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Figure 1: Visualization of our results using texture transfer from the target shape (left) to the source shape with the initial map (middle)
and our final map (right). Note the texture distortion in the initial map due to the incorrect matching of the airplane wing creases, which is
aleviated using our crease-aware method.

Abstract
We propose a novel approach for shape matching between triangular meshes that, in contrast to existing methods, can match
crease features. Our approach is based on a hybrid optimization scheme, that solves simultaneously for an elastic deformation of
the source and its projection on the target. The elastic energy we minimize is invariant to rigid body motions, and its non-linear
membrane energy component favors locally injective maps. Symmetrizing this model enables feature aligned correspondences
even for non-isometric meshes. We demonstrate the advantage of our approach over state of the art methods on isometric and
non-isometric datasets, where we improve the geodesic distance from the ground truth, the conformal and area distortions, and
the mismatch of the mean curvature functions. Finally, we show that our computed maps are applicable for surface interpolation,
consistent cross-field computation, and consistent quadrangular remeshing of a set of shapes.

CCS Concepts
• Computing methodologies → Mesh models;

1. Introduction

Shape correspondence is an important problem in Computer
Graphics and geometry processing, with applications to deforma-
tion transfer, shape interpolation, and the analysis of shape col-
lections, to name a few [VKZHCO11]. Given source and target
shapes, the goal is to find a matching point on the surface of the tar-
get for any point of the source. When the source and target shapes
are triangle meshes with different connectivities, such maps take
the vertices of the source to points on the faces of the target.

We consider the case of two manifold triangle meshes that have
the same topology, but are not necessarily isometric. In such cases,
the strong geometric prior of the preservation of geodesic distances

is no longer available, and there exists a huge set of smooth, valid
maps between such surfaces. A high quality map should have a
low angle and area distortion, facilitating downstream applications
such as texture and deformation transfer. However, intrinsic geo-
metric information alone is often not enough to yield a semantically
correct map. An important extrinsic geometric property of semanti-
cally correct maps, is the correct alignment of prominent curvature
features, such as the crease of an airplane wing (see Fig. 1). Yet,
achieving both low metric distortion and crease alignment is diffi-
cult using existing techniques. Some mapping approaches are fully
intrinsic [KLF11,AL16,MCSK∗17], and therefore are not aware of
extrinsic curvature dependent features. Alternatively, classic extrin-
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sic approaches (e.g. [LSP08]) can match extrinsic features, but of-
ten focus on global rather than local distortion, and in addition are
sensitive to the global orientation of the input shapes, since they
optimize for the extrinsic deformation matrices.

We bridge this gap and achieve extrinsic feature matching, as
well as low local distortion, while remaining parameterization-
free and invariant to global rigid transformations of the input
shapes. We accomplish this using a novel combination of a dis-
crete thin-shell energy that is often used for shape deforma-
tion [HRS∗14] with a recent projection-based, parameterization-
free, optimization technique for local distortion of maps between
triangle meshes [EBC17].

Starting from a set of sparse landmarks provided by the user,
we initialize using an intrinsic map computed using existing meth-
ods [AL16]. Then we simultaneously optimize for an elastic de-
formation of the input shape while penalizing the distance from
its projection on the target shape. Our energy is composed of a
non-linear membrane energy that favors isometry, and a bending
energy that is rotation invariant and promotes feature alignment.
It is a novel modification of the classic discrete thin-shell energy,
that is robust to the extreme deformations that may arise in a
projection-based optimization framework, while remaining faithful
to the physical behavior of the classic energy.

Our scheme yields high-quality, crease preserving maps between
non-isometric shapes, that far surpass state-of-the-art methods on
both the FAUST [BRLB14] and SHREC07 [GBP07] datasets. We
show quantitative improvement of various error measures, specif-
ically geodesic error from the dense ground truth on FAUST,
and angular distortion, area distortion, mean curvature error and
geodesic error from sparse ground truth on SHREC07. Further,
our crease preserving maps are highly useful in downstream ap-
plications, as we demonstrate by applying our computed maps for
generating consistent cross-fields [ACBCO17], for shape interpo-
lation [HRWW12] and for consistent quadrangular remeshing of a
set of shapes.

Our contributions. We propose a novel matching algorithm to
compute a high quality correspondence map between two triangle
meshes. The main characteristics are:

• Our algorithm combines a physical thin shell deformation model
with a parameterization-free projection-based correspondence
scheme.
• Our method is initialized with the output of an existing corre-

spondence algorithm, which is smooth yet might have substan-
tial local distortion and lacks feature alignment.
• Our output is a low-distortion and feature-aligned correspon-

dence, which is highly effective for downstream applications
such as texture transfer.

2. Related work

Shape correspondence. Shape correspondence and matching
is a fundamental topic in geometry processing, with a consider-
able body of existing work. Recent surveys [VKZHCO11,TCL∗13]
provide an excellent introduction to the state of the art, and
we will therefore focus our literature review on shape corre-
spondence methods that are closest to our approach. Many early

deformation-based approaches, that find, e.g., sparse [ZSCO∗08]
or dense [LSP08], correspondences, solve for an extrinsic defor-
mation, namely the optimization variables depend on the local ro-
tation that is applied to each face or vertex of the mesh to obtain
the deformed mesh. These rotations affect the optimization, even
though they have no impact on the final stretch and local distortion
of the correspondence. Furthermore, working with extrinsic vari-
ables makes the result dependent on the global orientation of the
input shapes in general.

On the other hand, intrinsic methods such as Blended Intrin-
sic Maps [KLF11], Seamless maps [APL15] or the Orbifold ap-
proaches [AL15,AL16] map to an intermediate domain, and there-
fore do not optimize for the true distortion of the correspondence,
and in addition do not take into account the matching of extrinsic
features such as creases. Our approach, in contrast, accounts for the
actual distortion of the correspondence and for extrinsic features by
using quantities such as edge lengths and dihedral angles, which are
invariant to global rotations. Two more recent deformation-based
correspondence approaches [AXZ∗15,ZYL∗17] target mostly man
made shapes consisting of parts that can be represented using sim-
ple geometric primitives, and are therefore less appropriate for non-
isometric manifold models.

