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Figure 1: Our method takes a source function (blue frame) and a target function (red frame) and finds a single vector field (gray frame) whose
associated flow map advects the source function to a function which matches the target function at the end time (black frame). In addition,
our method yields a smooth interpolation of functions by advecting the source function for different times (5 frames from the right).

Abstract
A tangent vector field on a surface is the generator of a smooth family of maps from the surface to itself, known as the flow.
Given a scalar function on the surface, it can be transported, or advected, by composing it with a vector field’s flow. Such
transport is exhibited by many physical phenomena, e.g., in fluid dynamics. In this paper, we are interested in the inverse
problem: given source and target functions, compute a vector field whose flow advects the source to the target. We propose a
method for addressing this problem, by minimizing an energy given by the advection constraint together with a regularizing term
for the vector field. Our approach is inspired by a similar method in computational anatomy, known as LDDMM, yet leverages
the recent framework of functional vector fields for discretizing the advection and the flow as operators on scalar functions. The
latter allows us to efficiently generalize LDDMM to curved surfaces, without explicitly computing the flow lines of the vector
field we are optimizing for. We show two approaches for the solution: using linear advection with multiple vector fields, and
using non-linear advection with a single vector field. We additionally derive an approximated gradient of the corresponding
energy, which is based on a novel vector field transport operator. Finally, we demonstrate applications of our machinery to
intrinsic symmetry analysis, function interpolation and map improvement.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

Finding correspondences between geometric objects is a funda-
mental problem in geometry processing. In many cases, the map
between the objects can be represented through correspondences
between scalar functions. A Gaussian distribution centered at the
location of the object [SNB∗12], an intensity function representing
medical data [BMTY05] or a geometric descriptor [OBCS∗12], are
all examples utilizing this approach. In fact, matching functions is
a more general problem, as functions are not restricted to encode
shapes, but can represent alternative information, such as distortion
information [OBCCG13], appearance properties [BVDPPH11] or
texture coordinates.

A natural extension to the function correspondence problem is to
additionally compute an interpolation between the given functions,
namely a time varying function which starts from the source and
smoothly interpolates to the target. One possible approach then, is
to recast the problem as finding a set of vector fields, whose associ-
ated flow maps are composed to yield an interpolation between the
functions. The flow map of a vector field is computed in any point
of the domain by “traveling” from that point and following the tra-
jectory of the vector field (known as the flow line), for a specified
time. Advection of a function is then achieved by composing it with
the inverse of the flow map (see Figure 2), where interpolation is
computed by advecting the source function for various times, and
the target function is attained at the final time.
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Figure 2: The flow map of a vector field (left, shown with the Line
Integral Convolution method [PZ11]) is used to advect a function
(middle left) for various different times (middle right and right).

This approach to function interpolation has long been considered
in medical imaging where anatomical images are deformed from
one to another. Several methods designed for solving this problem
are currently available [SDP13] of which the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) algorithm [BMTY05]
is widely adopted. LDDMM tackles the problem by minimizing an
objective function, which combines the advection constraint with
a regularizing term on the vector fields. In practice, energy mini-
mization is computed by explicitly constructing the flow map and
its Jacobian, or deformation gradient. Therefore, carrying over this
framework to curved domains is challenging, as these quantities are
difficult to represent and compute on such domains. We suggest
to overcome these difficulties by reformulating the energy using
the framework of functional vector fields [ABCCO13], leading to
a novel advection-based method for spatial interpolation between
real-valued functions on curved triangle meshes.

The main component required for our method is an advection
operator acting on curved domains. Previously, advection has been
employed to simulate fluids [SY04], and more recently to compute
stable shock filters [PK15]. However, these methods rely on the
explicit computation of flow lines which is algorithmically compli-
cated, unstable and error-prone on curved triangle meshes. Alter-
natively, tangent vector fields can be encoded as directional deriva-
tives of functions, and thus as linear operators acting on the space
of functions. Adopting this approach, [ABCCO13] showed that on
triangle meshes, discrete tangent vector fields can be encoded as
sparse matrices, whose exponential represents their associated flow
map. Further, the composition of a map with a function is given
in this setup as a matrix-vector multiplication, and hence advection
can be efficiently approximated by computing the action of the ma-
trix exponential on a vector [AMH11]. Notice that since functions
are directly mapped to functions, the explicit computation of flow
lines and its inherent difficulties is completely avoided in this setup.

In this paper, we facilitate the functional advection technique for
solving the function matching problem. Initially, we propose to op-
timize for a set of vector fields and use linear transport, i.e., taking
only the first two terms of the matrix exponential. This approach
works well in scenarios as fluid simulation [AWO∗14, AVW∗15]
where the Courant–Friedrichs–Lewy (CFL) condition limits prop-
agation speeds and thus restricts the dynamic time step to be small.
However, it is sometimes necessary to find a single vector field; a
constraint that is rarely attainable with the linearized formulation as
the required time step for matching might be too big. For instance,
assume that the target function is in fact the advected version of the
source function, as is the case in optical flow problems [SRB14].

