (7.1) cor-
responds to an orthogonal change of basis (with no truncation). Since any such change
of basis preserves the rank of the transformation, the relation can be directly inverted to
obtain �€

= �N C�M
€. In the more realistic setting in which k π n, we can obtain the

best possible solution (in the ¸2 sense) by looking for a permutation � that minimizes the
linear assignment problem:

min

�œ{0,1}n◊n

≠È�€, �N C�M
€ÍF s.t. �€1 = 1 , �1 = 1 . (7.2)

Although this is a linear problem that can be solved in polynomial time [Kuh55], seek-
ing for such a solution can easily become prohibitive in practice for large meshes (n in
the order of several thousands). In practice, several more efficient variants are possible
that relax the bijectivity constraint on the underlying map, as described in the following
sections. We will return to the bijective recovery problem in Section 7.5.

7.3 Nearest Neighbors

A more affordable way to recover the pointwise map P from its spectral representation
can be obtained as a straightforward relaxation to the LAP. We start by deriving an equiv-
alent expression for the objective in (7.2), namely ≠2È�€, �N C�M

€ÍF = ÎC�M
€ ≠

�N
€�€Î2

F ≠ ÎC�M
€Î2

F ≠ Î�N
€Î2

F , holding for permutation matrices �. Minimizing
with respect to �, we get an equivalent formulation for the LAP:

min

�œ{0,1}n◊n

ÎC�M
€ ≠ �N

€�€Î2

F s.t. �€1 = 1 , �1 = 1 . (7.3)

This problem admits an intuitive interpretation. If we denote by ei the indicator vector
having the value 1 in the ith position and 0 otherwise, we see that each column of �M

€

contains the spectral coefficients �M
€ei of delta functions supported at xi œ M. Hence,

C�M
€ contains as its columns the images (via T ) of all delta functions on M. Prob-

lem (7.3) can then be interpreted as seeking for a permutation � that minimizes the ¸2

distance between columns of C�M
€ and columns of �N

€�€.
By allowing m ”= n (i.e. non-bijective maps) and relaxing the permutation con-

straint to (binary) column-stochasticity, we get to the recovery problem considered in
[OBCS+12]:

min

Pœ{0,1}n◊m

ÎC�M
€ ≠ �N

€P€Î2

F s.t. P€1 = 1 . (7.4)

This problem can be solved globally and efficiently by a simple nearest-neighbor search
in k-dimensional space: for each index j = 1, . . . , m, if the ith column of C�M

€ is the
nearest neighbor (in Rk) to the jth column of �N

€, then set Pij = 1 (note that going in
the other direction, i.e., searching for nearest neighbors for each column of C�M

€, also
constitutes a valid global solution to (7.4)).

7.3.1 Orthogonal refinement

By regarding the columns of �M
€, �N

€ as points in Rk, we may interpret any pointwise
map recovery algorithm (including those outlined above) as an attempt to align the k-
dimensional spectral embeddings of the two shapes [MHK+08], as illustrated in Figure 7.1.
In this view, the action of the functional map C on �M

€ can be seen as a pre-alignment
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reference

NN ICP CPD

Figure 7.1: The problem of recovering a pointwise map from a functional map can be
seen as aligning the spectral embeddings of the two shapes. In the top row we show
the first three dimensions of the embeddings for visualization purposes. The given func-
tional map provides the initial alignment, which is further refined by the specific recov-
ery method. Shown here from left to right are nearest neighbors (Sec. 7.3), orthogonal
(Sec. 7.3.1) and non-orthogonal (Sec. 7.4) refinement.

of the two embeddings, suggesting the possibility for further refinement by treating the
two shapes simply as point clouds in Rk.

With this mindset, in [OBCS+12] it was proposed to consider the orthogonal Pro-
crustes problem:

min

CœRk◊k

ÎC�M
€ ≠ �N

€P€Î2

F s.t. C€C = I , (7.5)

where the orthogonality constraint on C implies that the underlying map T is area-
preserving (see Chapter 3). A global solution to this problem can be obtained efficiently,
and can be interpreted as a k-dimensional rigid alignment of the spectral embedding of
M with the one of N . The C-step (7.5) and the P-step (7.4) are alternated until conver-
gence, in the spirit of the classical Iterative Closest Point algorithm [BM92].

A simple extension of this approach to deal with partial functional maps (discussed
in Chapter 4) was proposed in [RCB+16], and basically amounts to considering the set of
semi-orthogonal maps C, i.e., such that C€C = I but CC€ ”= I.

7.4 Regularized Map Recovery

The approaches described in the previous section do not incorporate any regularity as-
sumption on the map to be recovered – for example, the natural requirement that the
reconstructed pointwise map should be smooth. A first step in this direction was consid-
ered in [RMC15]. The authors proposed to consider the density estimation problem:

min

Pœ[0,1]

n◊m

D
KL

(C�M
€, �N

€P€
) + ⁄Î�(C�M

€ ≠ �N
€P€

)Î2 (7.6)

s.t. P€1 = 1 ,
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Figure 7.2: Examples of pointwise maps recovered from a functional map matrix of size
20 ◊ 20. The quality of the map is visualized by transferring texture from the reference
shape on the left. Green parts correspond to unmatched areas. The plot on the right
shows a comparison of the different approaches.

where D
KL

denotes the Kullback-Leibler divergence between probability distributions,
� is a low-pass operator promoting smooth vector fields (note that the argument of �

is a displacement field in Rk), and ⁄ > 0 controls the regularity of the assignment. The
problem can be seen as a Tikhonov regularization of the displacement field relating the
two spectral embeddings, where proximity is measured according to the KL divergence
between the two.