Despite the advances in shape correspondence that were made
in recent years, matching between non-isometric surfaces re-
mains challenging. As the preservation of geodesic distances can-
not serve as a prior, recent approaches use, e.g., optimal trans-
port [MCSK∗17], to regularize the correspondence. We compare
our results with Mandad et al. on the SHREC07 [GBP07] dataset
of non-isometric shapes, and show that our approach leads to bet-
ter qualitative and quantitative results. Another common method to
handle non-isometric shapes is to generate a fuzzy correspondence,
such as a functional map [OCB∗16]. However, these methods still
require extracting a point-wise map from the result, for applications
such as joint triangular remeshing. Finally, perhaps closest to our
approach, is the method by Ezuz et al. [ESBC19]. It minimizes the
harmonic energy of the forward and backward maps coupled with a
reversibility constraint, which promotes bijective maps. While their
reversibility approach is somewhat similar to ours, it requires a high
dimensional Euclidean embedding, and is derived using different
geometric principles. Furthermore, their approach uses a harmonic
energy and is therefore faster, however it does not aim to preserve
extrinsic features.

Elastic shape modeling. Physically-based elastic energy models
have been widely used for computer graphics and geometry pro-
cessing applications [RW14]. The classical model for elastically
deformable surfaces is the shell model, originally introduced in a
graphics context by Terzopoulos et al. [TPBF87], for thin, flexible
materials. Grinspun et al. [GHDS03] introduced the discrete shell
model in which a triangle mesh is a spatially-discrete representation
of the mid-surface of a shell. The model was used for simulation of
deformable materials under physical forces. Similar thin-shell en-
ergies have been used by Botsch et al. [BPGK06] for interactive
shape deformation. Heeren and coworkers [HRWW12, HRS∗14]
have used the same physical model for time-discrete Riemannian
analysis of shapes. In the direction of improving efficiency, the as-
rigid-as-possible (ARAP) framework [SA07] is based on alternat-
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ing minimisation over vertex positions and local rotations of an
energy that measures deviation from rigidity. Von Radziewsky et
al. [vRESH16] recently showed how model reduction can be used
to efficiently evaluate elastic deformation models, including the
discrete shell energy. This enables elastic models to be used in re-
altime applications.

Elastic shape correspondence. Already in [LDRS05] a non-
linear elastic deformation energy between thin shells has been in-
vestigated for surface matching. In this approach, the matching
problem is formulated on disc type parameter domains of the sur-
face patches to be matched. This renders the surface matching prob-
lems as a classical elastic image registration problem and the mem-
brane energy takes the role of the regularization energy, whereas
the bending energy turns into a fidelity energy with respect to the
matching of mean curvature functions on the parameter domains.
The surface matching method in [WSSC11] picked up the match-
ing energy from [LDRS05] and investigated matches as surfaces in
the product space of the source and template geometry. Using re-
laxation methods from linear programming Windheuser et al. were
able to robustly compute bijective triangle matching deformations
with vertex to vertex correspondence. They do not allow for gen-
eral deformations of source vertices onto the target surface, and the
approach is quite heavy computationally due to the use of the prod-
uct manifold. The elastic matching of volumetric shapes from the
perspective of shape optimization has been investigated by Buhan
et al. [dBDFN16]. Finally, Iglesias et al. [IRS18] have applied elas-
tic energies for computing correspondences between level-set sur-
faces.

3. The elastic matching model

In a very general setup we consider two discrete surfaces, i.e. a
source surface S and a target surface S̃ having n, ñ∈N vertices, re-
spectively. In general, we assume n 6= ñ, hence S and S̃ do not share
the same connectivity. The meshes are represented by the coordi-
nate matrices with rows containing vertex positions, i.e. X ∈ Rn,3

and X̃ ∈ Rñ,3, respectively. Since the connectivities of S and S̃ are
supposed to be fixed throughout our algorithm, there are unique re-
lationships S ↔ X and S̃ ↔ X̃ , respectively, and we interchange
notation if appropriate.

We aim at studying deformations Φ of the source surface S that
are constrained to the target surface S̃ by means of a soft penalty.
In detail, we consider two distinct situations. First, we only require
Φ to be locally injective. This model is suitable for the matching of
almost isometric shapes and, in particular, for partial matching. In a
second step, we expand the model to be suitable for non-isometric
matching problems. To this end, we additionally consider a reverse
deformation Φ̃ of S̃ and study pairs of deformations (Φ,Φ̃), which
are approximately inverses of each other.

3.1. Locally injective matching

In the locally injective matching case the inclusion

Φ(S)⊂ S̃ , (1)

should hold approximately and the deformation Φ should induce as
little distortion as possible. We therefore define Φ such that X and

Φ

xi
yi Pi jx̃ j +Pikx̃k

x̃ j

x̃k

S ↔ X
S̃ ↔ X̃

Figure 2: A sketch of the locally injective matching configuration
for 1D simplicial meshes in R2. The source mesh S with coordinate
matrix X (blue) is deformed via Φ to a mesh with coordinate matrix
Y (dashed blue). The deformed vertices are projected based on the
matrix P onto the target mesh S̃ (red).

Φ(X) share the same connectivity, and use well established elastic
deformation energies to control this distortion. In addition, to estab-
lish (1) on discrete surfaces, i.e. on their nodal positions X and X̃ ,
we use a projection mapping from R

n,3 to Rñ,3 (see Fig. 2). These
aspects are explained in detail in the following two paragraphs.

Deformation energy. We assume the deformation Φ to be de-
fined on vertices - the deformed values of interior points are ob-
tained by piecewise linear interpolation on the faces. In particular,
Φ(X)∈Rn,3 and the resulting mesh has the same connectivity as S.
To simplify notation, we introduce an auxiliary variable Y := Φ(X)
that contains the deformed vertex positions of S and represents Φ

uniquely. Now we build on the vast literature on physical deforma-
tion energies defined between two triangle meshes sharing the same
connectivity, e.g. [TPBF87, GHDS03, BS08, FB11, HRWW12]. In
these approaches the distortion induced by an elastic deformation
is separated into two distinct contributions, i.e. membrane distor-
tion and bending distortion. To this end, a generic elastic energy in
the context of thin shell deformations can be written as

Wdef(X ,Y ) = αWmem(X ,Y )+ηWbnd(X ,Y ) (2)

with weights α and η. While X ∈ Rn,3 is fixed throughout the al-
gorithm, Y ∈ Rn,3 is a primal variable that we optimize for. The
definition of the two energy components will in particular ensure
that (2) is invariant with respect to rigid deformations and isomet-
ric deformations minimize the membrane energy. More details also
on the physical background on this energy will be given below in
Section 4.