In this context, one hopes to reconstruct the underlying vector field
that governs the motion. Thus, we generalize our energy functional
to include the full matrix exponential, for cases where it is crucial
to interpolate using a single velocity field.

Unfortunately, the associated directional derivative of the matrix
exponential is computationally intractable in most of our problems.
Recently, Corman et al. [COC15] noticed that this derivative is in
fact a block in the matrix exponential of a bigger operator, and thus
used a sum of matrix exponentials of bigger matrices. However,
they worked in a reduced spectral basis, allowing them to facilitate
this observation which requires the computation of a large number
of matrix exponentials (as many as the number of basis vectors).
We, on the other hand, work with the full basis, thus their approach
is less applicable in our case. Instead, we observe that an approxi-
mation of the matrix exponential derivative can also be formulated
in terms of a Lie bracket operator acting on vector fields. Thus, we
propose a novel discrete bracket and exploit the relation between
vector fields and matrices to arrive at a tractable derivative for the
matrix exponential. Overall, we emphasize that through the entire
computation of the functional’s gradient, we never store or explic-
itly compute the matrix exponential, but only its action on vectors.

We demonstrate our machinery in several applications as spatial
interpolation between various functions and reconstruction of the
governing velocity in an optical flow type scenario. Moreover, we
construct a continuous symmetric map based on two descriptors.
Finally, we show that our method can be used to extract the point-
to-point map that is related to a given functional map.

1.1. Related Work

We discuss here various approaches which either solve the same
problem on Euclidean domains, solve a related problem on triangle
meshes, or target similar applications as ours.

Computational anatomy. The problem of matching consecutive
medical images is a classical problem in computational anatomy,
and one of the common solutions uses the flow of one or more vec-
tor fields, see [SDP13], for a recent review. Among the plethora
of such methods, LDDMM [BMTY05] is extremely popular, and
has been extended to many settings, though not to curved trian-
gle meshes. On flat domains, discretizations of LDDMM use semi-
Lagrangian techniques for vector field integration, and for com-
puting discrete mappings and their differentials, using simple in-
terpolation rules. However, on curved meshes these computations
are more challenging, as trajectories should be constrained to re-
main on the curved surface. Our discretization, on the other hand,
is based on the functional approach, thus functions can be advected
without explicit computations of mappings and their differentials.

Optical flow. vector field based registration is also popular in com-
puter vision, where it is known as optical flow, see [SRB14] for a
recent review. In the classical formulation, when two images are
given, the goal is to find a smooth displacement vector field which
matches the first image to the second. This is in fact the linearized
version of advection on Euclidean domains, highly appropriate in
optical flow since the change between consecutive images is small.
Optical flow has been generalized in many ways, and was recently
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adapted to advection-based matching of a series of functions on tri-
angle meshes [LB08]. There, however, multiple samplings of the
interpolated function are given as input, i.e., not only the initial and
final functions as in our setup, inherently assuming that the defor-
mation between two consecutive functions is small. Furthermore,
they compute multiple vector fields which realize the flow, and their
advection approach exhibits far more diffusion than ours.

Optimal transport. Matching between distributions is a prevalent
objective in optimal transportation (OT) methods [Vil03, Vil08]. In
fact, the Benamou–Brenier [BB00] formulation shares some simi-
larities with our matching approach, with the important difference
that their associated vector field is time-dependent in general. In the
special case when distances are raised to the power of 1 [SRGB14],
instead of a general power p, OT is formulated using a single vec-
tor field. However, advecting the function on the resulting vec-
tor field leads to a trivial pointwise linear interpolation between
the source and target functions, whereas our method yields spatial
displacements. Alternatively, using squared distances [SDGP∗15]
(i.e., p = 2) yields interpolation results that are closer to ours, yet
requires regularization for computational efficiency which leads to
blurring, and does not output a single vector field.

Related Applications in Computer Graphics. Our method can be
classified as on-surface interpolation of functions, and there exist a
small number of works addressing similar problems in Computer
Graphics. Perhaps the closest to our approach is the method for
continuous matching [COC15]. There, the authors improve a given
point-to-point map, by optimizing for a vector field such that the
composition of its flow map with a given input map approximates
another known map. However, optimization in their setup requires
working in a reduced spectral basis in order to be computation-
ally feasible due to their usage of explicit matrix exponentials. In
addition, their obtained field is smooth and thus does not account
for high frequency deformations whereas our method does. Defor-
mation of functions on surfaces is also addressed in [RTD∗10], by
computing a map fulfilling some point constraints and composing
its inverse with the function to be deformed. This problem is in
some sense simpler than the one we address, since the constraints
imply that the correspondence between the source and target func-
tions is known, and only interpolation is needed.

1.2. Contributions

Our main contribution is a method for solving the inverse prob-
lem of computing a vector field whose flow advects one function
to another on curved triangle meshes, where the functions are not
required to be similar or have overlapping support. To this end we:

• Reformulate the LDDMM energy using functional operators. We
explore linear and non-linear advection formulations and provide
the associated gradients (Sections 3–5).
• Present a novel Lie bracket operator on vector fields (Section 6)

which is instrumental for efficiently computing the derivative of
the advection operator (Appendix C).
• Present applications of this machinery to optical flow on curved

domains, interpolation of scalar functions, extraction of a point-
to-point map from a given functional map, and realization of in-
trinsic symmetry maps. (Section 8).