In other words, this approach is an attempt to cast the map recovery as a probability
density estimation problem. Within this model, one can interpret the spectral embedding
of M as modes of a continuous probability distribution defined over Rk, while the em-
bedding of N constitutes the data, i.e., a discrete sample drawn from the distribution.
The task is then to align the modes to the data, such that the point-to-point mapping can
be recovered as the maximum posterior probability.

From a geometric perspective, this method can be seen as a non-rigid variant of the
ICP algorithm described in Section 7.3.1 (see also Figure 7.1 for an example). The non-
rigid alignment is performed by the Coherent Point Drift method [MS10], which solves
a density estimation problem of the form (7.6). Since the smoothness term in (7.6) tends
to match closeby points to closeby points, this induces more natural maps than those
obtained by other recovery approaches.

An extension of this approach to partial functional maps was considered in [RMC],
by introducing a variable reflecting prior knowledge on the amount of overlap between
partial and full shape.

7.5 Bijective Map Recovery by Bayesian Inference

With the exception of the LAP formulation of Section 7.2, all methods described above
can be applied to shapes having different number of points. A novel perspective on the
bijective map recovery problem was recently proposed in [VLB+16]. Given an initial func-
tional correspondence between two shapes, this can be considered as a noisy realization
(in a different basis) of a latent bijective correspondence. The key idea behind this method
is that such a latent bijection can be recovered by considering an intrinsic equivalent of
the standard minimum mean absolute error (MMAE) Bayesian estimator.

In matrix form, the MMAE Bayesian estimator of �€ given the observation P
0

can be
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Algorithm 4: FUNCTIONAL MAP CONVERSION

Input : C : L2

(M) æ L2

(N ) functional map
T 0

: N æ M initial continuous map
Output: TC: C converted into a continuous map

1 Convert T 0 to a functional map CT0 ;
2 Solve: aı œ arg min

aœRn

ÎCT0 exp (

qn
i=1

aiDV
i

) ≠ CÎ„;

3 Set: V :=

qn
i=1

aı
i DV

i

;
4 Solve: ˆ

ˆt„
t
V (p) = V

!
„t

V (p)

"
, „0

V (p) = p œ N ;
5 return TC := „1

V ¶ T 0;

expressed as the minimizer to the following problem (we refer to [VLB+16] for details):

min

�œ{0,1}n◊n

trace(exp(≠DM/‡2

)P
0

DN �) (7.7)

s.t. �€1 = 1 , �1 = 1 ,

where DM, DN œ Rn◊n are geodesic distance matrices on the respective shapes, exp acts
element-wise, and P

0

is an initial (possibly noisy and not necessarily bijective) pointwise
correspondence obtained with any of the methods described in the previous sections.
Note that problem (7.7) has the structure of a LAP, hence any solution to it is a guaranteed
bijection; the authors make use of the auction algorithm [Ber98] in conjunction with a
simple multi-scale approach to solve it efficiently.

The recovery process can be reiterated by setting as P
0

the correspondence obtained
from the previous step, resulting in an iterative refinement of the initial noisy correspon-
dence. The resulting pointwise map can be seen as a “denoised” version of the input,
in analogy with classical Bayesian denoising of images. See Figure 7.2 for qualitative
examples, and for a comparison among the different methods.

7.6 Continuous Maps via Vector Field Flows

In [COC15] the authors propose a method for converting a functional map to a point-to-
point map, which guarantees continuity and does not rely on any pairwise consistency
constraints, making it computationally efficient. The main idea is to represent the target
point-to-point map as a composition of an arbitrary continuous map between the two
surfaces and a flow associated with an unknown vector field on one of them. By relying
on the operator representation of vector fields [ABCCO13], the optimal vector field can be
computed efficiently entirely within the functional map framework, and the computation
of the final map requires a single discretization of vector field advection.

Algorithm overview The proposed algorithm takes as input a functional map C : L2

(M) æ
L2

(N ) and an arbitrary continuous map T 0

: N æ M. It then outputs a continuous
point-to-point map TC : N æ M.

The main idea of the algorithm is to construct the map TC by composing T 0 with
the flow Ït

V of a well-chosen vector field V . We will choose the vector field V such that
Ït

V ¶ T 0 represented as a functional map is as close as possible to the input C. This can
be done efficiently by representing Ït

V as a functional map, namely CÏt

V

= exp(tDV ) (see
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[ABCCO13] as well as Chapter 6 of these notes), and then solving a small-scale optimiza-
tion problem:

min

aœRn

ÎCT exp

A
nÿ

i=1

aiDV
i

B

≠ CÎ„, (7.8)

for an appropriate choice of the norm Î.Î„. Finally the map TC is computed by solving a
system of ODEs with a simple solver.

The overall algorithm is summarized in Algorithm 4.

7.7 List of Key Symbols

Symbol Definition
TF Functional representation of a given (possibly soft) pointwise map T

P Pointwise map expressed as a matrix with values in [0, 1]

� Permutation matrix
C Functional map expressed as a matrix in the Fourier basis
� Functional basis (matrix containing basis functions as columns)
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