Projection mapping. To establish a suitable approximation of
condition (1) on triangular surfaces we have to consider mappings
between the involved discrete spaces. To this end, we consider a
linear projection map P : Rñ→ R

n such that PX̃ is a projection of
Y onto the target surface S̃. In particular, the mapping P represents
another degree of freedom. Then (1) can be achieved in a discrete
setup by penalizing ‖PX̃ −Y‖2

X , where the (squared) norm on the
source surface is given as the lumped L2-norm

‖A‖2
X = Tr

(
A>MX A

)
(3)

with MX ∈Rn,n being the lumped mass matrix of S (with the vertex
areas on the diagonal).
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The linear projection P : Rñ → R
n can be represented as a

(sparse) matrix P ∈ Rn,ñ which contains barycentric coordinates
for triangles of S̃. In detail, the i-th row of the matrix P has at most
three nontrivial entries 0 ≤ Pi j,Pik,Pil ≤ 1, such that ( jkl) repre-
sents a triangle in S̃ and Pi j +Pik +Pil = 1. Let P ⊂ Rn,ñ the set of
all matrices fulfilling these properties which is denoted as the set of
admissible maps. This definition implies that (PX̃)T

i ∈R3 is a point
on the discrete surface S̃ for i = 1, . . . ,n. In particular, (PX̃)T

i will
be a good approximation of the deformed position of the i-th ver-
tex in S whenever ‖PX̃ −Y‖X is small. Note that we only project
vertices, i.e. corresponding edges/faces might not be mapped onto
the target surface.

Total energy. Altogether we obtain the following variational
problem: For fixed X ∈ Rn,3 and X̃ ∈ Rñ,3 we minimize the energy

Einj(Y,P) =Wdef(X ,Y )+β‖PX̃−Y‖2
X (4)

for Y ∈ Rn,3 and P ∈ P , where β is a penalty parameter andWdef
a generic elastic deformation energy as in (2) that will be further
specified in Section 4. Note that for an optimal energy (4) the re-
sulting deformation Φ defined by the optimal Y will be (close to) an
isometry and, in particular, locally injective. Due to the matching
term we expect that there are no local overfolds in the projection
PX̃ , which is close to Y in an L2-sense. However, Φ is not neces-
sarily surjective which is obvious for instance for partial matching
problems.

3.2. Bijective matching

In the case of strongly non-isometric surfaces we additionally favor
surjectivity, i.e. we seek for one-to-one matching deformations. To
this end, we expand our matching model in a two step procedure.
First, we introduce a reverse deformation Φ̃ of S̃ and symmetrize
our model (4). In particular, we consider an additional deformation
energy related to Φ̃ and establish a suitable approximation of the
condition

Φ̃(S̃)⊂ S . (5)

Then, in a second step, we ensure reversibility with additional en-
ergy terms to imply the opposite inclusions of (1) and (5), i.e.
S̃ ⊂Φ(S) and S ⊂ Φ̃(S̃), respectively.

Symmetry. We introduce an auxiliary variable Ỹ ∈ Rñ,3 which
contains the deformed vertex positions of the target surface S̃ and
represents Φ̃ uniquely, i.e. Ỹ = Φ̃(X̃) (see Fig. 3). Furthermore, we
consider a projection map Q : Rn → R

ñ to represent projections
of Ỹ onto S. Analogously to the definition of P ⊂ Rn,ñ above, we
define a setQ⊂Rñ,n of admissible maps, which are sparse matrices
containing rows with barycentric coordinates for triangles of S. To
symmetrize (4) we finally consider the additional termsWdef(X̃ ,Ỹ )
and β̃‖QX − Ỹ‖2

X̃ where β̃ ∈ R is a suitable penalty parameter and
‖ · ‖2

X̃ is defined analoguously to (3). In particular, Ỹ and Q are
additional degrees of freedom in our optimization algorithm.

Reversibility. Solely symmetrizing our model the new variables
Ỹ and Q are not yet coupled with the variables Y and P of the orig-
inal model (4). In particular, for a one-to-one matching we have
to ensure suitable approximations of the inclusions S̃ ⊂ Φ(S) and
S ⊂ Φ̃(S̃). So far, PX̃ is considered as the projection of Y onto S̃

Φ

Φ̃

xi
Pi jỹ j +Pikỹk

ỹ j

(QX)lỹk

ỹl

yi
Pi jx̃ j +Pikx̃k

x̃ j

(QY )l
x̃k

x̃lS ↔ X
S̃ ↔ X̃

Figure 3: To symmetrize the locally injective matching model
sketched in Fig. 2 we consider a deformation Φ̃ in the opposite
direction, which maps S̃ with coordinate matrix X̃ to a mesh with
coordinate matrix Ỹ , (dashed red) and a matrix Q encoding the pro-
jection onto the source mesh S as additional degrees of freedom.
To ensure reversibility we use the identical matrix P for the pro-
jection of the source X onto the deformed target Φ̃(S̃) and for the
projection of the deformed source Y onto the target S̃. Note that
identical barycentric coordinates, i.e. Pi j and Pik, are used for the
projection of the undeformed source vertex xi onto the deformed
target surface and the projection of the deformed source vertex yi
onto the undeformed target.

and the difference is penalized in a lumped L2 sense in the energy.
Now, we assume that the same map P represents the projection of X
onto Φ̃(S̃), given by PỸ ∈Rn,3 (see Fig. 3). The corresponding pro-
jection error PỸ −X is also measured in the lumped L2-norm (3) to
define a corresponding penalty energy. Likewise, QX was defined
to reflect the projection of Ỹ onto S. Thus, we analogously consider
the same map Q as the projection of X̃ onto Φ(S) with the projec-
tion error QY − X̃ , and a resulting penalty energy ‖QY − X̃‖2

X̃ .