2. Vector Fields and Flows

To formally specify our objective we briefly describe the following
definitions for vector fields and their flows. In differential geometry,
it is well-known [Fra11] that tangent vector fields are fully encoded
through their action on smooth scalar functions. Given a surface
M with its associated metric 〈·, ·〉 and a smooth function f : M→
R, the action of a vector field v on f is given by the directional
derivative of the function:

v( f ) = Dv( f ) = 〈v,∇ f 〉 , (1)

where the inner product is computed per point p ∈M. Vector fields
and mappings are tightly linked as any tangent vector field v defines
a one-parameter family of self-maps φ

t
v, known as the flow of v,

which satisfies:
d
d t

φ
t
v = v◦φ

t
v, φ

0
v = id .

Advection of scalar functions is then achieved by composing f with
the inverse of the flow map, i.e., f (t) = f ◦ φ

−t
v . Thus, f (t) is the

unique solution of the following partial differential equation,

d
d t

f (t) =−Dv( f (t)), f (0) = f . (2)

The operator of advection plays a key role in our method since it
allows to match between functions. We proceed by describing our
approach for function matching on surfaces.

3. Advection-based Function Matching (ABFM)

A straightforward (and computationally trivial) approach to inter-
polating functions is to linearly blend them. However, pointwise
interpolation is independent of the global structure of the functions
and the underlying geometry. Moreover, if the functions are spatial
deformations of one another, i.e., an associated field generates the
functions (as in optical flow), linear interpolation would not pro-
duce satisfying results. These issues motivate a different approach.

Given a surface M and two scalar functions f ,g : M → R, we
seek for a time-varying tangent vector field v(t) whose associated
flow advects f onto g. In general, this problem is ill-defined, as

Figure 3: Given source and target functions (blue and red frames),
our method matches the advected source to the target (black frame).
The resulting interpolation is obtained by advecting for different
times leading to spatial displacement of values.
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there can be many such fields, therefore some additional regular-
ization on the vector field is required. To this end, we design an en-
ergy functional which includes two terms: a data term that promotes
the advection constraint, and a regularization term which enforces
smoothness on the vector field. Our approach is inspired by the
popular LDDMM framework [BMTY05], which enforces a similar
functional. In Figure 3, we show matching and interpolation results
computed using our method.

We propose to solve the following optimization problem:

argmin
v

1
2

∫ τ

0
‖v(t)‖2

α d t +
1

2σ2 ‖ f ◦φ
−τ
v −g‖2

β . (3)

Namely, our data term seeks to minimize the norm of f (τ)− g,
where f (τ) satisfies Eq. (2) when advecting f using the optimized
velocity. The scaling parameter σ weighs the matching against the
penalty due to the regularization of the velocity, i.e., we treat the
matching as a weak constraint.

We choose a function norm that is more suitable for measuring
distances between disjoint functions, i.e., functions whose supports
(where f ,g 6= 0) are disjoint. Specifically, increasing the parameter
β allows for interpolating functions that are farther apart. The term
which regularizes vector fields also uses a modified norm, see e.g.,
[BMTY05], which promotes a smoother velocity as α grows. Thus,
we define the following norms:

‖ f‖2
β =

∫
M

f (x)Cβ f (x)dx , ‖v‖2
α =

∫
M
〈v(x),Dα v(x)〉dx ,

where Cβ is defined as Cβ = id−β∆LB with ∆LB the negative-
definite Laplace–Beltrami operator. Similarly, the operator Dα is
given by Dα = id+α∆H , where ∆H is the Hodge Laplacian.

4. Discretization

The main challenge in the discretization of our objective function
on triangle meshes is computing the flow map φ

t
v. This requires

computing the flow lines of v, which is known to be a non-trivial
and error prone problem on curved meshes, requiring combinatoric
decisions (e.g., to which triangle should the flow line continue).
Furthermore, it is not clear how one could compute the gradient of
our objective functional if using such a direct approach for com-
puting the flow lines. In the following, we propose an alternative
method, which involves only the advected functions and does not
require the computation of the flow lines, based on the functional
representation of vector fields [ABCCO13].

Notation. We are given a triangle mesh with face set F and ver-
tex set V . We define our discretizations in matrix notation, and thus
represent functions as vectors of length |V|, and vector fields as
vectors of length 3|F|. Vertex and face areas are respectively de-
noted by AV ∈ R|V| and AF ∈ R|F|, where the area of vertex i
is computed by one third of the total area of its adjacent triangles.
We use diagonal mass matrices given by GV = [AV ] ∈ R|V|×|V|

for vertices and GF = [AF ] ∈ R3|F|×3|F| for faces. The bracket
[·] operator converts vectors in R|V| and R|F| to diagonal matrices
in R|V|×|V| and R3|F|×3|F| respectively (replicating each entry 3
times for the latter). In addition, we define the interpolation matrix
IFV ∈R|V|×|F| to average quantities from faces to the vertices, i.e.,

Figure 4: Linear advection of an input function (top left) works well
for short times (top middle), but discretization errors in the form
of oscillations appear for longer times (top right). For comparison,
the non-linear transport (bottom) better approximates the flow and
it yields a smooth result, even for long times (bottom right).

IFV (i, j) = AF ( j)
3AV (i)

, iff vertex i belongs to face j and 0 otherwise. Our

differential operators, grad ∈ R3|F|×|V| and div ∈ R|V|×3|F|, are
the standard ones as defined in [BKP∗10, Chapter 3].

Functional Vector Fields. Following the construction introduced
in [ABCCO13] and using our notation, we have that Dv and its dual
version D f , required for derivative computations, can be computed
as follows

Dv = IFV [v]
T
• grad , D f = IFV [grad f ]T• ,

where D f is a matrix of size |V|×|F| defined as the operator which
satisfies D f (v) =Dv( f ). Here, [·]• ∈R3|F|×|F| is a block diagonal
matrix which encodes a pointwise multiplication of a vector field
by a face-based function, and its transpose evaluates a pointwise
inner product.

Functional Advection. A particularly useful property of Dv is that
discrete advection of a function f can be computed using the action
of the matrix exponential on f , namely,

ft = exp(−t Dv) f =
∞
∑
k=0

(−t)k

k!
Dk

v f , (4)

where the action is computed in an efficient manner with methods
as [AMH11]. When viewed as an operator that maps functions to
their directional derivatives, the discrete Dv with the relation (4) is
closely related to the functional maps framework [OBCS∗12]. In
this context, the operator exp(−t Dv) is in fact the functional map
associated with the flow map of v. Finally, there are cases (e.g., in
fluid simulation) where it is sufficient to use the linearized version
of advection, i.e.,

ft = (id−t Dv) f . (5)

In Figure 4, we show a comparison between the linear and non-
linear versions of advection. Starting from the same initial function
(top and bottom, left), the linear computation (top) exhibits dis-
cretization noise, i.e., oscillationst (top right), while the non-linear
discretization (bottom) provides a smooth result (bottom right).

c© 2016 The Author(s)
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Discrete Energy. To fully discretize problem (3), we break the time
parameter into N segments of equal size δτ = τ/N. Thus, we opti-
mize for a finite set of vector fields {v j}N

j=1 that are constant per
time segment. Using the above definitions and matrix notations, we
arrive at the following discrete optimization problem

argmin
{v j}

(
δτ

2

N

∑
j=1

vT
j GF Dα v j +

1
2σ2 δgT GVCβ δg

)
, (6)

where δg = f ◦ φ
−τ
v − g. The map φ

−τ
v is obtained by composing

the flow maps of the different velocities, i.e.,

f ◦φ
−τ
v = f ◦φ

−δτ
v1 ◦ ..◦φ

−δτ
vN ,

where composition is achieved through matrix multiplication.

The transported function can be computed using the linearized
flow (5) or the non-linear flow (4). In general, the linearized method
is preferred in cases where the overall smoothness of advection is
of less importance (see applications in Section 8 that are related
to Figures. 11, 12), since the composition of discrete mappings
may induce some error. Also, the linearized method yields reason-
able results when the underlying deformation is small or the flow
time is sufficiently short. On the other hand, non-linear advection
is crucial when one requires a single vector field that generates a
smooth deformation (see e.g., Figures 9, 10). In the following, we
consider two scenarios: linear flows with multiple vector fields and
non-linear flows with a single vector field. Hence, we have

f ◦φ
−τ
v =

(
N

∏
j=1

(
id−δτDv j

))
f ,

or f ◦ϕ
−τ
v = exp(−τDv) f ,

where we used the notation ϕ
−τ
v in the non-linear case to distin-

guish it from the linear case. Finally, we use the notation ft to
denote the advected version of f to time t, i.e., ft = f ◦ φ

−t
v or

ft = f ◦ϕ
−t
v , depending on the associated flow, and f0 = f .

Discrete Gradient. To solve the discrete problem (6), the gradi-
ent of the energy functional is required. Given that Dα and Cβ are
self-adjoint operators, i.e., in our case these are symmetric matri-
ces with respect to the corresponding inner product, the derivative
of the energy functional is given by

∂

∂v j
E = δτGF Dα v j +

1
σ2

(
∂

∂v j
ft

)T

GVCβ δg . (7)

The full derivation of the gradient appears in Appendix A. Note,
that the gradient depends on ∂v j ft , and thus on the choice of advec-
tion operator. We provide in Appendices B and C the derivative of
the advection for the linearized and non-linear flows, respectively.

5. Linear and Non-linear Advection-based Function Matching

The first scenario we consider takes N > 1 and employs linearized
flows, i.e., uses the advection f ◦φ

−τ
v as described in Section 4. To

compute the directional derivative of the energy functional (7), we
derive the component ∂

∂v j
ft and obtain

∂

∂v j
ft =−δτ

(
N

∏
i= j+1

(id−δτDvi)

)
D f( j−1)δτ

, (8)

where f( j−1)δτ is the (partial) advection of f0 to time ( j− 1)δτ.
We refer to this method as Linearized Advection-based Function
Matching (LABFM) and Figures 11, and 12 were generated using
this method.