Total energy. Altogether we obtain the following variational
problem for the one-to-one matching of strongly non-isometric sur-
faces: For fixed X ∈ Rn,3 and X̃ ∈ Rñ,3 we minimize the energy

Ebij(Y,Ỹ ;P,Q) =Wdef(X ,Y )+β‖PX̃−Y‖2
X

+Wdef(X̃ ,Ỹ )+ β̃‖QX− Ỹ‖2
X̃

+ γ‖PỸ −X‖2
X + γ̃‖QY − X̃‖2

X̃ (6)

for Y ∈ Rn,3 and Ỹ ∈ Rñ,3 as well as P ∈ P and Q ∈ Q. Here,
β, β̃,γ, γ̃ ∈ R are penalty parameters to be chosen appropriately.

The difference between Einj and Ebij for non isometric shapes is
demonstrated in Fig. 4. Evidently minimizing Ebij leads to better
results. Note that minimizing (6) implies QPX̃ ≈ X̃ and PQX ≈
X . Indeed, the triangle inequality yields that ‖QPX̃ − X̃‖X̃ and
‖PQX −X‖X become arbitrary small for large enough penalty pa-
rameters β, β̃, γ, and γ̃.

4. Elastic deformation energy

In this section we focus on the deformation energy associated with
a matching deformation Φ for two discrete surfaces sharing the
same mesh connectivities. As above, let X ∈ Rn,3 and Y = Φ(X) ∈
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R
n,3 be the geometries of the undeformed and deformed configu-

ration, respectively. It will often be convenient to denote quantities
living on the undeformed/reference surface with a hat – in particu-
lar, those objects are not subject to optimization since X is fixed.

As mentioned before we deploy a model of thin shell elasticity
in our approach. If the triangle mesh is considered to be an approx-
imation of a middle layer of a thin elastic material of finite thick-
ness δ > 0, the corresponding membrane energy Wmem scales as
δ, whereas isometric deformations induce a bending energyWbnd
that scales as δ

3. Here the non-linear membrane energy takes into
account stretching and shearing and encodes a preference for iso-
metric deformations, while the bending energy (theoretically in the
limit for δ→ 0 only observable for isometric deformations) com-
pares curvature related quantities such as shape operators or mean
curvatures and is in particular suitable for feature matching.

4.1. Non-linear membrane energy

Considering a simple quadratic energy functional to model mem-
brane deformations a degenerate mesh with vanishing edge length
naturally appears as a minimizer. Although a total collapse can in
principle be prevented by additional forcing or boundary terms, the
favoring of short edges induces a bias in the optimization. To this
end, we make use of the non-linear membrane energy

Wmem(X ,Y ) = ∑
t∈T

âtW (Gt) ,

where ât denotes the area of triangle t in X and Gt = ĝ−1
t gt ∈ R2,2

is the geometric distortion tensor. Here ĝt ,gt ∈ R2,2 are the discrete
first fundamental forms of X and Y , respectively, i.e. if e0,e1,e2 ∈
R

3 are the edges of triangle t we have gt = [e1| − e2]
T [e1| − e2]

which is invertible if t contains no parallel edges. The hyperelastic
energy density A 7→W (A) for A ∈ R2,2 is given by

W (A) =
µ
2

trA+

[
λ

4
detA−

(
µ
2
+

λ

4

)
logdetA−

(
µ+

λ

4

)]
, (7)

where µ,λ ≥ 0 are physical parameters, i.e. the Lamé coefficients
of linear elasticity (see [LDRS05,HRWW12] and for mathematical
details [Cia00]). Note that we choose λ = µ = 1 in all our experi-
ments.

Since we have W (A)≥ 0, W (1) = 0 and W,A(1) = 0, the identity
map is a minimizer of the energy, and the gradient of the energy
is zero at the identity. Furthermore W is invariant wrt. rigid body

Figure 4: The difference between minimizing Einj (left) and Ebij
(right) for non isometric shapes from SHREC07 [GBP07]. The fi-
nal deformation Y is shown as a solid shape, and the target shape is
rendered as wireframe. Here, Ebij significantly improves the match-
ing in the ear region, where Einj leads to unwanted artifacts.

motions, i.e., if t is deformed by means of a rigid body motion we
have Gt = 1 and hence W (Gt) = 0.

The first term ∑t∈T ât trGt is sensitive to changes in edge lengths
and coincides with the Dirichlet energy used in [ESBC19]. The
second term penalizes variations in triangle areas. In particular,
growth of area is penalized quadratically whereas shrinkage is pe-
nalized logarithmically to prevent the degeneration of faces, i.e.,
W (A)→∞ for detA→ 0. This property is indeed crucial to pre-
vent the collapsing of triangles by a matching deformation.

But, our algorithm relies on a good initialization given e.g. by
the output of an established correspondence method (as will be dis-
cussed in Sec. 5.1). This initialization might come with degenerate
faces and led to an undefined membrane energy density due to a
zero argument in the log term in (7). In order to deal with these sit-
uations we slightly modify W in (7) by redefining the negative log
term. In detail, we extend the function A 7→ − logdetA via a lin-
ear profile logε+ x−ε

ε
below a small threshold ε > 0 such that the

compound function is still differentiable. This way W (A) is well-
defined even if detA≤ 0.

4.2. Bending energy

As the initial choice for our bending energy one might consider the
Discrete Shells bending energy introduced in [GHDS03], i.e.

WDS(X ,Y ) = ∑
e∈E

(θ̂e−θe)
2

d̂e
l̂2
e , (8)

where θ̂e,θe denote the dihedral angle at some edge e in X and Y ,
respectively. If e = t ∩ t′ we have de =

1
3 (at + at′), and le denotes

the edge length of e. This energy has the smallest possible sten-
cil (i.e. two adjacent triangles) to capture bending in a mesh and
has been used extensively in the computer graphics community,
e.g. [BMF03, TW06, GGWZ07, FB11, HRWW12, HSTP11]. How-
ever, when fixing t and rotating t′ around the common edge e the
dihedral angle θe jumps by 2π when the faces intersect each other
(see Fig. 6). Unfortunately, this is a serious drawback when facing
extreme situations, e.g. large dihedral angles and faces penetrating
each other, that can appear in the initial phases of the optimiza-
tion. In particular, the lack of continuity of the above energy density
leads to a failure of line-search methods in the optimization. To re-
solve this we propose a modified version of (8) that rather penalizes
deviations in the cosine of the dihedral angles and is continuous for
all pairs of dihedral angles:

Wbnd(X ,Y ) = ∑
e∈E

(cos θ̂e− cosθe)
2

d̂e
l̂2
e . (9)

For e = t ∩ t′ we have cosθe = 〈nt ,nt′〉 where nt ,nt′ ∈ R3 denote
the unit triangle normals of t and t′, respectively. This energy den-
sity is periodic when rotating t′ around the common edge e and
has proven to be very robust even for degenerated situtations (see
Fig. 6). Furthermore, the evaluation of (9) is cheaper than (8), since
the latter requires the costly calculation θe = arccos〈nt ,nt′〉.

This modification of the bending energy provides robustness and
does not affect the physical or semantic correctness of the results
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Target Initialization (HOT) Discrete Shells Bending Energy Modified Bending Energy

Figure 5: Comparison of the Discrete Shells (DS) bending energy (Eq. (8)) and our modified bending energy (Eq. (9)). From left to right:
the target texture, the initial map (HOT), our optimized map using the DS bending energy (8), and our optimized map using the modified
bending energy (9). Note that the modified energy remains faithful to the DS energy, leading to very similar results, yet with the advantage
of increased robustness (see Fig. 6).

in all of the conducted experiments. This can be verified by com-
paring the results obtained with both energies, for a pair of meshes
where the Discrete Shells bending energy does not cause numerical
problems. Such an example is shown in Fig. 5.

Combining Wmem and Wbnd we define the total elastic energy
(2) with weights α,η > 0. Note that due to the scaling properties
discussed above we have η/α ∼ δ

2, where δ > 0 is the physical
thickness of the approximated thin shell. Obviously, the total elastic
energy (2) is invariant with respect to rigid deformations.

5. Optimization

In this section we describe the optimization pipeline in order to
solve the bijective matching problem, i.e. minimizing (6). The cor-
responding algorithm to optimize (4) can be considered as a special
case, i.e. with certain parameters set to zero and, in particular, less
degrees of freedom. The degrees of freedom (DOFs) of the energy
(6) are given by Y ∈ Rn,3 and Ỹ ∈ Rñ,3 as well as P∈P and Q∈Q.

Initial 
Deformation

Intermediate
Deformation

Final 
Deformation

Target

Figure 6: Robustness of bending energy. Top: different rotation
angles for two adjacent triangles and corresponding graphs of dis-
continuous dihedral angle (red) and its periodic cosine (blue). Bot-
tom: Reconstruction of degenerated mesh by minimizing Y 7→
Wdef(X ,Y ). Starting from a degenerated state (left), we first opti-
mize with η = 10−5 (middle left) and finally with η = 10−3 (mid-
dle right) to restore X (right).

The numerical minimization of (6) is based on an alternating opti-
mization strategy, i.e. we sequentially minimize one of the above
matrix valued DOFs while fixing the other three. In the following,
we discuss the main features of this algorithm as well as additional
implementation details.

5.1. Alternating optimization

Given suitable initial mappings P ∈ P and Q ∈Q, which represent
projection maps of X onto S̃ and X̃ onto S, we initialize Y := PX̃
and Ỹ := QX . Then we perform the alternating optimization algo-
rithm described in Algorithm 1. Each of the K outer iterations of
the algorithm consists of a sequential solution of four inner opti-
mization problems, two optimizing for the mappings P,Q, and two
optimizing for the deformations Y,Ỹ .

Mapping optimization. The minimization of Ebij with respect to
P and with fixed Y,Ỹ ,Q is performed by solving small, constrained,
linear least squares systems for each row of P, similarly to the ap-
proach suggested by Ezuz et al [EBC17]. The terms that contain P
are

β‖PX̃−Y‖2
X + γ‖PỸ −X‖2

X ,

thus we need to balance the quality of the projection of Y onto S̃
with the quality of the projection of X onto Φ̃(S̃). As all variables
except for P are fixed, this term can be written as ‖PA−B‖2

X , where
A,B collect the fixed terms. Note that instead of considering this as
the balancing of two projections in R3, we can think of A and B as
coordinates in R6. Therefore the optimal P will give the orthogonal
projection of the rows of B on a triangle mesh with the triangula-
tion of S̃, that is embedded in R6 and its vertex positions are given
by A. This projection can be computed naively by finding for each
row of B the distance to its orthogonal projection on each such 6
dimensional triangle. Let ( j0, j1, j2) be the triangle that realizes
the smallest distance to the i-th row of B. Then, the three entries
Pi jk for k = 0,1,2 are set to the corresponding barycentric coordi-
nates of the closest point on the triangle. To improve efficiency, it
is enough to project each point only to a relevant subset of the tri-
angles [EBC17]. In addition, this process can be parallelized as the
projection can be done in parallel for each point and triangle, and
therefore it is performed on the GPU.

Deformation optimization. Minimizing Ebij with respect to Y is
done with a Quasi-Newton method while fixing all other variables.
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η = 10−5
η = 10−3

η = 10−1
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Figure 7: Impact of bending weight. A flat, rectangular source domain [0,2]× [0,1] is mapped to the flat unit square (orange wireframe). We
show the optimal deformation Y (blue solid, first row) as well as Y with a linear scaling in z-direction for a better visualization (blue solid,
second row). The injective matching model was used with α = 10, β = 1 (resp. β = 100 in the rightmost column) and increasing bending
weights η. For the initialization of Y we added some noise in z-direction (at most 1%) to the flat source shape. The optimal deformation
ranges from an isometry (left) to a uniform compression without any bending distortion (right).

Hence, we only need to evaluate the energy and the energy gradient
with respect to Y . In detail, we employ a standard BFGS-method
using Armijo’s inexact line-search (as described in [NW99] for ex-
ample) with a stopping criterion ε = 10−8 and a maximum number
of 50 BFGS iterations.

Finally, analogous strategies are used for optimizing with respect
to Q and Ỹ . Note that P ∈ P and Q ∈ Q by construction. For the
locally injective matching problem the only degrees of freedom are
P and Y , hence there are only two inner problems.

5.2. Implementation details

Global scale. Our deformation energy favors rigid body motions
as solutions, where the geometric distortion tensor is the identity.
We therefore scale the shapes so that the total area of each is one.
This ensures that the argument of the membrane energy density (7)
is not globally shifted away from its local minimum at the identity,
and thus improves the robustness of our method.