While the LABFM method is fast and simple to implement, there
are certain applications in which N = 1 is a design requirement.
Thus, we extend the former method to include non-linear flows,
i.e., f ◦ϕ

−τ
v , and to optimize for a single vector field. The modified

energy becomes

E(v) =
τ

2
vT GF Dα v+

1
2σ2 δgT GVCβ δg ,

where, as before, we need to re-derive the suitable gradient of the
component ∂v ft . We emphasize that computing the derivative of
this expression is more involved compared to the former case. In
particular, exp(−τDv) ∈ R|V|×|V| is a dense matrix, thus using
finite differencing methods or extracting a block in the exponential
of a bigger operator [COC15] is possible only for small problems.
Instead, we derive in Appendix C an approximation of the gradient
by exploiting the relation between matrices and vector fields. We
arrive at the following expression,

∂

∂v
ft =−

τ

k+1
exp(−τDv)D f0

k

∑
s=0

exp
( sτ

k
adv

)
, (9)

where k is a scalar used to approximate a continuous integral, and
adv is the Lie bracket [Fra11], an operator that acts on vector fields,
i.e., adv u = [v,u], where u is a vector field. Intuitively, the bracket
measures the amount of change u exhibits with respect to the flow
lines of v. We defer the discussion on the operator adv and its ex-
ponentiated version to the next section.

6. Lie bracket of Vector Fields

The Lie derivative evaluates the change of a vector field over the
flow of another vector field. Given two tangent fields v and u, we
say that their flows φ

t
v and φ

t
u commute when their bracket is zero.

Geometrically, it means that one can apply φ
t
v and then φ

t
u or the

other way around and arrive at the same point. Formally, the bracket
is given in operator form by:

D[v,u] = DvDu−DuDv , (10)

where [v,u] denotes the associated vector field. Notice that under
the bracket operation, vector fields form a group (since second
derivatives cancel), i.e., D[v,u] is a directional derivative operator.
We show in Figure 5 an example of the smoothest vector field u
(right) that commutes with v (left).

Figure 5: Given a vector field v (left), the kernel of its operator adv
consists many vector fields that commute with v, where we show
the smoothest one (right).
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v u t=0.125 t=0.25

Figure 6: Transport (pushforward) of a vector field u (middle left)
over the flow lines of v (left) is shown for various times t = 0.125
and t = 0.25 (middle right and right).

Representing and computing the Lie derivative on surfaces is
an on-going challenge and several methods try to solve this prob-
lem. For instance, [AOCBC15] exploit the functional approach and
offer an efficient representation of the bracket in a reduced spec-
tral basis. We choose to follow [ABCCO13] as their bracket dis-
cretization is closely related to the directional derivative operators
we use. Specifically, the discrete version of Eq. (10) is computed
in [ABCCO13] by taking the commutator of the respective matri-
ces. However, the resulting matrix acts on scalar functions, whereas
adv ∈R3|F|×3|F| is an operator that takes a vector field and returns
a vector field.

Nevertheless, we observe that a vector field [v,u] can be extracted
from its directional derivative D[v,u] by applying the operator on the
coordinate functions x,y and z. For instance, to reconstruct the x-
coordinate we compute D[v,u](x) = [v,u]x. Repeating this procedure
for y and z (the derivation appears in Appendix D) yields:

adv =

Dv 0 0
0 Dv 0
0 0 Dv

−
Dvx

Dvy

Dvz

 ∈ R3|F|×3|F| , (11)

where Dv = [v]T• grad IFV and D f = [grad IFV f ]T• .

A novel property of adv is its relation to the differential of the
flow map φ

t
v. The differential of a self-map φ

t
v generates a self-map

Adφt
v

on the tangent bundle, i.e., Adφt
v
, also known as the push-

forward, transports vector fields to fields. For finite matrices, our
representation is extremely useful since we can discretize Adφt

v
by

taking the exponential of adv [Hal15]:

Adφt
v
u = exp(t adv)u , (12)

where the term exp(t adv) appears in our gradient computations (9),
and we evaluate it using Eq. (11) and the matrix exponential. In
Figure 6, we demonstrate the action of Adφt

v
associated with v (left)

on the field u (middle left) for several times (middle right and right).

7. Implementation Details and Limitations

We implemented our method in MATLAB using the minFunc
routine [Sch05] which employs a quasi-Newton algorithm with
L-BFGS (limited memory) updating. In Algorithm 1, we provide
the function handle that computes the energy and derivative of
NLABFM. This pseudo-code includes calls to exp and exp_tspan
which compute the action of a matrix exponential on a vector for a
specific time and for a range, respectively (see [AMH11] for further
details). Notice that the gradient computation includes the trans-
pose of the matrices Dv,D f and adv. This is due to the use of

function NLABFM(f,g,v)

// Energy computation
fτ← exp(−τ, Dv, f)
δg← fτ−g
E← τ

2 vT GF Dα v+ 1
2 σ2 δgT GVCβ δg // Eq. (6)

// Gradient computation
d← DT

f exp(−τ, DT
v , GVCβ δg)

ds← exp_tspan(adT
v , d, 0, τ, k)

D← τGF Dα v− τ

(k+1)σ2 ∑s ds // Eq. (9)

return E,D

Algorithm 1: Energy and gradient calculation for the Quasi-Newton
iteration of the non-linear ABFM algorithm. The routines exp and
exp_tspan are described in [AMH11].