Initialization. We chose to initialize our method using the Hyper-
bolic Orbifold Tutte Embedding (HOT) method [AL16], that pro-

ALGORITHM 1: Alternating optimization for the bijective matching
problem with K = 300 outer iterations and four inner variational prob-
lems to be solved sequentially via different optimization methods.

Input: Two triangle meshes S, S̃, initial P ∈ Rn,ñ and Q ∈ Rñ,n

Output: Optimized P and Q

Scale S, S̃ such that each has unit total area
Get vertex positions matrices X ∈ Rn,3 and X̃ ∈ Rñ,3

Initialize Y ← PX̃ and Ỹ ← QX
Until (Energy increment < Threshold) or (IterationCount > K)

P← argmin
P∈P

Ebij(Y,Ỹ ;P,Q) (projection)

Y ← argmin
Y∈Rn,3

Ebij(Y,Ỹ ;P,Q) (BFGS)

Q← argmin
Q∈Q

Ebij(Y,Ỹ ;P,Q) (projection)

Ỹ ← argmin
Ỹ∈Rñ,3

Ebij(Y,Ỹ ;P,Q) (BFGS)

end

duces bijective maps given a sparse set of landmarks. As HOT is
intrinsic, it cannot take into consideration extrinsic features such
as crease lines, which our method can align and thus significantly
improve the map, as we demonstrate in the next Section.

In Fig. 8 we investigate the robustness of our method with re-
spect to the initialization. We first modify the initial HOT map by
composing it with an area-preserving map generated by the flow
of a divergence free vector field. Such a transformation introduces
variation in the initial map while keeping it bijective. We show the
initializations and results for such a modification where the vec-
tor field is flown for shorter (VFx5) and longer (VFx10) times.
The smaller distortion has no effect on our results, while the larger
distortion leads to convergence to a different final map, where lo-
cally the result is smooth. Additionally, we distort the initial map by
snapping each mapped point to the closest target vertex (NN). Such
a distortion causes many degeneracies, therefore we use a smaller
η = 0.002 to successfully handle it.

Target HOT HOT + VFx5 HOT + VFx10 HOT + NN

+ Ours:

Figure 8: Effect of the initialization. We apply our method to the
HOT initialization, and to three different distorted HOT initializa-
tions (see the text for the distortion details). Moderate perturbations
(VFx5, NN) have no effect on our final map, whereas a strongly
amplified perturbation (VFx10) leads to convergence to a differ-
ent final map, that has a moderate coarse scale twist in cylindrical
regions, yet is still locally smooth.
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Masking edge sets. While HOT is theoretically bijective, it can
generate faces which have numerically zero area due to finite nu-
merical precision. Therefore, our optimization should be robust to
such occurrences of collapsed triangles during the iterations. We
have already described in Section 4 how we modify the non-linear
membrane energy to be well-defined for degenerate triangles. How-
ever, such a simple extension is not appropriate for the bending
energy (9), where the evaluation of the energy density at an edge
requires the existence of two adjacent triangle normals. Therefore,
the definition (9) is slightly modified such that we only sum over
admissible edges, where an edge is admissible if its two adjacent
triangles are not degenerate. Of course, the definition of the gradi-
ent is modified accordingly. The set of admissible edges is updated
after each inner iteration step of the BFGS-method. In most exper-
iments, we observe that almost all edges are admissible after a few
outer optimization iterations, and stay admissible throughout the
optimization process.

Parameters. The parameter values can be tuned according to the
properties of the shapes and the desired properties of the output,
e.g. whether we expect the result to be close to isometric or not.

α The weight of the non-linear membrane energy, mainly controls
the area distortion. In all our experiments we used α = 20 along
with λ = µ = 1 for the Lamé coefficients in (7).

η The weight of the bending energy, controls the extrinsic feature
alignment. For isometric shapes, a moderate value of η is suffi-
cient to regularize the non-linear membrane energy, and prevent
undesired folding. Non-isometric shapes require a larger value
of η, to favor feature matching over minimizing the amount of
stretch. On the other hand, if flipped, or nearly degenerate, trian-
gles appear in the initial map, η should have a smaller value, to
allow the membrane energy to recover a smooth map. Finally, η

can be used to either enforce an isometric deformation or oppress
any bending distortion (see Fig. 7).

β The weight of the mismatch energy, controls the correspondence
between P and Y . It is a standard penalty coefficient, and we fol-
low the standard guideline of penalty methods [WYYZ08] that
suggests increasing β throughout the optimization process. A
low value of β at the beginning of the optimization enables a sig-
nificant deviation from the initial map, and β should increase to
ensure the final map P corresponds to the deformation Y whose
elastic energy is minimized. For all the experiments we start with
β = 103 and linearly increase until β = 2 ·105.

γ The weight of the reversibility energy term, controls bijectivity.
It should be high for non-isometric shapes to ensure bijectivity.
We use γ = 2 ·104 in all our experiments where reversibility was
employed.

We use the same parameters for the symmetrized version of the
energy, i.e. β̃ = β and γ̃ = γ.

Timing. We measured example timings of our method applied on
shapes with 5K vertices. The average duration of a single iteration
is 1.5 seconds, and the complete optimization took 7.5 minutes.
These measurements are the same order of magnitude as recent
shape correspondence methods. All of our experiments were ex-
ecuted on a desktop machine with a TITANX GPU and an Intel
Core i7 processor.

5.3. Limitations

The proposed method relies on the computation of an initial cor-
respondence map, which is allowed to contain degenerate triangles
but should not have too complicated folds and self-penetrations. To
this end, our method can also be seen as a post-processing step to
ensure extrinsic feature alignment on top of a fair intrinsic matching
result. Unfortunately, for highly complex meshes the minimization
algorithm might get stuck in a local minimum far from the global
optimum. Here, a multiscale approach is required, which couples
the mesh resolution on the source and the target and adapts the
bending energy with an appropriate notion of scale dependent cur-
vature information. Finally, our method is oblivious to the orienta-
tion of the resulting map, as we optimize for the first fundamental
form of the deformation and not the Jacobian. On the one hand this
makes our approach rotation invariant, but on the other hand we
cannot incorporate into the energy a penalty for inverted triangles.

6. Results

In this section we present the results of our method for datasets that
contain various types of shapes. We show quantitative and quali-
tative results that demonstrate improvement over the state of the
art. In addition we show the applicability of our method for the
applications such as consistent quadrangular remeshing and shape
interpolation.

6.1. Benchmark evaluation

We measure the error with respect to the ground truth using the
standard cumulative error graph [KLF11], that shows the percent-
age of points on the source shape (y axis) whose corresponding
point on the target shape is closer than a certain geodesic distance
(x axis) to the ground truth correspondence. The geodesic distances
are normalized by

√
s̃ where s̃ is the total face area of S̃. When only

a sparse ground truth is given, the percentage of points is relative
to the number of landmarks. Similarly, we show cumulative error
graphs of the conformal and area distortion. We compute the con-
formal distortion per triangle as defined by Hormann et al. [HG00],
and subtract 2 so that the minimal conformal distortion is zero.
Area distortion per triangle is computed similarly to Nadeem et
al. [NSZ∗17] as

∣∣∣log at
ât

∣∣∣ where ât is the area of the source triangle
of S and at is the area of the corresponding deformed triangle.

For the qualitative evaluation we use texture transfer. We com-
pute the texture coordinates of the target shape by projecting X̃ on
a plane. We then transfer them to S by applying the projection map
P to the texture coordinates. As we use a texture with fine details,
this visualization enables the detection of local distortion, and the
assessment of semantic correctness. As the texture coordinates are
computed by projection on a plane, texture discontinuities indicate
regions that are parallel to the projection plane. In addition we vi-
sualize the vertex normals of the target surface by color, where the
RGB values correspond to the [x,y,z] coordinates of the normals.
Again we transfer the normals to the source shape using P. This vi-
sualization emphasizes regions of the surface where features were
not mapped correctly.

FAUST Dataset. The FAUST dataset [BRLB14] contains shapes
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Figure 9: Quantitative results for the FAUST dataset. Our method
significantly outperforms the initialization according to all distor-
tion measures.

of 10 different humans, each of them in 10 different poses, and a
ground truth correspondence is given. Since the shapes in FAUST
have the same triangulation, which might bias matching algorithms,
we uniformly remesh the dataset to avoid this bias. We recover the
ground truth correspondence between the remeshed shapes by com-
posing the projections of the remeshed shapes on the original cor-
responding shapes.

We employ the standard subsets of intra and inter classes. Note,
however, that we use different parameters for the intra class and
inter class, as the locally injective model (4) is sufficient for iso-
metric shapes. For the inter class, we deploy symmetrization and
reversibility, i.e. make use of the bijective model (6). We use the
same values of α = 20 and β = 103 initially and linearly increase
until β = 2 ·105. However, we use a larger bending weight η = 0.01
for the intra class than η = 0.001 for the inter class. The bending
and reversibility terms both prevent "foldings" of the deformed sur-
face, therefore the bending weight is larger when the reversibility
term is not used. For the inter class we use γ = 2 · 104. We use 17
landmarks as input to HOT [AL16].

The quantitative results are shown in Fig. 9. We measure the er-
ror with respect to the ground truth maps, the conformal and area
distortion for each class, as specified in section 6.1. Our method
significantly improves the similarity to the ground truth map, as
well as the conformal and area distortion, especially for the more
challenging inter class. In Fig. 10 we show the qualitative improve-
ment due to our crease-aware method. Note especially the correct
mapping of the forehead, the ears and the nose region.

SHREC’07 Dataset. We additionally test our method on 71 pairs

Target Ours HOT

Figure 10: Visualization of the initial map and our results for a pair
of non-isometric shapes from FAUST using texture transfer. We
zoom in on the head to highlight the effect of our crease preserving
map, that is semantically correct despite the distorted initialization.

of shapes from the SHREC’07 dataset [GBP07], that contains var-
ious classes that are mostly non-isometric, and the BIM bench-
mark [KLF11], which provides a sparse set of corresponding land-
marks for each class. Since hard landmark constraints are used in
HOT, we only use a subset of the landmarks given by the bench-
mark to evaluate the ground truth error on the remaining landmarks.
For the SHREC’07 dataset we minimize the symmetric energy (6)
with α = 20, η = 0.1, β = 1000 initially and linearly increasing for
the first 200 iterations and γ = 2 ·104. These parameters are almost
identical to the parameters we used for FAUST, with the exception
of a larger bending weight η, which is required for the significantly
non-isometric shapes of SHREC’07.

We compare our results with the initial map computed using
HOT and with the shape correspondence method that was recently
suggested by Manded et al. [MCSK∗17] (VMTP). Additionally,
we compare with two other methods that improve input corre-
spondences, where we use the same initialization as our method
(HOT): one method is based on functional maps [EBC17] (DDM)
and another optimizes the reversible harmonic energy [ESBC19]
(RHM). The quantitative comparison is shown in Fig. 11, and vi-
sualizations using texture mapping and normal transfer are shown
in Fig. 12 and 13. Note that compared to VMTP our method yields
considerably lower geodesic and conformal distortions, as well as
a significantly lower area distortion compared to HOT, DDM and
RHM. While RHM has the lowest conformal distortion, it does not

Class VMTP HOT RHM DDM Ours
glasses 76.12 97.64 100.87 98.11 54.18
airplanes 263.70 175.16 183.05 188.63 105.30
ants 116.07 136.63 248.56 713.89 59.44
tables 290.57 225.59 282.18 237.05 141.57
teddies 58.76 85.26 119.68 81.44 51.90
hands 55.94 122.39 142.93 129.37 89.49
pliers 24.24 36.11 41.43 38.76 20.27
fish 59.62 87.69 84.91 89.55 48.48
birds 166.88 199.50 158.34 201.23 84.32

Table 1: Mean curvature error for each class of
SHREC’07 [GBP07]. Our method produces the lowest error
for all the classes except for the “hands” class.
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Figure 11: Quantitative results for the SHREC07 dataset. Our results have a significantly lower geodesic and conformal distortions compared
to VMTP [MCSK∗17], and a significantly lower area distortion compared to HOT [AL16], DDM [EBC17] and RHM [ESBC19].