(∂v ft)T in the gradient (7) and since exp(A)T = exp(AT ) for any
matrix A.

Our advection method depends on the end time parameter τ. Un-
fortunately, the computation of the action of the matrix exponential
is not stable for long times. Consequently, the optimization does
not find a descent direction and stops immediately. We handle this
limitation with a simple modification to the definition of the non-
linear flow, i.e.,

f ◦ϕ
−τ
v = exp(−τDv) f =

(
n

∏
j=1

exp(−δτDv)

)
f ,

where δτ = τ/n. Notice that we use the same vector field v in the
product and the above relation holds up to machine precision. How-
ever, the gradient also changes in a way that is not equivalent in the
discrete setting, i.e.,

∂

∂v
ft =−

δτ

k+1

n

∑
r=1

exp(−(n− r)δτDv)D f(r−1)δτ

k

∑
s=0

exp
(

sδτ

k
adv

)
.

The main difference in the above expression compared to Eq. (9) is
that we advect for a range of times instead of advecting only for the
end time, and, in particular, advection for shorter times contributes
to the computation.

Table 1 shows the parameters we used in all of our experiments.
For small deformations, taking τ = 1 is sufficient to achieve good
results, whereas large deformations require larger τ. Increasing the
parameters α and β corresponds to smoother fields and functions,

Figure τ α β σ N n
Fig. 1 1 1 0 1e−2∗ − 10
Fig. 3 2 1e+3 1e−5 1e−4 − 40
Fig. 7 1 1e+3 0 1e−1∗ 20 −
Fig. 8 10 1e+3 0 1e−2∗ − 200
Fig. 9 1 1 1e−4 5e−3 − 20
Fig. 10 1 1e+3 0 1e−2∗ − 20
Fig. 11 1 1 0 1e−2∗ 10 −
Fig. 12 1 1 0 1e−2∗ 10 −

Table 1: The parameters used in our experiments. See the text for
details about the effect of each parameter on the obtained results.
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Figure 7: Interpolation results between the eigenfunctions 7 and 8
of the Laplace–Beltrami operator (blue and red frames). Notice that
our result (black frame) highly matches the target function and that
the interpolation path is smooth.

respectively. Finally, decreasing σ weighs the matching constraint
higher with respect to the vector field constraint. In practice, we
employ a “cooling” procedure for σ (denoted with asterisk in the
table) to achieve better matching, i.e., σ is divided by 10 per a fixed
amount of iterations.

8. Results

Spatial interpolation of functions. Fig. 3 shows an intuitive spa-
tial interpolation between a large smooth Gaussian (blue frame)
and two small smooth Gaussians (red frame). Our method yields
a result (black frame) which matches the target function, where
the rest of the frames are obtained by advecting the source over
the resulting velocity field for different times. While our result
is similar in nature to those obtained with optimal transportation
techniques [SDGP∗15], we stress that our method is not designed
for probability distributions. In particular, our differential operators
and their integrated versions do not exhibit a maximum principle,
i.e., the advected functions are not guaranteed to be probability dis-
tributions, even if they originated from a probability distribution.
Nevertheless, the drift can be minimized by taking a small σ pa-
rameter. Similarly, we show in Fig. 7 a smooth interpolation be-
tween the eigenfunctions 7 and 8 of the Laplace–Beltrami operator.
Matching between eigenfunctions is important for improving maps
between surfaces, as was shown in [COC15]. In addition, several
mapping techniques rely on associating scalar geometric descrip-
tors [OBCS∗12]. Therefore, our method can serve as a building
block in such scenarios.

Optical flow on surfaces. In cases when the target function is the
advected version of the source function, one common objective is
to reconstruct the underlying vector field which generated the mo-
tion. For instance, in the context of optical flow, registration be-
tween consecutive frames of a movie allows to up-sample the given
signal. In Fig. 8, we show optical flow on curved surfaces where
the source function (blue frame) is advected to time τ = 10 (red
frame) over the velocity field (top left, showing its LIC visualiza-
tion and top middle left, showing its norm). Our method matches

1

2

3

4

5

6

x10-5

Figure 8: Our method takes as input a function (blue frame) and its
advected version (red frame) computed using a vector field (top
left). The output of our method is the matched function (black
frame, right) and the corresponding vector field (black frame, left
and middle). Notice that the resulting field highly matches the orig-
inal field and the error between the function (bottom right) is very
small. See the text for additional details.

the target function (black frame, right) with a vector field (black
frame, left and middle) that is very close to the original field. In
addition, we show the absolute error between the target function
g and the matched function f ◦ϕ

−10
v , i.e., we compute pointwise

|g− f ◦ϕ
−10
v | (bottom right). Notice that both f and g are on the

scale of 1, thus our matching exhibits significantly small error.