Target Ours HOT VMTP DDM RHM

Figure 12: Visualization by texture transfer of our results compared to HOT [AL16], VMTP [MCSK∗17], DDM [EBC17] and
RHM [ESBC19] for a pair from each class we used from the SHREC07 dataset. See the text for details.
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OursTarget HOT VMTP DDM RHM

Figure 13: Visualization by normal transfer of our results compared to HOT [AL16], VMTP [MCSK∗17], DDM [EBC17] and
RHM [ESBC19] for a pair from each class we used from the SHREC07 dataset. See the text for details.

align extrinsic features, as is especially notable in the “tables” and
“glasses” examples. Thus our approach yields maps which are se-
mantic, and have both low area and conformal distortions.

Additionally, we compare the error of mean curvature alignment.
Semantic maps are expected to align features, such that correspond-
ing points should have similar mean curvature values. We com-
pute the mean curvature per vertex of the source and target shapes
using [KSNS07], and compute the error per mesh as ‖PH̃−H‖X
where H, H̃ denote the vector with mean curvature values per ver-
tex of the source and target shapes respectively. We sum this error
across each class we used, and compare the results in Table 1. Our

mean curvature error is the lowest for almost all classes, with the
exception of the “hands” class, where we believe that more land-
marks are needed for a better initialization and results.

The advantage of matching mean curvature values is additionally
evident in Fig. 13. The texture correspondence (left) visualizes our
correct mapping of the table crease, the airplane and bird wings,
and the sunglasses top crease. The normal mapping (right) serves as
an additional visualization of the advantage of our approach. Note
that using our result, the pushed-forward normals from the target
shape match the creases of the source shape (see e.g., the handles
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of the plier, the right leg of the teddy, and the bottom crease of the
sunglasses).

More results are shown in Fig. 14, where we used our method
(with α = 20, η = 0.002, β = 1000 initially and linearly increas-
ing for the first 200 iterations, γ = 2 · 104) to compute corre-
spondence between the left human shape and other human shapes
from FAUST, and between the Giraffe and other quadrupeds from
SHREC’07. The transferred texture shows that our results are
highly accurate even in the case of significant non-isometric de-
formations.

Figure 14: Visualization of our correspondence between various
non-isometric shapes from the FAUST and SHREC’07 datasets, us-
ing texture transfer.

6.2. Partial matching

We demonstrate our method for partial matching, using a simple
test case, as shown in Fig. 15. We map a part of the tail of an air-
plane to the whole airplane shape. An initial distorted map is com-
puted by rotation of the partial shape and projection on the target
surface. While this initialization method is not robust generally, we
use it as a proof of concept to show that our method can be extended
to partial matching. Slight adjustments needed to be made for the
partial case. First, rescaling both shapes to have the same total area
is not be suitable for partial matching, as it would cause the desired
map to have a high area distortion which our method penalizes. In
this case we do not scale the shapes. Second, since the total area
of the shapes is different, the parameter values also depend on the
total area of the shapes; α is divided by s the total area of S, and
β is divided by s · s̃ the multiplication of the total areas of S, S̃ to

Initial Map Final MapTarget

Figure 15: Demonstration of our method for partial matching of a
part of the tail of an airplane to the whole airplane shape. An ini-
tial distorted map (middle) was computed by rotation of the partial
shape and projection on the target surface. Our method successfully
computed a map (right) that aligns the features correctly.

ensure robustness across shapes in different scales. Indeed, using
this normalization, we used the same α = 20,η = 0.1,β = 1000 for
the partial matching example as we used for the full matching of
shapes from SHREC07.

6.3. Applications

Consistent cross-field design. High-quality feature aligned cor-
respondences are especially important in the context of computing
consistent cross fields for a pair of shapes. Consistent cross fields
are used for generating (approximately) consistent quad meshes,
and are therefore required to align to the principal curvature direc-
tions of the shape. If the correspondence does not align correctly
the creases of the shapes, a solution where both cross fields are
aligned with the curvature directions, and also correspond under
the map, will not exist. We show in Fig. 16 the quadrangulations re-
sulting from employing the method of Azencot et al. [ACBCO17],
where we either use maps computed with HOT (top row) or with
our method (bottom row). Notice that HOT maps induce a signifi-
cant stretch on one of the plier legs (shown both for the front and
back views in the top row). In comparison, our result does not have
such a shear, and, in addition, the quad edges are aligned with the
curvature directions.

Consistent quadrangulation. Ultimately, shape correspondence
can be used to consistently remesh a collection of shapes, for appli-
cations such as shape blending and shape analysis. To demonstrate
that such an application is feasible with our mapping approach, we
used our results to map a curvature-aligned quadrangulation of a
source shape, shown in Fig 17 (left), to a set of other shapes, shown
in Fig 17 (right). Note that the resulting quadrangulations are sim-
ilarly curvature aligned, although we have not explicitly computed
them as such.

Shape interpolation. We demonstrate the usage of our method
for shape interpolation. As shape interpolation methods mostly re-
quire consistent triangulation of the source and target shapes, a cor-
respondence between them is required. We remesh the target shape
according to a map P by setting the new vertex positions to PX̃ and
using the triangulation of the source shape. Then we use [HRS∗14]
to interpolate between the shapes. The results are shown in Fig. 18,
and the supplementary video. Note the smooth interpolation of the
shapes, which indicates the semantically correct mapping of fea-
tures.
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7. Conclusions and future work

We presented a novel elastic matching model for computing a cor-
respondence between triangular meshes, that minimizes the metric
distortion, puts crease features in correspondence and is globally
rotation invariant. We optimized simultaneously for an elastic de-
formation of the source shape, using a modified robust elastic en-
ergy, and the distance of its projection from the target shape with
an alternating minimization approach. Our method is applicable to
both isometric and non-isometric shapes, as we demonstrated by
achieving results which exceed the state of the art on two shape
datasets as measured by multiple metrics. Finally, we showed that
our approach yields high quality maps which are applicable to chal-
lenging use cases such as shape interpolation, joint cross field de-
sign and joint quadrangulation.

Our projection matrix can be seen as a functional map, defined in
a piecewise linear basis, and it is interesting to explore the applica-
bility of spectral bases in the context of elastic matching. Further-
more, as crease features are scale dependent, a promising avenue
of future work is to generalize the method to use a multiscale hier-
archical approach.
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