Continuous matching of symmetric surfaces. Given a surface
and its symmetry map, our goal is to infer a one-parameter fam-
ily of maps which continuously matches the surface to its symme-
tries. In Fig. 9, we take a source function (blue frame), map it with
the symmetry map (red frame), and we optimize for a single vector
field which matches between those functions (black frame, shown
with LIC and norm of the field). The bottom row shows an RGB
color coding of the coordinate functions mapped with the flow map
of the velocity. The initial geometry with two points marked on top
of it (left) is advected to time τ/2 (middle left) and then to time τ

Figure 9: Our method handles large deformations between the
source function (blue frame) and the target function (red frame),
and succeeds in finding a single velocity field whose flow repre-
sents the continuous symmetry map (black frame). We show an
RGB color coding of the surface mapped under the resulting flow
for times 0,τ/2,τ and 2τ (bottom, left to right).
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Figure 10: An experiment similar to one shown in Fig. 9 on a more
complex geometry that contains creases. Nevertheless, our method
finds a smooth field whose flow generates a continuous symmetric
mapping.

(middle right). Notice that the points and the coordinate functions
are smoothly mapped to the correct values. We additionally show
an extrapolation of the advection to time 2τ (right), where some
drift is noticeable, yet it is relatively small. Fig. 10 shows a similar
experiment on a much more complex data since the geometry con-
tains creases, thus it is not clear that the required vector field even
exists. Yet, our method yields a reasonable continuous symmetric
mapping which maintains the general behavior.

Function Matching for Mapping. The functional map frame-
work [OBCS∗12] provides the basis for many mapping algorithms.
In this framework, one can infer pose constraints requiring func-
tions to correspond, and compute a map taking functions to func-
tions, which best fulfills these constraints. The effectivity of this
framework is somewhat hindered by the fact that it is sometimes
difficult to extract a corresponding point-to-point map if it is re-
quired. Using our framework, when working with self-maps, it is
possible to leverage the functional map idea (mapping between cor-
responding functions), while simultaneously maintaining a point-
to-point correspondence, defined using the flow map of the com-
puted vector field. This approach was suggested in [COC15], yet
as we work in the hat basis both for functions and vector fields, we
are not limited to a small subspace of functions and vector fields.

We extend the setting using linearized advection of multiple vec-
tor fields to match multiple functions by summing over the errors.
Figure 11 demonstrates that we can indeed match successfully be-
tween two non-smooth functions (blue frame, visualized as trans-
ported texture coordinates using a given map from the model on
the left) to a smooth version of these functions (red frame, ob-
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Figure 11: Matching between two non-smooth functions (blue
frame) to two smooth functions (red frame) shown as texture co-
ordinates. See the text for additional details.

tained by transportation with the corresponding functional map),
and achieve the required functions (black frame). Moreover, we
compute the pointwise sum of absolute errors between the target
functions {gi}2

i=1 and the matched functions { fi ◦ φ
τ
v}2

i=1, i.e., we
plot the pointwise difference ∑i |gi− fi ◦ φ

τ
v| (right). In Figure 12

we repeat this experiment on two models from the SCAPE dataset,
using the functional map obtained from the ground truth correspon-
dence to transport the functions we use as targets (which are the
coordinate functions of the source mesh, two of them visualized
as texture coordinates). Computing the flow using one function
constraint (gray frame) and 3 function constraints (black frame)
- we again match the target functions. Furthermore, we compute
the point-to-point map corresponding to our flow and compare the
error with respect to the ground truth, with the output of [COC15]
on the same inputs. The resulting errors are shown in Figure 13,
demonstrating that we improve the output point-to-point map.

9. Conclusion and Future Work

We have presented a novel method for matching scalar functions on
curved triangle meshes that is based on the vector field’s flow. We
designed an energy minimization framework which is inspired by
the well-known LDDMM algorithm and facilitates the machinery
of functional vector fields. Our unique approach avoids the prob-
lematic explicit computation of flow lines and allows to advect in a
linear and non-linear fashion. We showed that our matching method
is applicable in scenarios of small and large deformations. We also
demonstrated its effectiveness in optical flow problems, continuous
matching of symmetric surfaces and in the context of the functional
maps framework.

Numerous problems which are related to geometry processing
can be posed as function matching problems. Thus, we believe that
the generality of our framework will make it a valuable tool in many
practical scenarios. In particular, we would like to extend our ma-
chinery to match and interpolate between tangent vector fields, a
problem whose solutions are useful in fluid simulation techniques.
Moreover, we would like to generalize our method for computing
barycenters or weighted averages of scalar functions. Finally, we
believe that our method can be also considered in the context of
geometry-aware texture synthesis interpolation.
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Appendix A: Directional derivatives of the discrete energy (6).

We take variations of E with respect to the velocities v j, and iden-
itfy the coefficient of v j with the partial derivative ∂

∂v j
E:

∂

∂t
E(v j + tδv j)

∣∣∣
t=0

=
δτ

2
δvT

j GF Dα v j +
δτ

2
vT

j GF Dα δv j

+
1

2σ2

(
∂ ft
∂v j

δv j

)T

GVCβ δg

+
1

2σ2 δgGVCβ

(
∂ ft
∂v j

δv j

)
= δτδvT

j GF Dα v j +
1

σ2 δvT
j

(
∂

∂v j
ft

)T

GVCβ δg

≡ δvT
j

(
∂

∂v j
E
)

.

Notice that the above holds in our setup since Dα and Cβ are self-
adjoint operators with respect to the inner products defined by GF
and GV respectively.

Appendix B: Directional derivatives of f ◦φ
−τ
v (linear advection).

The key insight for deriving the gradient for f ◦ φ
−τ
v is to employ

the dual operator D f in order to extract the particular v j. As in
Appendix A, we have:

∂

∂t
f ◦φ
−τ

v+tδv

∣∣∣
t=0

=
∂

∂t

N

∏
j=1

(
id−δτDv j+tδv j

)
f
∣∣∣
t=0

=
∂

∂t

N

∏
j=1

(
id−δτDv j − t δτDδv j

)
f
∣∣∣
t=0

=
N

∑
j=1

(
N

∏
i= j+1

(id−δτDvi)

)
(−δτDδv j

)

(
j−1

∏
i=1

(id−δτDvi)

)
f

=−δτ

N

∑
j=1

(
N

∏
i= j+1

(id−δτDvi)

)
Dδv j

f( j−1)δτ

=−δτ

N

∑
j=1

(
N

∏
i= j+1

(id−δτDvi)

)
D f( j−1)δτ

δv j

≡
N

∑
j=1

∂ f ◦φ
−τ
v

∂v j
δv j

Appendix C: Directional derivative of f ◦ϕ
−τ
v (non-linear

advection).

In what follows, we describe our approximation to the derivative of
f ◦ϕ

−τ
v . Notice that for finite matrix groups, a direct differentiation

is available (see e.g., [Hal15]). However, the resulting expression
is not computationally tractable as it contains an exponential of a
9|F|2×9|F|2 matrix. We, on the other hand, facilitate the discrete
relation between vector fields and matrices and thus obtain an effi-

cient yet approximate expression for the derivative.

∂

∂t

(
1

2σ2 ‖exp(−τDv+t δv) f −g‖2
β

)∣∣∣
t=0

=

1
σ2

〈
exp(−τDv+t δv) f −g,

[
∂

∂t
(exp(−τDv+t δv) f −g)

]∣∣∣
t=0

〉
β

=

1
σ2

〈
exp(−τDv) f −g,

[
∂

∂t
exp(−τDv+t δv)

]∣∣∣
t=0

f
〉

β

=(1)

1
σ2

〈
δg,exp(−τDv)

[∫ 1

0
exp(−ad−s τ Dv)D−τ δv ds

]
f
〉

β

=(2)

−τ

σ2

〈
δg,exp(−τDv)

[∫ 1

0
Dexp(s τ adv)δv ds

]
f
〉

β

=

−τ

σ2

〈
δg,exp(−τDv)

∫ 1

0
D f exp(sτ adv)δvds

〉
β

=

−τ

σ2

〈
δg,exp(−τDv)D f

∫ 1

0
exp(sτ adv)dsδv

〉
β

=(3)

−τ

(k+1)σ2

〈
δg,exp(−τDv)D f

k

∑
s=0

exp
( sτ

k
adv

)
δv

〉
β

.

The proof for (1) is given in [Hal15] and (3) is a simple averaging
rule for approximating the continuous integral with a finite sum.
The pass in (2) states exp(adDv)Du = Dexp(adv)u, i.e., applying this
operation to the matrices Dv and Du is the same as acting the on
vector fields v and u. In the discrete setting this relation does not
hold, thus pass (2) can be considered as an approximation of the
required computation.

Appendix D: Construction of the operator adv.

To derive Eq. (11), we employ the following observations. As the
current Dv operates on vertex-based functions, yet adv is expected
to act on vector fields, we define Dv = [v]T• grad IFV , an operator on
face-based functions. Moreover, a vector field v = (vx,vy,vz) can
be reconstructed by applying its directional derivative operator on
the coordinate functions of the surface. Namely,

Dv(x) = vx , Dv(y) = vy , Dv(z) = vz ,

where any point p ∈ M is given by (xp,yp,zp) ∈ R3. Thus, using
the above observations we obtain,

D[v,u](x) =DvDu(x)−DuDv(x)

=Dv(ux)−Du(vx)

=Dv(ux)−Dvx(u) ,

where D f = [grad IFV f ]T• . Finally, applying the above argument to
the coordinate functions y and z yields,

adv(u) = [v,u]

=
(
D[v,u](x),D[v,u](y),D[v,u](z)

)
=
(
Dv(ux)−Dvx(u),Dv(uy)−Dvy(u),Dv(uz)−Dvz(u)

)
,

where Eq. (11) is the matrix form of the above computation.
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